
Discussion Paper

No.1745 
February 2021 

Consumption access 
and agglomeration: 
evidence from 
smartphone data

Yuhei Miyauchi 
Kentaro Nakajima 
Stephen J. Redding

ISSN 2042-2695



Abstract 
We provide new theory and evidence on the role of consumption access in understanding the agglomeration 
of economic activity. We combine smartphone data that records user location every 5 minutes of the day 
with economic census data on the location of service-sector establishments to measure commuting and non-
commuting trips within the Greater Tokyo metropolitan area. We show that non-commuting trips are 
frequent, more localized than commuting trips, strongly related to the availability of nontraded services, and 
occur along trip chains. Guided by these empirical findings, we develop a quantitative urban model that 
incorporates travel to work and travel to consume non-traded services. Using the structure of the model, we 
estimate theoretically-consistent measures of travel access, and show that consumption access makes a 
sizable contribution relative to workplace access in explaining the observed variation in residents and land 
prices across locations. Undertaking counterfactuals for changes in travel costs, we show that abstracting 
from consumption trips leads to a substantial underestimate of the welfare gains from a transport 
improvement (because of the undercounting of trips) and leads to a distorted picture of changes in travel 
patterns within the city (because of the different geography of commuting and non-commuting trips). 
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1 Introduction

Understanding the agglomeration of economic activity is one of the most central challenges in economics. Tradi-

tional theories of agglomeration emphasize increasing returns in production and the costs of workers commuting

between their workplace and residence. However, much of the travel that occurs within urban areas is related not

to commuting but rather to the consumption of nontraded services, such as trips to restaurants, co�ee shops and

bars, shopping expeditions, excursions to cinemas, theaters, music venues and museums, and visits to professional

service providers. Although a growing number of writers have emphasized the idea of the “consumer city” and the

role of consumption in agglomeration, two major challenges faced by research in this area are a limited ability to

measure consumption trips within cities and the absence of a widely-accepted theoretical model of agglomeration in

consumption.
1

In this paper, we provide new theory and evidence on the role of consumption and workplace access

in understanding agglomeration. We combine smartphone data including high-frequency location information with

spatially-disaggregated economic census data to measure commuting and non-commuting trips within the Greater

Tokyo metropolitan area. Guided by our empirical �ndings, we develop a quantitative urban model that incorporates

both workplace and consumption access. We use the model to evaluate the role of consumption access as a source

of agglomeration and for explaining the observed variation in land prices. We show that incorporating consumption

access is quantitatively relevant for evaluating transport infrastructure improvements.

We �rst use our smartphone data to provide �ne resolution evidence on travel within the Greater Tokyo metropoli-

tan area. Our data come from a major smartphone mapping application in Japan (Docomo Chizu NAVI ), which records

the Geographical Positioning System (GPS) location of each device every 5 minutes. In July of 2019, the data covers

about 545,000 users, with 1.4 billion data points. We measure each location visited by a user using a “stay,” which cor-

responds to no movement within 100 meters for 15 minutes. Based on this de�nition, we measure each anonymized

user’s home location as her most frequent location (de�ned by groups of geographically contiguous stays) and her

work location as her second most frequent location. We allocate non-commuting trips to other locations into di�erent

types using spatially-disaggregated census data on employment by sector. We validate our smartphone commuting

measures by comparing them with o�cial census data. We show that our measures of the shares of residents and

workers in each municipality are strongly correlated with those from census data. We also demonstrate similar bilat-

eral commuting patterns between municipalities as in census data.

Having validated our smartphone data using census commuting data, we show that focusing solely on these

commuting trips provides a misleading picture of travel within the Tokyo metropolitan area. First, we show that

non-commuting trips are more frequent than commuting trips, so that concentrating solely on commuting trips sub-

stantially underestimates the amount of travel within urban areas. This �nding is consistent with other evidence from

travel surveys, but a key advantage of our smartphone data is that they provide a much �ner spatial and temporal

resolution, and they reveal the sequence in which users travel between home, work and consumption locations, as

used in our quantitative analysis. Second, using our spatially-disaggregated data on employment by sector, we show

that these non-commuting trips are closely related to the availability of nontraded services, which is consistent with

our modelling of them as travel to consume non-traded services. Third, we �nd that non-commuting trips have des-

1
Early research on the “consumer city” is Glaeser, Kolko, and Saiz (2001) and an in�uential popular discussion is Florida (2009). A growing

number of empirical studies provide empirical evidence of endogenous amenities, including Ahlfeldt, Redding, Sturm, and Wolf (2015) and Diamond

(2016), for which we show consumption access provides microfoundations.
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tinations closer to home than commuting trips, with semi-elasticities of travel �ows to travel times that are larger

in absolute value than those for commuting trips. Fourth, we show that trip chains are a relevant feature of the

data, in which non-commuting trips occur along the journey between home and work. Therefore, focusing solely on

commuting trips also yields a misleading picture of bilateral patterns of travel within cities.

We next develop quantitative theory of internal city structure that incorporates both consumption and workplace

access. We consider a city that consists of a discrete set of blocks that di�er in productivity, amenities, supply of �oor

space and transport connections. Consumer preferences are de�ned over consumption of a traded good, a number

of di�erent types of nontraded services, and residential �oor space. The traded good and nontraded services are

produced using labor and commercial �oor space. We assume that workers’ location decisions are nested. First,

workers observe idiosyncratic preferences for amenities in each location and choose where to live. Second, workers

observe idiosyncratic productivities in each workplace and sector, and choose where to work. Third, workers observe

idiosyncratic qualities for the non-traded services supplied by each location, and choose where to consume these

non-traded services. Fourth, workers observe idiosyncratic taste shocks for each route to consume these non-traded

services, and choose which of these routes to take (e.g. home-work-consume-home versus home-consume-home).

At each stage of this decision process, workers take into account their expected access to surrounding locations in

subsequent stages. Population mobility implies that workers must obtain the same expected utility from all locations

with positive population.

We show that the model implies extended gravity equations for commuting and non-commuting trips, which

provide good approximations to the observed data, and can be used to estimate theoretically-consistent measures

of access to surrounding locations. We use the model’s population mobility condition to derive a su�cient statistic

for the relative attractiveness of locations, which incorporates both the residential population share and the price

of �oor space. We show that this su�cient statistic for the relative attractiveness of locations can be decomposed

into a measure of travel access and a residual for residential amenities. Comparing our model incorporating both

consumption and workplace access to a special case capturing only workplace access, we �nd a substantially larger

contribution of travel access once we take into account consumption access (56 percent compared to 37 percent),

and a correspondingly smaller contribution from the residual of residential amenities (44 percent compared to 63

percent). Taken together, this pattern of results is consistent with the idea that much economic activity in urban

areas is concentrated in the service sector, and that access to surrounding locations to consume these services is an

important determinant of workers’ choice of residence and workplace.

We show how the model can be used to undertake a counterfactual for a transport infrastructure improvement,

such as the construction of a new subway line, using either the observed initial travel shares as in the conventional

exact-hat algebra approach, or the initial travel shares predicted by the estimated model. In addition to the initial

shares of commuting trips, the predictions of these counterfactuals now also depend on the initial shares of non-

commuting trips. As a result, frameworks that focus solely on commuting trips generally underestimate the welfare

gains from transport infrastructure improvements, because they undercount the number of passenger journeys that

bene�t from the reduction in travel costs. Furthermore, these frameworks generate di�erent predictions for the impact

of the new transport infrastructure on the spatial distribution of economic activity, because of the di�erent bilateral

patterns of commuting and non-commuting trips. Undertaking counterfactuals for the construction of a new sub-

way line, we show that taking consumption access into account is quantitatively relevant for the impact of this new
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transport infrastructure on travel patterns, the spatial organization of economic activity within the city, and welfare.

Our paper is related to a number of di�erent strands of research. First, our paper connects with the broad theo-

retical and empirical literature on agglomeration, including Henderson (1974), Fujita, Krugman, and Venables (1999),

Fujita and Thisse (2002), Davis and Weinstein (2002) and Kline and Moretti (2014), as reviewed in Rosenthal and

Strange (2004), Duranton and Puga (2004), Moretti (2011) and Combes and Gobillon (2015). Although the vast ma-

jority of this existing research emphasizes agglomeration economies of production, a key focus of our analysis is the

way in which access to nontraded services provides an agglomeration force in consumption.

Second, a key part of this agglomeration literature is concerned with the internal structure of cities. Early con-

tributions assumed monocentric organizations of economic activity, including Alonso (1964), Mills (1967) and Muth

(1969). Subsequent research explored the conditions under which non-monocentric organizations of economic activ-

ity emerge in stylized settings such as a linear city or a symmetric circular city, including Fujita and Ogawa (1982),

Fujita and Krugman (1995) and Lucas and Rossi-Hansberg (2002). More recent research has developed quantitative

models of internal city structure that allow for asymmetries across locations and yet remain amenable to quantitative

analysis, including Ahlfeldt, Redding, Sturm, and Wolf (2015), Allen, Arkolakis, and Li (2017), Monte, Redding, and

Rossi-Hansberg (2018), Tsivanidis (2018), Dingel and Tintelnot (2020), and Owens, Rossi-Hansberg, and Sarte (2020),

as reviewed in Redding and Rossi-Hansberg (2017).
2

All of these studies emphasize commuting and the separation

of workplace and residence. In contrast, one of our main contributions is to highlight the importance of travel to

consume nontraded services in shaping agents’ location decisions.

Third, our �ndings relate to recent research within the agglomeration literature on endogenous amenities and

social and spatial frictions. Evidence of endogenous amenities has been provided in the context of spatial sorting (Di-

amond 2016 and Almagro and Domínguez-Iino 2019), gentri�cation and neighborhood change within cities (Couture

and Handbury 2019, Couture, Dingel, Green, and Handbury 2019, Hoelzlein 2020 and Allen, Fuchs, Ganapati, Graziano,

Madera, and Montoriol-Garriga 2020), and industry clustering (Leonardi and Moretti 2019). Evidence that both spatial

and social frictions matter for agents’ location decisions has been provided using restaurant choice data (Davis, Dingel,

Monras, and Morales 2019), credit card data (Agarwal, Jensen, and Monte 2020 and Dolfen, Einav, Klenow, Klopack,

Levin, Levin, and Best 2019), travel surveys and ride sharing data (Gorback 2020 and Zárate 2020) and cellphone data

(Couture, Dingel, Green, and Handbury 2019, Athey, Ferguson, Gentzkow, and Schmidt 2018, Kreindler and Miyauchi

2019, Gupta, Kontokosta, and Van Nieuwerburgh 2020 and Büchel, Ehrlich, Puga, and Viladecans 2020). Relative to

these existing studies, we incorporate consumption trips into a quantitative urban model of internal city structure,

and use high-frequency and spatially-disaggregated data on these consumption trips to evaluate their implications

for the strength of agglomeration forces and the impact of transport infrastructure improvements.

