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DOUBLY INVARIANT SUBSPACES OF THE BESICOVITCH SPACE

AMOL SASANE

ABSTRACT. A classical result of Norbert Wiener characterises doubly shift-invariant
subspaces for square integrable functions on the unit circle with respect to a finite
positive Borel measure i, as being the ranges of the multiplication maps corresponding
to the characteristic functions of p-measurable subsets of the unit circle. An analogue
of this result is given for the Besicovitch Hilbert space of ‘square integrable almost
periodic functions’.

Kitacuunnit pesynbrar Hopbepra Binepa xapakrepusye mozsiiiHo imBapiaHTHI
miAIIPOCTOPH BifHOCHO 3CYBIiB IJIs1 KBAIPATHIHO IHTErPOBAHUX (DYHKIIIH Ha OFUHITHOMY
KOJIO BiJHOCHO CKiHYeHHOI IOJaTHBOI GOpEeJiBCBKOI Mipu f, SIK MHOXKHUHY 3HAYE€Hb
OIIepaTOpiB MHOXKEHHSI Ha XapaKTePUCTHIHI DYHKIIT (-BUMIDHUX IiAMHOXKWH OMHUY-
HOTO KOJIa. AHAaJIOr IIbOrO PE3yJIbTaTy HaBeZEHO i npocTopy Besikosuua-I'inbbepra
«KBaAPATUIHO IHTErPOBAHUX Maii’ke IepioandHux (DyHKIH».

1. INTRODUCTION

The aim of this article is to prove a version of the classical result due to N. Wiener,
characterising doubly shift-invariant subspaces (of the Hilbert space square integrable
functions on the circle with respect to a finite positive Borel measure), for the Besicovitch
Hilbert space. We give the pertinent definitions below.

First we recall the aforementioned classical result. See e.g. [8, Thm.11, §14, Chap.II]
or [6, Thm. 1.2.1, p.8] or [8, Thm.11, §14, Chap.II]. Let p be a finite, nonnegative Borel
measure on the unit circle T := {z € C: [z| = 1}, and let L2(T) be the Hilbert space of
all functions f : T — C such that

113 = j )P du(e) < oo,

with pointwise operations, and the inner product

gy = fT GrGLIG

for f,g € Li(’ﬂ‘). Here = denotes complex conjugation. For a y-measurable set, 1, is the
indicator /characteristic function of o, i.e.,

1 if weoao,
1o(w) :{ 0 ifweT\o

The multiplication operator M, : L?(T) — L2 (T) is given by (M. f)(w) = wf(w) for all
weT, fe Li(']I‘), and is called the shift-operator. A closed subspace E < Li(']I‘) is called
doubly invariant if M,E c E and (M,)*E < E. A closed subspace is doubly invariant if

and only if M,FE = E. The following result gives a characterisation of doubly invariant
subspaces of L?(T):
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Theorem 1.1 (N.Wiener).
Let E c LZ(T) be a closed subspace of Li(’]I‘). Then M,E = E if and only if there exists
a unique measurable set o < T such that

E=1,L(T) = {f e L(T) : f = 0 p-a.e. on T\o}.

We will prove a similar result when Li (T) is replaced by AP?, the Besicovitch Hilbert
space. We recall this space and a few of its properties in the following section, before
stating and proving our main result in the final section.

2. PRELIMINARIES ON THE BESICOVITCH SPACE AP?

For A e R, let ey := e € L®(R). Let T be the space of trigonometric polynomials,
i.e., T is the linear span of {e) : A € R}. The Besicovitch space AP? is the completion of
T with respect to the inner product

R
@)= Jim 5z [ s s
for p,q € T, and where - denotes complex conjugation. Elements of AP? are not to be
thought of as functions on R: For example, consider the sequence (g,,) in T, where
n
1 .1
x) = —e'** (zeR).

qn(x) ];1 - (zeR)
Then (g,) converges to an element of AP?, but (g, (z))nen diverges for all z € R. Although
elements of AP? may not be functions on R, they can be identified as functions on the
Bohr compactifcation Rp of R, and we elaborate on this below. See [1, §7.1] and the
references therein for further details.

