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Abstract

Scientific discovery is a driving force for progress involving creative problem-solving processes to further our under-
standing of the world. The process of scientific discovery has historically been intensive and time-consuming; however,
advances in computational power and algorithms have provided an efficient route to make new discoveries. Complex
tools using artificial intelligence (AD can efficiently analyze data as well as generate new hypotheses and theories.
Along with Al becoming increasingly prevalent in our daily lives and the services we access, its application to
different scientific domains is becoming more widespread. For example, Al has been used for the early detection of
medical conditions, identifying treatments and vaccines (e.g., against COVID-19), and predicting protein structure.
The application of Al in psychological science has started to become popular. Al can assist in new discoveries
both as a tool that allows more freedom to scientists to generate new theories and by making creative discoveries
autonomously. Conversely, psychological concepts such as heuristics have refined and improved artificial systems.
With such powerful systems, however, there are key ethical and practical issues to consider. This article addresses
the current and future directions of computational scientific discovery generally and its applications in psychological
science more specifically.
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Scientific discovery involves solving complex problems
creatively to advance our understanding of the world.
The resulting knowledge can then be exploited to treat
illness, develop new technologies, and solve critical
practical problems. Scientific discovery typically takes a
long time—a major discovery often requires intensive
and iterative investigations. It is therefore crucial to
understand the psychological mechanisms underpinning
this behavior and how it could be augmented by tech-
nologies such as artificial intelligence (AD. This article
first outlines psychological theories of scientific discov-
ery and then argues that Al systems can demonstrate
scientific creativity akin to humans, highlighting the ways
in which AI has been utilized across different domains
to both assist scientists and make new discoveries auton-
omously. The current and potential implications of com-

Scientific Creativity

We define scientific discovery as the generation of new
and important theories and the uncovering of phenom-
ena through scientific inquiry, in line with common
usage (Gobet et al., 2019). This process is critically
important because advancing our knowledge of the
world allows us to create new tools, treat illness, and
benefit society. A recent example of the importance of
scientific discovery for humankind is the design of vac-
cines against the SARS-CoV-2 virus responsible for the
COVID-19 pandemic. To generate new discoveries more
efficiently, the mechanisms underpinning creativity and
scientific discovery must be understood.
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Creativity has intrigued humans since time immemo-
rial and has been a focus of research in psychology for
more than a century. Because creativity is subjective and
culturally bound, it is hard to define. Although research-
ers agree that novelty is an essential element of creativ-
ity (Weisberg, 2015), the inclusion of other facets such
as surprise, success, usefulness, aesthetics, and authen-
ticity vary across the literature (Boden, 1998, 2003;
Kharkhurin, 2014; Runco & Jaeger, 2012). A number of
psychological theories of scientific creativity have been
developed, with psychology of science established as a
field of research in its own right (Feist, 2008). Scientific
creativity has been conceptualized as a combinatorial
process (e.g., Simonton, 1997, 2009), and an extensive
field of research has sought to understand the ways in
which concepts are combined (e.g., Gabora et al., 2008;
Gabora & Steel, 2017; Hampton, 1997). By analyzing
100 important scientific discoveries and 100 inventions,
Thagard (2012) provided support for this combinatorial
process, suggesting that all of the included discoveries
could be accounted for by this framework.

A particularly influential theory posits that creativity
can be described as selective search through a problem
space (Klahr & Simon, 2001; Newell et al., 1958). Given
a starting state, operators are used to move to new
states, hopefully reaching a goal state (solution) eventu-
ally (Newell & Simon, 1972). Search is made more effi-
cient by the use of heuristics (i.e., rules of thumb) that
are likely to be successful. According to this theory,
discovering a new scientific law is in essence no dif-
ferent from solving a puzzle such as the tower of Hanoi
and could be achieved computationally.

Problem-space theory can be examined in relation
to both classic scientific discovery and computational
discovery. First, it should be possible to describe estab-
lished scientific discoveries in terms of search, problem
space, and heuristics. Second, it should be possible to
replicate famous scientific discoveries in experiments
in which the participants are provided with the data
used for the discovery. Third, computer programs
should be able to replicate or even make new scientific
discoveries as they are highly efficient at searching
large problem spaces, in particular when they are
equipped with domain-specific heuristics. This includes
the development of new computational theories in psy-
chology. The following sections briefly review the
extent to which these predictions are supported.

Scientific Discovery

Observational and laboratory studies
of scientific discoveries

The way that scientists carry out research and make
discoveries, often after detailed and systematic testing

over an extended period of time, has been documented
by historians and philosophers of science (e.g., Gillispie,
1960). More recently, scientists who have made impor-
tant discoveries have been interviewed, and computa-
tional models of the processes have been developed
(e.g., Karp, 1990). Taking an in vivo approach, Dunbar
(1994) observed four research laboratories for 1 year to
better understand the cognitive and social processes of
scientific discovery. In line with problem-space theory,
this analysis revealed similar heuristics across laborato-
ries as well as similarities in fundamental aspects of the
cognitive operators used by the scientists, differing
mostly in the combinations of these operators. Team
dynamics also played a role in the way researchers
developed and tested hypotheses, which changed prob-
lem representations, indicating the importance of social
context in scientific discovery.

Laboratory studies have also been conducted to bet-
ter understand the cognitive mechanisms underpin-
ning discovery. For example, Schunn and Anderson
(1999) contrasted domain-specific experts (psychology
faculty doing research in the domain of memory),
domain-general experts (psychology faculty doing
research not related to memory), and novices (non-
psychology undergraduates) in the design and inter-
pretation of experiments in psychology. They found
that domain-specific experts had the best solutions
and demonstrated not only domain-specific skills but
also many domain-general skills and heuristics. These
domain-general skills were also demonstrated by
domain-general experts compared with novices, who
were missing many of these skills. These results indi-
cate that domain-general skills (such as keeping
experiments simple and considering relevant theories
when making conclusions) are particularly important
for scientific discovery.

Replicating scientific discoveries

Experimental studies have confirmed that many scientific
discoveries of the past can be replicated and reduced to
a heuristic search through a problem space, often with
common strategies (e.g., Dunbar, 1993; Langley et al.,
1987; Qin & Simon, 1990; Zimmerman & Klahr, 2018).
For example, Qin and Simon (1990) found that a third
of student participants were able to rediscover Kepler’s
third law of planetary motion when given the original
data. (Note that the variables were not labeled semanti-
cally and the data source was unknown.) Likewise,
undergraduate students were able to replicate discover-
ies in the molecular biology of genetic control (Dunbar,
1993), in which successful and unsuccessful answers
were distinguished by the goals set by participants.
Although creativity is often viewed in society as a mys-
terious concept, studies such as these support Newell
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et al’s (1958) view that it can be explained by mecha-
nisms known to underpin the solving behavior of simple
problems such as puzzles.

Computational Scientific Discovery

If creativity is characterized by searching through a
problem space, then computational programs using
search should be able to show creativity—and in par-
ticular should be able to replicate old and make new
scientific discoveries. Indeed, computer systems may
do so more efficiently than humans because they can
process large amounts of data very quickly.

Computational scientific discovery has a long history
(e.g., Langley et al., 1987). For example, Newell et al.
(1958) developed the Logic Theorist, which generated
proofs for theorems in propositional logic using heu-
ristics. Some of its proofs were more elegant than those
proposed by leading mathematicians. This program
arguably used a process that resulted in creativity.
Indeed, a subfield of computer science (automated
theorem proving) has since developed with the aim of
verifying mathematical statements mechanically, and
proof algorithms are nowadays routinely used for teach-
ing fields of mathematics such as logic (Avigad, 2019).
With technological developments, scientists are increas-
ingly using computational processes to solve problems
throughout the sciences. Advances in technology can
often drive new scientific discoveries, and these dis-
coveries can in turn lead to the development of new
technologies (Thagard, 2012).