Fourth, our work contributes to research on transport infrastructure and the spatial distribution of economic activ-

ity. One strand of empirical research has used quasi-experimental variation to provide evidence on the causal impact

of transport infrastructure improvements, including Chandra and Thompson (2000), Baum-Snow (2007), Michaels

(2008), Duranton and Turner (2011, 2012), Faber (2014), Storeygard (2016), Baum-Snow, Brandt, Henderson, Turner,

and Zhang (2017), and Couture, Duranton, and Turner (2018). A second line of work has used quantitative spatial mod-

els to evaluate general equilibrium impacts of transport infrastructure investments, including Anas and Liu (2007),

2
The broader literature on quantitative spatial models across cities or regions includes Allen and Arkolakis (2014), Caliendo, Parro, Rossi-

Hansberg, and Sarte (2018), Fajgelbaum and Gaubert (2020), Ramondo, Rodríguez-Clare, and Saborío-Rodríguez (2016), and Redding (2016).
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Donaldson (2018), Donaldson and Hornbeck (2016), Heblich, Redding, and Sturm (2020), Tsivanidis (2018), Severen

(2019), Balboni (2019), and Zárate (2020). A third group of papers has compared actual and optimal transport net-

works, including Allen and Arkolakis (2017) and Fajgelbaum and Schaal (2020). While existing research emphasizes

the costs of transporting goods and commuting costs, a key feature of our work is to highlight the role of the transport

network in providing access to consume nontraded services.

The remainder of the paper is structured as follows. Section 2 introduces our data. Section 3 presents reduced-

form evidence on travel patterns that motivates the theoretical model that we develop below. Section 4 introduces our

quantitative urban model that incorporates a role for both consumption access and workplace access in in�uencing

location choices. Section 5 uses the model to the quantify the relative importance of consumption and workplace

access for explaining the spatial concentration of economic activity. Section 6 shows that incorporating consumption

access is quantitatively relevant for evaluating the counterfactual impact of transport infrastructure improvements,

such as the construction of a new subway line. Section 7 concludes.

2 Data Description

In this section, we introduce our main smartphone data and the other data used in the quantitative analysis of the

model. In Subsection 2.1, we discuss our smartphone data and explain how we use it to identify home location,

work location, commuting trips and non-commuting trips. In Subsection 2.2, we discuss the spatially-disaggregated

economic census data by sector and location that we use to distinguish between di�erent types of non-commuting

trips, and discuss our data on land values and other location characteristics. In Subsection 2.3, we report validation

checks of the commuting measures from our smartphone data using o�cial census data on employment by residence,

employment by workplace and bilateral commuting �ows.

2.1 Smartphone GPS Data

Our main data source is one of the leading smartphone mapping applications in Japan: Docomo Chizu NAVI. Upon

installing this application, individuals are asked to give permission to share location information in an anonymized

form. Conditional on this permission being given, the application collects the Geographical Positioning System (GPS)

coordinates of each smartphone device every 5 minutes whenever the device is turned on. An important advantage of

these data over other sources of smartphone data is that location information is collected regardless of what application

the user has open, as long as the device is turned on. These “big data” provide an immense volume of high-frequency

and spatially-disaggregated information on the geographical movements of users throughout each day. For example

for the month of July 2019 alone, the data include 1.4 billion data points on 545,000 users (about 0.5 percent of the

Japanese population).
3

The raw unstructured geo-coordinates are pre-processed by the cell phone operator: NTT Docomo Inc. to con-

struct measures of “stays,” which correspond to distinct geographical locations visited by a user during a day. In

particular, a stay corresponds to the set of geo-coordinates of a given user that are contiguous in time, whose �rst

and last data points are more than 15 minutes apart, and whose geo-coordinates are all within 100 meters from the

3
The mapping application does not send location data points if the smartphone does not sense movement, in which case it is likely that the user

has not moved from the last reported location. For this reason, the data points are less frequent than 5 minutes intervals in practice.
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centroid of these points.
4

We have access to the data on the sequence of stays of anonymized users with the necessary

level of spatial aggregation to deidentify individuals. Our data comprise a randomly selected sample of 80 percent of

users in Japan, where the randomization is again to deidentify individuals.

This pre-processing also categorizes all stays in each month into three categories of home, work and other locations

for each anonymized user. “Home" location and “work" locations are de�ned as the centroid of the �rst and second

most frequent locations of geographically contiguous stays, respectively. To ensure that these two locations do not

correspond to di�erent parts of a single property, we also require that the “work" location is more than 600 meters

away from the “home" location. In particular, if the second most frequent location is within 600 meters of the “home"

locations, we de�ne the “work” location as the third most frequent location. To abstract from noise in geo-coordinate

assignment, all stays within 500 meters of the home location are aggregated with the home location. Similarly, all

stays within 500 meters of the work location are aggregated with the work location. We assign “Work” location as

missing if the user appears in that location for less than 5 days per month, which applies for about 30 percent of

users in our baseline sample during April 2019. These users primarily include those with limited number of data

observations due to infrequent smartphone use, and also include irregular workers with unstable job locations and

those who work at home.
5

In Subsection 2.3 below, we report validation checks on our classi�cation of home and

work locations using commuting data from the population census. Stays which are neither assigned as home or work

are classi�ed as “other.” We distinguish between di�erent types of these “other” stays, such as visits to restaurants

and stores, using spatially-disaggregated data on economic activity by sector and location from the economic census,

as discussed further in Section 2.2 below.

As an illustration of our data, Figure 1 displays the “stays” recorded in our data for the example of a Meiji Shrine in

the Shibuya municipality of Tokyo over the period from December 2017 to February 2018. Each red-shaded rectangle

corresponds a 25 meter by 25 meter grid cell. The darker the red shading of the grid cell, the larger the number of stays

in that grid cell. We have overlaid these grid cells on a satellite photograph of the neighborhood. In this photograph,

the building towards the top-left of the image surrounded by trees corresponds to the main building of the Meiji

shrine. Several features of our data are apparent from this image. First, we observe movement within the city at an

extremely �ne level of spatial resolution. Second, we �nd a sharp discountinuity in the density of stays at the road

that separates the wooded area surrounding the shrine to the left from the developed area to the right, suggesting

that the stays accurately capture the density of movement. Third, in the middle of this wooded area, the stays are

concentrated tightly along the path that runs from the road to the main building of the shrine, again con�rming the

ability of our data to capture the main pathways of movement through the city.

For most of our subsequent analysis, we focus on the sample of users in the month of April 2019 who have home

and work locations in the Tokyo Metropolitan Area (which includes the four prefectures of Tokyo, Chiba, Kanagawa,

and Saitama). Additionally, in Section 6.3, we use our quantative model to examine the impact of the opening of a new

subway line in the City of Sendai. To abstract from overnight trips, we focus on the sample of user-day observations

for which the �rst and last stay of the day is the user’s home location. In Figure 2, we show the spatial pattern of

“stays" in the entire Tokyo Metropolitan Area for this sample. For each user and on each hour of the clock for each

4
See Patent Number “JP 2013-89173 A" and “JP 2013-210969 A 2013.10.10" for the detailed proprietary algorithm. This algorithm involves

processes to o�set the potential noise in measuring GPS coordinates.

5
In Section A.3 of our online appendix, we show that the devices with missing “work” locations have signi�cantly fewer number of active days

(even at home locations), and that the probability of assigning missing “work” locations is uncorrelated with the observable characteristics of the

municipality of residence.
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Figure 1: Example of Stays Around a Meiji Shrine in the Shibuya Municipality of Tokyo

Note: The map shows the geographic location of “stays" around a Meiji Shrine. Each red-shaded rectangle corresponds a 25× 25 meter grid cell.

The darkness of the color represents the number of stays in each grid cell between December 2017 and February 2018. The building towards the

top-left surrounded by trees is the main building of the shrine. The stays are concentrated tightly along the path that runs from the road to the

main building of the shrine, consistent with them accurately capturing patterns of movement within the city.

day (e.g. at 11am on Monday), we �rst assign a user’s location based on their most recent stay. Using this assignment,

we next compute the density function of users, as the share of users in each location. Finally, we take averages by

hour across days, separately for weekdays and weekends.

Panel (A) of Figure 2 plots the geographic density of smartphone users at 11am on weekdays, where we use

brighter yellow colors to indicate higher densities of users. Consistent with an approximately monocentric structure

of economic activity, we �nd that the density has a clear peak at the city center of the Tokyo metropolitan area. Panel

(B) plots the log di�erence of the density of users at 11am and 11pm. On both weekdays and weekends, the center of

the city gains population and the suburbs lose population during the day-time relative to the night-time. But these

di�erences between day- and night-time populations are larger on weekdays than weekends, consistent with people

staying closer to their residential locations during the weeekend. Both panels con�rm that our assignment of home

and work locations captures an intuitive spatial distribution of users within the metropolitan area.

2.2 Other Data Sources

We combine our smartphone data with a number of complementary spatially-disaggregated data sources. We use

these additional data sources for the validation of our smartphone data in the next subsection as well as for the

quanti�cation of the model in later sections of the paper.

Spatial units: Data are available for the Tokyo metropolitan area at three main levels of spatial aggregation. At

the highest level, the metropolitan area includes the four prefectures of Tokyo, Chiba, Kanagawa and Saitama. Each

prefecture can be disaggregated into municipalities, of which there are 242 in the Tokyo metropolitan area as a whole

(excluding island municipalities). Each municipality can be further disaggregated intoOaza, of which there are 9,956 in

7



Figure 2: Stays in the Tokyo Metropolitan Area

(A) Day-time Population

(B) Log Di�erence of Day- and Night-time Population

Notes: Panel (A): Density of smartphone users at 11am on weekdays by 500×500 meter grid cell for our baseline sample for the Tokyo metropolitan

area in April 2019. Panel (B): Di�erence in the density of smartphone users between 11am and 11pm by 500× 500 meter grid cell. Density equals

number of users in a 500× 500 meter grid cell divided by the total number of users in our baseline sample.

the Tokyo metropolitan area. Each Oaza has an area of around 1.30 squared kilometers and an average 2011 population

of around 3,600.

Population Census: We measure residential population, employment by workplace and bilateral commuting �ows

using the population census, which is conducted by the Statistics Bureau, Ministry of Internal A�airs and Communi-

cations every �ve years. We use the publicly-available data from the 2015 population census that are reported on their
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website. We use these population census data in validation checks on our smartphone data. Residential population

and total employment are available at the �nest level of spatial disaggregation of 250-meter grid cells. Demographic

information used in some of our speci�cation is available at a slightly more aggregated level. Bilateral commuting

�ows are reported between pairs of municipalities.

