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Scientific discovery involves solving complex problems 
creatively to advance our understanding of the world. 
The resulting knowledge can then be exploited to treat 
illness, develop new technologies, and solve critical 
practical problems. Scientific discovery typically takes a 
long time—a major discovery often requires intensive 
and iterative investigations. It is therefore crucial to 
understand the psychological mechanisms underpinning 
this behavior and how it could be augmented by tech-
nologies such as artificial intelligence (AI). This article 
first outlines psychological theories of scientific discov-
ery and then argues that AI systems can demonstrate 
scientific creativity akin to humans, highlighting the ways 
in which AI has been utilized across different domains 
to both assist scientists and make new discoveries auton-
omously. The current and potential implications of com-
putational scientific discovery for research in psychology 
are then explored, and the positive and negative impacts 
of using AI in scientific research are considered.

Scientific Creativity

We define scientific discovery as the generation of new 
and important theories and the uncovering of phenom-
ena through scientific inquiry, in line with common 
usage (Gobet et  al., 2019). This process is critically 
important because advancing our knowledge of the 
world allows us to create new tools, treat illness, and 
benefit society. A recent example of the importance of 
scientific discovery for humankind is the design of vac-
cines against the SARS-CoV-2 virus responsible for the 
COVID-19 pandemic. To generate new discoveries more 
efficiently, the mechanisms underpinning creativity and 
scientific discovery must be understood.
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Abstract
Scientific discovery is a driving force for progress involving creative problem-solving processes to further our under
standing of the world. The process of scientific discovery has historically been intensive and time-consuming; however, 
advances in computational power and algorithms have provided an efficient route to make new discoveries. Complex 
tools using artificial intelligence (AI) can efficiently analyze data as well as generate new hypotheses and theories. 
Along with AI becoming increasingly prevalent in our daily lives and the services we access, its application to 
different scientific domains is becoming more widespread. For example, AI has been used for the early detection of 
medical conditions, identifying treatments and vaccines (e.g., against COVID-19), and predicting protein structure. 
The application of AI in psychological science has started to become popular. AI can assist in new discoveries 
both as a tool that allows more freedom to scientists to generate new theories and by making creative discoveries 
autonomously. Conversely, psychological concepts such as heuristics have refined and improved artificial systems. 
With such powerful systems, however, there are key ethical and practical issues to consider. This article addresses 
the current and future directions of computational scientific discovery generally and its applications in psychological 
science more specifically.
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Creativity has intrigued humans since time immemo-
rial and has been a focus of research in psychology for 
more than a century. Because creativity is subjective and 
culturally bound, it is hard to define. Although research-
ers agree that novelty is an essential element of creativ-
ity (Weisberg, 2015), the inclusion of other facets such 
as surprise, success, usefulness, aesthetics, and authen-
ticity vary across the literature (Boden, 1998, 2003; 
Kharkhurin, 2014; Runco & Jaeger, 2012). A number of 
psychological theories of scientific creativity have been 
developed, with psychology of science established as a 
field of research in its own right (Feist, 2008). Scientific 
creativity has been conceptualized as a combinatorial 
process (e.g., Simonton, 1997, 2009), and an extensive 
field of research has sought to understand the ways in 
which concepts are combined (e.g., Gabora et al., 2008; 
Gabora & Steel, 2017; Hampton, 1997). By analyzing 
100 important scientific discoveries and 100 inventions, 
Thagard (2012) provided support for this combinatorial 
process, suggesting that all of the included discoveries 
could be accounted for by this framework.

A particularly influential theory posits that creativity 
can be described as selective search through a problem 
space (Klahr & Simon, 2001; Newell et al., 1958). Given 
a starting state, operators are used to move to new 
states, hopefully reaching a goal state (solution) eventu-
ally (Newell & Simon, 1972). Search is made more effi-
cient by the use of heuristics (i.e., rules of thumb) that 
are likely to be successful. According to this theory, 
discovering a new scientific law is in essence no dif-
ferent from solving a puzzle such as the tower of Hanoi 
and could be achieved computationally.

