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DOUBLY INVARIANT SUBSPACES OF THE BESICOVITCH SPACE

AMOL SASANE

Abstract. A classical result of Norbert Wiener characterises doubly shift-invariant
subspaces for square integrable functions on the unit circle with respect to a finite
positive Borel measure \mu , as being the ranges of the multiplication maps corresponding
to the characteristic functions of \mu -measurable subsets of the unit circle. An analogue
of this result is given for the Besicovitch Hilbert space of ‘square integrable almost
periodic functions’.

Класичний результат Норберта Вiнера характеризує подвiйно iнварiантнi
пiдпростори вiдносно зсувiв для квадратично iнтегрованих функцiй на одиничному
коло вiдносно скiнченної додатньої борелiвської мiри \mu , як множину значень
операторiв множення на характеристичнi функцiї \mu -вимiрних пiдмножин одинич-
ного кола. Аналог цього результату наведено для простору Безiковича-Гiльберта
«квадратично iнтегрованих майже перiодичних функцiй».

1. Introduction

The aim of this article is to prove a version of the classical result due to N. Wiener,
characterising doubly shift-invariant subspaces (of the Hilbert space square integrable
functions on the circle with respect to a finite positive Borel measure), for the Besicovitch
Hilbert space. We give the pertinent definitions below.

First we recall the aforementioned classical result. See e.g. [8, Thm.11, §14, Chap.II]
or [6, Thm. 1.2.1, p.8] or [8, Thm.11, §14, Chap.II]. Let \mu be a finite, nonnegative Borel
measure on the unit circle \BbbT :“ tz P \BbbC : |z| “ 1u, and let L2

\mu p\BbbT q be the Hilbert space of
all functions f : \BbbT Ñ \BbbC such that

}f}22 :“

ż

\BbbT 
|fp\xi q|2 d\mu p\xi q ă 8,

with pointwise operations, and the inner product

xf, gy “

ż

\BbbT 
fp\xi qgp\xi qd\mu p\xi q

for f, g P L2
\mu p\BbbT q. Here ¨ denotes complex conjugation. For a \mu -measurable set, \bfone \sigma is the

indicator/characteristic function of \sigma , i.e.,

\bfone \sigma pwq “

"

1 if w P \sigma ,
0 if w P \BbbT z\sigma .

The multiplication operator Mz : L2
\mu p\BbbT q Ñ L2

\mu p\BbbT q is given by pMzfqpwq “ wfpwq for all
w P \BbbT , f P L2

\mu p\BbbT q, and is called the shift-operator. A closed subspace E Ă L2
\mu p\BbbT q is called

doubly invariant if MzE Ă E and pMzq
˚E Ă E. A closed subspace is doubly invariant if

and only if MzE “ E. The following result gives a characterisation of doubly invariant
subspaces of L2

\mu p\BbbT q:
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Theorem 1.1 (N.Wiener).
Let E Ă L2

\mu p\BbbT q be a closed subspace of L2
\mu p\BbbT q. Then MzE “ E if and only if there exists

a unique measurable set \sigma Ă \BbbT such that

E “ \bfone \sigma L
2
\mu p\BbbT q “ tf P L2

\mu p\BbbT q : f “ 0 \mu -a.e. on \BbbT z\sigma u.

We will prove a similar result when L2
\mu p\BbbT q is replaced by AP 2, the Besicovitch Hilbert

space. We recall this space and a few of its properties in the following section, before
stating and proving our main result in the final section.

2. Preliminaries on the Besicovitch space AP 2

For \lambda P \BbbR , let e\lambda :“ ei\lambda ¨ P L8p\BbbR q. Let \scrT be the space of trigonometric polynomials,
i.e., \scrT is the linear span of te\lambda : \lambda P \BbbR u. The Besicovitch space AP 2 is the completion of
\scrT with respect to the inner product

xp, qy “ \mathrm{l}\mathrm{i}\mathrm{m}
RÑ8

1

2R

ż R

´R

ppxqqpxqdx,

for p, q P \scrT , and where ¨ denotes complex conjugation. Elements of AP 2 are not to be
thought of as functions on \BbbR : For example, consider the sequence pqnq in \scrT , where

qnpxq :“
n
ÿ

k“1

1

k
ei

1
kx px P \BbbR q.