For a locally compact Abelian group G written additively, the dual group G* is the
set all continuous characters of G. Recall that a character of G isamap x : G > T
such that x(g + h) = x(9) x(k) (g,h € G). Then G* becomes an Abelian group with
pointwise multplication, but we continue to write the group operation in G* also additively,
motivated by the special characters

G:Rax»ie’“eﬂ‘,
when G = R. So the inverse of y € G* is denoted by —x. Then G* is a locally compact
Abelian group with the topology given by the basis formed by the sets
Ugy o guie(X) 1= {n € G* : [n(gi) — x(g:)| < e for all 1 <i <n},

where e >0, neN:={1,2,3,---}, g1, ,gn € G.

Let G% denote the group G* with the discrete topology. The dual group (G})* of G%
is called the Bohr compactification of G. By the Pontryagin duality theorem!, G is the
set of all continuous characters of G*, and since G p is the set of all (continuous or not)
characters of G*, G can be considered to be contained in Gg. It can be shown that G
is dense in Gp. Let u be the normalised Haar measure in G, that is, p is a positive
regular Borel measure such that
e (invariance) p(U) = p(U + &) for all Borel sets U < Gp, and all £ € G,

e (normalisation) u(Gp) = 1.
Let Rp = (R})* denote the Bohr compactification of R. Let p be the normalised Haar
measure on Rp. Let Li(RB) be the Hilbert space of all functions f : Rg — C such that

\W&=L|ﬂm%ma<w

1See e.g. [5, p.189].
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with pointwise operations and the inner product

9= . F(€) (&) dp(€)

for all f,g € Li(RB). The Besicovitch space AP? can be identified as a Hilbert space
with L2 (Rp), and let + : AP? — L2 (Rp) be the Hilbert space isomorphism. Let L (Rp)
be the space of ppg-measurable functions that are essentially bounded (that is bounded
on Rp up to a set of measure 0) with the essential supremum norm

[flloo :=Inf{M = 0: |f(§)| < M a.e.}.

For an element f € L?(Rp), let My : L2(Rp) — L2(Rp) be the multiplication map
@ — fo, where fyp is the pointwise multiplication of f and ¢ as functions on Rp.

Let AP < L*(R) be the C*-algebra of almost periodic functions, namely the closure
in L*®(R) of the space T of trigonometric polynomials. Then it can be shown that
AP c AP? and ((AP) = C(Rp) © L?(Rp). Also, for f € AP,

Ifll2 = llefllz < leflloo = 1flloo-
For f,ge AP, and A € R,

ufg) = (f)(wg),
t(eo) = 1py,
tlexn) = u@x) = ule-n).
Every element f € AP gives a multiplication map, M,y on Li (Rp).
For f € AP?, the mean value

m(f) = f (W(D)E) du(€) = (uf ven) = {fren)

exists. The set

S(f)y:={ eR:m(e_rf) #0}
is called the Bohr spectrum of f, and can be shown to be at most countable. We have a
Hilbert space isomorphism, via the Fourier transform, between L?(T) and ¢*(Z):

LA(T) 3 f = (F(n) = (f.e7))nez € ().
Analogously, we have a representation of AP? via the Bohr transform. We elaborate on

this below.

Let ¢2(R) be the set of all f: R — C for which the set {\ € C: f(\) # 0} is countable
and

1£13 = D] 1fFV? < .