Problem-space theory can be examined in relation 
to both classic scientific discovery and computational 
discovery. First, it should be possible to describe estab-
lished scientific discoveries in terms of search, problem 
space, and heuristics. Second, it should be possible to 
replicate famous scientific discoveries in experiments 
in which the participants are provided with the data 
used for the discovery. Third, computer programs 
should be able to replicate or even make new scientific 
discoveries as they are highly efficient at searching 
large problem spaces, in particular when they are 
equipped with domain-specific heuristics. This includes 
the development of new computational theories in psy-
chology. The following sections briefly review the 
extent to which these predictions are supported.

Scientific Discovery

Observational and laboratory studies 
of scientific discoveries

The way that scientists carry out research and make 
discoveries, often after detailed and systematic testing 

over an extended period of time, has been documented 
by historians and philosophers of science (e.g., Gillispie, 
1960). More recently, scientists who have made impor-
tant discoveries have been interviewed, and computa-
tional models of the processes have been developed 
(e.g., Karp, 1990). Taking an in vivo approach, Dunbar 
(1994) observed four research laboratories for 1 year to 
better understand the cognitive and social processes of 
scientific discovery. In line with problem-space theory, 
this analysis revealed similar heuristics across laborato-
ries as well as similarities in fundamental aspects of the 
cognitive operators used by the scientists, differing 
mostly in the combinations of these operators. Team 
dynamics also played a role in the way researchers 
developed and tested hypotheses, which changed prob-
lem representations, indicating the importance of social 
context in scientific discovery.

Laboratory studies have also been conducted to bet-
ter understand the cognitive mechanisms underpin-
ning discovery. For example, Schunn and Anderson 
(1999) contrasted domain-specific experts (psychology 
faculty doing research in the domain of memory), 
domain-general experts (psychology faculty doing 
research not related to memory), and novices (non-
psychology undergraduates) in the design and inter-
pretation of experiments in psychology. They found 
that domain-specific experts had the best solutions 
and demonstrated not only domain-specific skills but 
also many domain-general skills and heuristics. These 
domain-general skills were also demonstrated by 
domain-general experts compared with novices, who 
were missing many of these skills. These results indi-
cate that domain-general skills (such as keeping 
experiments simple and considering relevant theories 
when making conclusions) are particularly important 
for scientific discovery.

Replicating scientific discoveries

Experimental studies have confirmed that many scientific 
discoveries of the past can be replicated and reduced to 
a heuristic search through a problem space, often with 
common strategies (e.g., Dunbar, 1993; Langley et al., 
1987; Qin & Simon, 1990; Zimmerman & Klahr, 2018). 
For example, Qin and Simon (1990) found that a third 
of student participants were able to rediscover Kepler’s 
third law of planetary motion when given the original 
data. (Note that the variables were not labeled semanti-
cally and the data source was unknown.) Likewise, 
undergraduate students were able to replicate discover-
ies in the molecular biology of genetic control (Dunbar, 
1993), in which successful and unsuccessful answers 
were distinguished by the goals set by participants. 
Although creativity is often viewed in society as a mys-
terious concept, studies such as these support Newell 
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et al.’s (1958) view that it can be explained by mecha-
nisms known to underpin the solving behavior of simple 
problems such as puzzles.

Computational Scientific Discovery

If creativity is characterized by searching through a 
problem space, then computational programs using 
search should be able to show creativity—and in par-
ticular should be able to replicate old and make new 
scientific discoveries. Indeed, computer systems may 
do so more efficiently than humans because they can 
process large amounts of data very quickly.

Computational scientific discovery has a long history 
(e.g., Langley et al., 1987). For example, Newell et al. 
(1958) developed the Logic Theorist, which generated 
proofs for theorems in propositional logic using heu-
ristics. Some of its proofs were more elegant than those 
proposed by leading mathematicians. This program 
arguably used a process that resulted in creativity. 
Indeed, a subfield of computer science (automated 
theorem proving) has since developed with the aim of 
verifying mathematical statements mechanically, and 
proof algorithms are nowadays routinely used for teach-
ing fields of mathematics such as logic (Avigad, 2019). 
With technological developments, scientists are increas-
ingly using computational processes to solve problems 
throughout the sciences. Advances in technology can 
often drive new scientific discoveries, and these dis-
coveries can in turn lead to the development of new 
technologies (Thagard, 2012).