Then pqnq converges to an element of AP 2, but pqnpxqqnP\BbbN diverges for all x P \BbbR . Although
elements of AP 2 may not be functions on \BbbR , they can be identified as functions on the
Bohr compactifcation \BbbR B of \BbbR , and we elaborate on this below. See [1, §7.1] and the
references therein for further details.

For a locally compact Abelian group G written additively, the dual group G˚ is the
set all continuous characters of G. Recall that a character of G is a map \chi : G Ñ \BbbT 
such that \chi pg ` hq “ \chi pgq \chi phq (g, h P G). Then G˚ becomes an Abelian group with
pointwise multplication, but we continue to write the group operation in G˚ also additively,
motivated by the special characters

G “ \BbbR Q x \theta 
ÞÑ ei\theta x P \BbbT ,

when G “ \BbbR . So the inverse of \chi P G˚ is denoted by ´\chi . Then G˚ is a locally compact
Abelian group with the topology given by the basis formed by the sets

Ug1,¨¨¨ ,gn;\epsilon p\chi q :“ t\eta P G
˚ : |\eta pgiq ´ \chi pgiq| ă \epsilon for all 1 ď i ď nu,

where \epsilon ą 0, n P \BbbN :“ t1, 2, 3, ¨ ¨ ¨ u, g1, ¨ ¨ ¨ , gn P G.
Let G˚d denote the group G˚ with the discrete topology. The dual group pG˚d q

˚ of G˚d
is called the Bohr compactification of G. By the Pontryagin duality theorem1, G is the
set of all continuous characters of G˚, and since GB is the set of all (continuous or not)
characters of G˚, G can be considered to be contained in GB. It can be shown that G
is dense in GB. Let \mu be the normalised Haar measure in GB, that is, \mu is a positive
regular Borel measure such that
‚ (invariance) \mu pUq “ \mu pU ` \xi q for all Borel sets U Ă GB , and all \xi P GB ,
‚ (normalisation) \mu pGBq “ 1.
Let \BbbR B “ pR

˚
d q
˚ denote the Bohr compactification of \BbbR . Let \mu be the normalised Haar

measure on \BbbR B . Let L2
\mu p\BbbR Bq be the Hilbert space of all functions f : \BbbR B Ñ \BbbC such that

}f}22 :“

ż

\BbbR B

|fp\xi q|2 d\mu p\xi q ă 8,

1See e.g. [5, p.189].
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with pointwise operations and the inner product

xf, gy “

ż

\BbbR B

fp\xi qgp\xi qd\mu p\xi q

for all f, g P L2
\mu p\BbbR Bq. The Besicovitch space AP 2 can be identified as a Hilbert space

with L2
\mu p\BbbR Bq, and let \iota : AP 2 Ñ L2

\mu p\BbbR Bq be the Hilbert space isomorphism. Let L8\mu p\BbbR Bq

be the space of \mu B-measurable functions that are essentially bounded (that is bounded
on \BbbR B up to a set of measure 0) with the essential supremum norm

}f}8 :“ \mathrm{i}\mathrm{n}\mathrm{f}tM ě 0 : |fp\xi q| ďM a.e.u.

For an element f P L8\mu p\BbbR Bq, let Mf : L2
\mu p\BbbR Bq Ñ L2

\mu p\BbbR Bq be the multiplication map
\varphi ÞÑ f\varphi , where f\varphi is the pointwise multiplication of f and \varphi as functions on \BbbR B .

Let AP Ă L8p\BbbR q be the C˚-algebra of almost periodic functions, namely the closure
in L8p\BbbR q of the space \scrT of trigonometric polynomials. Then it can be shown that
AP Ă AP 2, and \iota pAP q “ Cp\BbbR Bq Ă L8\mu p\BbbR Bq. Also, for f P AP ,

}f}2 “ }\iota f}2 ď }\iota f}8 “ }f}8.