AeR
Then ¢2(R) is a Hilbert space with pointwise operations and the inner product

Fogy =23 FN 9.
AeR
For A € R, define the shift-operator Sy : £?(R) — ¢*(R) by
(SA)() = F(- = A).
Let co(R) = £2(R) be the set of finitely supported functions. Define F : cpo(R) — AP?
as follows: For f € coo(R),

(FH@) = 3] fNe™ (zeR).
AeR

By continuity, F : coo(R) — AP? can be extended to a map (denoted by the same
symbol) F : £2(R) — AP? defined on all of /?(R), and is called the Bohr transform. The
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map F : 2(R) — AP? is a Hilbert space isomorphism. The inverse Bohr transform
F~1: AP? — (%(R) is given by
(FHHM) =m(fe_n) (AeR).
For A€ R and f € L2 (Rp), we have the following equality in ¢*(R):
F U My f) = (FHTINE =) = Sa(FH7H).
By the Cauchy-Schwarz inequality in Li(RB), for all functions f,g € Li(RB), we have

(SETIOFETTI) < X IFE P X IE 9@

AeR aeR BeR

= [ f131913-
We will need the following approximation result (see e.g. [2] or [1]):

Proposition 2.1. Let f € AP and X(f) be its Bohr spectrum. Then there exists a
sequence (Dp)nen in T such that

e for allneN, X(p,) < X(f), and
o (pn)nen converges uniformly to f on R.

Analogous to the classical Fourier theory where the Fourier coefficients of the pointwise
multiplication of sufficiently regular functions is given by the convolution of their Fourier
coeflicients, we have the following.

Lemma 2.2. Let f € L?(Rp) and g € L2(Rp). Then for all X € R,
(FH (f9) V) = D (FHTIN@ (FT T ) (A~ a).
a€eR

Proof. We first show this for f,g € «7, and then use a continuity argument using the
density of 7 in AP2. For f,ge T, we have X(1 =1 f),X(:~1g) are finite subsets of R, and

= Z (F7L7 ) (@) eas 1l = Z(]—'_ 1) (B)es.

aeR BeR
So
) = = (X F TN e) X (F T ) (B) e
a€eR BER
= Z 2 LT (@) (F T ) (B) eas s
aceRBeER
We have ( N 0
teg,tegy =1 ifa =0,
m(ca) = { <L62, Le(())> =0 ifa=#0.
Thus

(F1 (fg)) () = m(~ (fg)e»)
3N N FE L)@ (F L ) () mearsn)

aeRBEeER

= D (FHN@EF T (A ).

aeR

Now consider the general case when f € L°(Rp) and g € L2 (Rp). Then we can find
sequences (fn), (gn) in ¢7T such that

o (fn)nen converges uniformly to f,

o (gn)nen converges to g in AP2?, and
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e forallneN, B(t71f,) c B~ 1f), and (¢t 1g,) = (17 1g).
The g, can be constructed by simply ‘truncating’ the ‘Bohr series’ of ¢~ 'g, since
sup 0 [(FLT ) B)P = g3
Fcx(? ) BeF
F ﬁnlte

Then, with ~:= F~1,~!, we have

|3 (@) @) —a)—%a)@(x—a)\

aeR
< Z |fn MNgn(A =) =g\ — )| + 2 |fn - )||g( )l
aeR aeR
< [ ful2lgn = glz2 + [ fn = fl2llgllz (Cauchy-Schwarz)
< falolgn = gllz + 1fa = flolgle =5 1flw -0 +0-g]2 = 0.
This completes the proof. O

3. CHARACTERISATION OF DOUBLY INVARIANT SUBSPACES

In this section, we state and prove our main results, namely Theorem 3.1 and Corol-
lary 3.2. Theorem 3.1 is a straightforward adaptation® of the proof of the classical version
of the theorem given in [6, Theorem 1.2.1, p.8]. On the other hand, the main result of the
article is Corollary 3.2, which follows from Theorem 3.1 by an application of Lemma 2.2.

For a measurable set 0 < Rp, let 1, € Lf(R p) denote the characteristic function of o,
ie.,

1 if €€o,
1,(8) = {0 if £eRp\o.

Theorem 3.1. Let E < L2(Rp) be a closed subspace of L2,(Rp). Then the following are
equivalent:

(1) My E =FE for all A€ R.