Genetic programming and neural networks are pop-
ular AI techniques being used for scientific discovery. 
Genetic programming (Koza, 1992) takes a population 
of programs and evolves them across generations, 
applying various operations (such as mutating parts 
of the programs) and finding the best program against 
a defined fitness function. Such evolutionary algo-
rithms are consistent with the combinatorial nature of 
scientific discovery. Neural networks, on the other 
hand, are built of connected artificial units (akin to 
neurons in biological networks) with particular con-
nection weights in a series of layers—the input layer 
is activated by an input and the output layer generates 
a response (Aggarwal, 2018). A system is termed 
“deep” when it includes a series of hidden layers 
between the input and output layers.

There are two linked goals in computational scien-
tific-discovery research. The first is to uncover the 
mechanisms and conditions that led to discoveries by 
replicating famous examples, and the second is to use 
this knowledge to engineer AI programs to automate 
and generate new discoveries.

Replications

Computational replications of scientific discoveries 
have been conducted for many years and with increas-
ingly refined computational procedures (e.g., Hakuk & 
Reich, 2020; Kulkarni & Simon, 1988). KEKADA 
(Kulkarni & Simon, 1988) is a program that makes theo-
retical inferences, assesses the acceptability of its 
knowledge and theories, and models experimental 
tests. It was able to replicate Krebs’s discovery of the 
Urea cycle in 1932, a Nobel Prize–winning discovery. 
Graßhoff and May (1995) extended this research by 
analyzing available historical documents (notebooks, 
publications, etc.) for a number of case studies, imple-
menting the common methodological rules that 
explained all of the studied cases into a computational 
cognitive model of discovery. The commonalities 
included heuristics relating to the formation of models 
and the rules governing the generation and evaluation 
of causal hypotheses. More recently, Hakuk and Reich 
(2020) replicated modern discoveries in mechanics (the 
subfield of physics studying motion) and described a 
new approach to automated discovery by using the 
methods and concepts of one discipline to find equiva-
lent knowledge in a different discipline. Consistent with 
the combinatorial characterization of discovery, this 
method combined ideas from different domains.

New discoveries

Advancements in computational power and AI algo-
rithms have led to a number of AI scientific discoveries. 
AI can be used in research both as a tool to assist 
humans, allowing researchers more freedom to gener-
ate discoveries, and as autonomous discoverers, dis-
playing the creative problem-solving that characterizes 
scientific discovery and generating new and exciting 
results that further our knowledge of the world. A full 
discussion of this literature would cover several vol-
umes, so we focus here on some of the key advances.

One of the earliest systems developed was DENDRAL 
(Lindsay et  al., 1980), which discovered molecular 
structures by analyzing mass spectrometry data. More 
recently, the “robot scientist” (King et al., 2004) auto-
mated almost the entire scientific process in the domain 
of functional genomics, an area that had already 
embraced automation. This system generates hypoth-
eses using observations, designs experiments and runs 
them, interprets the results in terms of the hypotheses, 
and then repeats the process. This allows scientists to 
expedite the process and make creative advances in 
the field. This instance of automation also serves as an 
example of where scientific research may be heading, 
with more automation across all fields.
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Computational scientific discovery has led to ground-
breaking discoveries in recent years. DeepMind’s Alpha-
Fold is an AI tool that predicts the three-dimensional 
structure of proteins, solving a 50-year “grand problem” 
in biology known as the “protein folding problem” 
( Jumper et al., 2021). To date, this technology has pre-
dicted the structure of 350,000 proteins, including 
98.5% of human proteins (the structure of only 17% of 
human proteins had been established experimentally). 
This in turn advances our understanding of the basic 
components of cells, leading to the discovery of more 
efficient drugs to treat illness as well as improved 
insight regarding gene variations that cause disease in 
different people. AlphaFold is clearly a powerful and 
creative tool, reflecting a substantial contribution of AI 
to scientific discovery. AI has also been used in multiple 
ways during the COVID-19 pandemic (Abd-Alrazaq 
et al., 2020), including for the highly efficient develop-
ment of COVID-19 vaccines (Waltz, 2020), with less 
than 3 months between the detection of the virus and 
human trials. Combining messy real-world and experi-
mental data, AI allowed insights and predictions regard-
ing the virus and potential vaccine targets. AI can 
further assist in processing the large amount of antici-
pated adverse drug reactions to the vaccine, proving a 
valuable tool at all stages of this process.