For f, g P AP , and \lambda P \BbbR ,

\iota pfgq “ p\iota fqp\iota gq,

\iota pe0q “ \bfone \BbbR B
,

\iota pe\lambda q “ \iota pe\lambda q “ \iota pe´\lambda q.

Every element f P AP gives a multiplication map, M\iota pfq on L2
\mu p\BbbR Bq.

For f P AP 2, the mean value

\bfm pfq :“

ż

\BbbR B

p\iota pfqqp\xi qd\mu p\xi q “ x\iota f, \iota e0y “ xf, e0y

exists. The set
\Sigma pfq :“ t\lambda P \BbbR : \bfm pe´\lambda fq ‰ 0u

is called the Bohr spectrum of f , and can be shown to be at most countable. We have a
Hilbert space isomorphism, via the Fourier transform, between L2p\BbbT q and \ell 2p\BbbZ q:

L2p\BbbT q Q f ÞÑ p pfpnq :“ xf, e´intyqnP\BbbZ P \ell 
2p\BbbZ q.

Analogously, we have a representation of AP 2 via the Bohr transform. We elaborate on
this below.

Let \ell 2p\BbbR q be the set of all f : \BbbR Ñ \BbbC for which the set t\lambda P \BbbC : fp\lambda q ‰ 0u is countable
and

}f}22 :“
ÿ

\lambda P\BbbR 
|fp\lambda q|2 ă 8.

Then \ell 2p\BbbR q is a Hilbert space with pointwise operations and the inner product

xf, gy “
ÿ

\lambda P\BbbR 
fp\lambda qgp\lambda q.

For \lambda P \BbbR , define the shift-operator S\lambda : \ell 2p\BbbR q Ñ \ell 2p\BbbR q by

pS\lambda fqp¨q “ fp¨ ´ \lambda q.

Let c00p\BbbR q Ă \ell 2p\BbbR q be the set of finitely supported functions. Define \scrF : c00p\BbbR q Ñ AP 2

as follows: For f P c00p\BbbR q,

p\scrF fqpxq “
ÿ

\lambda P\BbbR 
fp\lambda qei\lambda x px P \BbbR q.

By continuity, \scrF : c00p\BbbR q Ñ AP 2 can be extended to a map (denoted by the same
symbol) \scrF : \ell 2p\BbbR q Ñ AP 2 defined on all of \ell 2p\BbbR q, and is called the Bohr transform. The
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map \scrF : \ell 2p\BbbR q Ñ AP 2 is a Hilbert space isomorphism. The inverse Bohr transform
\scrF ´1 : AP 2 Ñ \ell 2p\BbbR q is given by

p\scrF ´1fqp\lambda q “\bfm pfe´\lambda q p\lambda P \BbbR q.
For \lambda P \BbbR and f P L2

\mu p\BbbR Bq, we have the following equality in \ell 2p\BbbR q:

\scrF ´1\iota ´1pM\iota pe\lambda qfq “ p\scrF 
´1\iota ´1fqp¨ ´ \lambda q “ S\lambda p\scrF ´1\iota ´1fq.

By the Cauchy-Schwarz inequality in L2
\mu p\BbbR Bq, for all functions f, g P L2

\mu p\BbbR Bq, we have
´

ÿ

\lambda P\BbbR 
p\scrF ´1\iota ´1fqp\lambda qp\scrF ´1\iota ´1gqp\lambda q

¯2

ď
ÿ

\alpha P\BbbR 
|p\scrF ´1\iota ´1fqp\alpha q|2

ÿ

\beta P\BbbR 
|p\scrF ´1\iota ´1gqp\beta q|2

“ }f}22 }g}
2
2.

We will need the following approximation result (see e.g. [2] or [1]):

Proposition 2.1. Let f P AP and \Sigma pfq be its Bohr spectrum. Then there exists a
sequence ppnqnP\BbbN in \scrT such that

‚ for all n P \BbbN , \Sigma ppnq Ă \Sigma pfq, and
‚ ppnqnP\BbbN converges uniformly to f on \BbbR .