(2) There exists a unique measurable set o < Rp such that

E =M L’ (Rp) = {f € L’,(Rp) : f = 0 pra.e. on Rp\o}.

Proof. (2)=(1): Let f € E. Then there exists an element ¢ € L%(Rp) such that
f=M,p=1,p. Foral AeR, i(ex) € L7 (Rp), and so

M,(eyyf = tlex)(1op) = (tlex)lo) @ = 15 (clen) ) = My, 1,
where 1) := u(ex)p € L*(Rp, i), and so M, f € E. Thus M, E c E. Moreover,

f=10=(1r,15)p = (t(e0)ls)p = (tlex—2)1s) ¥
= L(E)\)(].U-L(B,,\)(p) = ML(C‘)\)gﬂ

where g := 1,(t(e_x) p) € M1, L*(Rp, u). So f € M, yE. Thus, E < M,(,)E too.

(6)\ (8)\

(1)=(2): Let Pg : L%(Rp) — L%(Rp) be the orthogonal projection onto the closed
subspace E. Set f = Pglg,. Let I be the identity map on Li(RB). We claim that

—fLE. (%)
2Tt is clear that there is but little novelty in the proof of our Theorem 3.1. It may be argued that all

this is implicit in the considerable literature on the subject of doubly invariant subspaces in quite general
settings; see notably [4], [7], and [3]. Let us then make it explicit!



DOUBLY INVARIANT SUBSPACES 155

Indeed, for all g € F,
<1]RB - fvg> = <<I_ PE)1R37PE9>
= <(PE)*(I_PE)1R579>

As f = Pplg, € E and M, )E = E for all A € R, we have 1z, — f L M,
AeR. Soforallpe T,

)f for all

(ex

| osan, ~Dan-o.
Rp
But 7 is dense in AP?, and p is a finite positive Borel measure. So

f(z, =) =0 prae.
Thus f = |f|? p-a.e., so that f(£) € {0,1} for all £ € Rp. Set
o={{eRp: f(§) =1}
Then f =1, p-ae. As 1, = f = Pplg, € E, and as M,.,)E = E for all A € R, it
follows that 1,¢(7) c E. But E is closed, and thus
closure(1,¢(7)) c E.
Since closure(T) = AP?, we conclude that 1,L2 (Rp) c E.

Next we want to show that £ < 1ULZ (Rp). To this end, let g € E be orthogonal to
1, Li (Rp). In particular, for all A € R,

J glsu(en)du = 0. (%)
Rp

We want to show that g = 0. Since g € E, M, ,yg € E for all \. So by () above,
1g; — 1, L M,(,)g, and noting that 1g,, 1, are real-valued,

jR gi(ex) (1ny — 1,)djs = 0. (+3)

Hence, using the density of +(7) in L2 (Rp), we obtain from (*) and (+) that
gl, =0 p-ae.
9g(Ar;, — 1, =0 prae.
Thus g = glg, = 0 p-a.e., as wanted.

The uniqueness of o up to a set of u-measure 0 can be seen as follows: Suppose o, o’
are such that £ = My, L%(Rp) = M;_,L2(Rp). Then taking 15 € L2(Rp), we must
have 1, = 1,:¢ for some ¢ € L2 (Rp). So o  ¢’. Similarly, o < o’ as well. O

We now interpret the above characterisation result for doubly invariant subspaces of

AP? in terms of the Bohr coefficients of elements of E. Given a measurable set ¢ = Rp,
define & € £2(R) by

5(\) - j Loies)di = [ sle™)dn

o

Corollary 3.2. Let E < (2(R) be a closed subspace of £2(R). Then the following are
equivalent:

(1) SyE =FE for all \eR.
(2) There exists a unique measurable set 0 < Rp such that

E = (F YW My 0 F)2(R)
~{riR- i) = Yo -a)ela), ve A®)].

aeR
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