Economic Census: We use the Economic Census to distinguish between di�erent types of non-commuting trips, as

well as to capture industry-speci�c employment for the quanti�cation of the model. Economic Censuses are conducted

every 2 to 3 years by the Statistics Bureau, Ministry of Internal A�airs and Communications, and the Ministry of

Economy, Trade and Industry. We use the publicly-available data from the 2016 Economic Census on total employment

and the number of establishments by one-digit industry for each 500-meter grid cell in the Tokyo metropolitan area.

We also use data on total revenue and factor inputs that are available at the municipality level.

Building Data: We measure �oor space in each city block using the Zmap-TOWN II Digital Building Map Data for

2008, which is accessible through the Center for Spatial Information Science at the University of Tokyo. This data set

contains polygons for all buildings in Japan, with their precise geo-coordinates and information on building use and

characteristics. We measure �oor space using the number of stories and land area for each building.

Land Price Data: We measure the residential land price for each city block using the evaluated land price that is used

for the calculation of property tax. Local governments, typically at the municipality level, calculate these land prices

for each road segment throughout the city. We take a simple average of these values to construct the average land

prices per unit of land at the Oaza or Municipality level. We obtain the consolidated data on these land values from

the Research Center for Property Assessment System.

Travel time: We measure travel time by public transportation using the web-based route choice service, Eki-spert

API.
6

Eki-spert API provides the minimum travel times between any pairs of coordinates using public transport,

including suburban rail, subway, and bus. The travel time between any two coordinates is calculated as the sum of

public transportation time and the travel time by walking to/from the station or bus stop from origin/destination. We

use the extracted travel time data from October 2, 2020 (weekday timetable). We also construct car travel time using

the Open Source Routing Machine (OSRM), a routing service based on OpenStreetMap, which we use to examine the

choice between alternative modes of transport.

Municipality Income Tax Base Data: We measure the average income of the residents in each municipality using

o�cial data on the tax base for that municipality.

2.3 Validation of Smartphone Commuting Data Using Census Commuting Data

We now report an external validation exercise, in which we compare our measures of “home” location, “work location”

and “commuting trips” from the smartphone data to the corresponding measures available from o�cial census data. As

the most disaggregated spatial units for which these o�cial census data are available are municipalities, we aggregate

our smartphone data to the municipality level in order to undertake this comparison. In the left panel of Figure 3,

we display the log density of residents in each municipality in our smartphone data against log population density in

the census data. As our smartphone data cover only a fraction of the total population, the levels of the two variables

necessarily di�er from one another. Nevertheless, we �nd a tight and approximately log linear relationship between

them, with a slope coe�cient of 0.923 (standard error 0.011) and a R-squared of 0.968. The coe�cient is slightly less

6
See https://roote.ekispert.net/en for details.
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than one, indicating that the smartphone data has higher coverage in less dense areas. In the right panel of Figure 3, we

show the log density of workers in each Tokyo municipality in our smartphone data against log employment density

by workplace in the census data. Again, the levels of the two variables necessarily di�er from one another, but we

�nd a close and approximately log linear relationship between them, with a slope coe�cient of 0.996 (standard error

0.008) and a R-squared of 0.985. Taken together, these �ndings provide strong evidence in support of our measures of

home and work location from the smartphone data. Furthermore, the fact that these relationships are so tight across

municipalities with very di�erent levels of economic activity suggests that the probability of inclusion in our sample

is not strongly correlated with the population or employment of the municipality.
7

Figure 3: Representativeness of Smartphone Users

(A) Residential Location (B) Employment Location

Note: Each dot represents a municipality in the Tokyo metropolitan area. In the left panel, the vertical axis is the log of the number of smartphone

users with a home location in the municipality divided by its geographic area, and the horizontal axis is the log of the number of residents in that

municipality from the Population Census in 2011 divided by its geographic area. In the right panel, the vertical axis is the log of the number of

smartphone users with a work location in the municipality divided by its geographic area, and the horizontal axis is the log of employment by

workplace in that municipality from the Population Census in 2011 divided by its geographic area. The de�nitions of home and work location in

the smartphone data are discussed in the text of Subsection 2.1 above.

As a further check on the ability of our smartphone data to successfully capture commuting patterns, we now

show that we �nd the same pattern of spatial decay of bilateral commuting �ows with geographical distance in the

smartphone data as in the o�cial census data. In each case, we regress the log of bilateral commuting �ows between

Tokyo municipalities on residence �xed e�ects, workplace �xed e�ects and a set of indicator variables for deciles

of log bilateral distance using the Poisson Pseudo Maximum Likelihood (PPML) estimator, which allows for zero

�ows. In Figure 4, we display the estimated coe�cients on the indicator variables for both the smartphone and

o�cial census data and the 95 percent con�dence intervals. As sample size is smaller in our smartphone data than

in the o�cial census data, we �nd marginally larger con�dence intervals using the smartphone data, particularly for

7
In online appendix Figure A.1.1 and A.1.2, we provide further evidence on the representativeness of our smartphone data by comparing the

coverage by residence characteristics (income, age and distance to city center) and workplace characteristics (employment by industry and distance

to city center).
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bilateral distances of more than 50 kilometers for which there are relatively few commuters. Nonetheless, for distances

of less than 50 kilometers, which account for the vast majority of all commuters in both datasets, we �nd that the

estimates in the smartphone and census data are lie extremely close to one another.

Figure 4: Gravity Equation Estimates for Bilateral Commuting Flows Using Smartphone GPS and O�cial Census Data

Note: Gravity equation estimation including workplace �xed e�ects, residence �xed e�ects and indicator variables for deciles of bilateral distance

between workplace and residence using the Poisson Pseudo Maximum Likelihood (PPML) estimator; solid black line and dark gray shading show

point estimates and 95 percent con�dence intervals respectively for the distance decile indicators using the o�cial census data; dashed black line

and light gray shading show point estimates and 95 percent con�dence intervals respectively for the distance decile indicators using our smartphone

GPS data. Online appendix Section A.2 shows that the �xed e�ects and residuals from the gravity equations estimated separately using smartphone

data and census data are also strongly correlated with one another.

Taken together, the results of this section suggest that our smartphone data is relatively successful in identifying

home locations, workplace locations and bilateral commuting patterns compared to o�cial census data. However, a

key advantage of our smartphone data relative to the o�cial census data is that we can measure not only commuting

trips but also the many non-commuting trips that individuals undertake and that are potentially consequential for

our understanding of the spatial distribution of economic activity within cities.

3 Reduced-Form Evidence

In this section, we provide reduced-form evidence on patterns of commuting and non-commuting trips that guides the

theoretical model that we develop below. First, we show that non-commuting trips are more frequent than commuting

trips, so that concentrating solely on commuting trips underestimates the amount of travel within urban areas. Second,

we demonstrate that non-commuting trips are closely-related to the availability of non-traded services, which is

consistent with these trips playing an important role in determining consumption access. Third, we show that non-

commuting trips exhibit di�erent spatial patterns from commuting trips, so that abstracting from non-commuting

trips yields a misleading picture of bilateral patterns of travel within urban areas. Fourth, we show that trip chains

are a relevant feature of the data, in which non-commuting trips occur along the journey between home and work.
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Fact 1. Non-commuting trips are pervasive. In Figure 5, we display the average number of stays per day for work

and non-work locations (excluding home locations) for our baseline sample of users with home and work locations

in the Tokyo Metropolitan Area during April 2019. Note that the average number of work stays can be greater than

one during weekdays, because workers can leave their workplace during the day and return there later the same day

(e.g. after attending a lunch meeting outside their workplace). Similarly, the average number of work stays can be

greater than zero at the weekend, because some workers may be employed during the weekend (e.g. in restaurants

and stores). As apparent from the �gure, even during weekdays, we �nd that non-commuting trips are more frequent

than commuting trips, with an average of 1.6 non-work stays per day compared to 1.14 work stays per day. This

pattern is magni�ed at weekends, with an average of 1.93 non-work stays per day compared to 0.47 work stays per

day. These results are consistent with evidence from travel surveys, in which commuting is only one of many reasons

for travel, as found for example in Couture, Duranton, and Turner (2018). A key advantage of our smartphone data

relative to travel surveys is that our data reveal bilateral patterns of travel at a �ne level of spatial disaggregation

within the urban area, and the sequence in which users travel between between their home, work and consumption

locations, as used in our quantitative analysis of the model.
8

Figure 5: Frequency of Stays at Work and Other Locations (Excluding Home Locations)

Note: Average number of work and other stays per day for weekdays and weekends (excluding stays at home locations) for our baseline sample

users in the metropolitan area of Tokyo in April 2019. See Section 2 above for the de�nitions of home, work and other stays.

In Panel (A) of Figure 6, we provide further evidence on travel patterns by reporting the average number of work

and non-work stays by day of the week from 1-30 April 2019. Consistent with the patterns discussed above, we �nd

that non-commuting trips are more frequent than commuting trips for each day of the week, with non-commuting

and commuting trips increasing and decreasing respectively at weekends. In Panel (B) of Figure 6, we show the

average probability that a user stays at home, work or other locations by hour, based on their most recent stays. A

key di�erence from Panel (A) is that stays in Panel (B) are implicitly weighted by the length of time that a user spends

at each stay. This weighting explains why work stays have a higher probability than other stays in the middle of day

during weekdays in Panel (B), even though there is a larger average number of other stays than of work stays in Panel

8
In online appendix A.4, we show that this pattern of more frequent non-commuting stays than commuting stays holds in separate Japanese

travel survey data for weekdays. These travel survey data do not include questions about respondents’ travel behavior at weekends.
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Figure 6: Work and Other Stays by Day and Hour

(A) Work and Other Stays by Day (Excluding Home Locations)

(B) Home, Work and Other Stays by Hour

Note: Panel (A): Average number of work and other stays per day (excluding stays at home locations) for our baseline sample of users in the Tokyo

metropolitan area in April 2019. Gray shared areas indicate weekends and holidays in Japan. Panel (B): shows the probability that each user stays

at home, work or other locations by each hour of the day, where these three probabilities sum to one. To construct Panel (B), for each user and

for each hour of the clock for each day (e.g. at 11am), we measure the user’s location as the stay location that has started most recently. We then

compute the probability of each type of stay by averaging across days, separately for weekdays and weekends, and for each hour. See Section 2

above for the de�nitions of home, work and other stays.

(A). The three probabilities in Panel (B) sum to one, since home, work, and other stays are mutually exclusive and sum

to the total number of stays. Even after weighting by time, other stays are quantitatively relevant compared to work

stays during both weekdays and weekends. Comparing across hours of the day, we �nd the expected pattern that
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home stays fall and both work and other stays rise during the daytime (from around 6am-9pm). During weekdays,

the probability of a stay rises more rapidly during the waking hours for work stays than for other stays. During

weekends, we �nd the opposite pattern, with the probability of a stay rising more rapidly during the waking hours

for other stays than for work stays.