Computational Discovery and Psychology

Developments in computational and AI systems have 
far-reaching applications in many domains, and psy-
chology is no exception. AI helps formulate and 
describe psychological theories. Quite often, theories 
in the social sciences are verbal, informal, and lack 
precision; rather than explaining the data, they may be 
better characterized as a redescription of the data 
(Addis et al., 2019). Formal computational formulations 
require the fine details of a theory to be specified—all 
elements of a theory must be put into a coding lan-
guage, which involves a detailed description of exactly 
what is going on. This avoids the use of vague language 
to describe certain constructs. For example, rather than 
saying that something is due to procedural memory, this 
concept is formally defined in a computer program such 
as ACT-R, along with relevant mechanisms (Anderson 
et al., 2004).

Although the adoption of AI in psychology is still at 
an early stage, its use extends into all domains of psy-
chology. In addition to machine learning, which can be 
used to mine large data files (Dwyer et al., 2018) and 
evaluate psychological research questions (Elhai & 
Montag, 2020), AI has led to the development of models 
and theories, alongside applied uses in clinical psychology. 
Although psychologists typically focus on explaining 

human behavior, Yarkoni and Westfall (2017) empha-
sized the importance of predicting behavior, particularly 
for applied domains such as clinical psychology. They 
and others outlined how the prediction of behavior 
could be achieved by applying ideas and techniques 
from machine learning such as the analysis of big data 
and cross-validation (Agrawal et al., 2020), which may 
address some of the critical problems facing psychology 
(e.g., the replication crisis and p-hacking).

Here, we focus on three examples of AI that benefit 
psychology: semiautomatic development of theories in 
psychology, modeling decision-making, and methods 
for refining clinical diagnostic criteria.

Semiautomatic development of theories

AI can improve model and theory development in psy-
chological science. Cichy and Kaiser (2019) advocated 
particularly for the use of deep neural networks (DNNs) 
in exploratory cognitive science. They suggested that 
new ideas can come from exploring models; DNNs can 
serve as proof-of-principle demonstrations, and models 
can amend and refine fundamental scientific concepts. 
Agrawal et al. (2020) refined psychological models by 
comparing them to complex machine-learning models 
trained on a large data set of moral decisions and pro-
duced a theory-based, predictive, and interpretable 
model of moral decision-making. Genetic programming 
has been used to effectively describe the interactions 
of variables in psychometric and lexical access experi-
ments (Westbury et al., 2003). With regard to scientific 
discovery, Lara-Dammer et al. (2019) demonstrated that 
a simulated system (NINSUN) emulating human percep-
tion based on theories of scientific discovery and per-
ception, is able to make scientific hypotheses in a 
simple artificial world.

Genetically Evolving Models in Science (GEMS) is a 
system currently in development designed to automati-
cally generate possible theories of human cognitive 
behavior (Addis et al., 2019; Frias-Martinez & Gobet, 
2007). The system, which extends genetic program-
ming, combines several “operators” (e.g., putting an 
item into short-term memory or moving covert atten-
tion) into a program (i.e., a model) whose predictions 
are then compared against experimental data from 
human participants. A population of models, with dif-
ferent combinations of operators, is evolved over a 
number of generations, with preference given to those 
most closely matching the human data (for a detailed 
description of the GEMS system using the delayed-
match-to-sample task as an example, see Frias-Martinez 
& Gobet, 2007). A key benefit of GEMS over other 
methods is that it does not rely on large data sets. 
Although this system allows some bias because it 
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requires human input in developing operators, coding 
the experimental conditions, and setting parameters, 
this bias is reduced compared with standard theory 
development. In particular, this system avoids confirma-
tion bias and allows operators from different fields of 
cognitive psychology that are typically studied sepa-
rately to be combined. By creating operators relating 
to these different fields (e.g., memory, attention, and 
decision-making), novel predictions can be generated 
that exploit the interplay between these domains. 
Whereas experts in a given area may fail to appreciate 
other factors that could influence their topic of interest, 
GEMS aims to avoid this issue while generating exciting 
and unexpected theories of human behavior.