Genetic programming and neural networks are pop-
ular AT techniques being used for scientific discovery.
Genetic programming (Koza, 1992) takes a population
of programs and evolves them across generations,
applying various operations (such as mutating parts
of the programs) and finding the best program against
a defined fitness function. Such evolutionary algo-
rithms are consistent with the combinatorial nature of
scientific discovery. Neural networks, on the other
hand, are built of connected artificial units (akin to
neurons in biological networks) with particular con-
nection weights in a series of layers—the input layer
is activated by an input and the output layer generates
a response (Aggarwal, 2018). A system is termed
“deep” when it includes a series of hidden layers
between the input and output layers.

There are two linked goals in computational scien-
tific-discovery research. The first is to uncover the
mechanisms and conditions that led to discoveries by
replicating famous examples, and the second is to use
this knowledge to engineer Al programs to automate
and generate new discoveries.

Replications

Computational replications of scientific discoveries
have been conducted for many years and with increas-
ingly refined computational procedures (e.g., Hakuk &
Reich, 2020; Kulkarni & Simon, 1988). KEKADA
(Kulkarni & Simon, 1988) is a program that makes theo-
retical inferences, assesses the acceptability of its
knowledge and theories, and models experimental
tests. It was able to replicate Krebs’s discovery of the
Urea cycle in 1932, a Nobel Prize-winning discovery.
Graflhoff and May (1995) extended this research by
analyzing available historical documents (notebooks,
publications, etc.) for a number of case studies, imple-
menting the common methodological rules that
explained all of the studied cases into a computational
cognitive model of discovery. The commonalities
included heuristics relating to the formation of models
and the rules governing the generation and evaluation
of causal hypotheses. More recently, Hakuk and Reich
(2020) replicated modern discoveries in mechanics (the
subfield of physics studying motion) and described a
new approach to automated discovery by using the
methods and concepts of one discipline to find equiva-
lent knowledge in a different discipline. Consistent with
the combinatorial characterization of discovery, this
method combined ideas from different domains.

New discoveries

Advancements in computational power and Al algo-
rithms have led to a number of Al scientific discoveries.
Al can be used in research both as a tool to assist
humans, allowing researchers more freedom to gener-
ate discoveries, and as autonomous discoverers, dis-
playing the creative problem-solving that characterizes
scientific discovery and generating new and exciting
results that further our knowledge of the world. A full
discussion of this literature would cover several vol-
umes, so we focus here on some of the key advances.

One of the earliest systems developed was DENDRAL
(Lindsay et al., 1980), which discovered molecular
structures by analyzing mass spectrometry data. More
recently, the “robot scientist” (King et al., 2004) auto-
mated almost the entire scientific process in the domain
of functional genomics, an area that had already
embraced automation. This system generates hypoth-
eses using observations, designs experiments and runs
them, interprets the results in terms of the hypotheses,
and then repeats the process. This allows scientists to
expedite the process and make creative advances in
the field. This instance of automation also serves as an
example of where scientific research may be heading,
with more automation across all fields.
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Computational scientific discovery has led to ground-
breaking discoveries in recent years. DeepMind’s Alpha-
Fold is an Al tool that predicts the three-dimensional
structure of proteins, solving a 50-year “grand problem”
in biology known as the “protein folding problem”
(Jumper et al., 2021). To date, this technology has pre-
dicted the structure of 350,000 proteins, including
98.5% of human proteins (the structure of only 17% of
human proteins had been established experimentally).
This in turn advances our understanding of the basic
components of cells, leading to the discovery of more
efficient drugs to treat illness as well as improved
insight regarding gene variations that cause disease in
different people. AlphaFold is clearly a powerful and
creative tool, reflecting a substantial contribution of Al
to scientific discovery. Al has also been used in multiple
ways during the COVID-19 pandemic (Abd-Alrazaq
et al., 2020), including for the highly efficient develop-
ment of COVID-19 vaccines (Waltz, 2020), with less
than 3 months between the detection of the virus and
human trials. Combining messy real-world and experi-
mental data, Al allowed insights and predictions regard-
ing the virus and potential vaccine targets. Al can
further assist in processing the large amount of antici-
pated adverse drug reactions to the vaccine, proving a
valuable tool at all stages of this process.

Computational Discovery and Psychology

Developments in computational and Al systems have
far-reaching applications in many domains, and psy-
chology is no exception. Al helps formulate and
describe psychological theories. Quite often, theories
in the social sciences are verbal, informal, and lack
precision; rather than explaining the data, they may be
better characterized as a redescription of the data
(Addis et al., 2019). Formal computational formulations
require the fine details of a theory to be specified—all
elements of a theory must be put into a coding lan-
guage, which involves a detailed description of exactly
what is going on. This avoids the use of vague language
to describe certain constructs. For example, rather than
saying that something is due to procedural memory, this
concept is formally defined in a computer program such
as ACT-R, along with relevant mechanisms (Anderson
et al., 2004).

Although the adoption of Al in psychology is still at
an early stage, its use extends into all domains of psy-
chology. In addition to machine learning, which can be
used to mine large data files (Dwyer et al., 2018) and
evaluate psychological research questions (Elhai &
Montag, 2020), Al has led to the development of models
and theories, alongside applied uses in clinical psychology.
Although psychologists typically focus on explaining

human behavior, Yarkoni and Westfall (2017) empha-
sized the importance of predicting behavior, particularly
for applied domains such as clinical psychology. They
and others outlined how the prediction of behavior
could be achieved by applying ideas and techniques
from machine learning such as the analysis of big data
and cross-validation (Agrawal et al., 2020), which may
address some of the critical problems facing psychology
(e.g., the replication crisis and p-hacking).

Here, we focus on three examples of Al that benefit
psychology: semiautomatic development of theories in
psychology, modeling decision-making, and methods
for refining clinical diagnostic criteria.

Semiautomatic development of theories

Al can improve model and theory development in psy-
chological science. Cichy and Kaiser (2019) advocated
particularly for the use of deep neural networks (DNNs)
in exploratory cognitive science. They suggested that
new ideas can come from exploring models; DNNs can
serve as proof-of-principle demonstrations, and models
can amend and refine fundamental scientific concepts.
Agrawal et al. (2020) refined psychological models by
comparing them to complex machine-learning models
trained on a large data set of moral decisions and pro-
duced a theory-based, predictive, and interpretable
model of moral decision-making. Genetic programming
has been used to effectively describe the interactions
of variables in psychometric and lexical access experi-
ments (Westbury et al., 2003). With regard to scientific
discovery, Lara-Dammer et al. (2019) demonstrated that
a simulated system (NINSUN) emulating human percep-
tion based on theories of scientific discovery and per-
ception, is able to make scientific hypotheses in a
simple artificial world.

Genetically Evolving Models in Science (GEMS) is a
system currently in development designed to automati-
cally generate possible theories of human cognitive
behavior (Addis et al., 2019; Frias-Martinez & Gobet,
2007). The system, which extends genetic program-
ming, combines several “operators” (e.g., putting an
item into short-term memory or moving covert atten-
tion) into a program (i.e., a model) whose predictions
are then compared against experimental data from
human participants. A population of models, with dif-
ferent combinations of operators, is evolved over a
number of generations, with preference given to those
most closely matching the human data (for a detailed
description of the GEMS system using the delayed-
match-to-sample task as an example, see Frias-Martinez
& Gobet, 2007). A key benefit of GEMS over other
methods is that it does not rely on large data sets.
Although this system allows some bias because it
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requires human input in developing operators, coding
the experimental conditions, and setting parameters,
this bias is reduced compared with standard theory
development. In particular, this system avoids confirma-
tion bias and allows operators from different fields of
cognitive psychology that are typically studied sepa-
rately to be combined. By creating operators relating
to these different fields (e.g., memory, attention, and
decision-making), novel predictions can be generated
that exploit the interplay between these domains.
Whereas experts in a given area may fail to appreciate
other factors that could influence their topic of interest,
GEMS aims to avoid this issue while generating exciting
and unexpected theories of human behavior.