Analogous to the classical Fourier theory where the Fourier coefficients of the pointwise
multiplication of sufficiently regular functions is given by the convolution of their Fourier
coefficients, we have the following.

Lemma 2.2. Let f P L8\mu p\BbbR Bq and g P L2
\mu p\BbbR Bq. Then for all \lambda P \BbbR ,

p\scrF ´1\iota ´1pfgqqp\lambda q “
ÿ

\alpha P\BbbR 
p\scrF ´1\iota ´1fqp\alpha qp\scrF ´1\iota ´1gqp\lambda ´ \alpha q.

Proof. We first show this for f, g P \iota \scrT , and then use a continuity argument using the
density of \scrT in AP 2. For f, g P \iota \scrT , we have \Sigma p\iota ´1fq,\Sigma p\iota ´1gq are finite subsets of \BbbR , and

\iota ´1f “
ÿ

\alpha P\BbbR 
p\scrF ´1\iota ´1fqp\alpha qe\alpha , \iota ´1g “

ÿ

\beta P\BbbR 
p\scrF ´1\iota ´1gqp\beta qe\beta .

So

\iota ´1pfgq “ p\iota ´1fq \iota ´1g “
´

ÿ

\alpha P\BbbR 
p\scrF ´1\iota ´1fqp\alpha qe\alpha 

¯

ÿ

\beta P\BbbR 
p\scrF ´1\iota ´1gqp\beta qe\beta 

“
ÿ

\alpha P\BbbR 

ÿ

\beta P\BbbR 
p\scrF ´1\iota ´1fqp\alpha qp\scrF ´1\iota ´1gqp\beta qe\alpha `\beta .

We have

\bfm peaq “

"

x\iota e0, \iota e0y “ 1 if a “ 0,
x\iota ea, \iota e0y “ 0 if a ‰ 0.

Thus

p\scrF ´1\iota ´1pfgqqp\lambda q “ \bfm p\iota ´1pfgqe´\lambda q

“
ÿ

\alpha P\BbbR 

ÿ

\beta P\BbbR 
p\scrF ´1\iota ´1fqp\alpha qp\scrF ´1\iota ´1gqp\beta q\bfm pe\alpha `\beta ´\lambda q

“
ÿ

\alpha P\BbbR 
p\scrF ´1\iota ´1fqp\alpha qp\scrF ´1\iota ´1gqp\lambda ´ \alpha q.

Now consider the general case when f P L8\mu p\BbbR Bq and g P L2
\mu p\BbbR Bq. Then we can find

sequences pfnq, pgnq in \iota \scrT such that
‚ pfnqnP\BbbN converges uniformly to f ,
‚ pgnqnP\BbbN converges to g in AP 2, and
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‚ for all n P \BbbN , \Sigma p\iota ´1fnq Ă \Sigma p\iota ´1fq, and \Sigma p\iota ´1gnq Ă \Sigma p\iota ´1gq.
The gn can be constructed by simply ‘truncating’ the ‘Bohr series’ of \iota ´1g, since

\mathrm{s}\mathrm{u}\mathrm{p}
F Ă\Sigma p\iota ´1gq

F finite

ÿ

\beta PF

|p\scrF ´1\iota ´1gqp\beta q|2 “ }g}22.

Then, with p̈ :“ \scrF ´1\iota ´1, we have
ˇ

ˇ

ˇ

ÿ

\alpha P\BbbR 
pxfnqp\alpha qpxgnqp\lambda ´ \alpha q ´ pfp\alpha qpgp\lambda ´ \alpha q

ˇ

ˇ

ˇ

ď
ÿ

\alpha P\BbbR 
|xfnp\alpha q||xgnp\lambda ´ \alpha q ´ pgp\lambda ´ \alpha q| `

ÿ

\alpha P\BbbR 
|xfnp\alpha q ´ pfp\alpha q||pgp\lambda ´ \alpha q|

ď }fn}2}gn ´ g}2 ` }fn ´ f}2}g}2 (Cauchy-Schwarz)

ď }fn}8}gn ´ g}2 ` }fn ´ f}8}g}2
nÑ8
ÝÑ }f}8 ¨ 0` 0 ¨ }g}2 “ 0.

