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ABSTRACT In power systems modelling, optimization methods based on certain objective function(s) are
widely used to provide solutions for decision makers. For complex high-dimensional problems, such as
network hosting capacity evaluation of intermittent renewables, simplifications are often used which can lead
to the ‘optimal’ solution being suboptimal or nonoptimal. Even where the optimization problem is resolved,
it would still be valuable to introduce some diversity to the solution for long-term planning purposes. This
paper introduces a general framework for solving optimization for power systems that treats an optimization
problem as a historymatch problemwhich is resolved via statistical emulation and uncertainty quantification.
Emulation constructs fast statistical approximations to the complex computer simulation model in order to
identify appropriate choices of candidate solutions for given objective function(s). Uncertainty quantification
is adopted to capture multiple sources of uncertainty attached to each candidate solution and is conducted
via Bayes linear analysis. It is demonstrated through a hosting capacity case study involving variable
wind generation and active network management. The proposed method effectively identified not only the
maximum connectable capacities but also a diverse set of near-optimal solutions, and so provided flexible
guides for using the existing network to maximize the benefits of renewable generation.

INDEX TERMS Hosting capacity, distribution network, distributed generation, wind curtailment; history
matching, optimization, statistical emulation, uncertainty quantification.

I. INTRODUCTION
Effective decision-making for power systems is often
addressed using optimization which, for example, has been
applied to planning national-level energy policy [1], energy
network expansion [2], and down to building level [3] or
household systems [4]. Much of the interest is in constructing
computer simulation models (physical models that approxi-
mate the real systems) to define the objective function based
on historic system data or forecasts in order to identify an
optimal solution for decision support. The computer sim-
ulation model takes input, describing the properties of the
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system, including the parameters of interest for optimization,
and returns the corresponding value of the objective function.

The conventional optimization method is to find the global
minimum/maximum solution of an objective function, via
solving the zero solution to the derivative of the objec-
tive function. In power systems, the optimization task is
commonly based on complex high-dimensional systems, for
example, unit commitment (UC) and economic dispatch (ED)
problems at transmission level, which feature thousands of
different generator units at national scales to be optimized
simultaneously; and hosting capacity evaluation (HC) of vari-
able renewables at the distribution level, which needs to con-
sider the uncertainty and variance of renewables over a very
long horizon at high temporal resolution. Solving these math-
ematical problems becomes non-trivial and computationally
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expensive. Therefore, there is a trade-off to consider between
computational tractability and modelling accuracy. Since lin-
ear programming (LP) and mixed integer linear program-
ming (MIP) are easier to solve than nonlinear programming
problem (NLP), modelling of the physical components in the
energy system often uses linearized simplifications [5], [6].
This approach can be found in many large-scale energy
system studies. For example, the popular technology-rich
TIMES (an acronym for The Integrated MARKAL-EFOM
System) model family, used for developing energy policy,
fully adopts linear programming and translates each technol-
ogy via linear representation [7], [8]. However, an LP model
could face the challenges of being unable to provide accurate
or sufficiently detailed representations of real energy systems.
When nonlinear optimization is considered necessary and
used to improve the accuracy of models, it may suffer from
local minima/maxima even if the problem is tractable. Some
sophisticated approaches, for example, Second-Order Cone
Programming [9] and Semidefinite programming [10], may
be able to help solve problems with more computational cost.
Even if the optimal solution is obtained, end users may still
find it practically challenging to act precisely according to
the optimal solution, given the uncertainties of real-work
transition in policy, technology and costs.

It is important to note that the operational environment
of the energy system is not static and varies from year to
year with uncertainties. The optimal solution found in the
certain deterministic case may have less satisfactory perfor-
mance across future scenarios. Therefore, it is valuable that
the modelling method can efficiently explore the full input
space by allowing deviations from the optimality, helping
to address structural uncertainties that arise when the real
world deviates from the fixed consumption adopted by the
modelling process. Providing a range of suboptimal solutions
could be advantageous since it can increase the number of
quality candidate plans for the planner to take into considera-
tion against uncertainty. Taking electricity network expansion
as an example, in practice the ‘optimal’ route for the new line
may be found to be impossible due to land permissions or
terrain considerations, and alternative suboptimal solutions
are valuable. Therefore, a variety of quality solutions with
objective function values close to that of the optimal solution
offers decision makers flexibility against different scenarios.

When computer simulation models are adopted to make
inferences about the behaviour of the real world, uncertainties
arise. Some are due to observational error and others to
model discrepancy between the computer simulation model
and the real system. These uncertainties are rarely considered
in conventional optimization as only the optimal solution is
delivered to the decision maker.

To overcome the shortcomings of the conventional opti-
mization approach, a general methodology based on statisti-
cal emulation and uncertainty quantification is proposed in
this paper. The essence of the approach is to treat the opti-
mization problem as a history matching problem [11], [12]
where the goal is to locate a set of inputs for which the

corresponding outputs meet certain criteria (e.g. the objective
function is larger/smaller than some threshold). While Monte
Carlo methods can sample the input space to locate such
sets, the computational cost can be enormous (if achievable)
for complex systems. Therefore, statistical emulations are
adopted to explore the input space efficiently by approximat-
ing the computer simulation model with statistical models.
The corresponding uncertainty is assessed via Bayes linear
analysis [13]. Our approach provides not only a set of can-
didate ‘optimal’ solutions (due to various sources of uncer-
tainty, one cannot identify the true unique optimal solution
just a set of ‘optimal’ solutions that are indistinguishable from
each other) but also quantifies the uncertainty attached to each
solution.

