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Supplemental Appendix S1: Impact of all-zero cases on tetrachoric correlations 
 

As noted in Section 4 of the article, the tendency towards unidimensionality when an 
inflated number of all-zero cases is added to the data is due to the resulting increased tetrachoric 
correlations between items. Specifically, even if groups of items exhibit large intragroup 
correlations but no correlation between items in different groups, adding a large number of all-
zero cases will make all intra-item correlations exhibit strong positive correlation—the tell-tale 
sign of unidimensionality. Figure S1 illustrates the average eigenvalue profile for Scenarios 1, 4, 
1a, and 3a of Table 1.  The eigenvalues for Scenario 1 (moderate-severity items, ≈1% all-zero 
cases among the 4,000 pathological subjects, and no all-zero cases appended) exhibit the classic 
profile for a two-factor structure.   However, in Scenario 1a (when 36,000 all-zero cases are 
added to the 4,000 pathological subjects measured on moderate-severity items), the eigenvalue 
structure strongly resembles the traditional profile for a single factor model.  When the mix of 
items is 20,000 pathological cases plus 20,000 all-zero cases (as in Scenario 3a), the eigenvalue 
structure remains distorted, but the increased ratio of pathological to healthy subjects results in 
estimates for the second-highest eigenvalue that are large enough to yield a dimensionality 
assessment of two. We note that when an abundance of all-zero cases arises from a scenario 
where the items are very severe/difficult (as in Scenario 4), many of the dimensionality-
assessment techniques (including the eigenvalue-based techniques) work just fine.  That is, the 
eigenvalues for Scenario 4 (high-severity items, ≈20% all-zero cases among the 4,000 
pathological subjects, and no all-zero cases appended) exhibit a structure that is quite similar to 
the eigenvalue structure for moderate-item-severity Scenario 1. It is only those scenarios where 
additional all-zero subjects are included who are healthy and the trait is not relevant that the 
presence of the inflated zeros is problematic.  We conclude that the presence of additional all-
zero subjects (as when healthy subjects are mixed with pathological subjects in community-
based samples) will erroneously lead researchers to underestimate the dimensionality of the 
phenomena measured by the items.  We also note that removing the all-zero cases will distort the 
eigenvalues for the data when high-severity items are the cause of all-zero cases. Note that the 
eigenvalues for Scenario 4 in Figure S2 differ from the eigenvalues for Scenario 4 in Figure S1.   
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Figure S1: Mean eigenvalues for the tetrachoric correlation matrix when generating data 
according to Scenarios 1, 4, 1a, and 3a from Table 1 and using all observations to calculate 
tetrachoric correlations. Scenario 1 has moderate-severity items (≈1% all-zero cases) generated 
for 4000 pathological cases with no all-zero (i.e., “healthy”) subjects added.  Scenario 4 has 
high-severity items (≈20% all-zero cases) generated for 4000 pathological cases with no all-zero 
(i.e., “healthy”) subjects added.  Scenario 1a has moderate-severity items (≈1% all-zero cases 
among the 4000 pathological cases) with 36000 all-zero (i.e., “healthy”) subjects added.  
Scenario 3a has moderate-severity items (≈1% all-zero cases) generated for 20000 pathological 
cases with 20000 all-zero (i.e., “healthy”) subjects added.   
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Figure S2: Mean eigenvalues for the tetrachoric correlation matrix when generating data 
according to Scenarios 1 and 4, and when correlations are calculated after removing the all-zero 
observations. Scenario 1 has moderate-severity items (≈1% all-zero cases) generated for 4000 
pathological cases with no all-zero (i.e., “healthy”) subjects added.  Note that because the all-
zero observations are removed, the results for Scenarios 1 and 1a in Table 1 will be identical.  
Scenario 4 has high-severity items (≈20% all-zero cases) generated for 4000 pathological cases 
with no all-zero (i.e., “healthy”) subjects added.   
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Supplemental Appendix S2: Simulation Study with Small Sample Sizes 
 

In this Supplement, we address several additional issues that could affect the performance 
of dimensionality-assessment tools when data include a mixture of pathological cases along with 
healthy cases (who exhibit no symptoms).  Specifically, we consider scenarios in which: (i) 
factors are correlated, (ii) the data-generation model is truly unidimensional, and (iii) sample 
sizes are small. Data are generated in a manner similar to the simulations in Section 4 of the 
manuscript but with three different factor structures: one factor, two uncorrelated factors, and 
two correlated factors (cor(𝑓𝑓1,𝑓𝑓2) = 0.5). Additionally, the sample sizes are chosen to be much 
smaller than in the simulations in Section 4; the set of observed cases generated for each scenario 
was set to either 80 pathological plus 320 healthy cases or 200 pathological plus 200 healthy 
cases.  