In psychology, GEMS has successfully generated sci-
entific theories semiautomatically for a number of
experiments (Addis et al., 2016; Frias-Martinez & Gobet,
2007; Lane et al., 2016; Sozou et al., 2017). Although
these are initial results that still need to be refined by
future research, they establish the validity of the GEMS
approach (e.g., Pirrone & Gobet, 2020, 2021).

Modeling decision-making

Machine-learning techniques have been used to develop
and refine theories in decision-making research (Bourgin
et al., 2019; Erev et al., 2017; Fudenberg et al., 2022; Noti
et al., 2016; Peterson et al., 2021; Peysakhovich
& Naecker, 2017; Plonsky et al., 2017). For example,
Peterson et al. (2021) collected a large data set on risky-
choice decisions in which participants had to choose
between different gambles; several machine-learning
models of increased complexity were then trained on
the data. Each model was based on the literature and
included previous (human-generated) theories such as
the widely popular subjective utility models and pros-
pect theory. The authors showed that those models
could not explain large amounts of variance in the data,
even when each model was fine-tuned using the large-
scale data set and neural networks that optimized the
functional form and the parameters of the model. Inter-
estingly, using machine learning, the authors discovered
a new theory of risky choices in which participants
adopt sophisticated strategies that are a mixture of pre-
viously proposed theories, whose functional form and
parameters depend on the specific details of each gam-
ble (such as maximum outcome, minimum outcome,
and outcome variability). This new theory and its pre-
dictions are likely to drive future studies in the field of
risky choices (Plonsky & Erev, 2021) and pave the way
for future similar applications in fields across psychol-
ogy and the cognitive sciences (e.g., Battleday et al.,
2020).

Al in clinical psychology

Alongside model and theory development, Al has the
potential to extend the clinical understanding of mental-
health conditions, thus allowing the discovery of previ-
ously unknown patterns of behavior and a better insight
into how different classifications overlap. For example,
data-mining techniques have been used to determine
which variables can distinguish between groups of high
and low suicide risk (Morales et al., 2017). Al can also
be used to determine variables that can predict outcome
and treatment adherence (Aafjes-van Doorn et al., 2021;
D’Alfonso, 2020). AT also has the potential to refine
diagnostic criteria (Tai et al., 2019), which could lead
to new discoveries and improved knowledge of the
factors contributing to different conditions. Short ver-
sions of time-intensive self-report measures of personal-
ity have been developed using genetic algorithms
(Eisenbarth et al., 2015; Yarkoni, 2010), consistent with
the original measures across samples, languages, and
data-collection methods. This allows researchers to
administer such measures more efficiently.

Al-led advances in drug development could drive
breakthroughs in clinical research. New scientific discov-
eries may also be assisted by systems trained to be con-
sultant experts in medical knowledge (e.g., IBM’s
Watson). It is likely that automated scientific discovery
will have a considerable impact in clinical psychology,
especially considering the long history of using formal
methods in the domain, for example, to simulate clini-
cians (Rizzo et al., 2016; Weizenbaum, 1966) and patients
(e.g., de Mello & de Souza, 2019; Fitzpatrick et al., 2017,
Talbot & Rizzo, 2019; for a review, see Fiske et al., 2019;
for a detailed discussion, see Luxton, 2014) and for pro-
viding successful clinical diagnoses (Grove et al., 2000).

Applying psychology to AI development

Although AT has many useful applications in psychology,
principles from psychology have long been aiding the
development of Al systems (Khetarpal et al., 2020; Lieto
& Pozzato, 2020b; Rogers & Mcclelland, 2014; Taylor &
Taylor, 2021; for an overview, see Lieto, 2021), which in
turn benefits psychological science. For example, the
concept of a heuristic, which was central to the success
of the Logic Theorist (Newell et al., 1958), was imported
from psychology. More recently, the incorporation of
human uncertainty (through the collection of an exten-
sive amount of human-categorization data) has improved
machine classification (Peterson et al., 2019). Likewise,
advances and theories in neuroscience have been applied
to Al to improve both the efficiency and accuracy of such
systems (for a review, see Hassabis et al., 2017).
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The creative combining of concepts that is argued
to be a key component of scientific discovery has been
modeled by Lieto and Pozzato (2020a) in their typicality
based compositional-logic framework. Informed by
human cognitive heuristics, this framework makes it
possible to automatically generate novel concepts in a
human-like way (Chiodino et al., 2020; Lieto et al., 2019,
2021). This framework applies knowledge and theories
from cognitive science to overcome problems in artifi-
cial systems; correspondingly, the functioning of Al
systems allows psychologists to refine their models of
cognition. Likewise, with respect to human creativity,
understanding the cognitive processes involved can
assist in the development of new Al techniques, which
in turn can allow psychologists to test theoretical
hypotheses regarding creativity and its underlying pro-
cesses. For example, Gabora and colleagues drew from
research on cognitive psychology to develop more
refined algorithms that can generate novel and aestheti-
cally appealing artworks (DiPaola et al., 2018; DiPaola
& Gabora, 2007). Developments in psychology can
inform AI techniques, and these techniques can help
generate new discoveries in psychology, highlighting
the importance of interdisciplinarity for scientific
discovery.

Computational Scientific Discovery:
a Critical Evaluation

The trend toward the automation of the scientific pro-
cess is important for a number of reasons, not least
because of the many new discoveries outlined above.
The rate at which data are generated is increasing expo-
nentially; effectively analyzing these data requires the
development of tools that excel at efficiently and accu-
rately processing data—tasks for which humans are not
well equipped. Because computer systems are optimal
for such tasks, they offer significant advantages for
scientific discovery. In addition, automating these pro-
cesses allows human scientists the freedom to engage
in higher-level activities, such as theory building, rather
than data crunching and manual work. Some see the
advancements in Al as a threat to humans. However,
because humans and computers excel at different tasks,
Al can instead be considered a complementary form of
intelligence rather than a replacement (de Mello & de
Souza, 2019).

Al is not limited to data processing—it can also pro-
duce creative and novel solutions to problems that
humans may not have thought of, as illustrated in this
article. This is beneficial because there are limits to
human creativity and reasoning (Gobet & Sala, 2019),
consistent with Simon’s (1956) theory of bounded ratio-
nality, which posits that the ability of a decision maker

to make a rational choice is constrained by computa-
tional capacity and knowledge limitations. However,
this forced selectivity can sometimes be advantageous;
Gigerenzer and Brighton (2009) argued that heuristics
help better manage uncertainty than unbiased, resource-
intensive processing. Indeed, machine classification can
be improved when human uncertainty is included
(Peterson et al., 2019). Knowledge can be detrimental
and can lead to a preference for standard responses,
even when creative and novel solutions are better
(Bilali¢ et al., 2008). Likewise, living in a society and
in a certain context can impose constraints on human
creativity; computational creativity is not limited by
these constraints, allowing for interesting developments
and ideas.

Ethical considerations

A number of ethical issues arise from using computa-
tion for scientific discovery. For example, if controver-
sial theories or patterns in data are found by Al (e.g.,
using GEMS), the ethical implications must be carefully
considered by researchers, particularly the potential
negative impacts such discoveries could have. Another
example could be taken from clinical psychology:
Understanding variables that are predictive of clinical
treatment outcomes could be used to minimize barriers
for treatment adherence; however, the opposite could
also occur, in which patients showing these character-
istics are denied treatment. Such unintended uses must
be considered and guarded against.

Relatedly, Al-generated discoveries could be a prod-
uct of bias. Although AI systems are suggested to
remove bias, they will likely still reflect the biases of
the humans who created them and the data sets they are
given. Much psychological research has been criticized
as consisting of a limited sample, namely undergraduate
psychology students, which is not representative of the
general population (Henrich et al.; 2010). Although AI
can produce novel models of human behavior, these
models will be constrained by the nonrepresentative
data that they are provided with. This is clearly not an
issue limited to AI; however, the power of such tech-
nologies and the common view that they are less biased
could lead to more reliance on their outputs without
considering their inputs.