A hosting capacity problem is used in this paper to
demonstrate the proposed framework. Analysis of ‘hosting
capacity’ for effective utilization of the existing network to
improve renewable integration is now a popular research
field [14]–[17]. ‘Hosting capacity’ is usually modelled as an
optimization problem, with the objective function of maxi-
mum DG power capacity that can be connected, and subject
to network constraints including line capacity, bus voltage,
and power quality limits [18]–[21]. The solving methods for
hosting capacity problems are mainly categorized as analyt-
ical methods and intelligent ones. Analytical methods are
often used to convert non-convex and nonlinear power flow
constraints into linear constraints, and then solve the relaxed
model by using commercial software such as CPLEX and
GUROBI. Recent developments, for example, include lin-
ear programming [22], polygonal inner-approximation [23],
second-order cone relaxation [24], and the quadratically con-
strained method [25]. However, the adopted relaxations lose
accuracy and are difficult to apply when the network and
control model are complex. Popular intelligent optimization
algorithms include Genetic Algorithms (GA) [26], [27] and
Particle Swarm Algorithm (PSA) [15], [28], [29]. They are
able to solve hosting capacity while maintaining intact net-
work and control models, but require many iterations to find
the optimum and do not scale well with complexity.

Given the issues with the above methods, the efficiency
of hosting capacity solving techniques still needs to be
improved. The proposed framework can tackle the challenges
associated with conventional nonlinear nonconvex optimiza-
tion and also consider uncertainty that is not addressed by
deterministic approaches. The proposed method effectively
identified the maximum connectable capacities as well as a
diverse set of near-optimal alterative solutions, and therefore
provided flexible guides for using the existing network to
maximize the benefits of renewable generation. In this case
study, candidate ‘optimal’ solutions identified from the pro-
posed approach are found comparable to the deterministic
‘optimal’ solution obtained from conventional optimization.

This paper provides four key contributions to energy
system optimization. Firstly, a general framework of using
history matching to address the optimization problem is pro-
posed to overcome the shortcomings of the conventional
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optimization approach. Secondly, the proposed framework is
demonstrated using a popular problem in renewable energy
integration, namely wind farm hosting capacity. Thirdly,
statistical emulation is demonstrated, in a complex energy
system, to be able to explore the input space in a much
more efficient way. Lastly, various sources of uncertainties
have been assessed to aid decision support. The essential
difference between the proposed optimization approach and
the traditional (and intelligent) approaches is that instead
of searching for an ‘optimal’ solution directly/interactively,
the proposed approach adapts history matching to remove
all the distinguishable ‘non-optimal’ solutions from the input
(search) space, which leaves the reduced space that contains
candidate ‘optimal’ solutions. Furthermore, our aim is to
find the class of good decisions not just to carry out an
optimization to find the ‘‘best’’ decision.

The structure of the article is as follows: the hosting capac-
ity problem is given in Section II. The general framework
of the proposed method is set out in Section III. A case
study is presented in Section IV, followed by discussion and
conclusions.

II. HOSTING CAPACITY OPTIMIZATION PROBLEM
A. HOSTING CAPACITY
This paper uses the problem of distribution network hosting
capacity evaluation for wind distributed generation (DG) to
demonstrate the proposed framework, which treats an opti-
mization problem as a history matching problem resolved
via statistical emulation and uncertainty quantification. Host-
ing capacity is the maximum capacity of new DGs that are
connected at multiple locations across the network without
technical (or other) limits being breached.

Active Network Management (ANM) [14], including
active generation control, is also considered to help handle
the fluctuation of renewables and increase hosting capacity.

B. CONVENTIONAL OPTIMIZATION APPROACH
The conventional approach for hosting capacity evaluation
is to model it as an optimization method. The optimization
model adopted is based on AC optimal power flow (ACOPF),
as used in a series of established works, so the proposed sta-
tistical approach can be readily benchmarked. In this context,
it is considered as a reasonable test bed model to demonstrate
the methodology. It is acknowledged that there are energy
systems, as well as corresponding simulation models, that are
far more complex than this.

1) OBJECTIVE FUNCTION
In the hosting capacity evaluation, the objective is to maxi-
mize the connectable capacity C (rated power, MW) of new
wind farms (WF, G is the set of WFs) at all potential locations:

max Hosting Capacity = max
∑
g∈G

Cg (1)

The key information required includes the technical details
of the network, potential locations for wind farms, demand

time series at each bus, and time series of wind production at
each potential wind farm location. The time series production
from each potential DG is a function of the DG capacity and
the level of resource. The hosting capacity is defined across
all periods (e.g. hours) within a longer time horizon (e.g.
a year).

Additional constraints are modelled to describe the non-
linear network AC power flow, such as the real and reactive
nodal power balance, as well as voltage and power flow
constraints. The formulation of all these constraints is found
in [14].