In psychology, GEMS has successfully generated sci-
entific theories semiautomatically for a number of 
experiments (Addis et al., 2016; Frias-Martinez & Gobet, 
2007; Lane et al., 2016; Sozou et al., 2017). Although 
these are initial results that still need to be refined by 
future research, they establish the validity of the GEMS 
approach (e.g., Pirrone & Gobet, 2020, 2021).

Modeling decision-making

Machine-learning techniques have been used to develop 
and refine theories in decision-making research (Bourgin 
et al., 2019; Erev et al., 2017; Fudenberg et al., 2022; Noti 
et  al., 2016; Peterson et  al., 2021; Peysakhovich  
& Naecker, 2017; Plonsky et al., 2017). For example, 
Peterson et al. (2021) collected a large data set on risky-
choice decisions in which participants had to choose 
between different gambles; several machine-learning 
models of increased complexity were then trained on 
the data. Each model was based on the literature and 
included previous (human-generated) theories such as 
the widely popular subjective utility models and pros-
pect theory. The authors showed that those models 
could not explain large amounts of variance in the data, 
even when each model was fine-tuned using the large-
scale data set and neural networks that optimized the 
functional form and the parameters of the model. Inter-
estingly, using machine learning, the authors discovered 
a new theory of risky choices in which participants 
adopt sophisticated strategies that are a mixture of pre-
viously proposed theories, whose functional form and 
parameters depend on the specific details of each gam-
ble (such as maximum outcome, minimum outcome, 
and outcome variability). This new theory and its pre-
dictions are likely to drive future studies in the field of 
risky choices (Plonsky & Erev, 2021) and pave the way 
for future similar applications in fields across psychol-
ogy and the cognitive sciences (e.g., Battleday et al., 
2020).

AI in clinical psychology

Alongside model and theory development, AI has the 
potential to extend the clinical understanding of mental-
health conditions, thus allowing the discovery of previ-
ously unknown patterns of behavior and a better insight 
into how different classifications overlap. For example, 
data-mining techniques have been used to determine 
which variables can distinguish between groups of high 
and low suicide risk (Morales et al., 2017). AI can also 
be used to determine variables that can predict outcome 
and treatment adherence (Aafjes-van Doorn et al., 2021; 
D’Alfonso, 2020). AI also has the potential to refine 
diagnostic criteria (Tai et al., 2019), which could lead 
to new discoveries and improved knowledge of the 
factors contributing to different conditions. Short ver-
sions of time-intensive self-report measures of personal-
ity have been developed using genetic algorithms 
(Eisenbarth et al., 2015; Yarkoni, 2010), consistent with 
the original measures across samples, languages, and 
data-collection methods. This allows researchers to 
administer such measures more efficiently.

AI-led advances in drug development could drive 
breakthroughs in clinical research. New scientific discov-
eries may also be assisted by systems trained to be con-
sultant experts in medical knowledge (e.g., IBM’s 
Watson). It is likely that automated scientific discovery 
will have a considerable impact in clinical psychology, 
especially considering the long history of using formal 
methods in the domain, for example, to simulate clini-
cians (Rizzo et al., 2016; Weizenbaum, 1966) and patients 
(e.g., de Mello & de Souza, 2019; Fitzpatrick et al., 2017; 
Talbot & Rizzo, 2019; for a review, see Fiske et al., 2019; 
for a detailed discussion, see Luxton, 2014) and for pro-
viding successful clinical diagnoses (Grove et al., 2000).