Fact 2. Non-commuting trips are closely related to consumption. We now show that non-commuting trips are

closely related to consumption by combining our GPS smartphone data with spatially-disaggregated census data on

employment by sector. In particular, we stochastically assign other stays (stays at neither home nor work locations) to

di�erent types based on the local economic activity undertaken at each geographical location, as captured by the share

of service sectors in employment. For each 500 × 500 meter grid cell in the Tokyo metropolitan area, we compute

the employment share of each service sector in total service sector employment. We disaggregate service-sector

employment into the following �ve categories: “Finance, Real Estate, Communication, and Professional", “Wholesale

and Retail", “Accommodations, Eating, Drinking", “Medical and Health Care", and “Other Services".
9

For each other

stay in a given grid cell, we allocate that stay to these �ve categories probabilistically using their shares of service-

sector employment. If no service-sector employment is observed in the grid cell, we allocate that other stay to the

category "Z Others." Therefore, if non-commuting trips are unrelated to the availability of nontradable services, our

algorithm assigns these stays to "Z Others."

As a check on this probabilistic assignment of other stays, Figure A.5.1 in the online appendix displays the density

of each type of other stay by hour and day, as a share of all stays for our baseline sample for the Tokyo metropolitan

area in April 2019. We �nd that our probabilistic assignment captures the expected pattern of these di�erent service-

sector activities over the course of the week. First, we typically �nd a higher density of other stays during the middle

of the day at weekends than during weekdays, which is in line with the fact that many of these services are consumed

more intensively during leisure time. The one exception is “Finance, Real Estate, Communication, and Professional,"

which displays the opposite pattern, consistent with the fact that establishments providing these services are often

closed at the weekends in Japan. Second, we �nd that the peak densities of stays for “Wholesale and Retail” and

“Accommodations, Eating, Drinking” occur at around 6pm on weekdays, corroborating the fact that these activities

are typically concentrated after work during the week. For “Accommodations, Eating, Drinking,” we �nd a smaller

peak around noon on weekdays, as expected from the typical timing of lunch in Japan. Third, and �nally, both of

these activities are more concentrated in the middle of the day on weekends than during the week, which again is in

line with workers having greater leisure time in the middle of day at weekends.

In Panel (A) of Figure 7, we show the average number of these di�erent types of other stays per day during the

working week and at weekends. We �nd that “Wholesale and Retail” stays are by far the most frequent, with an

average of 0.69 per day on weekdays and 0.91 per day on weekends. To provide a point of comparison, Panel (B) of

Figure 7 also reports the share of each individual service sector in overall service-sector employment for the Tokyo

metropolitan area as a whole (penultimate column) and the average share of each individual service sector in overall

service-sector employment across the 500×500 meter grid cells (�nal column). Comparing the two panels, we �nd that

9
This categorization of service sectors follows the one-digit classi�cation of the Japan Standard Industrial Classi�cation (JSIC), for which we

have data available by 500 × 500 meter grid cells. “Finance, Real Estate, Communication, and Professional" corresponds to sectors of G, J, K, L;

“Wholesale and Retail" corresponds to I, “Accommodations, Eating, Drinking" corresponds to M, “Medical and Health Care" corresponds to P, and

“Other Services" corresponds to Q.
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Figure 7: Frequency of Non-Commuting Trips and Service-Sector Employment Shares

(A) Number of Non-Work Stays in Each Sector

(B) Number of Non-Work Stays and Employment in Each Sector

Industry Weekdays Weekends Employment Share in Service (%)
Stays / Day Share (%) Stays / Day Share (%) Total Average (500m Grids)

GJKL �nance realestate communication professional 0.23 14.3 0.21 10.7 11.9 23.2
I wholesale retail 0.69 43.4 0.91 46.1 32.0 28.7
M accomodations eating drinking 0.15 9.4 0.21 10.8 13.2 13.2
P medical welfare healthcare 0.23 14.2 0.27 13.7 18.7 15.2
Q other services 0.25 15.8 0.29 14.8 24.3 19.8
Z others 0.05 2.9 0.08 3.9

Note: Panel (A): Average number of each type of other stay per day for weekdays and weekends (excluding stays at home locations) for our baseline

sample of users in the metropolitan area of Tokyo in April 2019. Other stays are allocated probabilistically to each of these �ve categories using

the shares of these service sectors in total service-sector employment, as discussed in the main text. Panel (B) reports the same information in

table form, together with the share of each type of stay in the total number of other stays, the share of each service sector in total service-sector

employment for the Tokyo metropolitan area, and the average share of each service sector in total service-sector employment across the 500×500

meter grid cells. See Section 2 above for the de�nitions of home, work and other stays.

“Wholesale and Retail” stays are substantially more frequent than would be implied by their shares of overall service-

sector employment, accounting for 43.4 percent of weekday stays and 46.1 percent of weekend stays, compared to an

aggregate employment share of 32.0 percent and an average employment share of 28.7 percent. This pattern of results

implies that other stays are disproportionately targeted towards locations with relatively high shares of the “Whole-

sale and Retail” sector in employment, which is consistent with these other stays capturing access to consumption

opportunities. Although “Wholesale and Retail” stays are by far the most frequent, there is considerable variation in

the composition of service-sector employment across the locations visited by users, with “Accommodations, Eaton

and Drinking,” “Finance, Real Estate, Communication, and Professional,” and “Medical and Health Care” all account-

ing for around 10 percent or more of the total number of stays. Lastly, “Other” stays are infrequent, con�rming that
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non-commuting trips are indeed strongly related to the availability of nontradable services.
10

Fact 3. Non-commuting trips are closer to home. We now show that non-commuting trips exhibit di�erent

spatial patterns from commuting trips, such that observed bilateral commuting �ows provide an incomplete picture

of patterns of travel within urban areas. In Panel (A) of Figure 8, we display the distribution of distances from home

locations to work locations and from home locations to other stays for our baseline sample of users in the Tokyo

metropolitan area in the month of April 2019. We �nd that other stays are concentrated closer to home than work

stays, with average distances travelled of 7.34 and 9.04 kilometers respectively during weekdays. This di�erence is

even greater at the weekend, with an average distance travelled of 6.04 kilometers for other stays, which is consistent

with users remaining closer to their residential locations at weekends. Given that users choose where to live and work

taking into account their access to surrounding locations, this clustering of other stays closer to home highlights the

relevance of these non-commuting trips for residential location decisions, as explored further in the quantitative

analysis of our model below.

In Panel (B) of Figure 8, we display the distribution of distances travelled for each type of other stay separately.

Comparing across the di�erent categories, we �nd that “Wholesale and Retail” and “Accommodations, Eating, Drink-

ing” stays are concentrated closer to home than “Finance, Real Estate, Communication, and Professional” and “Other

Services stays.” This clustering of these two categories of shopping and visits to bars, restaurants and cafes close

to home again highlights the relevance of access to these consumption opportunities for users’ residential location

decisions. More generally, these di�erences in bilateral travel patterns for di�erent economic activities suggest that

omitting non-consumption trips not only undercounts travel journeys but can also yield misleading inference about

the e�ects of changes in travel costs on bilateral patterns of travel, as explored more formally in later sections.

Fact 4. Trip chains. We now show that trip chains are a relevant feature of the data, in which non-commuting

trips occur along the journey between home and work. In Figure 9, we use the fact that in the smartphone data we

observe the sequence of stays originating from a user’s home location and ending at a user’s home location (without

going back home in between each stay), which we term “round trips.” Using this information, we divide all other stays

that occur along such round trips into four mutually-exclusive categories: (i) HH stays, in which the other stay is part

of a round trip that does not include the work location; (ii) HW stays, in which the other stay happens on the way

from the home location to the work location; (iii) WH stays, in which the other stay happens on the way back from

the work location to the home location; (iv) WW stays, in which the other stay happens in between two stays at the

work location (e.g. a visit to a restaurant in the middle of the working day). Panel A shows the frequency of these

four di�erent types of other stays aggregating across weekdays and weekends, while Panel B shows their frequency

for weekdays and weekends separately.

As apparent from the �gure, we �nd that the majority of non-commuting trips occur separately from commuting

trips (53 percent), which is driven primarily by weekends (79 percent) when users are signi�cantly less likely to

visit workplaces (Figure 5). Nevertheless, a substantial fraction of non-commuting trips (47 percent) occur as part

of commuting trips (47 percent). This pattern of results is consistent with the evidence in Davis, Dingel, Monras,

10
Some of these non-commuting trips could include business-related trips rather than consumption trips (e.g., business meetings, procurement).

In Figure A.4.2 of the online appendix, we show that business-related trips are a minor fraction (20 percent) of all non-commuting weekday trips

using separate travel survey data.
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Figure 8: Distances of Commuting and Non-Commuting Trips

(A) Distribution of Distances of Work and Other Stays from Home Locations

(B) Average Distances of Di�erent Types of Other Stays from Home Locations

Note: Panel (A): Distributions of distance in kilometers of work locations from home location and of other stays from home locations during

weekdays and weekends. Panel (B): Distributions of distance in kilometers for each type of other stay from home locations during weekdays and

weekends. Distributions computed for our baseline sample of users in the Tokyo metropolitan area in April 2019.

and Morales (2019), which �nds that restaurant visits are a�ected not only by the restaurant’s proximity to home but

also by its proximity to work. To the extent that users face spatial frictions in travelling around the city, this has

three implications that we incorporate into our quantitative analysis of the model. First, the choice of consumption

location can be in�uenced not only by proximity to home but also by proximity to work. Second, models that abstract

from consumption access can ascribe too much weight to workplace access, because they do not take into account

that the choice of workplace can be in�uenced by access to surrounding consumption possibilities. Third, users
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Figure 9: Fractions of Di�erent Types of Other Stays on Round Trips from Home

(A) Aggregating across Weekdays and Weekends (B) Separately for Weekdays and Weekends

Note: Fractions of di�erent types of other stays that occur as part of a round trip originating from a user’s home location and ending at a user’s

home location (without going back home in between each stay); (i) on a round trip that does not include the work location (HH); (ii) on the way

from home to work (HW);(iii) on the way back from work to home (WH); (iv) in between two stays at the work location (WW), such as a visit to

restaurant in the middle of the working day; Panel A shows frequencies aggregating weekdays and weekends; Panel B shows frequencies separately

for weekdays and weekends.

choice of residence depends on the joint distribution of consumption and workplace access, taking into account that

consumption trips can occur as part of the journey between home and work.

Taking the �ndings of this section as a whole, we have shown that non-commuting trips are frequent, are closely

related to consumption, exhibit di�erent spatial patterns from commuting trips, and can occur as part of trip chains.

Each of these four features of our smartphone data guides our theoretical modelling of commuting and non-commuting

trips in the next section.