2) POWER FLOW CONSTRAINTS
The optimization model is subject to a range of constraints,
where the constraints on the power flow are as follows:

V−b ≤ Vb,m ≤ V
+

b ∀b ∈ B (2)(
f (1,2),Pl,m

)2
+

(
f (1,2),Ql,m

)2
≤
(
f +l
)2
∀l ∈ L (3)

f 1,Pl,m = gl · V 2
β1l ,m
− Vβ1l ,m · Vβ2l ,m

·

[
gl ·cos

(
δβ1l ,m
−δβ2l ,m

)
+bl ·sin

(
δβ1l ,m
−δβ2l ,m

)]
(4)

f 1,Ql,m = −bl · V
2
β1l ,m
− Vβ1l ,m · Vβ2l ,m

·

[
gl ·sin

(
δβ1l ,m
−δβ2l ,m

)
−bl ·cos

(
δβ1l ,m
−δβ2l ,m

)]
(5)∑

l∈L|β1,2l =b

(f 1,Pl,m + f
2,P
l,m )+ dPb,m

=

∑
g∈G|βg=b

pg,m +
∑

βGSP=b

pGSP,m (6)

∑
l∈L|β1,2l =b

(f 1,Ql,m + f
2,Q
l,m )+ dQb,m

=

∑
g∈G|βg=b

pg,m · tan
(
φg,m

)
+

∑
βGSP=b

QGSP,m (7)

pg,m = Cgωm − pcurtg,m (8)

Constraint (2) sets the voltage limits at each bus b (B, set
of buses) within maximum/minimum levels. Constraint (3)
ensures the flow at each end of lines is not above thermal
limits. The two terminal buses for line l are denoted as β1l
and β2l . Equations (4)–(5) (∀l ∈ L) describe the active and
reactive power injections into the end ‘1’ of the lines (the ends
of each line are denoted as 1 and 2), which is given in terms of
voltage level V and phase δ by standard Kirchhoff’s voltage
formula. gl and bl are the conductance and susceptance on
line l, respectively. The active and reactive equations for
injection at bus 2 could be obtained by transposing the super-
script labels 1 and 2 in (4) and (5). In terms of power flow
direction, the direction from the bus injects into its connected
line end is defined as positive and the opposite as negative.
These constraints are applied for all lines in l ∈ L.When line
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l contains on-load tap changers (OLTC) or a voltage regulator,
the voltage at the start bus of the line would be divided by
tap ratio tl,m, within t−l ≤ tl,m ≤ t+l . Equations (6)-(7)
(∀b ∈ B) describe the active and reactive nodal power balance
governed by Kirchhoff’s current law, where the actual power
output of DG (pg,m) is modelled as the difference between
its potential power output (Cgωm) and curtailment (pcurtg,m ) as
in (8). ωm is the maximum level of output DG can generate
relative to its nominal capacity Cg, which is determined by
the level of variable renewable resources during period m.
dPb,m and dQb,m are the active or reactive load respectively at
bus b during period m. tan

(
φg,m

)
is the power factor of DG

that may vary between periods.
The main grid can supply power to the distribution net-

work through the grid supply point (GSP). For buses that are
connected to the GSP, GSP flow is added to the bus balance
in (6)-(7). Constraint (9) sets the import/export limits for the
GSP bus. The GSP will be taken as the reference (slack) bus
for a power flow model with the voltage angle set at zero,
i.e., δb0,m = 0.

q−GSP ≤ qβGSP,m ≤ q
+

GSP ∀x ∈ X (9)

Constraint (10) sets the upper and lower limits on the
capacity of new DG g.

C−g ≤ Cg ≤ C
+
g ∀g ∈ G (10)

3) OPERATION AND CONTROL OF ANM
As implemented, two active network management control
schemes are used. The first control is active control of DG
output. This acts to curtail the generator output during periods
when the level of renewables is high and demand low to avoid
voltage or power flow limits being breached. Although this
may involve lost revenue for the wind developer, this might be
acceptable due to the infrequent occurrence of these periods
as the resulting larger capacity increases the overall energy
production and total revenue. Therefore, there is a trade-off
between greater generation capacity and the proportion of
energy curtailed.

The optimization will determine the variable value of
power curtailment (PCurtg,m ) for each DG in each period. The
following constraint applies to limit the curtailment variables
within the maximum potential output of g:

pCurtg,m ≤ Cgωm (11)

Here, the Curtailment Ratio (CR) presents the waste level
of renewable energy, defined as the ratio of the curtailment
against the potential energy that could have otherwise been
delivered by these DGs.While curtailment is very effective in
managing constraints and enabling larger generator capacity,
revenue is reduced. Economic considerations will limit the
total amount of curtailed energy that is acceptable to the
owner of renewable generators. Such considerations strongly
depend on the network connection arrangements, where dif-
ferent ‘‘principles of access’’ govern the scope of curtailment.
A simplified approach is taken which places an upper limit on

the allowed amount of total curtailment across the network.
Mathematically, the total curtailment ratio (TCR) sets a limit
on the total curtailed generation (TCG) relative to the total
potential generation (TPG) that could otherwise be delivered
over the whole period:

TCG =
∑
m∈M

∑
g∈G

pcurtg,m (12)

TPG =
∑
m∈M

∑
g∈G

Cgωm (13)

TCG
TPG

= TCR ≤ TCR (14)

The second control is coordinated control of on-load tap
changers, where the voltage target of each transformer sec-
ondary is treated as variable and chosen for each periodwithin
the statutory range.