The impact of biased data has been demonstrated
with facial-recognition technology, in which racial and
gender bias in data sets resulted in heightened misclas-
sification of women and people of color (Buolamwini
& Gebru, 2018). Likewise, Al systems used in the crim-
inal-justice system, from law enforcement to decision-
making support (Zavrsnik, 2020), may inherit historical
bias—factors that may be used as predictive, such as
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previous arrests, may be racially biased as a result of
systemic discriminatory practices in policing. As out-
lined by Sgaier et al. (2020), predictive Al can often
equate correlation with causation, which can have disas-
trous consequences—they suggested that causal Al, in
which the underlying causes of behavior are modeled,
is the essential next step in Al utilization. Bias in Al can
also be inherited from using data derived from biased
tests; for example, intelligence tests have sometimes
been criticized as being culturally biased (Greenfield,
1997; Lozano-Ruiz et al., 2021). Using Al to derive
insights regarding intelligence will similarly be subject
to the issues surrounding such tests. Although bias exists
without it, Al is a powerful tool and so could exacerbate
this problem. Similar problems may occur across all
areas of Al-generated scientific discovery, and those
working with this technology should be aware of these
issues.

Although biases can be detrimental for discovery
because they can lead scientists to develop and accept
incorrect theories, steps can be taken to minimize their
influence on AI systems, such as increasing diversity
within both the team developing the technology and
those testing it. If issues are found with the input data,
more and better input can be fed into the systems to
rectify this flaw—a much easier process for Al than for
humans. Although individual biases are hard to over-
come, new approaches and tools can help reduce at
least some biases present in Al systems.

The field of Al ethics is very active (for an evaluation,
see Hagendorff, 2020) because such a powerful tool
can have huge and widespread implications to humans.
Although Al systems are generally designed to contrib-
ute positively to science and humanity, their unintended
negative consequences for some in society and ability
to be exploited for damaging purposes must be con-
sidered responsibly. To overcome some of these ethical
issues, scientists and researchers developing and using
such technology should receive training on technologi-
cal ethics to develop the knowledge and tools for
understanding the risks and solving potential ethical
issues effectively. Finally, it is important to consider
who should be making decisions on whether something
is ethical or not. For example, in psychology, experi-
mental research is subject to ethics-committee approval;
however, there currently is no parallel in Al

Interpretability

To use Al systems for scientific discovery, outputs must
be understandable to humans and allow interpretation
in the context of current theories and knowledge (Javed
& Gobet, 2021). A key issue is that, although the inputs
and outputs of an Al system are known, the intermedi-
ate steps are sometimes difficult to understand (it is a

“black box”), which can affect the interpretability of
the output data. Different techniques have been used
to address this issue. For example, an artist named Tom
White is using Al to generate abstract versions of the
images it is trained on to show how Al “sees” the world
and demonstrate the underlying algorithms (see https://
aiartists.org/tom-white). The system represented vari-
ous items with abstract blobs, and these blobs were
shown to activate the object label more than the real
images it was trained on.

Another technique being used is taken directly from
psychological science: Psychlab (Leibo et al., 2018) is a
resource created to better understand Al systems
through classic psychological experiments. Akin to cog-
nitive psychology, it seeks to understand the “cogni-
tions” underlying the outputs given by Al systems and
what they are actually doing. Likewise, Taylor and
Taylor (2021) recently described the contributions that
cognitive psychologists can make in the creation of
explainable Al, arguing that the experience of studying
the human mind via experimentation is applicable to
Al Although the outputs of Al systems are already lead-
ing to great advances in science, it is critically important
to understand what is happening in these systems to be
able to use the technology for applied purposes.

The importance of interpretability for psychological
science has certainly been appreciated, and novel tech-
niques to address this issue are being developed, often
drawing from the machine-learning domain. Agrawal
et al. (2020) outlined and demonstrated the feasibility
of using machine-learning techniques to develop pre-
dictive models of psychological phenomena while
maintaining interpretability for large data sets through
an iterative process they termed “Scientific Regret Mini-
mization”, based on regret minimization in machine
learning. Specifically, the fit of a simple psychological
model is critiqued against an unconstrained machine-
learning model trained on the same data set until the
predictions converge. The residuals that may signify
novel effects can then be validated in separate experi-
ments. Understanding of the hidden layers of Al sys-
tems has also been improved by genetic programming.
Evans et al. (2019) and Ferreira et al. (2020) used
genetic programming to explain the behavior of a
black-box model. Genetic programming does not see
the original data but sees the predictions of the black-
box model and tries to recreate them. This approach is
model-agnostic and can generate explanations for dif-
ferent machine-learning black-box models.

Clinical considerations

In clinical psychology, the information about a person
that some systems gather can be more than a person
wants to share. The ability of Al systems, including
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those aimed at making scientific discoveries, to collect
and store such personal data allows for potential
breaches of privacy. These systems must be secure to
fully protect any sensitive information (Lustgarten et al.,
2020), such as the information collected during simu-
lated therapy. Fiske et al. (2019) outlined the following
potential practical and ethical issues with using Al in
clinical psychology settings: (a) ethical responsibilities
related to risk assessment, (b) adherence to codes of
practice and duty of care, (¢) issues with consent and
patients understanding when they are not interacting
with a human, and (d) impacts of strong attachments
made with AI applications, which are not reciprocal
and may reduce real social interaction. Although the
use of Al technology in clinical settings presents sub-
stantial benefits to well-being, these ethical and practi-
cal concerns need to be addressed. Advances in clinical
psychology from computational scientific discovery
must similarly ensure the safety of those using the sys-
tems and the protection of sensitive data.

Conclusions

Al is a powerful tool that can have a significant role in
scientific discovery across all fields of research. It not
only allows scientists the freedom to engage in high-
level theoretical thinking but also can demonstrate the
creativity of autonomously generating novel ideas (e.g.,
King et al., 2004). The impact that these systems are
already having is impressive, and the current trends
suggest that they will continue to be more ingrained in
the scientific process (Jumper et al., 2021; Peterson
et al., 2021). Although creativity has historically been
thought of as an unexplainable human concept, evi-
dence from historical records, replications of discover-
ies, and new discoveries using Al are consistent with
creativity and scientific discovery as resulting from
problem-solving. Particularly adept at efficiently solving
problems, Al can demonstrate creativity and can have
a dominant role in generating scientific discoveries in
the future. In line with Newell et al. (1958), heuristics
obtained through psychological science have been used
to improve the efficiency and accuracy of Al, and many
Al systems, including AlphaFold, can be described as
selectively searching through a problem space. Along-
side this, Al systems using evolutionary techniques such
as genetic programming depend on random combina-
tions, consistent with the combinatory nature of scien-
tific creativity.

Al can provide innovative ideas that may have taken
considerable time for humans, in part because it is less
constrained by limits on available knowledge and
biases. Scientific breakthroughs are historically the
result of extensive experimentation and theorizing and

can often be characterized as “thinking outside the
box”; this can be achieved much more efficiently by a
computational system. The creative advances that arti-
ficial systems can provide are critical to accelerating
successful scientific inquiry and further pushing our
knowledge and understanding of the world.

Al is already proving to be useful for scientific dis-
covery in psychology (e.g., Aafjes-van Doorn et al.,
2021; Frias-Martinez & Gobet, 2007; Peterson et al.,
2021). It can generate new psychological models of
human cognition. The application of concepts from
psychology to artificial systems can also constrain mod-
els of human behavior. AI can be used as a tool to assist
psychologists, for example, in interpreting brain-scan
analyses and improving clinical diagnoses. The adop-
tion of such systems in psychology is beginning to
grow; however, issues in terms of bias, data protection,
interpretability of outputs, and potential unethical uses
must be considered.

Transparency

Action Editor: Matthew Rhodes

Editor: Laura A. King

Declaration of Conflicting Interests
The author(s) declared that there were no conflicts of
interest with respect to the authorship or the publication
of this article.

Funding
This work was supported by European Research Council
Grant ERC-ADG-835002-GEMS.