Applying psychology to AI development

Although AI has many useful applications in psychology, 
principles from psychology have long been aiding the 
development of AI systems (Khetarpal et al., 2020; Lieto 
& Pozzato, 2020b; Rogers & Mcclelland, 2014; Taylor & 
Taylor, 2021; for an overview, see Lieto, 2021), which in 
turn benefits psychological science. For example, the 
concept of a heuristic, which was central to the success 
of the Logic Theorist (Newell et al., 1958), was imported 
from psychology. More recently, the incorporation of 
human uncertainty (through the collection of an exten-
sive amount of human-categorization data) has improved 
machine classification (Peterson et al., 2019). Likewise, 
advances and theories in neuroscience have been applied 
to AI to improve both the efficiency and accuracy of such 
systems (for a review, see Hassabis et al., 2017).
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The creative combining of concepts that is argued 
to be a key component of scientific discovery has been 
modeled by Lieto and Pozzato (2020a) in their typicality 
based compositional-logic framework. Informed by 
human cognitive heuristics, this framework makes it 
possible to automatically generate novel concepts in a 
human-like way (Chiodino et al., 2020; Lieto et al., 2019, 
2021). This framework applies knowledge and theories 
from cognitive science to overcome problems in artifi-
cial systems; correspondingly, the functioning of AI 
systems allows psychologists to refine their models of 
cognition. Likewise, with respect to human creativity, 
understanding the cognitive processes involved can 
assist in the development of new AI techniques, which 
in turn can allow psychologists to test theoretical 
hypotheses regarding creativity and its underlying pro-
cesses. For example, Gabora and colleagues drew from 
research on cognitive psychology to develop more 
refined algorithms that can generate novel and aestheti-
cally appealing artworks (DiPaola et al., 2018; DiPaola 
& Gabora, 2007). Developments in psychology can 
inform AI techniques, and these techniques can help 
generate new discoveries in psychology, highlighting 
the importance of interdisciplinarity for scientific 
discovery.

Computational Scientific Discovery:  
a Critical Evaluation

The trend toward the automation of the scientific pro-
cess is important for a number of reasons, not least 
because of the many new discoveries outlined above. 
The rate at which data are generated is increasing expo-
nentially; effectively analyzing these data requires the 
development of tools that excel at efficiently and accu-
rately processing data—tasks for which humans are not 
well equipped. Because computer systems are optimal 
for such tasks, they offer significant advantages for 
scientific discovery. In addition, automating these pro-
cesses allows human scientists the freedom to engage 
in higher-level activities, such as theory building, rather 
than data crunching and manual work. Some see the 
advancements in AI as a threat to humans. However, 
because humans and computers excel at different tasks, 
AI can instead be considered a complementary form of 
intelligence rather than a replacement (de Mello & de 
Souza, 2019).

AI is not limited to data processing—it can also pro-
duce creative and novel solutions to problems that 
humans may not have thought of, as illustrated in this 
article. This is beneficial because there are limits to 
human creativity and reasoning (Gobet & Sala, 2019), 
consistent with Simon’s (1956) theory of bounded ratio-
nality, which posits that the ability of a decision maker 

to make a rational choice is constrained by computa-
tional capacity and knowledge limitations. However, 
this forced selectivity can sometimes be advantageous; 
Gigerenzer and Brighton (2009) argued that heuristics 
help better manage uncertainty than unbiased, resource-
intensive processing. Indeed, machine classification can 
be improved when human uncertainty is included 
(Peterson et al., 2019). Knowledge can be detrimental 
and can lead to a preference for standard responses, 
even when creative and novel solutions are better 
(Bilalić et al., 2008). Likewise, living in a society and 
in a certain context can impose constraints on human 
creativity; computational creativity is not limited by 
these constraints, allowing for interesting developments 
and ideas.

Ethical considerations

A number of ethical issues arise from using computa-
tion for scientific discovery. For example, if controver-
sial theories or patterns in data are found by AI (e.g., 
using GEMS), the ethical implications must be carefully 
considered by researchers, particularly the potential 
negative impacts such discoveries could have. Another 
example could be taken from clinical psychology: 
Understanding variables that are predictive of clinical 
treatment outcomes could be used to minimize barriers 
for treatment adherence; however, the opposite could 
also occur, in which patients showing these character-
istics are denied treatment. Such unintended uses must 
be considered and guarded against.

Relatedly, AI-generated discoveries could be a prod-
uct of bias. Although AI systems are suggested to 
remove bias, they will likely still reflect the biases of 
the humans who created them and the data sets they are 
given. Much psychological research has been criticized 
as consisting of a limited sample, namely undergraduate 
psychology students, which is not representative of the 
general population (Henrich et al., 2010). Although AI 
can produce novel models of human behavior, these 
models will be constrained by the nonrepresentative 
data that they are provided with. This is clearly not an 
issue limited to AI; however, the power of such tech-
nologies and the common view that they are less biased 
could lead to more reliance on their outputs without 
considering their inputs.