This completes the proof. \square 

3. Characterisation of doubly invariant subspaces

In this section, we state and prove our main results, namely Theorem 3.1 and Corol-
lary 3.2. Theorem 3.1 is a straightforward adaptation2 of the proof of the classical version
of the theorem given in [6, Theorem 1.2.1, p.8]. On the other hand, the main result of the
article is Corollary 3.2, which follows from Theorem 3.1 by an application of Lemma 2.2.

For a measurable set \sigma Ă \BbbR B , let \bfone \sigma P L
8
\mu p\BbbR Bq denote the characteristic function of \sigma ,

i.e.,

\bfone \sigma p\xi q “

"

1 if \xi P \sigma ,
0 if \xi P \BbbR Bz\sigma .

Theorem 3.1. Let E Ă L2
\mu p\BbbR Bq be a closed subspace of L2

\mu p\BbbR Bq. Then the following are
equivalent:

(1) M\iota pe\lambda qE “ E for all \lambda P \BbbR .
(2) There exists a unique measurable set \sigma Ă \BbbR B such that

E “M\bfone \sigma 
L2
\mu p\BbbR Bq “ tf P L

2
\mu p\BbbR Bq : f “ 0 \mu -a.e. on \BbbR Bz\sigma u.

Proof. (2)ñ(1): Let f P E. Then there exists an element \varphi P L2
\mu p\BbbR Bq such that

f “M\bfone \sigma 
\varphi “ \bfone \sigma \varphi . For all \lambda P \BbbR , \iota pe\lambda q P L8\mu p\BbbR Bq, and so

M\iota pe\lambda qf “ \iota pe\lambda qp\bfone \sigma \varphi q “ p\iota pe\lambda q\bfone \sigma q\varphi “ \bfone \sigma p\iota pe\lambda q\varphi q “M\bfone \sigma 
\psi ,

where \psi :“ \iota pe\lambda q\varphi P L
2p\BbbR B , \mu q, and so M\iota pe\lambda qf P E. Thus M\iota pe\lambda qE Ă E. Moreover,

f “ \bfone \sigma \varphi “ p\bfone \BbbR B
\bfone \sigma q\varphi “ p\iota pe0q\bfone \sigma q\varphi “ p\iota pe\lambda ´\lambda q\bfone \sigma q\varphi 

“ \iota pe\lambda qp\bfone \sigma \iota pe´\lambda q\varphi q “M\iota pe\lambda qg,

where g :“ \bfone \sigma p\iota pe´\lambda q\varphi q PM\bfone \sigma 
L2p\BbbR B , \mu q. So f PM\iota pe\lambda qE. Thus, E ĂM\iota pe\lambda qE too.

(1)ñ(2): Let PE : L2
\mu p\BbbR Bq Ñ L2

\mu p\BbbR Bq be the orthogonal projection onto the closed
subspace E. Set f “ PE\bfone \BbbR B

. Let I be the identity map on L2
\mu p\BbbR Bq. We claim that

\bfone \BbbR B
´ f K E. p‹q

2It is clear that there is but little novelty in the proof of our Theorem 3.1. It may be argued that all
this is implicit in the considerable literature on the subject of doubly invariant subspaces in quite general
settings; see notably [4], [7], and [3]. Let us then make it explicit!
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Indeed, for all g P E,

x\bfone \BbbR B
´ f, gy “ xpI ´ PEq\bfone \BbbR B

, PEgy

“ xpPEq
˚pI ´ PEq\bfone \BbbR B

, gy

“ xPEpI ´ PEq\bfone \BbbR B
, gy “ x0, gy “ 0.