4 Theoretical Framework

In this section, we develop our quantitative urban model of internal city structure that incorporates both commuting

and non-commuting trips within the city. We show that the model rationalizes the reduced-form features of the

smartphone data established above. In Section 5 below, we use the model to quantify the contributions of travel

access and the residual of amenities in explaining the observed spatial concentration of economic activity. In Section

6, we show how the model can be used to undertake counterfactuals for the impact of transport improvements. We

demonstrate that the omission of consumption access leads to an underestimation of the welfare gains from these

transport improvements and distorted predictions for their impact on bilateral patterns of travel throughout the city.

The derivations for all theoretical results in this section are reported in Section B of the online appendix.

We consider a city (Tokyo) that is embedded in a larger economy (Japan). We consider both a closed-city speci�-

cation (in which total city population is exogenous) and an open-city speci�cation (in which total city population is

endogenously determined by population mobility with the wider economy that o�ers a reservation level of utility Ū ).

The city consists of a discrete set of locations i, j, n ∈ N that di�er in productivity, amenities, supply of �oor space

and transport connections. Utility is de�ned over consumption of a single traded good, a number of di�erent types of

non-traded services (e.g. restaurants, co�ee shops, stores), and residential �oor space use. Both the traded good and

the non-traded services are produced with labor and commercial �oor space according to constant returns to scale

under conditions of perfect competition. Floor space is supplied by a competitive construction sector using land and

18



capital according to a constant returns to scale construction technology.

A continuous measure of workers (L̄) choose a residence, a workplace and a set of locations to consume non-traded

services in the city.
11

We assume the following timing or nesting structure for workers’ location decisions. First, each

worker observes her idiosyncratic preferences or amenities (b) for each location within the city, and chooses her

residence n. Second, given a choice of residence, each worker observes her idiosyncratic productivities (a) for each

workplace i and sector g, and chooses her sector and location of employment. Third, given a choice of residence and

workplace, she observes idiosyncratic qualities (q) for each type of non-traded service k available in each location

j, and chooses her consumption location for each type of non-traded service. Fourth, given a choice of residence,

workplace, and the set of consumption locations, she observes idiosyncratic shocks (ν) over di�erent possible travel

routes: home-consume-home, work-consume-work, home-consume-work-home, or home-work-consume-home. We

choose this nesting structure because it permits a transparent decomposition of residents and land prices into the

contribution of travel access and the residual of amenities, but the importance of consumption access is robust across

other nesting structures. We also compare the predictions of our model with the special case abstracting from con-

sumption trips, which corresponds to a conventional urban model, in which workers choose workplace and residence

and consume only traded goods.

4.1 Preferences

The indirect utility for worker ω who chooses residence n, works in location i and sector g ∈ K , and consumes

non-traded service k ∈ KS
(where KS ⊂ K) in location j(k) using route r(k) is assumed to take the following

Cobb-Douglas form:

Unig{j(k)r(k)} (ω) =

{
Bnbn (ω)

(
PTn
)−αT

Q−α
H

n

}
{ai,g (ω)wi,g} (1)

×

{ ∏
k∈KS

[
PSj(k)/

(
qj(k) (ω)

)]−αSk}{
dni{j(k)r(k)}

∏
k∈KS

νr(k)(ω)

}

0 < αT , αH , αSk < 1, αT + αH +
∑
k∈KS

αSk = 1,

where we use the notation j(k) to indicate that that non-traded service k is consumed in a single location j that is

an implicit function of the type of non-traded service k; r(k) ∈ R ≡ {HH,WW,HW,WH} indicates the “route”

choice of whether to visit consumption locations from home (HH), from work (WW ), on the way from home to

work (HW ), or on the way from work to home (WH) for each non-traded service k; KS ⊂ K is the subset of sectors

that are non-traded; the �rst term in brackets captures a residence component of utility; the second term in brackets

corresponds to a workplace component of utility; the third term in brackets re�ects a non-traded services component

of utility; the fourth term in brackets re�ects a travel cost component of utility.

The �rst, residence component includes amenities (Bn) that are common for all workers in residence n; the id-

iosyncratic amenity draw for residence n for worker ω (bn(ω)); the price of the traded good (PTn ); and the price

of residential �oor space (Qn). We allow the common amenities (Bn) to be either exogenous or endogenous to the

surrounding concentration of economic activity in the presence of agglomeration forces, as discussed further below.

11
In our theoretical analysis, we assume for simplicity a continuous measure of workers in the model, which ensures that the expected values

of variables equal their realized values. In our empirical analysis, we allow for granularity and a �nite number of workers in both our estimation

(using the PPML estimator) and our counterfactuals (using predicted shares) following Dingel and Tintelnot (2020).
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The second, workplace component comprises the wage per e�ciency unit in sector g in workplace i (wi,g) and the

idiosyncratic draw for productivity or e�ciency units of labor for worker ω in sector g in workplace i (ai,g(ω)).
12

The

third, non-traded services component depends on the price of the non-traded service k in the location j(k) where

it is supplied (PSj(k) for k ∈ KS
) and the idiosyncratic draw for quality for that service in that location (qj(k)(ω)

for k ∈ KS
). The fourth, travel cost component includes the iceberg travel cost for each combination of residence,

workplace, consumption locations and routes (dni{j(k)r(k)}) and the idiosyncratic draw for route preference for each

non-traded sector (νr(k)(ω) for k ∈ KS
).

To capture trip chains in a tractable way, we model the iceberg travel cost for each combination of residence n,

workplace i, consumption location j(k) and route r(k) (dni{j(k)r(k)}) as follows:

dni{j(k)r(k)} = exp(−κW τWni )
∏
k∈KS

exp(−κSk τSnij(k)r(k)). (2)

The �rst term before the product sign captures the cost of commuting from residence n to workplace i without any

detour to consume non-traded services, which depends on travel time (τWni ) and the commuting cost parameter (κW ),

where overall commuting travel time is the sum of the travel time incurred in each direction:

τWni = τni + τin. (3)

The second term in equation (2) captures the additional travel costs involved in consuming each type of non-traded

service k in location j(k) by the route r(k), which depends on the additional travel time involved (τSnij(k)r(k)) and the

consumption travel cost parameter (κSk ). This additional travel time depends on the route taken: whether the worker

visits consumption location j(k) from home (r(k) = HH), from work (WW ), on the way from home to work (HW ),

or on the way from work to home (WH):

τSnij(k)HH = τnj + τjn, (4)

τSnij(k)WW = τij + τji,

τSnij(k)HW = τnj + τji − τni,

τSnij(k)WH = τij + τjn − τin,

where the negative term at the end of the third and fourth lines above re�ects the fact that the worker travels indirectly

between residence n and workplace i via consumption location j on one leg of her journey between home and work,

and hence does not incur the direct travel time between residence n and workplace i for that leg of the journey.
13

We make the conventional assumption in the location choice literature following McFadden (1974) that the idiosyn-

cratic shocks are drawn from an extreme value distribution. In particular, idiosyncratic amenities (b), productivity (a),

quality (q), route preferences (ν) for worker ω, residence n, workplace i, consumption location j(k) and route r(k)

12
Although we model the workplace idiosyncratic draw as a productivity draw, there is a closely-related formulation in which it is instead

modelled as an amenity draw.

13
While we capture the relative importance of each non-traded sector using its expenditure share, the frequency of trips can also di�er across

non-traded sectors, as shown in Figure 7. In Section C.1 of the online appendix, we explicitly incorporate this additional type of heterogenegity

and show that the model is isomorphic up to a reinterpretation of the parameters κSk . Therefore, all of our counterfactual results are una�ected by

this extension of the model except for the interpretation of the estimated κSk .
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for non-traded service k are drawn from the following independent Fréchet distributions:

GBn (b) = exp
(
−TBn b−θ

B
)
, TBn > 0, θB > 1, (5)

GWi,g (a) = exp
(
−TWi,ga−θ

W
)
, TWi,g > 0, θW > 1,

GSj(k) (q) = exp
(
−TSj(k)q

−θSk
)
, TSj(k) > 0, θSk > 1, k ∈ KS ,

GRr(k) (ν) = exp
(
−TRr(k)ν

−θRk
)
, TRr(k) > 0, θRk > 1, k ∈ KS .

where the scale parameters {TBn , TWi,g , TSj(k), T
R
r(k)} control the average draws and the shape parameters {θB , θW , θSk ,

θRk } regulate the dispersions of amenities, productivity, quality and route preferences, respectively. The smaller these

dispersion parameters, the greater the heterogeneity in idiosyncratic draws, and the less responsive worker decisions

to economic variables.
14

Using our assumption about the timing or nesting structure, the worker location choice problem is recursive and

can be solved backwards. First, for given a choice of residence, workplace and sector, and consumption location

for each non-traded service, we characterize the probability that a worker chooses each route for each non-traded

sector (whether to visit consumption locations from home, from work, or in-between). Second, for given a choice of

residence, workplace and sector, we characterize the probability that a worker chooses each consumption location in

each non-traded sector, taking into account the expected travel cost for consumption trips. Third, for given a choice

of residence, we characterize the probability that a worker chooses each workplace and sector, taking into account

expected consumption access for that workplace and sector. Fourth, we characterize the probability that a worker

chooses each residence, taking into account its expected travel access for both commuting and consumption.

4.2 Route Choices

We begin with the worker’s choice of route for each non-traded service sector k. Conditional on her residence n,

workplace i, and consumption location j(k), she chooses whether to visit consumption location j(k) from home

(r(k) = HH), from work (WW ), on the way from home to work (HW ), or on the way from work to home (WH).

Given the indirect utility (1) and the speci�cation of the travel cost (2), the component of the utility that depends on

the route r(k) for non-traded service k is given by:

δnij(k)r(k)(ω) = exp(−κSk τSnij(k)r(k))νr(k)(ω). (6)

where the �rst component is the route-speci�c travel cost and the second component is the idiosyncratic route pref-

erence. Under our assumption of independent route-preference draws νr(k)(ω) across each non-traded sector k, each

worker chooses the route r(k) that maximizes δnij(k)r(k)(ω) independently for each sector k.

Using our independent extreme value assumption for idiosyncratic route preferences, the route choice probability

is characterized by a logit form. In particular, the probability that a worker living in residence n and employed in

workplace i consuming non-traded service k in location j(k) chooses the route r(k) (λRr(k)|nij(k)) is:

λRr(k)|nij(k) =
TRr(k) exp(−θRk κSk τSnij(k)r(k))∑

r′∈R T
R
r′(k) exp(−θRk κSk τSnij(k)r′(k))

. (7)

14
Although we assume independent Fréchet distributions for amenities, productivity and quality, some locations can have high expected values

for all these idiosyncratic shocks if they have high values for TBn , TWig , TS
j(k)

and TR
r(k)

. Additionally, correlations between the shocks can be

introduced using a multivariate Fréchet distribution, as in Hsieh, Hurst, Jones, and Klenow (2019).
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Using the properties of the extreme value distribution, we can also compute the expected contribution to utility

from the travel cost from consumption trips

dSnij(k) = Enij(k)

[
δnij(k)r(k)(ω)

]
= ϑRk

[∑
r′∈R

TRr′(k) exp(−θRk κSk τSnij(k)r′(k))

] 1

θR
k

(8)

where ϑRk ≡ Γ
(
θRk −1

θRk

)
and Γ(·) is the Gamma function.