ORCID iDs

Laura K. Bartlett
Fernand Gobet

https://orcid.org/0000-0001-5202-4504
https://orcid.org/0000-0002-9317-6886

References

Aafjes-van Doorn, K., Kamsteeg, C., Bate, J., & Aafjes, M.
(2021). A scoping review of machine learning in psycho-
therapy research. Psychotherapy Research, 31(1), 92-116.
https://doi.org/10.1080/10503307.2020.1808729

Abd-Alrazaq, A., Alajlani, M., Alhuwail, D., Schneider, ]J.,
Al-Kuwari, S., Shah, Z., Hamdi, M., & Househ, M.
(2020). Artificial intelligence in the fight against COVID-
19: Scoping review. Journal of Medical Internet Research,
22(12), Article e20756. https://doi.org/10.2196/20756

Addis, M., Gobet, F., Lane, P. C. R., & Sozou, P. D. (2019).
Semi-automatic generation of cognitive science theories.
In M. Addis, P. C. R. Lane, P. D. Sozou, & F. Gobet (Eds.),
Scientific discovery in the social sciences (pp. 155-171).
Springer. https://doi.org/10.1007/978-3-030-23769-1_10

Addis, M., Sozou, P. D., Lane, P. C. R., & Gobet, F. (2016).
Computational scientific discovery and cognitive science
theories. In V. C. Miller (Ed.), Computing and philosophy
(pp. 83-97). Springer. https://doi.org/10.1007/978-3-319-
23291-1_6


https://orcid.org/0000-0001-5202-4504
https://orcid.org/0000-0002-9317-6886
https://doi.org/10.1080/10503307.2020.1808729
https://doi.org/10.2196/20756
https://doi.org/10.1007/978-3-030-23769-1_10
https://doi.org/10.1007/978-3-319-23291-1_6
https://doi.org/10.1007/978-3-319-23291-1_6

Perspectives on Psychological Science XX (X)

Aggarwal, C. C. (2018). Neural networks and deep learning:
A textbook. Springer. https://doi.org/10.1007/978-3-319-
944063-0

Agrawal, M., Peterson, J. C., & Griffiths, T. L. (2020). Scaling up
psychology via Scientific Regret Minimization. Proceedings
of the National Academy of Sciences, USA, 117(16), 8825—
8835. https://doi.org/10.1073/pnas. 1915841117

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review, 111(4), 1036-1060. https://
doi.org/10.1037/0033-295X.111.4.1036

Avigad, J. (2019). Learning logic and proof with an interactive
theorem prover. In G. Hanna, D. Reid, & M. de Villiers
(Eds.), Proof technology in mathematics research and
teaching. Mathematics education in the digital era, vol
14 (pp. 277-290). Springer. https://doi.org/10.1007/978-
3-030-28483-1_13

Battleday, R. M., Peterson, J. C., & Griffiths, T. L. (2020).
Capturing human categorization of natural images by
combining deep networks and cognitive models. Nature
Commumnications, 11, Article 5418. https://doi.org/10
.1038/541467-020-18946-z

Bilali¢, M., McLeod, P., & Gobet, F. (2008). Inflexibility of
experts-reality or myth? Quantifying the Einstellung effect
in chess masters. Cognitive Psychology, 56(2), 73-102.
https://doi.org/10.1016/j.cogpsych.2007.02.001

Boden, M. A. (1998). Creativity and artificial intelligence.
Artificial Intelligence, 103(1-2), 347-356. https://doi.org/
10.1016/50004-3702(98)00055-1

Boden, M. A. (2003). The creative mind: Myths and mecha-
nisms (2nd ed.). Routledge. https://doi.org/10.4324/978
0203508527

Bourgin, D. D., Peterson, J. C., Reichman, D., Russell, S. J., &
Griffiths, T. L. (2019). Cognitive model priors for predict-
ing human decisions. Proceedings of Machine Learning
Research, 97, 8984-8992.

Buolamwini, J., & Gebru, T. (2018). Gender shades: Inter-
sectional accuracy disparities in commercial gender clas-
sification. Proceedings of Machine Learning Research, 81,
77-91.

Chiodino, E., Di Luccio, D., Lieto, A., Messina, A., Pozzato, G. L.,
& Rubinetti, D. (2020). A knowledge-based system for
the dynamic generation and classification of novel con-
tents in multimedia broadcasting. Frontiers in Artificial
Intelligence and Applications, 325, 680-687. https://doi
.org/10.3233/FAIA200154

Cichy, R. M., & Kaiser, D. (2019). Deep neural networks
as scientific models. Trends in Cognitive Sciences, 23(4),
305-317. https://doi.org/10.1016/j.tics.2019.01.009

D’Alfonso, S. (2020). Al in mental health. Current Opinion
in Psychology, 36, 112-117. https://doi.org/10.1016/j
.copsyc.2020.04.005

de Mello, F. L., & de Souza, S. A. (2019). Psychotherapy and
artificial intelligence: A proposal for alignment. Frontiers
in Psychology, 10, Article 263. https://doi.org/10.3389/
fpsyg.2019.00263

DiPaola, S., & Gabora, L. (2007). Incorporating characteristics
of human creativity into an evolutionary art algorithm.

In GECCO "07: Proceedings of the 9th Annual Conference
Companion on Genetic and Evolutionary Computation
(pp. 2450-2450). Association for Computing Machinery.
https://doi.org/10.1145/1274000.1274009

DiPaola, S., Gabora, L., & McCaig, G. (2018). Informing arti-
ficial intelligence generative techniques using cognitive
theories of human creativity. Procedia Computer Science,
145, 158-168. https://doi.org/10.1016/j.procs.2018.11.024

Dunbar, K. (1993). Concept discovery in a scientific domain.
Cognitive Science, 17(3), 397-434. https://doi.org/10.1207/
$15516709cog1703_3

Dunbar, K. (1994). How scientists really reason: Scientific rea-
soning in real-world laboratories. In J. E. Davidson & R. J.
Sternberg (Eds.), The nature of insight (pp. 365-395). MIT
Press. https://doi.org/10.7551/mitpress/4879.003.0017

Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine
learning approaches for clinical psychology and psychia-
try. Annual Review of Clinical Psychology, 14, 91-118.
https://doi.org/10.1146/annurev-clinpsy-032816-045037

Eisenbarth, H., Lilienfeld, S. O., & Yarkoni, T. (2015). Using
a genetic algorithm to abbreviate the Psychopathic
Personality Inventory—Revised (PPI-R). Psychological
Assessment, 27(1), 194-202. https://doi.org/10.1037/pas
0000032

Elhai, J. D., & Montag, C. (2020). The compatibility of theo-
retical frameworks with machine learning analyses in
psychological research. Current Opinion in Psychology,
36, 83-88. https://doi.org/10.1016/j.copsyc.2020.05.002

Erev, L., Ert, E., Plonsky, O., Cohen, D., & Cohen, O. (2017).
From anomalies to forecasts: Toward a descriptive model
of decisions under risk, under ambiguity, and from expe-
rience. Psychological Review, 124(4), 369-409. https://doi
.0rg/10.1037/rev0000062

Evans, B. P., Xue, B., & Zhang, M. (2019). What’s inside the
black-box? A genetic programming method for interpret-
ing complex machine learning models. In GECCO 2019:
Proceedings of the Genetic and Evolutionary Computation
Conference (pp. 1012-1020). Association for Computing
Machinery. https://doi.org/10.1145/3321707.3321726

Feist, G. J. (2008). The psychology of science and the origins
of the scientific mind. Yale University Press.