The impact of biased data has been demonstrated 
with facial-recognition technology, in which racial and 
gender bias in data sets resulted in heightened misclas-
sification of women and people of color (Buolamwini 
& Gebru, 2018). Likewise, AI systems used in the crim-
inal-justice system, from law enforcement to decision-
making support (Završnik, 2020), may inherit historical 
bias—factors that may be used as predictive, such as 
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previous arrests, may be racially biased as a result of 
systemic discriminatory practices in policing. As out-
lined by Sgaier et al. (2020), predictive AI can often 
equate correlation with causation, which can have disas-
trous consequences—they suggested that causal AI, in 
which the underlying causes of behavior are modeled, 
is the essential next step in AI utilization. Bias in AI can 
also be inherited from using data derived from biased 
tests; for example, intelligence tests have sometimes 
been criticized as being culturally biased (Greenfield, 
1997; Lozano-Ruiz et  al., 2021). Using AI to derive 
insights regarding intelligence will similarly be subject 
to the issues surrounding such tests. Although bias exists 
without it, AI is a powerful tool and so could exacerbate 
this problem. Similar problems may occur across all 
areas of AI-generated scientific discovery, and those 
working with this technology should be aware of these 
issues.

Although biases can be detrimental for discovery 
because they can lead scientists to develop and accept 
incorrect theories, steps can be taken to minimize their 
influence on AI systems, such as increasing diversity 
within both the team developing the technology and 
those testing it. If issues are found with the input data, 
more and better input can be fed into the systems to 
rectify this flaw—a much easier process for AI than for 
humans. Although individual biases are hard to over-
come, new approaches and tools can help reduce at 
least some biases present in AI systems.

The field of AI ethics is very active (for an evaluation, 
see Hagendorff, 2020) because such a powerful tool 
can have huge and widespread implications to humans. 
Although AI systems are generally designed to contrib-
ute positively to science and humanity, their unintended 
negative consequences for some in society and ability 
to be exploited for damaging purposes must be con-
sidered responsibly. To overcome some of these ethical 
issues, scientists and researchers developing and using 
such technology should receive training on technologi-
cal ethics to develop the knowledge and tools for 
understanding the risks and solving potential ethical 
issues effectively. Finally, it is important to consider 
who should be making decisions on whether something 
is ethical or not. For example, in psychology, experi-
mental research is subject to ethics-committee approval; 
however, there currently is no parallel in AI.

Interpretability

To use AI systems for scientific discovery, outputs must 
be understandable to humans and allow interpretation 
in the context of current theories and knowledge ( Javed 
& Gobet, 2021). A key issue is that, although the inputs 
and outputs of an AI system are known, the intermedi-
ate steps are sometimes difficult to understand (it is a 

“black box”), which can affect the interpretability of 
the output data. Different techniques have been used 
to address this issue. For example, an artist named Tom 
White is using AI to generate abstract versions of the 
images it is trained on to show how AI “sees” the world 
and demonstrate the underlying algorithms (see https://
aiartists.org/tom-white). The system represented vari-
ous items with abstract blobs, and these blobs were 
shown to activate the object label more than the real 
images it was trained on.

Another technique being used is taken directly from 
psychological science: Psychlab (Leibo et al., 2018) is a 
resource created to better understand AI systems 
through classic psychological experiments. Akin to cog-
nitive psychology, it seeks to understand the “cogni-
tions” underlying the outputs given by AI systems and 
what they are actually doing. Likewise, Taylor and 
Taylor (2021) recently described the contributions that 
cognitive psychologists can make in the creation of 
explainable AI, arguing that the experience of studying 
the human mind via experimentation is applicable to 
AI. Although the outputs of AI systems are already lead-
ing to great advances in science, it is critically important 
to understand what is happening in these systems to be 
able to use the technology for applied purposes.