4.3 Consumption Choices

We next describe the worker’s decision of where to consume each type of non-traded service, given these expected

travel costs. Conditional on living in residence n and being employed in workplace i, each worker chooses a consump-

tion location j(k) for each non-traded service k, after observing her idiosyncratic draws for the quality of non-traded

services (d), but before observing her idiosyncratic route preferences (ν). Therefore, each worker chooses the con-

sumption location j(k) for non-traded service k that maximizes the contribution to indirect utility (1) from consuming

that non-traded service, taking into account the expected travel costs across alternative routes:

γnij(k) (ω) =
[
PSj(k)/

(
qj(k) (ω)

)]−αSk
dSnij(k), k ∈ KS . (9)

where dSnij(k) is the expected travel cost across these alternative routes from equation (8) above.
15

Using our independent extreme value assumption for idiosyncratic quality, the probability that a worker living in

residence n and employed in workplace i consumes non-traded service k in location j(k) (λSj(k)|ni) is:

λSj(k)|ni =
TSj(k)

(
PSj(k)

)−θSk (
dSnij(k)

) θSk
αS
k

∑
`∈N T

S
`(k)

(
PS`(k)

)−θSk (
dSni`(k)

) θSk
αS
k

, k ∈ KS , (10)

which we term the conditional consumption probability, since it is computed conditional on residencen and workplace

i. This probability depends on destination characteristics (the price of non-traded services PSj(k) and their average

qualityTSj(k) in the numerator); expected travel costs (as determined by dSnij(k) in the numerator); and origin (residence

and workplace) characteristics (as captured by the expected-travel-cost weighted average of destination characteristics

in the denominator). Importantly, the frequency of consumption trips for each destination j(k) and non-traded service

k depends on both the worker’s residence n and her workplace i, because she can travel to consume non-traded

services from either of these locations. Therefore, both residence n and workplace i a�ect expected travel costs to

consume non-traded service k in location j(k).

Using the properties of the extreme value distribution, we can also compute the expected contribution to utility

from consuming non-traded service k, conditional on living in residence n and being employed in workplace i. This

expectation for residence n and workplace i corresponds to a measure of consumption access for non-traded service

k, and depends on the travel-time weighed average of destination characteristics:

Snik ≡ Enik
[
γnij(k)

]
= ϑSk

[∑
`∈N

TS`(k)

(
PS`(k)

)−θSk (
dSni`(k)

) θSk
αS
k

]αSk
θS
k

, k ∈ KS . (11)

15
Although for simplicity we assume that workers choose a single consumption location for each non-traded service, it is straightforward to

extend the model to incorporate multiple consumption locations, by allowing workers to make multiple discrete choices for each non-traded service.
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where ϑSk ≡ Γ

(
(θSk /α

S
k )−1

(θSk /αSk )

)
and Γ(·) is the Gamma function.

Using the property that idiosyncratic quality is independently distributed across the non-traded sectors, we can

also compute the expected overall contribution to utility from consuming all types of non-traded services. This ex-

pectation corresponds to an overall measure of consumption access for residence n and workplace i and depends on

the travel-time weighted average of destination characteristics across all types of non-traded services:

Sni ≡
∏
k∈KS

Snik =
∏
k∈KS

ϑSk

[∑
`∈N

TS`(k)

(
P`(k)

)−θSk (dSni`(k)

) θSk
αS
k

]αSk
θS
k

. (12)

We show below that the model’s gravity equation predictions provide a good approximation to the observed data

on consumption trips and can be used to estimate consumption access in a theory-consistent way.

4.4 Workplace Choice

We next turn to the worker’s choice of workplace, given this expected consumption access. In particular, conditional

on living in residence n, each worker chooses the workplace i and sector g ∈ K that o�ers the highest utility, taking

into account the wage per e�ciency unit (wi,g), the idiosyncratic draw for productivity (ai,g(ω)), commuting costs

(dWni ), and expected consumption access (Sni):

vni,g (ω) = wi,gai,g (ω) dWniSni. (13)

where dWni ≡ exp(−κW τWni ) is the component of travel cost for commuting trips from equation (2).

Using our independent extreme value assumption for idiosyncratic productivity, the model also implies a gravity

equation for bilateral commuting, such that the probability that a worker in residence n commutes to workplace i in

sector g (λWig|n) is as follows:

λWig|n =
TWi,gw

θW

i,g

(
dWni
)θW

(Sni)θ
W

∑
`∈N

∑
m∈K T

W
`,mw

θW
`,m

(
dWn`
)θW

(Sn`)θ
W
, (14)

which we term the conditional commuting probability, since it is computed conditional on living in residence n.

Bilateral commuting �ows also depend on destination characteristics (the wagewi,g , average e�ciency units TWi,g and

consumption access Sni in the numerator); bilateral travel costs (as captured by dWni in the numerator); and origin

characteristics (as captured by the travel-cost weighted average of destination characteristics across sectors in the

denominator). Aggregating across the di�erent sectors k ∈ K , we also obtain the overall commuting probability

between residence n and workplace i:

λWi|n =
∑
g∈K

λWig|n. (15)

Using the properties of the extreme value distribution, we can also compute an overall measure of travel access

for residence n (An), which is a weighted average of the characteristics of each workplace i, including consumption

access (Sni):

An = En [vni,g] = ϑW

[∑
`∈N

∑
m∈K

TW`,mw
θW

`,m

(
dWn`
)θW

(Sn`)θ
W

] 1

θW

, (16)

where ϑW ≡ Γ
(
θW−1
θW

)
and Γ(·) is the Gamma function.
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We show below that the model’s gravity equation predictions also provide a good approximation to the observed

data on commuting trips, and can be used to estimate overall travel access in a theory-consistent way, taking into

account consumption access.

4.5 Residence Choice

Having characterized a worker’s consumption and workplace choices conditional on her residence, we now turn

to her residence choice. Each worker chooses her residence after observing her idiosyncratic draws for amenities

(b), but before observing her idiosyncratic draws for productivity (a), the quality of non-traded services (q), and

route preferences (ν). Therefore, each worker ω chooses the residence n that o�ers her the highest utility given her

idiosyncratic amenity draws (bn(ω)), expected travel access (An), and other residence characteristics (the price of

�oor space (Qn), the price of the traded good (PTn ) and common amenities (Bn)):

Un (ω) = Bnbn (ω)
(
PTn
)−αT

Q−α
H

n An,

Using our independent extreme value assumption for idiosyncratic amenities, the probability that each worker

chooses residence n (λBn ) depends on its attractiveness in terms of travel access (An), and residential characteristics

(Bn, PT,n and Qn) relative to the attractiveness of all other locations within the city:

λBn =
TBn B

θB

n AθBn
(
PTn
)−αT θB

Q−α
HθB

n∑
`∈N T

B
` B

θB
` AθB`

(
PT`
)−αT θB

Q−α
HθB

`

. (17)

Taking expectations over idiosyncratic amenities, expected utility from living in the city depends on the travel

access and other residential characteristics of all locations within the city:

E [u] = ϑB

[∑
`∈N

TB` B
θB

` Aθ
B

`

(
PT`
)−αT θB

Q−α
HθB

`

] 1

θB

. (18)

where ϑB ≡ Γ
(
θB−1
θB

)
and Γ(·) is the Gamma function.

An implication of our extreme value assumption for idiosyncratic amenities is that expected utility conditional on

choosing a given residence is the same across all residences in the city and equal to expected utility for the city as a

whole. The intuition is as follows. On the one hand, a lower price of �oor space or higher travel access raises utility

for a given realization of idiosyncratic amenities (b), which raises the expected utility in a residence. On the other

hand, a lower price of �oor space or higher travel access attracts workers with lower realizations for idiosyncratic

amenities, which reduces the expected utility in a residence. With a Fréchet distribution for idiosyncratic amenities,

these two e�ects exactly o�set one another, such that expected utility conditional on choosing a given residence is the

same across all residences in the city. In the open-city speci�cation, population mobility ensures that this common

expected utility is equal to the reservation level of utility in the wider economy.

The residential choice probabilities (17) highlight that the attractiveness of a residential location depends not only

on its own characteristics but also on its access to surrounding employment and consumption possibilities. In our

quantitative analysis below, we use these residential choice probabilities to decompose the observed spatial variation

in economic activity into the contributions of travel access and a residual for amenities, without taking a stand on

production technology and market structure in the traded and non-traded sectors. As a result, this quantitative anal-

ysis holds in an entire class of quantitative urban models with di�erent speci�cations for production technology and
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market structure. We show that workers’ observed choices of residence, workplace and consumption can be used to

reveal their relative valuations of these locations and compute measures of travel access that hold throughout this

entire class of quantitative urban models.

We can also recover the demand for residential �oor space in each location, using the implication of Cobb-Douglas

utility that expenditure on residential �oor space is a constant share of income:

Hn,U =
αHEnRn

Qn
, (19)

where Rn = λBn L̄ is the measure of residents in location n and L̄ is total city population; En is expected income in

residence n, and the subscript U denotes the residential demand for �oor space (as opposed to the commercial de-

mand, which is characterised below). Expected income in residence n (En) in turn depends on the overall commuting

probabilities (λWi|n) and expected income conditional on commuting from residence n to workplace i (Eni):

En =
∑
i∈N

λWi|nEni, (20)

where Eni depends on both wages and expected worker idiosyncratic productivity.

4.6 Production

When we undertake counterfactuals in our quantitative analysis below, we do need to take a stand on a speci�c

production technology and market structure. In particular, we assume that both the traded good and non-traded

services are produced using labor and commercial �oor space according a constant returns to scale technology. We

assume for simplicity that this production technology is Cobb-Douglas and that production occurs under conditions

of perfect competition.
16

Together these assumptions imply that pro�ts are zero in each location in which a tradable

good or non-tradable service is produced:

PTi =
1

Ai,k
wβ

T

i,kQ
1−βT
i , 0 < βT < 1, k ∈ K/KS , (21)

PSi(k) =
1

Ai,k
wβ

S

i,kQ
1−βS
i , 0 < βS < 1, k ∈ KS ,

where Ai,k is productivity in location i in sector k. Using the �rst-order condition for pro�t maximization, we can

obtain demand for commercial �oor space in each sector and location (Hi,k) as a function of the goods or service price

(PSi(k)), productivity (Ai,k), the price of �oor space (Qi) and labor input adjusted for e�ective units of labor (L̃i,k):

Hi,k =


1−βT
βT

(
PTi Ai,k
Qi

) 1

βT

L̃i,k, k ∈ K/KS

1−βS
βS

(
PSi(k)Ai,k

Qi

) 1

βS

L̃i,k, k ∈ KS ,
(22)

where L̃i,k denotes labor input adjusted for expected idiosyncratic worker productivity.