V−bOLTC ≤ VbOLTC ,m ≤ V
+

bOLTC (15)

This control will choose a low target voltage for each
transformer secondary when wind production is high and
demand low to enable export without breaching the upper
voltage limit.

The optimization was solved using the nonlinear solver
Interior Point OPTimizer (IPOPT). By solving the above
optimization, the main outputs of the model are the capacities
of each generator. Values of time series variables, including
wind production, curtailment, and control actions, are also
retained. While the desired results could be the global opti-
mal, there is no guarantee, in common with other well-known
nonlinear solvers.

C. CHALLENGES IN CONVENTIONAL OPTIMIZATION
APPROACH
Directly solving the above optimization model for hosting
capacity evaluation could be very computationally challeng-
ing. Firstly, the model complexity derives from the fact that
it is a strictly non-convex nonlinear programming problem
(NLP), being based on ACOPF formulations in order to
capture the key network operational constraints, such as both
magnitudes and phase values of bus voltages [30]. Secondly,
it is a dynamic programming that seeks to optimize a set of
unique variables (i.e. the DG capacity) over a long period of
variable renewable and demand scenarios to capture the full
range of operational conditions, i.e. high temporal resolution
over a long horizon [16], [31]. This limits the length of
time series that can be readily handled within the capabil-
ity of the solver and computing intractability. In previous
work [16], [14] the time series was subject to a scenario
reduction process to deliberately reduce the number of peri-
ods in order to allow a larger network to be modelled.

Apart from the computational challenges, the fact that
only a single deterministic solution is generated without
any alternatives also leads to challenges for practical imple-
mentation. The exogenous uncertainty that is not considered
in the model, such as policy and regulation changes, may

VOLUME 9, 2021 118475



H. Du et al.: Optimization via Statistical Emulation and Uncertainty Quantification

play a decisive role. A reasonable scenario could be that
the connectable capacity of a wind farm identified by the
model would become unrealistic due to construction limits or
planning permission; having a range of quality and distinctive
results enables the user to choose a suboptimal solution that
will enable consequent best use of the network by redeploying
available capacity.

III. OPTIMIZATION VIA HISTORY MATCHING
The proposed framework treats an optimization problem as a
history matching problem. History matching (an alternative
approach to model calibration [11], [12]) is usually adopted
to identify the regions of input space of a model where the
corresponding model outputs ‘match’ the observations with
consideration of the associated uncertainties. It starts with the
full input space of the model and gradually reduces the vol-
ume of the input space by removing the ‘‘implausible’’ inputs
‘‘wave by wave’’ and eventually ends up with a subspace
of the input space where inputs can produce model outputs
consistent with observations. The task of the optimization
problem can be considered as a historymatching problem that
finds a collection of input choices for which the correspond-
ing ‘‘computer simulation model’’ output meets some criteria
(instead of looking for consistency with the observations), for
example, that the output is smaller than a threshold.

Fig. 1 presents a flow chart illustrating the methodology.
Small samples from the entire input space are initially fed
into the computer simulation model (simulator). These model
runs are then used to construct and train a statistical emulator.
A statistical emulator is a statistical model that approximates
the simulation model (see III B for details). As a statistical
emulator is much (computationally) cheaper to run than the
simulation model, it helps to explore the input space in a
much more efficient way. Bayes linear analysis (see III B for
more details) is adopted to quantify the uncertainty due to the
use of the emulator. With a statistical emulator, a large set
of inputs sampled from the input space can be fed into the
emulator. The corresponding outputs can be used to define
a threshold, e.g. the 95th percentile (one may use a lower
or higher percentile depending on how well the emulator
approximates the simulation model; lower/higher percentiles
may increase/decrease the number of total emulation waves.)
of the emulation outputs, so that inputs that lead to outputs
above the threshold are discarded from the input space (with
the consideration of associated uncertainty). A small set of
samples from the reduced input space can then be fed into
the computer simulationmodel again to build a new statistical
emulator. And a large set of input samples from the reduced
input space can then be fed into the new simulator to define
a new threshold and to further reduce the volume of the input
space. This process is repeated until the input space is not
significantly reduced further, which leaves the reduced input
space comprising candidate solutions for the optimization
problem. Note that as the emulator is only an approximation
of the computer simulation model, there is uncertainty attach-
ing to each candidate solution. When the uncertainty ranges

of the outputs from two candidate solutions overlap, it makes
the candidate solutions indistinguishable from each other.

FIGURE 1. Flow chart of the proposed methodology that identifies a
subset of the input space that meets certain criteria.

A. REFRAMING THE OPTIMIZATION PROBLEM
The hosting capacity model in Section II needs to be reframed
to employ history matching. Instead of the model choos-
ing optimal DG capacities within the optimization, the new
model is to simulate the optimal network operation under
given specific generator capacities; that is, the capacities of
each wind farm are considered as the input of the computer
simulation model. The objective function is changed to:

min curtailment = min
∑
g∈G

pcurtg,m ∀m ∈ M (16)

It is also subjected to constraints (2)-(11) for each indi-
vidual period, except the dynamic constraints (12)-(14) that
sum over all periods. The rest of the input data remains the
same: time series of wind speed levels, demand, and poten-
tial wind farm locations. In this way, the original dynamic
model of hosting capacity optimization is converted to a
snapshot operational model that can be solved separately in
each period. This reframe presents a significant reduction in
terms of the optimization size, for example, 8,760 times less
in the number of variables than the original hosting capacity
model if a one-year horizon is considered. Such size reduction
is essential for an NLP model, which is otherwise likely to
be intractable. While the reframed model still needs to be
run many times in time sequence, the total solving time is
generally much faster than solving a large dynamic NLP at
once.