Ferreira, L. A., Guimaraes, F. G., & Silva, R. (2020). Applying
genetic programming to improve interpretability in
machine learning models. In 2020 IEEE Congress on
Evolutionary Computation. Institute of Electrical and
Electronics Engineers. https://doi.org/10.1109/CEC48606
.2020.9185620

Fiske, A., Henningsen, P., & Buyx, A. (2019). Your robot ther-
apist will see you now: Ethical implications of embodied
artificial intelligence in psychiatry, psychology, and psy-
chotherapy. Journal of Medical Internet Research, 21(5),
Article €13216. https://doi.org/10.2196/13216

Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering
cognitive behavior therapy to young adults with symp-
toms of depression and anxiety using a fully automated
conversational agent (Woebot): A randomized controlled
trial. JMIR Mental Health, 4(2), Article e19. https://doi
.org/10.2196/mental.7785


https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1073/pnas.1915841117
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1007/978-3-030-28483-1_13
https://doi.org/10.1007/978-3-030-28483-1_13
https://doi.org/10.1038/s41467-020-18946-z
https://doi.org/10.1038/s41467-020-18946-z
https://doi.org/10.1016/j.cogpsych.2007.02.001
https://doi.org/10.1016/s0004-3702(98)00055-1
https://doi.org/10.1016/s0004-3702(98)00055-1
https://doi.org/10.4324/9780203508527
https://doi.org/10.4324/9780203508527
https://doi.org/10.3233/FAIA200154
https://doi.org/10.3233/FAIA200154
https://doi.org/10.1016/j.tics.2019.01.009
https://doi.org/10.1016/j.copsyc.2020.04.005
https://doi.org/10.1016/j.copsyc.2020.04.005
https://doi.org/10.3389/fpsyg.2019.00263
https://doi.org/10.3389/fpsyg.2019.00263
https://doi.org/10.1145/1274000.1274009
https://doi.org/10.1016/j.procs.2018.11.024
https://doi.org/10.1207/s15516709cog1703_3
https://doi.org/10.1207/s15516709cog1703_3
https://doi.org/10.7551/mitpress/4879.003.0017
https://doi.org/10.1146/annurev-clinpsy-032816-045037
https://doi.org/10.1037/pas0000032
https://doi.org/10.1037/pas0000032
https://doi.org/10.1016/j.copsyc.2020.05.002
https://doi.org/10.1037/rev0000062
https://doi.org/10.1037/rev0000062
https://doi.org/10.1145/3321707.3321726
https://doi.org/10.1109/CEC48606.2020.9185620
https://doi.org/10.1109/CEC48606.2020.9185620
https://doi.org/10.2196/13216
https://doi.org/10.2196/mental.7785
https://doi.org/10.2196/mental.7785

10

Bartlett et al.

Frias-Martinez, E., & Gobet, F. (2007). Automatic generation
of cognitive theories using genetic programming. Minds
and Machines, 17, 287-309. https://doi.org/10.1007/
$11023-007-9070-6

Fudenberg, D., Kleinberg, J., Liang, A., & Mullainathan, S.
(2022). Measuring the completeness of economic mod-
els. Journal of Political Economy, 130(4). https://doi
.org/10.1086/718371

Gabora, L., Rosch, E., & Aerts, D. (2008). Toward an eco-
logical theory of concepts. Ecological Psychology, 20(1),
84-116. https://doi.org/10.1080/10407410701766676

Gabora, L., & Steel, M. (2017). Autocatalytic networks in
cognition and the origin of culture. Journal of Theoretical
Biology, 431, 87-95. https://doi.org/10.1016/j.jthi.2017
.07.022

Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why
biased minds make better inferences. Topics in Cognitive
Science, 1(1), 107-143. https://doi.org/10.1111/j.1756-
8765.2008.01006.x

Gillispie, C. C. (1960). The edge of objectivity. Princeton
University Press.

Gobet, F., Addis, M., Lane, P. C. R., & Sozou, P. D. (2019).
Introduction: Scientific discovery in the social sciences.
In M. Addis, P. C. R. Lane, P. D. Sozou, & F. Gobet
(Eds.), Scientific discovery in the social sciences (pp. 1-7).
Springer. https://doi.org/10.1007/978-3-030-23769-1_1

Gobet, F., & Sala, G. (2019). How artificial intelligence can
help us understand human creativity. Frontiers in Psy-
chology, 10, Article 1401. https://doi.org/10.3389/fpsyg
.2019.01401

Graf$hoff, G., & May, M. (1995). From historical case stud-
ies to systematic methods of discovery. In AAAI Spring
Symposium on Systematic Methods of Scientific Discovery
(pp. 46-57). Association for the Advancement of Artificial
Intelligence.

Greenfield, P. M. (1997). You can’t take it with you: Why ability
assessments don’t cross cultures. American Psychologist,
52(10), 1115-1124. https://doi.org/10.1037/0003-066X
.52.10.1115

Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E., & Nelson, C.
(2000). Clinical versus mechanical prediction: A meta-
analysis. Psychological Assessment, 12(1), 19-30. https://
doi.org/10.1037/1040-3590.12.1.19

Hagendorff, T. (2020). The ethics of AI ethics: An evaluation
of guidelines. Minds and Machines, 30, 99-120. https://
doi.org/10.1007/s11023-020-09517-8

Hakuk, Y., & Reich, Y. (2020). Automated discovery of sci-
entific concepts: Replicating three recent discoveries in
mechanics. Advanced Engineering Informatics, 44, Article
101080. https://doi.org/10.1016/j.2€i.2020.101080

Hampton, J. (1997). Conceptual combination. In K. Lamberts
& D. Shanks (Eds.), Knowledge, concepts and catego-
ries (pp. 133-159). Psychology Press. https://doi.org/
10.4324/9780203765418

Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M.
(2017). Neuroscience-inspired artificial intelligence.
Neuron, 95(2), 245-258. https://doi.org/10.1016/j.neu
ron.2017.06.011

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The
weirdest people in the world? Behavioral and Brain
Sciences, 33(2-3), 61-83. https://doi.org/10.1017/S01405
25X0999152X

Javed, N., & Gobet, F. (2021). On-the-fly simplification of
genetic programming models. In SAC "21: Proceedings of
the 36th Annual ACM Symposium on Applied Computing
(pp. 464-471). Association for Computing Machinery.
https://doi.org/10.1145/3412841.3441926

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A.,
Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A,
Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S.,
Jain, R., Adler, J., . . . Hassabis, D. (2021). Highly accurate
protein structure prediction with AlphaFold. Nature, 590,
583-589. https://doi.org/10.1038/s41586-021-03819-2

Karp, P. D. (1990). Hypothesis formation as design. In J.
Shrager & P. Langley (Eds.), Computational models of
scientific discovery and theory formation (pp. 275-318).
Morgan Kaufmann.

Kharkhurin, A. V. (2014). Creativity.4inl: Four-criterion con-
struct of creativity. Creativity Research Journal, 26(3),
338-352. https://doi.org/10.1080/10400419.2014.929424

Khetarpal, K., Ahmed, Z., Comanici, G., Abel, D., & Precup, D.
(2020). What can I do here? A theory of affordances in
reinforcement learning. Proceedings of Machine Learning
Research, 119, 5243-5253.

King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G. K.,
Bryant, C. H., Muggleton, S. H., Kell, D. B., & Oliver, S. G.
(2004). Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature, 427(6971),
247-252. https://doi.org/10.1038/nature02236

Klahr, D., & Simon, H. A. (2001). What have psychologists
(and others) discovered about the process of scientific
discovery? Current Directions in Psychological Science,
10(3), 75-79. https://doi.org/10.1111/1467-8721.00119

Koza, J. R. (1992). Genetic programming: On the programming
of computers by means of natural selection. MIT Press.

Kulkarni, D., & Simon, H. A. (1988). The processes of scien-
tific discovery: The strategy of experimentation. Cognitive
Science, 12(2), 139-175. https://doi.org/10.1016/0364-
0213(88)90020-1

Lane, P. C. R., Sozou, P. D., Gobet, F., & Addis, M. (2016).
Analysing psychological data by evolving computational
models. In A. Wilhelm & H. Kestler (Eds.), Analysis of
large and complex data. Studies in classification, data
analysis, and knowledge organization (pp. 587-597).
Springer. https://doi.org/10.1007/978-3-319-25226-1_50

Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow, J. M.
(1987). Scientific discovery: Computational explorations
of the creative processes. MIT Press.