We allow productivity (Ai,k) in equations (21) and (22) to be either exogenous or endogenous to the surrounding

concentration of economic activity because of agglomeration forces, as discussed further below. We assume no-

arbitrage between residential and commercial �oor space, and across the di�erent sectors in which commercial �oor

space is used, such that there is a single price for �oor space within each location (Qi) in equation (21). In general,

16
In Section C.2 of the online appendix, we show that our speci�cation is isomorphic to a model of monopolistic competition under free entry,

once we allow for agglomeration forces (equation (27) below).
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the wage per e�ciency unit (wi,k) di�ers across both sectors and locations in equation (21), because workers draw

e�ciency units for each sector and location pair, and hence each sector and location pair faces an upward-sloping

supply function for e�ective units of labor. Finally, we assume that the traded good is costlessly traded within the city

and wider economy and choose it as our numeraire, such that:

PTi = 1 ∀ i ∈ N. (23)

4.7 Market Clearing

The price for each type of non-traded service k in each location j (PSj(k) for k ∈ KS
) is endogenously determined by

market clearing, which requires that revenue equals expenditure for that non-traded service k and location j:

PSj(k)Aj,k

(
L̃j,k
βS

)βS (
Hj,k

1− βS

)1−βS

= αSk
∑
n∈N

Rn
∑
i∈N

λSj(k)|niλ
W
i|nEni, k ∈ KS , (24)

where expenditure on the right-hand side equals the sum across locations of workers travelling to consume non-

traded service k in location j; L̃j,k is the labor input adjusted for expected idiosyncratic worker productivity in sector

k in location j; Rn is the measure of residents in location n; and recall that λSj(k)|ni is the conditional consumption

probability and Eni is expected income by workers with residence n and workplace i.

Labor market clearing implies that the measure of workers employed in workplace j in sector k equals the total

measure of workers from all residences n who commute to that workplace j in sector k:

Lj,k =
∑
n∈N

λWjk|nRn, k ∈ K, (25)

where we use Lj,k without a tilde to denote the measure of workers without adjusting for e�ective units of labor; and

recall that λWjk|n is the conditional commuting probability.

Land market clearing requires that the demand for residential �oor space (Hi,U ) plus the sum across sectors of

the demand for commercial �oor space in each sector (Hi,k) equals the total supply of �oor space (Hi):

Hi = Hi,U +
∑
k∈K

Hi,k. (26)

4.8 General Equilibrium with Exogenous Location Characteristics

We begin by considering the case in which productivity (Ai,k), amenities (Bi) and the supply of �oor space (Hi) are

exogenously determined. The general equilibrium of the model is referenced by the price for �oor space in each lo-

cation (Qi), the wage in each sector and location (wi,k), the price of the non-traded good in each service sector and

location (PSi(k)), the route choice probabilities (λSr(k)|nij(k)), the conditional consumption probabilities (λSj(k)|ni), the

conditional commuting probabilities (λWik|n), the residence probabilities (λBn ), and the total measure of workers living

in the city (L̄), where we focus on the open-city speci�cation, in which the total measure of workers is endogenously

determined by population mobility with the wider economy. These seven equilibrium variables are determined by

the system of seven equations given by the land market clearing condition for each location (26), the labor market

clearing condition for each location (25), the non-traded goods market clearing condition for each location and service

sector (24), the conditional consumption probabilities (10), the conditional commuting probabilities (14), the residence

26



probabilities (17), and the population mobility condition that equates expected utility in the city (18) to the reserva-

tion level of utility in the wider economy (Ū ). Given these seven equilibrium variables, we can solve for all other

endogenous variables of the model.

4.9 General Equilibrium with Agglomeration Forces and Endogenous Floor Space

We next extend the analysis to allow productivity and amenities to be endogenous to the surrounding concentration

of economic activity through agglomeration forces and to allow for an endogenous supply of �oor space.

Agglomeration in Production. In both the traded and non-traded sector, we allow productivity (Ai,k) to depend

on production fundamentals and production externalities. Production fundamentals (ai,k) capture features of physical

geography that make a location more or less productive independently of neighboring economic activity (e.g. access

to natural water). Production externalities capture productivity bene�ts from the density of employment across all

sectors (Li/Ki), where employment density is measured per unit of geographical land area.
17

We thus obtain:

Ai,k = ai,k

(
Li
Ki

)ηW
(27)

where Li =
∑
k∈K Li,k is the total employment in location i, and ηW parameters the strength of production exter-

nalities, which we assume to the same across all sectors.

Agglomeration in Residents. In addition to the pecuniary externalities from consumption access, we allow resi-

dential amenities (Bn) to depend on residential fundamentals and residential externalities. Residential fundamentals

(bn) capture features of physical geography that make a location a more or less attractive place to live independently

of neighboring economic activity (e.g. green areas). Residential externalities capture the e�ects of the surrounding

density of residents (Li/Ki) and are modeled symmetrically to production externalities:
18

We therefore have:

Bn = bn

(
Rn
Kn

)ηB
(28)

where ηB parameters the strength of residential externalities.

Floor Space Supply We follow the standard approach in the urban literature of assuming that �oor space is supplied

by a competitive construction sector that uses land K and capital M as inputs. Following Combes, Duranton, and

Gobillon (2019) and Epple, Gordon, and Sieg (2010), we assume that �oor space (Hi) is produced using geographical

land (Ki) and building capital (Mi) according to the following constant return scale technology:

Hi = Mµ
i K

1−µ
i , 0 < µ < 1. (29)

Using cost minimization and zero pro�ts, this Cobb-Douglas construction technology implies that payments for build-

ing capital are a constant share of overall payments for the use of �oor space:

PMi = µQiHi, (30)

17
We assume for simplicity that production externalities depend solely on a location’s own employment density, although it is straightforward

to allow for spillovers of these production externalities across locations.

18
As for production externalities above, we assume that residential externalities depend solely on a location’s own residents density, but it is

straightforward to allow for spillovers of these residential externalities across locations.
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where P is the common user cost of building capital. Using the construction technology (29) to substitute for building

captial (Mi) in this equilibrium condition (30), we obtain a constant elasticity supply function for �oor space as in

Saiz (2010), with the inverse supply function given by:

Qi = ψiH
1−µ
µ

i (31)

whereψi = PK
µ−1
µ

i /µ depends solely on geographical land area (Ki) and parameters. Furthermore, cost minimization

and zero pro�ts also imply that the following zero-pro�t condition holds:

Qi =

(
P
µ

)µ(
Q̃i

1− µ

)1−µ

, (32)

where Q̃i is the price of land per unit area.

Given this speci�cation of agglomeration forces and endogenous �oor space, the determination of general equi-

librium remains the same as above with exogenous location characteristics above, except that productivity (An),

amenities (Bn) and the supply of �oor space (Hn) are now endogenously determined by equations (27), (28) and (31).

5 Quantitative Analysis

In this section, we use our theoretical model to quantify the contributions of workplace access and consumption access

to the observed uneven spatial distribution of economic activity. The key insight underlying our approach is that the

observed consumption and commuting probabilities in our smartphone data can be used to reveal the relative valuation

placed by users on di�erent locations as consumption and workplace locations, and hence can be used to estimate

consumption access and travel access in a theory-consistent way. In Section 5.1, we develop a sequential procedure

to estimate the model’s parameters. In Section 5.2, we use these estimated parameters and model’s residential choice

probabilities to quantify the relative importance of workplace access, consumption access and residential amenities

in explaining the observed spatial concentration of economic activity.

5.1 Estimation Procedure

We begin by discussing the estimation and calibration of the model’s parameters. Our estimation proceeds in a number

of steps, where each step uses additional model structure. First, we calibrate the Fréchet dispersion parameters for

commuting, consumption, and residence choices (θW , θSk , θB , respectively), and the shares of consumer expenditure

on housing (αH ), traded goods (αT ), and each type of non-traded service (αSk ) using central values from the existing

empirical literature and the observed data. Second, we estimate the worker’s route choice problem for each non-

traded service and obtain an estimate of the expected travel cost for consumption trips (dSnij(k)). Third, we estimate

her consumption choice problem conditional on her residence and workplace, and obtain an estimate of the travel time

parameter for consumption trips (φSk = θSk κ
S
k /α

S
k ) and consumption access (Sni). Fourth, we estimate her commuting

choice problem, and obtain an estimate of the travel time parameter for commuting trips (φW = θWκW ) and travel

access (An). Fifth, and �nally, we calibrate the remaining parameters of the model using the observed data and central

values from the existing empirical literature. In Table 1, we summarize the estimated and calibrated parameters, before

discussing each of these estimation steps in turn.
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5.1.1 Preference Dispersion Parameters (θW , θB , θSk ) and Expenditure Shares (αH , αT and αSk ) (Step 1)

In our �rst step, we calibrate the parameters governing idiosyncratic heterogeneity in commuting, consumption and

residence choices (θW , θSk and θB respectively) and the shares of consumer expenditure on housing (αH ), traded

goods (αT ), and each type of non-traded service (αSk ).

We set the preference dispersion parameters for commuting, consumption and residence choices equal to θW =

θSk = θB = 6, which consistent with the range of estimated values for these parameters. In the existing literature

on commuting, Ahlfeldt, Redding, Sturm, and Wolf (2015) estimate a preference dispersion parameter for workplace-

residence choices of 6.83 using the division of Berlin by the Berlin Wall; Heblich, Redding, and Sturm (2020) estimate a

value for the same parameter of 5.25 using the construction of London’s 19th-century railway network; and Kreindler

and Miyauchi (2019) estimates the same parameter of 8.3 using information on the spatial dispersion of income in

Dhaka, Bangladesh. In Section D.1.1 of the online appendix, we provide an over-identi�cation check on our model’s

predictions, using the property that its predictions for residential income depend importantly on these parameter

values. In particular, we compare the model’s predictions for residential income in each Tokyo municipality to separate

data on residential income not used in its calibration. Although any model is necessarily an abstraction, we �nd a

strong positive relationship between the model’s predictions and the observed data.

Table 1: Calibrated and Estimated Structural Parameters

Parameter Description Value

θW dispersion of Fréchet shocks for workplace 6

θB dispersion of Fréchet shocks for residence 6

θSk dispersion of Fréchet shocks for consumption 6

αSk expenditure share for nontradable sector

GJKL �nance realestate communication professional 0.25

I wholesale retail 0.31

M accomodations eating drinking 0.01

P medical welfare healthcare 0.03

Q other services 0.05

αH expenditure share for residential �oor space 0.25

αT expenditure share for tradable sector 0.09

φW (= θWκW ) elasticity of commuting cost with travel time 0.62

φSk (= θSk κ
S
k /α

S
k ) elasticity of consumtpion travel cost with travel time

GJKL �nance realestate communication professional 1.15

I wholesale retail 1.12

M accomodations eating drinking 1.09

P medical welfare healthcare 1.19

Q other services 1.08

βS labor share in production for nontradable sector 0.8

βT labor share in production for tradable sector 0.8

ηW elasticity of production spillover [0, 0.08]

ηB elasticity of residential amenity spillover [0, 0.15]

µ share of capital for �oor space production 0.75

Note: The table presents the set of calibrated and estimated parameters following the procedure developed in the text of Section 5.1.