Results for these simulations are summarized in Table S1, which is structured in the same 
way as Table 1 in the article, but with one exception. With sample sizes much smaller in this 
simulation, we considered the use of the sample-size adjusted BIC (aBIC) in place of BIC. For 
use with the AZ-EFA fit, we report aBICAZ-EFA in Table S1 because it performed better than 
aBICAZ-EFA. For the traditional factor analysis model (fit with maximum likelihood), we report 
BICML because it outperformed aBICML.  

Comparing the third and fourth rows (where the two factors are uncorrelated) with the 
fifth and sixth rows (where the two factors are correlated), one can note that the presence or 
absence of correlation among the two generated factors has little impact on the dimensionality 
assessments. We also note that the unidimensionality of the true model (rows 1 and 2) is 
consistently identified (≥ 97% of the time) for each of the dimensionality-assessment methods 
considered. The effect of smaller sample sizes proved to be more noteworthy.  When the number 
of pathological cases was 200, both the “Rule of 1” and aBICAZ-EFA were able to identify a two-
factor model at least 97% of the time. However, regardless of whether we used aBICAZ-EFA or 
BICAZ-EFA to determine the dimensionality of the data, neither the AZ-EFA approach nor any of 
the other metrics considered were able to properly identify a two-factor model when the number 
of pathological cases was reduced to 80. That is, when the number of pathological cases among 
the observations is expected to be small (e.g., less than 200), the true dimensionality of a 
phenomenon is likely to be understated using any of these methods; AZ-EFA is a useful tool 
only when the data contain a moderate to large number of pathological subjects.   
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Supplemental Appendix S3: Factor loading estimates: traditional EFA vs AZ-EFA 
 
We supplement our discussion of the simulations by examining the factor loading estimates of 
the traditional EFA fit with weighted least squares and the AZ-EFA.  The 𝑋𝑋WLS

2  method with 
traditional EFA assessed the correct dimensionality between 92 and 99 percent of the time and 
the AZ-EFA method yielded a correct dimensionality assessment rate of 100 percent for each of 
the nine scenarios. The AZ-EFA approach yields not only the best assessments of item-set 
dimensionality, but also superior parameter estimates.  We generally place particular interest in 
the factor loading estimates associated with a factor analysis model.  Comparing the factor 
loading estimates for the maximum likelihood fit of both the standard factor analysis model and 
the AZ-EFA for Scenarios 1-6 (described in Table 1), we observe few differences in the 
estimated factor loadings.  However, when additional all-zero observations are included in the 
sample—as in Scenarios 1a, 2a, and 3a from Table 1, the estimates of the factor loading 
estimates exhibit substantial bias.  Figure S3 illustrates the factor loading estimates associated 
with both the two-factor standard factor analysis model and the two factor AZ-EFA when the 
data are generated according to Scenario 3a from Table 1. Note that even when half of the 
40,000 observations in a simulated community-based sample are pathological, all of the 
unconstrained factor loadings associated with the standard factor analysis model are badly 
biased—factor loadings with true values of 1 have estimates that are tightly clustered around 
2.94 and factor loadings with true values of 0 have estimates that are tightly clustered around 
−0.39.  As the percent pathological among the 40000 observations drops to 10% (as in Scenario 
1a), the bias in the factor loading estimates can become even worse.  Consequently, we 
determine from these simulations that the all-zero observations should not be removed, and that 
using the AZ-EFA with BIC as the dimensionality assessment criterion is the superior approach 
for the factor analysis of dichotomous data with many all-zero observations.  
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Figure S3: Estimated factor loadings (𝛽𝛽𝑖𝑖𝑖𝑖) when using maximum likelihood to estimate the 
parameters of the two-factor AZ-EFA (left side) and the standard two-factor analysis model 
(right side).  Data were generated according to Scenario 3a in Table 1— moderate severity items 
(𝛽𝛽0 = 0.25) with the number of pathological subjects (np) equal to 20,000 and the number of 
nonpathological subjects equal to 20,000.  Red lines indicate the actual factor loadings used to 
generate the data (see Model (2)).  
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Supplemental Appendix S4: Estimated Proportions for the Mixture Groups  
 