Lara-Dammer, F., Hofstadter, D. R., & Goldstone, R. L. (2019).
A computational model of scientific discovery in a very
simple world, aiming at psychological realism. Journal of
Experimental and Theoretical Artificial Intelligence, 31(4),
637-658. https://doi.org/10.1080/0952813X.2019.1592234

Leibo, J. Z., de Masson d’Autume, C., Zoran, D., Amos, D.,
Beattie, C., Anderson, K., Garcia Castaneda, A., Sanchez,


https://doi.org/10.1007/s11023-007-9070-6
https://doi.org/10.1007/s11023-007-9070-6
https://doi.org/10.1086/718371
https://doi.org/10.1086/718371
https://doi.org/10.1080/10407410701766676
https://doi.org/10.1016/j.jtbi.2017.07.022
https://doi.org/10.1016/j.jtbi.2017.07.022
https://doi.org/10.1111/j.1756-8765.2008.01006.x
https://doi.org/10.1111/j.1756-8765.2008.01006.x
https://doi.org/10.1007/978-3-030-23769-1_1
https://doi.org/10.3389/fpsyg.2019.01401
https://doi.org/10.3389/fpsyg.2019.01401
https://doi.org/10.1037/0003-066X.52.10.1115
https://doi.org/10.1037/0003-066X.52.10.1115
https://doi.org/10.1037/1040-3590.12.1.19
https://doi.org/10.1037/1040-3590.12.1.19
https://doi.org/10.1007/s11023-020-09517-8
https://doi.org/10.1007/s11023-020-09517-8
https://doi.org/10.1016/j.aei.2020.101080
https://doi.org/10.4324/9780203765418
https://doi.org/10.4324/9780203765418
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.1017/S0140525X0999152X
https://doi.org/10.1017/S0140525X0999152X
https://doi.org/10.1145/3412841.3441926
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1080/10400419.2014.929424
https://doi.org/10.1038/nature02236
https://doi.org/10.1111/1467-8721.00119
https://doi.org/10.1016/0364-0213(88)90020-1
https://doi.org/10.1016/0364-0213(88)90020-1
https://doi.org/10.1007/978-3-319-25226-1_50
https://doi.org/10.1080/0952813X.2019.1592234

Perspectives on Psychological Science XX (X)

11

M., Green, S., Gruslys, A., Legg, S., Hassabis, D., &
Botvinick, M. M. (2018). Psychlab: A psychology labora-
tory for deep reinforcement learning agents. arXiv. https://
doi.org/10.48550/arXiv.1801.08116

Lieto, A. (2021). Cognitive design for artificial minds.
Routledge. https://doi.org/10.4324/9781315460536

Lieto, A., Perrone, F., Pozzato, G. L., & Chiodino, E. (2019).
Beyond subgoaling: A dynamic knowledge generation
framework for creative problem solving in cognitive
architectures. Cognitive Systems Research, 58, 305-316.
https://doi.org/10.1016/j.cogsys.2019.08.005

Lieto, A., & Pozzato, G. L. (2020a). A description logic
framework for commonsense conceptual combination
integrating typicality, probabilities and cognitive heu-
ristics. Journal of Experimental & Theoretical Artificial
Intelligence, 32(5), 769-804. https://doi.org/10.1080/09
52813X.2019.1672799

Lieto, A., & Pozzato, G. L. (2020b). What cognitive research
can do for Al: A case study. Proceedings of the AIxIA 2020
Discussion Papers Workshop, 2776, 41-48.

Lieto, A., Pozzato, G. L., Zoia, S., Patti, V., & Damiano, R.
(2021). A commonsense reasoning framework for explan-
atory emotion attribution, generation and re-classification.
Knowledge-Based Systems, 227, Article 107166. https://
doi.org/10.1016/j.knosys.2021.107166

Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., &
Lederberg, J. (1980). Applications of artificial intelligence
Jfororganic chemistry: The DENDRAL project. McGraw-Hill.

Lozano-Ruiz, A., Fasfous, A. F., Ibanez-Casas, 1., Cruz-
Quintana, F., Perez-Garcia, M., & Pérez-Marfil, M. N.
(2021). Cultural bias in intelligence assessment using a
culture-free test in Moroccan children. Archives of Clinical
Neuropsychology, 36, 1502-1510. https://doi.org/10.1093/
arclin/acab005

Lustgarten, S. D., Garrison, Y. L., Sinnard, M. T., & Flynn,
A. W. (2020). Digital privacy in mental healthcare:
Current issues and recommendations for technology use.
Current Opinion in Psychology, 36, 25-31. https://doi
.0rg/10.1016/j.copsyc.2020.03.012

Luxton, D. D. (2014). Artificial intelligence in psychological
practice: Current and future applications and implications.
Professional Psychology: Research and Practice, 45(5),
332-339. https://doi.org/10.1037/20034559

Morales, S., Barros, J., Echavarri, O., Garcia, F., Osses, A., Moya, C.,
Paz Maino, M., Fischman, R., Nufez, C., Szmulewicz, T.,
& Tomicic, A. (2017). Acute mental discomfort associated
with suicide behavior in a clinical sample of patients
with affective disorders: Ascertaining critical variables
using artificial intelligence tools. Frontiers in Psychiatry,
8, Article 7. https://doi.org/10.3389/fpsyt.2017.00007

Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a
theory of human problem solving. Psychological Review,
65(3), 151-166. https://doi.org/10.1037/h0048495

Newell, A., & Simon, H. A. (1972). Human problem solving.
Prentice Hall.

Noti, G., Levi, E., Kolumbus, Y., & Daniely, A. (20106).
Bebavior-based machine-learning: A hybrid approach for
predicting buman decision making. arXiv. http://arxiv
.org/abs/1611.10228

Peterson, J. C., Battleday, R., Griffiths, T., & Russakovsky, O.
(2019). Human uncertainty makes classification more
robust. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) (pp. 9616-9625).
Institute of Electrical and Electronics Engineers. https://
doi.org/10.1109/I1CCV.2019.00971

Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman, D.,
& Griffiths, T. L. (2021). Using large-scale experiments
and machine learning to discover theories of human deci-
sion-making. Science, 372(6547), 1209-1214. https://doi
.org/10.1126/science.abe2629

Peysakhovich, A., & Naecker, J. (2017). Using methods from
machine learning to evaluate behavioral models of choice
under risk and ambiguity. Journal of Economic Behavior
& Organization, 133, 373-384. https://doi.org/10.1016/j
.jebo.2016.08.017

Pirrone, A., & Gobet, F. (2020). Modeling value-based deci-
sion-making policies using genetic programming: A proof-
of-concept study. Swiss Journal of Psychology, 79(3-4),
113-121. https://doi.org/10.1024/1421-0185/2000241

Pirrone, A., & Gobet, F. (2021). GEMS: Genetically evolv-
ing models in science. Sistemi Intelligenti, 34, 107-115.
https://doi.org/10.1422/101896

Plonsky, O., & Erev, 1. (2021). To predict human choice,
consider the context. Trends in Cognitive Sciences, 25(10),
819-820. https://doi.org/10.1016/j.tics.2021.07.007

Plonsky, O., Erev, 1., Hazan, T., & Tennenholtz, M.
(2017). Psychological forest: Predicting human behav-
ior. Proceedings of the AAAI Conference on Artificial
Intelligence, 31(1), Article 10613. https://doi.org/10.1609/
a2ai.v31i1.10613

Qin, Y., & Simon, H. A. (1990). Laboratory replication of
scientific discovery processes. Cognitive Science, 14(2),
281-312. https://doi.org/10.1016/0364-0213(90)90005-H

Rizzo, A., Scherer, S., DeVault, D., Gratch, J., Artstein, R.,
Hartholt, A., Lucas, G., Marsella, S., Morbini, F., Nazarian, A.,
Stratou, G., Traum, D., Wood, R., Boberg, J., &
Morency, L. P. (2016). Detection and computational
analysis of psychological signals using a virtual human
interviewing agent. Journal of Pain Management, 9(3),
311-321.