The importance of interpretability for psychological 
science has certainly been appreciated, and novel tech-
niques to address this issue are being developed, often 
drawing from the machine-learning domain. Agrawal 
et al. (2020) outlined and demonstrated the feasibility 
of using machine-learning techniques to develop pre-
dictive models of psychological phenomena while 
maintaining interpretability for large data sets through 
an iterative process they termed “Scientific Regret Mini-
mization”, based on regret minimization in machine 
learning. Specifically, the fit of a simple psychological 
model is critiqued against an unconstrained machine-
learning model trained on the same data set until the 
predictions converge. The residuals that may signify 
novel effects can then be validated in separate experi-
ments. Understanding of the hidden layers of AI sys-
tems has also been improved by genetic programming. 
Evans et al. (2019) and Ferreira et al. (2020) used 
genetic programming to explain the behavior of a 
black-box model. Genetic programming does not see 
the original data but sees the predictions of the black-
box model and tries to recreate them. This approach is 
model-agnostic and can generate explanations for dif-
ferent machine-learning black-box models.

Clinical considerations

In clinical psychology, the information about a person 
that some systems gather can be more than a person 
wants to share. The ability of AI systems, including 

https://aiartists.org/tom-white
https://aiartists.org/tom-white
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those aimed at making scientific discoveries, to collect 
and store such personal data allows for potential 
breaches of privacy. These systems must be secure to 
fully protect any sensitive information (Lustgarten et al., 
2020), such as the information collected during simu-
lated therapy. Fiske et al. (2019) outlined the following 
potential practical and ethical issues with using AI in 
clinical psychology settings: (a) ethical responsibilities 
related to risk assessment, (b) adherence to codes of 
practice and duty of care, (c) issues with consent and 
patients understanding when they are not interacting 
with a human, and (d) impacts of strong attachments 
made with AI applications, which are not reciprocal 
and may reduce real social interaction. Although the 
use of AI technology in clinical settings presents sub-
stantial benefits to well-being, these ethical and practi-
cal concerns need to be addressed. Advances in clinical 
psychology from computational scientific discovery 
must similarly ensure the safety of those using the sys-
tems and the protection of sensitive data.

Conclusions

AI is a powerful tool that can have a significant role in 
scientific discovery across all fields of research. It not 
only allows scientists the freedom to engage in high-
level theoretical thinking but also can demonstrate the 
creativity of autonomously generating novel ideas (e.g., 
King et al., 2004). The impact that these systems are 
already having is impressive, and the current trends 
suggest that they will continue to be more ingrained in 
the scientific process ( Jumper et  al., 2021; Peterson 
et al., 2021). Although creativity has historically been 
thought of as an unexplainable human concept, evi-
dence from historical records, replications of discover-
ies, and new discoveries using AI are consistent with 
creativity and scientific discovery as resulting from 
problem-solving. Particularly adept at efficiently solving 
problems, AI can demonstrate creativity and can have 
a dominant role in generating scientific discoveries in 
the future. In line with Newell et al. (1958), heuristics 
obtained through psychological science have been used 
to improve the efficiency and accuracy of AI, and many 
AI systems, including AlphaFold, can be described as 
selectively searching through a problem space. Along-
side this, AI systems using evolutionary techniques such 
as genetic programming depend on random combina-
tions, consistent with the combinatory nature of scien-
tific creativity.

AI can provide innovative ideas that may have taken 
considerable time for humans, in part because it is less 
constrained by limits on available knowledge and 
biases. Scientific breakthroughs are historically the 
result of extensive experimentation and theorizing and 

can often be characterized as “thinking outside the 
box”; this can be achieved much more efficiently by a 
computational system. The creative advances that arti-
ficial systems can provide are critical to accelerating 
successful scientific inquiry and further pushing our 
knowledge and understanding of the world.

AI is already proving to be useful for scientific dis-
covery in psychology (e.g., Aafjes-van Doorn et  al., 
2021; Frias-Martinez & Gobet, 2007; Peterson et  al., 
2021). It can generate new psychological models of 
human cognition. The application of concepts from 
psychology to artificial systems can also constrain mod-
els of human behavior. AI can be used as a tool to assist 
psychologists, for example, in interpreting brain-scan 
analyses and improving clinical diagnoses. The adop-
tion of such systems in psychology is beginning to 
grow; however, issues in terms of bias, data protection, 
interpretability of outputs, and potential unethical uses 
must be considered.
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