As f “ PE\bfone \BbbR B
P E and M\iota pe\lambda qE “ E for all \lambda P \BbbR , we have \bfone \BbbR B

´ f K M\iota pe\lambda qf for all
\lambda P \BbbR . So for all p P \scrT ,

ż

\BbbR B

\iota ppqfp\bfone \BbbR B
´ fqd\mu “ 0.

But \scrT is dense in AP 2, and \mu is a finite positive Borel measure. So

fp\bfone \BbbR B
´ fq “ 0 \mu -a.e.

Thus f “ |f |2 \mu -a.e., so that fp\xi q P t0, 1u for all \xi P \BbbR B . Set

\sigma “ t\xi P \BbbR B : fp\xi q “ 1u.

Then f “ \bfone \sigma \mu -a.e. As \bfone \sigma “ f “ PE\bfone \BbbR B
P E, and as M\iota pe\lambda qE “ E for all \lambda P \BbbR , it

follows that \bfone \sigma \iota p\scrT q Ă E. But E is closed, and thus

closurep\bfone \sigma \iota p\scrT qq Ă E.

Since closurep\scrT q “ AP 2, we conclude that \bfone \sigma L
2
\mu p\BbbR Bq Ă E.

Next we want to show that E Ă \bfone \sigma L
2
\mu p\BbbR Bq. To this end, let g P E be orthogonal to

\bfone \sigma L
2
\mu p\BbbR Bq. In particular, for all \lambda P \BbbR ,

ż

\BbbR B

g\bfone \sigma \iota pe\lambda qd\mu “ 0. p˚q

We want to show that g “ 0. Since g P E, M\iota pe\lambda qg P E for all \lambda . So by (‹) above,
\bfone \BbbR B

´ \bfone \sigma KM\iota pe\lambda qg, and noting that \bfone \BbbR B
,\bfone \sigma are real-valued,

ż

\BbbR B

g \iota pe\lambda qp\bfone \BbbR B
´ \bfone \sigma qd\mu “ 0. p˚˚q

Hence, using the density of \iota p\scrT q in L2
\mu p\BbbR Bq, we obtain from (˚) and (˚˚) that

g\bfone \sigma “ 0 \mu -a.e.
g p\bfone \BbbR B

´ \bfone \sigma “ 0 \mu -a.e.

Thus g “ g\bfone \BbbR B
“ 0 \mu -a.e., as wanted.

The uniqueness of \sigma up to a set of \mu -measure 0 can be seen as follows: Suppose \sigma , \sigma 1
are such that E “ M\bfone \sigma 

L2
\mu p\BbbR Bq “ M\bfone \sigma 1

L2
\mu p\BbbR Bq. Then taking \bfone B P L2

\mu p\BbbR Bq, we must
have \bfone \sigma “ \bfone \sigma 1\varphi for some \varphi P L2

\mu p\BbbR Bq. So \sigma Ă \sigma 1. Similarly, \sigma Ă \sigma 1 as well. \square 

We now interpret the above characterisation result for doubly invariant subspaces of
AP 2 in terms of the Bohr coefficients of elements of E. Given a measurable set \sigma Ă \BbbR B ,
define p\sigma P \ell 2p\BbbR q by

p\sigma p\lambda q “

ż

\BbbR B

\bfone \sigma \iota pe´\lambda qd\mu “

ż

\sigma 

\iota pe´i\lambda ¨qd\mu .

Corollary 3.2. Let E Ă \ell 2p\BbbR q be a closed subspace of \ell 2p\BbbR q. Then the following are
equivalent:

(1) S\lambda E “ E for all \lambda P \BbbR .
(2) There exists a unique measurable set \sigma Ă \BbbR B such that

E “ p\scrF ´1\iota ´1M\bfone \sigma \iota \scrF q\ell 2p\BbbR q

“

!

f : \BbbR Ñ \BbbC 
ˇ

ˇ

ˇ
fp\lambda q “

ÿ

\alpha P\BbbR 
p\sigma p\lambda ´ \alpha q\varphi p\alpha q, \varphi P \ell 2p\BbbR q

)

.
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