The mixture proportions 𝜂𝜂1 and 𝜂𝜂2 represent the proportions of the sample that are associated 
with the degenerate (“healthy subject”) and pathological groups, respectively. In order to 
evaluate the effectiveness of the AZ-EFA model, we provide in Table S2 the mean (and standard 
deviation) for 𝜂𝜂1, expressed as a percentage.  For each of the simulation scenarios discussed in 
Section 4 and summarized in Table 1 of the manuscript, we provide in Table S2 a description of 
the percentage of healthy cases in the sample, and the expected percentage of all-zero cases in 
the sample. Scenarios 1 through 6 have no healthy subjects added to the sample, but differing 
amounts of all-zero responses are expected, depending on the severity of the items; 1% of the 
pathological subjects are expected to have all-zero responses in Scenarios 1 through 3, while 
20% of pathological subjects have all-zero responses in Scenarios 4 through 6. In contrast, the 
all-zero responses in Scenarios 1a, 2a, and 3a arise from each of the two mixture classes: a large 
portion from the presence of healthy subjects exhibiting no symptoms, and a smaller portion 
from the least severe cases among the pathological group.   

As illustrated in Table S2, the mixing coefficient in the AZ-EFA model is remarkably 
well-estimated in each scenario, provided that the number of factors estimated is equal to (or 
greater than) the true number of factors (which is two in these simulations). When the fitted 
number of factors is two, the AZ-EFA approach consistently provides estimates of the healthy 
proportion (𝜂𝜂1) that is near zero for Scenarios 1 through 6; the mean value for the healthy 
proportion never exceeds 0.9%, even when 20% of the pathological cases yield all-zero 
responses.  The estimation of the proportion in the healthy class remains accurate in Scenarios 
1a, 2a, and 3a. Despite the fact that the expected proportion of all-zero responses is greater than 
the number of healthy subjects in the sample, the two-factor AZ-EFA fitted model has a mean 
value that is—rounded to the nearest tenth of a percent—equal the true representation of healthy 
subjects. Further, in all cases where the number of fitted factors is at least two, the variability in 
the estimates of 𝜂𝜂1 is low. For example, in Scenario 3a the middle 95% of 𝜂𝜂1 estimates are in the 
range (49.9%, 50.1%). The only examples of AZ-EFA inaccurately estimating the mixing 
proportion occurred when the estimated number of factors was insufficient for the data (i.e., 
when one factor was estimated in our simulations). The estimation of mixing proportions in the 
follow-up simulations in Appendix S2 was equally well-behaved.  
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Supplemental Appendix S5: Example Mplus code 
 
TITLE:  Mplus code for all-zero inflated exploratory factor analysis (AZ-EFA) model  

with p=12 variables and q=2 factors; 
DATA:  file="symptoms.txt"; 
VARIABLE: names are x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12; 

classes = c (2); 
usevariables are x1-x12; 
categorical are x1-x12; 

ANALYSIS:  type is mixture; 
algorithm = integration; 
algorithm = ODLL; 
stscale is 1; 
starts 50 10; 

MODEL: 
%OVERALL% 
f1 by x1 x2-x6 x8-x12;    
f2 by x7 x2-x6 x8-x12;    

! x1 has a loading of 1 on f1 and a loading of 0 on f2 
! x7 has a loading of 0 on f1 and a loading of 1 on f2 

%c#1%   
f1 by x1@1 x2@1 x3@1 x4@1 x5@1 x6@1 x8@1  

x9@1 x10@1 x11@1 x12@1;    
f2 by x7@1 x2@1 x3@1 x4@1 x5@1 x6@1 x8@1   

x9@1 x10@1 x11@1 x12@1;    
!In the healthy subgroup, all loadings are fixed to equal 1 

[x1$1@1 x3$1@1 x4$1@1 x5$1@1 x6$1@1 x7$1@1 x8$1@1  
x9$1@1 x10$1@1 x11$1@1 x12$1@1];   

[x7$1@1 x2$1@1 x3$1@1 x4$1@1 x5$1@1 x6$1@1 x8$1@1  
x9$1@1 x10$1@1 x11$1@1 x12$1@1];   

    !In the healthy subgroup, all thresholds are fixed to equal 1 
f1-f2 @0;   

! In the healthy subgroup, var(f1) = var(f2) = 0 
[f1-f2 @-100];  

! In the healthy subgroup, E(f1) = E(f2) = −100 
f1 with f2 @0;  

! In the healthy subgroup, f1 and f2 are uncorrelated 
%c#2% 
f1-f2@1;  