The initial outputs of the reframed simulation model are
the power generation and curtailment from each wind farm
plus the control variable values (OLTC target voltages and
import/export power at GSP) which minimize power cur-
tailment in each period. Based on these outputs, the final
performancemetrics measure how the capacity input scenario
relates to the total potential power generation and total power
curtailment ratio.

For a given input of wind speed, the TPG is a linear
combination of the capacities {C1 − Cg} of the wind farms:

TPG = b1C1 + . . .+ bgCg + . . .+ bGCG (17)
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where each term reflects the power generation by each wind
farm. Wind farms experiencing the same wind speed profiles
will have the same bn coefficients.

Rather than being a dynamic constraint on the original opti-
mization, the total power curtailment ratio TCR is the output
of the computer simulation model f ∗ acting to minimize the
power curtailment of each wind farm in each period across
the horizon. This is a function of the capacities and controls,
as well as of wind and demand:

TCR = f ∗(C1,Cg, ..,CG,Ctrls,Wind,Demand,Network)

(18)

The conventional optimization approach naturally respects
the constraints imposed by the network and other limits.
In this computer simulation model f ∗, the network limits
(voltage and power flow) are respected by the control system
operation (mainly by controlling generator outputs) at minute
by minute. Potential violations of network security con-
straints during high wind periods due to large installed capac-
ity are avoided by reducing the generator outputs, potentially
down to zero. This has the effect of pushing up the curtailment
ratio which the emulation process considers. It is, of course,
possible for network limits to be violated should demand be
too high, but this would not occur in a properly designed
network as the primary aim of the network operator is to
supply the demand.

B. STATISTICAL EMULATION
For an optimization problem, if one could sample and sim-
ulate the entire input space, the optimal solution would be
located. The conventional Monte Carlo approach can be
adopted to uniformly draw samples from the input space
and then run the computer simulation model for every
input drawn. This approach is, however, computationally
unfavourable for high-dimensional complex systems (such as
hosting capacity, where the operational power system con-
tains controls, power supplies, demands and wind speed pro-
files) as it is impossible to evaluate the computer simulation
model with enough inputs in order to account for uncertainty
over the entire input space. Therefore, statistical emula-
tion is adopted to address this challenge, where a statistical
model (emulator) is fitted to a small number of simulation
model evaluations. For high-dimensional complex systems,
one single evaluation of a computer simulation model for a
specific set of inputs might take hours, days or even weeks
(for example, the galaxy formation model [32]), while it
usually takes ∼ms to run a statistical emulator. A statistical
emulator approximates the simulation model for any inputs
in the input space, thus, even for inputs that have not been
evaluated, the emulator can provide an approximation of the
simulation model output (with uncertainty attached due to
the approximation) at that input. Statistical emulation has
been used to explore the input space and assess uncertainty
due to unknown inputs of the simulation model for various

complex systems, e.g. cosmology [32], oil reservoirs [33],
meteorology [34], and energy [35]–[37].

A common choice for the emulator [12] is adopted in
the paper, where an individual component of the output is
modelled by a statistical function f (x), where x is treated as
a vector of random variables. For example for the optimiza-
tion problem defined in III.A, the output TCR is modelled
by a statistical function f (C1,Cg, . . . ,CG) where the inputs
C1,Cg, . . . ,CG are treated as random variables. The function
f (x) contains stochastic terms, given by:

f (x) =
∑
i

βigi(x)+ u(x) (19)

where B = {βi} are unknown scalars and gi(x) are known
deterministic functions of the input vector x (e.g., polyno-
mials). Bg(x) expresses global variation in f (x), where the
functional forms gi (for example, gi is some power function
of x) are chosen and the specification for the elements of B
are fitted based on an analysis of a set of simulation model
evaluations. In practice, a common way to construct Bg(x)
is simply conducting a linear regression fit. u(x) expresses
local variation and is represented as a second-order station-
ary stochastic process, with a correlation function which
expresses the notion that the correlation between the value
of u for any two values x, x′ is a decreasing function of
the distance between the input values. Various choices for
the form of the correlation function have been proposed in the
literature (see, for example, [34]) with different meritorious
aspects. Following [12], the correlation function used in this
paper is of the form:

Corr(u(x), u(x′)) = exp

(
−

(
‖ x− x′ ‖

θ

)2
)

(20)

where θ is a tuning parameter specified through the analysis.
To construct the emulator there is a rich literature that

covers statistical modelling of complex functions (see [38] for
a good introduction and [34] for an example). Following [12],
we adopted a simple approach to construct the emulator,
choosing the functional forms gi using least squares fitting
and then fitting the correlation function for u(x) to the resid-
uals by trial and error based on cross-validation.