Rogers, T. T., & Mcclelland, J. L. (2014). Parallel distributed
processing at 25: Further explorations in the microstruc-
ture of cognition. Cognitive Science, 38(6), 1024-1077.
https://doi.org/10.1111/cogs.12148

Runco, M. A., & Jaeger, G. J. (2012). The standard definition
of creativity. Creativity Research Journal, 24(1), 92-96.
https://doi.org/10.1080/10400419.2012.650092

Schunn, C. D., & Anderson, J. R. (1999). The generality/
specificity of expertise in scientific reasoning. Cognitive
Science, 23(3), 337-370. https://doi.org/10.1207/s155
16709¢c0g2303_3

Sgaier, S. K., Huang, V., & Charles, G. (2020). The case for
causal Al. Stanford Social Innovation Review, 18(3), 50—
55. https://ssir.org/articles/entry/the_case_for_causal_
ai#

Simon, H. A. (1956). Rational choice and the structure of
the environment. Psychological Review, 63(2), 129-138.
https://doi.org/10.1037/h0042769


https://doi.org/10.48550/arXiv.1801.08116
https://doi.org/10.48550/arXiv.1801.08116
https://doi.org/10.4324/9781315460536
https://doi.org/10.1016/j.cogsys.2019.08.005
https://doi.org/10.1080/0952813X.2019.1672799
https://doi.org/10.1080/0952813X.2019.1672799
https://doi.org/10.1016/j.knosys.2021.107166
https://doi.org/10.1016/j.knosys.2021.107166
https://doi.org/10.1093/arclin/acab005
https://doi.org/10.1093/arclin/acab005
https://doi.org/10.1016/j.copsyc.2020.03.012
https://doi.org/10.1016/j.copsyc.2020.03.012
https://doi.org/10.1037/a0034559
https://doi.org/10.3389/fpsyt.2017.00007
https://doi.org/10.1037/h0048495
http://arxiv.org/abs/1611.10228
http://arxiv.org/abs/1611.10228
https://doi.org/10.1109/ICCV.2019.00971
https://doi.org/10.1109/ICCV.2019.00971
https://doi.org/10.1126/science.abe2629
https://doi.org/10.1126/science.abe2629
https://doi.org/10.1016/j.jebo.2016.08.017
https://doi.org/10.1016/j.jebo.2016.08.017
https://doi.org/10.1024/1421-0185/a000241
https://doi.org/10.1422/101896
https://doi.org/10.1016/j.tics.2021.07.007
https://doi.org/10.1609/aaai.v31i1.10613
https://doi.org/10.1609/aaai.v31i1.10613
https://doi.org/10.1016/0364-0213(90)90005-H
https://doi.org/10.1111/cogs.12148
https://doi.org/10.1080/10400419.2012.650092
https://doi.org/10.1207/s15516709cog2303_3
https://doi.org/10.1207/s15516709cog2303_3
https://ssir.org/articles/entry/the_case_for_causal_ai#
https://ssir.org/articles/entry/the_case_for_causal_ai#
https://doi.org/10.1037/h0042769

12

Bartlett et al.

Simonton, D. K. (1997). Creative productivity: A predictive
and explanatory model of career trajectories and land-
marks. Psychological Review, 104(1), 66-89. https://doi
.0rg/10.1037/0033-295X.104.1.66

Simonton, D. K. (2009). Scientific creativity as a combina-
torial process: The chance baseline. In P. Meusburger,
J. Funke, & E. Wunder (Eds.), Milieus of creativity (pp.
39-51). Springer.

Sozou, P. D., Lane, P. C. R., Addis, M., & Gobet, F. (2017).

Computational scientific discovery. In L. Magnani & T.

Bertolotti (Eds.), Springer handbook of model-based sci-

ence (pp. 719-734). Springer. https://doi.org/10.1007/978-

3-319-30526-4_33

, A. M. Y., Albuquerque, A., Carmona, N. E.,

Subramanieapillai, M., Cha, D. S., Sheko, M., Lee, Y.,

Mansur, R., & Mclntyre, R. S. (2019). Machine learning

and big data: Implications for disease modeling and thera-

peutic discovery in psychiatry. Artificial Intelligence in

Medicine, 99, Article 101704. https://doi.org/10.1016/j

.artmed.2019.101704

Talbot, T., & Rizzo, A. (2019). Virtual human standardized
patients for clinical training. In A. Rizzo & S. Bouchard
(Eds.), Virtual reality for psychological and neurocogni-
tive interventions (pp. 387-405). Springer. https://doi
.0rg/10.1007/978-1-4939-9482-3_17

Taylor, J. E. T., & Taylor, G. W. (2021). Artificial cognition:
How experimental psychology can help generate explain-
able artificial intelligence. Psychonomic Bulletin & Review,
28, 454-475. https://doi.org/10.3758/s13423-020-01825-5

Thagard, P. (2012). Creative combination of representa-
tions: Scientific discovery and technological invention.

Tai

In R. W. Proctor & E. J. Capaldi (Eds.), Psychology of

science: Implicit and explicit processes (pp. 389-404).

Oxford University Press. https://doi.org/10.1093/acprof
:080/9780199753628.003.0016

Waltz, E. (2020). Al takes its best shot: What Al can—and
can’'t—do in the race for a coronavirus vaccine. IEEE
Spectrum, 57(10), 24-67. https://doi.org/10.1109/
MSPEC.2020.9205545

Weisberg, R. W. (2015). On the usefulness of “value” in the
definition of creativity. Creativity Research Journal, 27(2),
111-124. https://doi.org/10.1080/10400419.2015.1030320

Weizenbaum, J. (1966). ELIZA - A computer program for the
study of natural language communication between man
and machine. Communications of the ACM, 9(1), 36-45.

Westbury, C., Buchanan, L., Sanderson, M., Rhemtulla, M.,
& Phillips, L. (2003). Using genetic programming to dis-
cover nonlinear variable interactions. Bebavior Research
Methods, Instruments, & Computers, 35(2), 202-216.
https://doi.org/10.3758/BF03202543

Yarkoni, T. (2010). The abbreviation of personality, or how
to measure 200 personality scales with 200 items. Journal
of Research in Personality, 44(2), 180-198. https://doi
.0rg/10.1016/j.jrp.2010.01.002

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over
explanation in psychology: Lessons from machine learn-
ing. Perspectives on Psychological Science, 12(6), 1100~
1122. https://doi.org/10.1177/1745691617693393

Zavrsnik, A. (2020). Criminal justice, artificial intelligence
systems, and human rights. ERA Forum, 20(4), 567-583.
https://doi.org/10.1007/512027-020-00602-0

Zimmerman, C., & Klahr, D. (2018). Development of scien-
tific thinking. In J. T. Wixted (Ed.), Stevens’ handbook
of experimental psychology and cognitive neuroscience
(4th ed., pp. 1-25). John Wiley & Sons. https://doi.org/
10.1002/9781119170174.epcn407


https://doi.org/10.1037/0033-295X.104.1.66
https://doi.org/10.1037/0033-295X.104.1.66
https://doi.org/10.1007/978-3-319-30526-4_33
https://doi.org/10.1007/978-3-319-30526-4_33
https://doi.org/10.1016/j.artmed.2019.101704
https://doi.org/10.1016/j.artmed.2019.101704
https://doi.org/10.1007/978-1-4939-9482-3_17
https://doi.org/10.1007/978-1-4939-9482-3_17
https://doi.org/10.3758/s13423-020-01825-5
https://doi.org/10.1093/acprof:oso/9780199753628.003.0016
https://doi.org/10.1093/acprof:oso/9780199753628.003.0016
https://doi.org/10.1109/MSPEC.2020.9205545
https://doi.org/10.1109/MSPEC.2020.9205545
https://doi.org/10.1080/10400419.2015.1030320
https://doi.org/10.3758/BF03202543
https://doi.org/10.1016/j.jrp.2010.01.002
https://doi.org/10.1016/j.jrp.2010.01.002
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1007/s12027-020-00602-0
https://doi.org/10.1002/9781119170174.epcn407
https://doi.org/10.1002/9781119170174.epcn407