! In the pathological subgroup, var(f1) = var(f2) = 1 
[f1-f2 @0];  

! In the pathological subgroup, E(f1) = E(f2) = 0  
f1 with f2;  

! In the pathological subgroup, f1 and f2 are correlated 
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Table S1. Dimensionality assessments in follow-up simulation. For each scenario, the body of the table gives the percent of the cases 
where the method selects 1 factor, 2 factors, or 3+ factors.  Results for the correct model are bolded. Each of the scenarios is 
characterized by the number of pathological cases in the data, the number of all-zero (i.e., non-pathological or healthy) cases added to 
the pathological sample, and the number of factors used to generate the simulated data—either 1 factor, 2 uncorrelated factors, or 2 
correlated factors.  All scenarios in this simulation had an expected percentage of all-zero cases equal to 1% (with β0 = 0.25 in 
equation (1)). In contrast to the simulation in Table 1, for this simulation’s much smaller sample sizes, the adjusted Bayesian 
Information Criterion (aBICAZ-EFA) is reported because it was superior to BICAZ-EFA in assessing the dimensionality of the AZ-EFA 
model. For evaluating the traditional factor analysis with ML, the BICML metric was superior to aBICML.   
 

   Eigenvalue-based methods 
Traditional FA model  

(fit with WLS) 
Traditional FA model  

(fit with ML) 
AZ-EFA  

(fit with ML) 

   
"Rule of 1" 

 (# evals > 1) Parallel analysis 𝑿𝑿𝐖𝐖𝐖𝐖𝐖𝐖
𝟐𝟐  RMSEA CFI 

𝑿𝑿𝐏𝐏𝟐𝟐 
(Pearson) BICML aBICAZ-EFA 

# of 
pathological 

cases 

# of all-
zero 
cases 
added 

# of  
factors 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 

80 320 1 100 0 0 100 0 0 99 0 1 99 0 0 99 0 0 100 0 0 100 0 0 100 0 0 

200 200 1 100 0 0 100 0 0 97 1 2 99 0 0 99 0 0 1 0 99 100 0 0 98 2 0 

80 320 2  
(uncorr) 73 27 0 100 0 0 25 73 2 100 0 0 100 0 0 100 0 0 98 2 0 39 60 0 

200 200 2  
(uncorr) 0 100 0 0 100 0 1 95 4 23 77 0 99 1 0 0 0 100 16 84 0 0 99 0 

80 320 2  
(corr) 78 22 0 100 0 0 34 66 0 99 1 0 100 0 0 100 0 0 93 7 0 52 46 2 

200 200 2 
(corr) 1 99 0 0 99 1 2 94 4 38 62 0 96 4 0 0 0 100 24 76 0 1 97 2 
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Table S2. Average estimated mixing coefficient (𝜂𝜂1) for AZ-EFA approach when data are generated from the two-factor model. For 
each simulation scenario, the mean (standard deviation) for the estimated proportion of healthy subjects is given (rounded to the 
nearest tenth of a percent). Average values for the estimate of 𝜂𝜂1 are reported for fits to the 1-, 2-, and 3-factor models, with values 
very close to the true percentage of healthy cases when the correct (2-factor) model is fit. 
 

   # of estimated factors 

Scenario 

% healthy 
cases 

in sample 

% expected 
all-zero cases 

in sample 1 2 3 

1 0% 1% 0.8% 
(0.2%) 

0.1% 
(0.1%) 

0.1% 
(0.1%) 

2 0% 1% 0.8% 
(0.1%) 

0.1% 
(0.1%) 

0.1% 
(0.1%) 

3 0% 1% 0.8% 
(0.1%) 

0.0% 
(0.1%) 

0.1% 
(0.1%) 

4 0% 20% 12.2% 
(1.5%) 

0.9% 
(0.9%) 

0.7% 
(0.9%) 

5 0% 20% 12.6% 
(0.5%) 

0.7% 
(0.6%) 

0.7% 
(0.6%) 

6 0% 20% 12.4% 
(1.3%) 

0.5% 
(0.4%) 

0.7% 
(0.6%) 

1a 90% 90.1% 90.1% 
(0.0%) 

90.0% 
(0.0%) 

90.0% 
(0.0%) 

2a 70% 70.3% 70.2% 
(0.0%) 

70.0% 
(0.0%) 

70.0% 
(0.1%) 

3a 50% 50.5% 50.4% 
(0.0%) 

50.0% 
(0.1%) 

49.9% 
(0.3%) 

 
 