C. UNCERTAINTY QUANTIFICATION VIA BAYES LINEAR
ANALYSIS
There are three major sources of uncertainty that need to be
accounted for when solving an optimization problem. Firstly,
the computer simulation model is an imperfect analogue
of the system. Even with the ‘‘best’’ choice for the model
input, the output will almost certainly not reflect the sys-
tem behaviour (reality) precisely. Secondly, if there are data
involved, there is the uncertainty induced by measurement
error. Lastly, as the statistical emulator acts as an approx-
imation to the computer simulation, additional uncertainty
is introduced. One of the major drawbacks of conventional
optimization is that it only provides a solo ‘‘optimal’’ solution
without taking account of uncertainties. A natural way to
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FIGURE 2. A 38-kV five-bus radial distribution network diagram.

conduct uncertainty quantification is to adopt a Bayesian
approach [39].

Full Bayes analysis can be very informative when both the
prior specification and the analysis are carefully conducted.
Bayes linear analysis [13] is partial but easier, faster, and
more robust [12]. The application of a full Bayesian analysis
requires enormous computation cost for complex systems.
The more tractable Bayes linear approach has had some suc-
cess (see, for example, [11], [40]) for complex systems, and
avoids much of the computational burden of the full Bayesian
approach. In this paper, Bayes linear analysis is adopted to
conduct uncertainty quantification.

Instead of specifying the full distribution of prior and
posterior in full Bayes analysis, the Bayes linear approach
is based only on the mean, variance, and covariance spec-
ification. Similarly, instead of updating the entire distribu-
tion in full Bayes analysis, the Bayes linear approach only
updates the expectation and variance through Bayes linear
adjustment (see [13] for the details of the mathematical for-
mula). In general, Bayes linear analysis may be considered
as a fast approximation to a full Bayes analysis. Note that
Bayes linear analysis does not require the model to be lin-
ear; ‘‘linear’’ refers to the linearity properties of expectation.
If one treats expectation as primitive, Bayes linear analysis is
simply giving the appropriate analysis under a direct partial
specification of means, variances, and covariances (see [13]
for more details).

IV. CASE STUDY
A real UK distribution network is used for the case study,
as shown in Fig. 2. It is a 61 buses 33/11kV weakly meshed

FIGURE 3. One-year wind and demand data.

TABLE 1. ‘‘Optimal’’ solution from conventional approach.

network and data can be found in [41]. The rating of the sub-
station is 60 MVA and the maximum demand of the network
is 38.2 MW. The 15 MVA interconnector in the network is
modelled as a PV bus with target voltage of 1pu. Voltage
limits are taken to be +6/−6% of nominal. A whole year of
hourly demand and potential wind power profiles are used.
Five potential locations for wind generation are considered.
Two different wind resource profiles are employed, with
wind farms 1-3 (at buses 1108, 1106 and 1105) considered
sufficiently close geographically to use one profile and wind
farms 4-5 (at buses 1114 and 1115) close enough to use
the other. The one-year wind (wind area 1) and demand are
shown in Figure 3. (The respective bn coefficients for TPG in
the simulation model (17) are 390,915 for wind farms 1-3 and
341,880 for wind farms 4-5.)

A. CONVENTIONAL OPTIMIZATION
The optimization was conducted using the full year’s hourly
time series of local demands and wind speed at different
wind farm locations. For illustration, the maximum amount
of curtailment (TCR) allowed across the wind farms is 10%.
The solution is further constrained by requiring that the cur-
tailment ratio for each individual wind farm is also no more
than 10%.

Directly using the full year of hourly data, the optimization
takes around 3.8 hours to execute on a typical PC (16 GB
RAM and 3 GHz processor). For reference, the scenario
reduction approach presented in [14] allows the optimization
to find a single approximate solution within 55 minutes,
albeit with some reduction in accuracy. Table 1 shows the
solution from this conventional optimization approach. The
total hosting capacity reaches 52.7 MW, with the highest
capacity available at wind farms 2 and 5, and the lowest
capacity at wind farm 1.

B. OPTIMIZATION VIA HISTORY MATCHING
Following the proposed framework, this optimization prob-
lem is treated as a history matching problem. The simulation
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FIGURE 4. First (a), third (b), fourth (c) and fifth (d) wave emulation validations. The mean values of the emulation approximation for inputs
drawn from an independent test set are marked as black dots, error bars are two standard deviations around this mean. Note each set of inputs
(five capacities) determines the Total Power Generation (X-axis). Cross is actual output from the computer simulation model. Dashed line is the
threshold used for history matching.

model is defined in (19) and (20). The inputs we want to
explore are the capacities of each wind farm, and the outputs
are TPG and TCR. As the wind farm capacities fully deter-
mine TPG given the wind speed data, we only need to build
a statistical emulator for TCR. Following Fig 1., an initial
design for the history matching samples input parameter val-
ues (wind farm capacities) using a Latin hypercube [42] with
a coarse constraint that each farm capacity ranges between
0 and 50MW. Such a Latin hypercube design aims to select
the values of inputs that are space-filling in order to avoid
sample bias. A set of 50 simulation model evaluations of TCR
were generated using 50 Latin hypercube input samples, with
the same hourly demand and wind speed data. There is a
trade-off between the number of scenarios and convergence
speed; if a smaller number of scenarios are considered at each
wave of emulation, the emulator might not approximate the
simulation model well which would lead to more emulation
waves to achieve similar results as using larger number of
scenarios. Using more scenario runs, however, are more com-
putationally costly. One could adjust the number of scenarios
runs at each different wave of emulation. In this manuscript,
for illustrative purpose, we used 50 scenarios at all waves

of emulation. It takes about 30 seconds computing time to
evaluate the simulation model for a given capacity scenario.
Moreover, the evolution of multiple scenarios could be paral-
lel and so the total time would further reduce significantly.

The first emulator f (1) was fitted using these model eval-
uations and the performance of the emulator in terms of
predicting TCR was tested with an independent test set
of 50 model evaluations. The best global fit (Bg(x)) is found
with an adjusted R2 of 0.87. For the correlation function u(x),
the parameter θ is chosen so that the emulator successfully
predicts more than 95% of the evaluations to within 3 stan-
dard deviations. (i.e. the Three Sigma Rule [43]).

As the emulator is an approximation of the simulation
model, a poor approximation would lead to unreliable can-
didate solutions in the end. Therefore, before moving onto
the next wave emulation, the performance of the emulator
needs to be properly assessed. Fig. 4a shows the performance
of the first emulator in the first wave emulation (wave 1),
where TCR is plotted against TPG. Almost all the simulation
model outputs lie within the predicted interval, which indi-
cates a reasonably good fit of the emulator to the computer
simulation model. Fig. 4a also shows that the TCR of all the
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design points are much higher than 10%, which is due to
the fact that the input capacity range is too wide. This first
wave emulation, however, provides information to reduce the
input (search) space. A threshold for output TCRwas defined
subjectively to be T (1)

x = 0.5 (alternatively, the threshold
can be defined based on a percentile of the output). Given
this first emulator f (1), 1,000,000 point Latin Hypercube
samples of five input capacities are fed into the first emulator.
Remove all the input x ≡ (C1,C2,C3,C4,C5) for which
E(f (1)(x)) − 3std(f (1)(x)) > T (1)

x , where the expected value
E(f (1)(x)) and the standard deviation std(f (1)(x)) of the emu-
lation outcome are obtained through Bayes linear updates.
It is almost certain that the removed inputs are not ‘optimal’
solutions. About 18% of the input sets remain, which means
the first wave emulation reduces the volume of the input space
by 82%.

The computer simulation model’s behaviour over the
reduced input space can then be studied. Fifty samples from
the reduced input space are fed into the simulation model
(wave 2) and a new emulator f (2) is built based on the evalu-
ations. The best global fit (Bg(x)) is found giving an adjusted
R2 of 0.91. Defining a threshold of the output TCR to be
T (2)
x = 0.3, a large set of inputs in the reduced input space

from wave 1 emulation was fed into f (2). After removing all
the input x for which E(f (2)(x))− 3std(f (2)(x)) > T (2)

x , about
11% of the input sets remain, which means the second wave
emulation reduces the search space further by 89%. In the
third wave emulation, emulator f (3) (with adjustedR2 of 0.88)
is built and fits the simulation model well over the reduced
input space (see Fig. 4b). The exceptions are the points cor-
responding to low TPG, which seem to overestimate TCR.
Under the threshold T (3)

x = 0.25, the input space is further
reduced by 80%.

At the fourth wave emulation, emulator f (4) is built with
adjusted R2 of 0.87. Figure 4c shows the results on an inde-
pendent test set of evaluations. There is one input resulting in
TCR less than 10%. Note the objective is not only to achieve
TCR≤ 10%, but also to generate as much power as possible.
If zero capacity is assigned to all the wind farms, their cur-
tailment ratio would be zero as well as the TPG. Therefore,
an additional constraint based on TPG is imposed to reduce
the input space. Defining the threshold to be T (4)

x = 0.12 and
the TPG of the conventional ‘‘optimal’’ solution to be TPG?,
all values of x for which E(f (4)(x))−3std(f (4)(x)) > T (4)

x and
corresponding to TPG≥ 0.9TPG? were removed; this further
reduces the input space by 90%.

At the fifth wave emulation, emulator f (5) is built with
adjusted R2 of 0.91. Fig. 4d shows the results on an inde-
pendent test set of evaluations. Note there are already several
inputs that result in TPG and TCR comparable to the con-
ventional ‘‘optimal’’ solution. Under the threshold T (5)

x =

0.10, we remove all values of x for which E(f (5)(x)) −
3std(f (5)(x)) > T (5)

x and the corresponding TPG ≥

0.95TPG?. This further reduces the input space by 75%.
After five waves of emulations, we now have only 18%×

11%× 20%× 10%× 25% = 0.0099% of the original input

parameter volume. This is a space of acceptable candidate
solutions which can be accessed through emulation runs.
Any candidate solutions can still be evaluated through the
simulation model.

Table 2 presents 5 candidate solutions (S1-S5). For each
solution, the capacity (Cap in MW) of wind farms (WF) and
its curtailment ratio (CR) are listed as well as the TPG (in
brackets) and TCR.

TABLE 2. Five candidate solutions sampled from final reduced space.

All solutions in Table 2 produce TPG and TCR com-
parable to the conventional ‘‘Optimal’’ solution (Table 1).
In fact, candidate solution 3 produces larger TPG and smaller
TCR than the conventional ‘‘Optimal’’ solution. This is due
to the conventional ‘‘Optimal’’ solution not only requiring
TCR ≤ 10% but also each wind farm’s CR ≤ 10%, while
the emulation relaxes the second constraint. The candidate
solutions from our approach explore the diversity of solu-
tions that might be of interest. Moreover, if any specific
requirement (e.g. curtailment ratio for wind farm 5 no more
than 6%, as in candidate S1) or additional limit emerges
when implementing the plan (e.g. high additional costs for
wind farm 3 to use the land, so S5 become more prefer-
able), extra constraints can be addedwhen selecting candidate
solutions.

While a set of quite different candidate solutions are found,
by curtailing at critical periods (e.g high wind and low
demand), the network is able to operate reliably. DG tends to
raise the voltage at its connected bus given its power injection
into the network. When there is a potential voltage rise issue
during high DG output, a certain amount of curtailment is
performed by the optimization to maintain the voltage at
or below the allowed upper value. To clearly compare the
impact of different candidate capacity solutions on voltage
profiles over a year, using WF5 as an example, Fig. 5 shows
the total hours when the voltage at bus 1115 (where WF5 is
connected) reached its upper limit and curtailment occurred.
As can be seen, the larger size DG (e.g the largest WF5 at
S5 vs smallest WF5 at S1) at the same location does raise
the voltage to its limit more frequently, also causing more
curtailments.
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FIGURE 5. Impact of DG size on voltage and curtailment.

C. MODEL DISCREPANCY
No matter how carefully a physical model is designed, it is
an imperfect approximation of the real system. The impact
of model discrepancy plays a key role in linking the model
and the real world, yet it is often neglected in energy sys-
tem optimization problems. Following [12], there are two
types of model discrepancy: internal and external. Internal
discrepancy can be assessed by experiments on the com-
puter simulation model and it provides a lower bound on the
model discrepancy. External discrepancy refers to the aspects
of model discrepancy that have not been addressed by the
assessment of internal discrepancy; it could be estimated by
expert judgement.

In the previous section, uncertainty in the five input
capacity values as well as the uncertainty due to emulation
approximation have been accounted for, but there is no con-
sideration of model discrepancy. To interpret the simulation
model solutions for future planning, the internal discrep-
ancy due to weather and demand profiles can be assessed.
Due to the complexity of the weather system and consumer
behaviours, it is impossible to produce detailed hourly wind
speed and demand forecasts years into the future. Instead,
we can assess the mean effects by running the simula-
tion model with fixed wind farm capacities but varying the
weather and demand profiles in the historical data. Linear
perturbations are applied to the wind speed and demand data.
Note if the variation (that reflects the uncertainty due to struc-
tural discrepancy) strongly depends on the 5 wind capacities,
we can emulate this variation as well, which would provide
extra information for decision makers to select a reliable
solution. After analysing the experimental results, it turns out
that the changes in TCR respond to the changes in weather
profile or demand profile linearly, but for a different set of
capacity values the response rates are different. Fig. 6 shows
how the five candidate solutions listed in Table 2 respond to
the changes in demand and wind speed, with the slope indi-
cating sensitivity. Increasing the wind speed or decreasing the
demand would increase the TCR, and wind speed clearly has
more impact than demand. Quantifying the response to the

FIGURE 6. Total Curtailment Ratio responses to the changes in demands
(above) and wind profiles (below). The lines correspond to each
candidate solution in Table 2.

changes in demand and weather profiles provides valuable
information for decision support. This paper is focused on
addressing the optimization problem, where the solutions that
the simulation model suggests are explored for their reliabil-
ity. If this involved working directly with decision makers,
these discrepancies could be introduced at the optimization
stage.

V. DISCUSSION AND CONCLUSION
While the hosting capacity optimization is solved as an
exemplary problem, the proposed emulation-based frame-
work presents an attractive general way to address opti-
mization problems in power systems. Statistical emulation
is effective in carrying out this approach and Bayes linear
analysis provides proper uncertainty quantification. Careful
structural discrepancy assessment and multi-level emulation
are essential parts of this methodology, which overcomes
the shortcomings of conventional optimization. The proposed
methodology is able to access the space of acceptable candi-
date solutions and provides proper uncertainty quantifications
attached to the solutions.

For the studied hosting capacity problem, as there is a
trade-off between the total capacity and curtailment ratio,
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a constraint upon the curtailment ratio (no more than 10%)
is needed to conduct the optimization. Such optimization
problems can be extended to estimate a Pareto boundary
based on power generation and the curtailment ratio. From the
perspective of optimization, it is well known that a bi/multi-
objective optimization problem usually admits an infinite
number of non-inferior solutions (theoretical limits), which
form the outermost boundary of achievable performance,
the Pareto boundary [44]. A noninferior solution on the Pareto
boundary is considered to be Pareto-optimal in the sense that
no other solution can improve the performance of some objec-
tives without reducing other objective(s). Solutions on the
Pareto boundary can be identified using the proposedmethod,
and therefore allow relaxation of the 10% constraint on the
curtailment ratio, which would provide additional valuable
information for decision support.

In future study, the statistical emulation-based method
offers scope to enhance the precision of the control system
by reducing the time interval, improving representation of
weather conditions by extending the time series of wind and
demand, and also by enabling representation of technologies,
such as storage, which adds inter-temporal constraints.
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