Fewer empirical estimates are available for the preference dispersion parameter for consumption trips (θSk ), which

determines the elasticity of consumption trips and consumption expenditure with respect to changes in the cost of

sourcing non-traded services. Our calibrated value for this parameter of θSk = 6 is in line with the existing empirical

literature that has estimated elasticities of substitution across retail stores. In particular, Atkin, Faber, and Gonzalez-

Navarro (2018) estimates an elasticity of substitution of 3.9 using Mexican data, while Couture, Gaubert, Handbury,

29



and Hurst (2019) estimates an elasticity of substitution of 6.5 using US data. In Section D.1.2 of the online appendix,

we provide another overidenti�cation check on our model’s predictions, using the property that its predictions for

non-traded service prices in each location are sensitive to this parameter value. Again we show that there is a strong

positive relationship between the model’s predictions and the observed data.

Finally, we calibrate the Cobb-Douglas expenditure share parameters using aggregate data on observed expen-

diture shares in Japan. We set the share of expenditure on residential �oor space equal to αH = 0.25, which also

corresponds to the values in Davis and Ortalo-Magné (2011) and Ahlfeldt, Redding, Sturm, and Wolf (2015). We set

the expenditure share parameter for each type of non-traded service (αSk ) equal to the observed expenditure share on

that sector for the Tokyo metropolitan area, as summarized in Table 1. Lastly, we solve for the implied expenditure

share parameter for traded goods (αT ), using αT = 1− αH −
∑
k∈KS αSk , as also summarized in Table 1.

5.1.2 Estimating the Route-Choice Probabilities (Step 2)

In our second step, we estimate expected consumption travel costs (dSnij(k)), using the model’s predictions for route

choice probabilities and the observed route choice in our smartphone data: HH, WW, HW, WH. From the route choice

probability (7), the probability of choosing route r(k) for non-traded service k conditional on residence n, workplace

i, and consumption location j(k) can be written as:

λRr(k)|nij(k) =
exp(−φRk τSnij(k)r(k))ξ

R
r(k) exp(uRnij(k)r(k))

ζRnij(k)

, (33)

where uRnij(k)r(k) is a stochastic error that captures idiosyncratic determinants of route choice, given residence, work-

place, and consumption location.

We estimate this route choice probability using the Poisson Pseudo Maximum Likelihood (PPML) estimator of

Santos Silva and Tenreyro (2006).
19

The estimated semi-elasticity of travel time (φRk ) in equation (33) is a composite of

the response of consumption trips to travel costs (θRk ) and the response of travel costs to travel times (κSk ), such that

φRk = θRk κ
S
k . The estimated route �xed e�ect ξRr(k) corresponds to the tendency that each route is chosen conditional

on travel time, such that ξRr(k) = TRr(k). The estimated residence-workplace-consumption-location �xed e�ect ζRnij(k)

captures the average tendency that routes are chosen for each residence, workplace, consumption location, such that

ζRnij(k) =
∑
`∈R T

R
`(k) exp(−θRk κSk τSnij(k)`(k)).

Table 2 presents the estimation results for each of the di�erent types of non-traded services: “Finance, Real Estate,

Communication, and Professional”; “Wholesale and Retail”; “Accommodation, Eating and Drinking”; “Medical, Wel-

fare and Health Care”; “Other Services”. In the �rst row, we report the coe�cient on the travel time (φRk ). In the second

to fourth row report, we report the coe�cient on the dummy variables for each route choice, where r(k) = HH is

the excluded category. Two features of Table 2 are noteworthy. First, we estimate a negative and statistically sig-

ni�cant composite coe�cient on travel time (−φRk = −θRk κSk ), highlighting its relevance for route choice. Second,

we estimate negative and statistically signi�cant coe�cients on the indicator variables for the included route choices

(r(k) ∈ {HW,WH,WW}) relative to the excluded category of r(k) = HH . This pattern of results implies a high

average preference for consuming non-traded services from home, rather than consuming them from work, or on the

route between home and work, which is consistent with the reduced-form evidence in Figure 9 in Section 3.

19
In robustness checks, we �nd a similar pattern of results if we instead estimate this choice probability using the multinomial logit model.
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Using these estimates of φRk and ξRr(k), we construct a theory-consistent estimate of adjusted expected travel costs

for consumption trips conditional on residence n and workplace i from equation (8) above as:

d̃Snij(k) ≡
(
dSnij(k)

)1/κSk
= ϑRk

[∑
r′∈R

ξRr′(k) exp(−φRk τSnij(k)r′(k))

] 1

φR
k

, (34)

where ϑRk is again ϑRk ≡ Γ
(
θRk −1

θRk

)
and recall R = {HH,HW,WH,WW}.

In this second step of our estimation procedure, the composite semi-elasticity of travel time (φRk = θRk κ
S
k /α

S
k ) is

a su�cient statistic for the impact of travel time on route choices, as estimated from the route choice probabilities

(33) above. We are not required to separate out the contributions of θRk and κSk to the overall value of this parameter.

Similarly, our adjusted measure of expected travel costs (d̃Snij(k) ≡
(
dSnij(k)

)1/κSk
) from equation (34) is a su�cient

statistic for the impact of expected travel costs on workers choice of consumption locations, workplace and residence

in the subsequent steps of our estimation procedure below. We are not required to separate out the contributions of

1/κSk and dSnij(k) to the overall value of adjusted expected travel costs (d̃Snij(k)).

Table 2: Estimation Results for Route Choice

Dependent Variable: Route Choice Probability

Finance

realestate

communication

professional

Wholesale

retail

Accomodations

eating

drinking

Medical

welfare

healthcare

Other

services

Model: (1) (2) (3) (4) (5)

Variables
Travel Time (Hours) -0.312

∗∗∗
-0.269

∗∗∗
-0.264

∗∗∗
-0.297

∗∗∗
-0.271

∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

Dummy (HW) -1.58
∗∗∗

-1.66
∗∗∗

-1.75
∗∗∗

-1.67
∗∗∗

-1.61
∗∗∗

(0.010) (0.010) (0.009) (0.011) (0.012)

Dummy (WH) -1.04
∗∗∗

-1.16
∗∗∗

-1.10
∗∗∗

-1.23
∗∗∗

-1.12
∗∗∗

(0.009) (0.010) (0.009) (0.011) (0.010)

Dummy (WW) -1.03
∗∗∗

-1.13
∗∗∗

-1.30
∗∗∗

-1.09
∗∗∗

-1.09
∗∗∗

(0.009) (0.009) (0.008) (0.010) (0.011)

Fixed-e�ects
Home-Work-Consumption Location Yes Yes Yes Yes Yes

Fit statistics
AIC 3,753,940.7 7,015,231.9 3,461,408.3 3,674,206.4 4,511,086.5

BIC 6,348,159.7 9,717,411.9 6,081,904.7 6,174,892.1 7,210,376.1

Observations 887,212 921,176 895,488 857,704 920,268

Note: Results of estimating the route choice probability (33) using the Poisson Pseudo Maximum Likelihood (PPML) estimator. Observations are

triplets of municipalities in the Tokyo metropolitan area (residence n, workplace i, and consumption location j(k)) for each type of non-traded

service k. We construct the empirical frequencies of route choice (λR
r(k)|nij(k)) using our smartphone data (aggregated across weekdays and

weekends), as shown in Figure 9 in Section 3 above. The dependent variable is these empirical frequencies (λR
r(k)|nij(k)), where r ∈ R ≡

{HH,WW,HW,WH} corresponds to the di�erent route choices: consuming non-traded services from home (HH), from work (WW ), on the

way from home to work (HW ), and on the way from work to home (WH). The independent variables are travel time and the dummy variables for

the di�erent route choices, where r(k) = HH is the excluded category. Standard errors in parentheses are clustered at the level of the combination

of residence, workplace, and consumption location.

5.1.3 Estimating the Consumption Location Choice and Consumption Access (Sni) (Step 3)

In our third step, we estimate the consumption location choice and consumption access (Sni), using the observed

frequencies of consumption trips to reveal the relative attractiveness of each location for each type of non-traded

service. From the conditional consumption probabilities (10), the probability that a worker travels to consume non-
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traded service k in location j(k), conditional on residence n and workplace i, can be written as:

λSj(k)|ni =
ξSj(k)

(
d̃Snij(k)

)−φSk
exp

(
uSnij(k)

)
ζSni,k

, (35)

where d̃Snij(k) is our estimated adjusted expected travel costs from equation (34) in the previous step; and uSnij(k) is a

stochastic error that captures idiosyncratic determinants of consumption travel costs.

In a conventional gravity equation, travel �ows are determined for a bilateral pair of locations. In contrast, in our

extended gravity equation (35), consumption trips are determined at the level of triplets of residence, workplace and

consumption locations. Since workers can travel to consume non-traded services from either their residence or their

workplace, the adjusted expected consumption travel cost (d̃Snij(k)) from equation (34) to consume non-traded service

k in location j(k) depends on both residence n and workplace i.20

We estimate this extended gravity equation (35) separately for each type of non-traded service using the Poisson

Pseudo Maximum Likelihood (PPML) estimator. This estimator yields theoretically-consistent estimates of the �xed

e�ects (as shown in Thibault 2015) and allows for granularity and zeros in travel �ows (as discussed further in Dingel

and Tintelnot 2020). We obtain three key sets of estimates from this extended gravity equation. First, the estimated

elasticity of consumption trips with respect to travel costs (φSk ) is a composite of the elasticity of consumption trips

with respect to travel costs (θSk /α
S
k ) and the elasticity of travel costs with respect to travel times (κSk ) in equation

(10), such that φSk = θSk κ
S
k /α

S
k . Second, the estimated consumption destination �xed e�ect (ξSj(k)) in equation (35)

captures the average attractiveness of consumption destination j(k) for service k in terms of its price for that non-

traded service (PSj(k)) and quality draws (TSj(k)) in equation (10), such that:

ξSj(k) = TSj(k)

(
PSj(k)

)−θSk
. (36)

Third, the estimated residence �xed e�ect in equation (35) corresponds to the denominator in the conditional con-

sumption probability in equation (10) and captures the overall attractiveness of residence n in terms of its travel-time

weighted access to all consumption locations `(k) for service k:

ζSni,k =
∑
`∈N

TS`(k)

(
PS`(k)

)−θSk (
d̃Sni`(k)

)−φSk
. (37)

From these estimated �xed e�ects, we recover a theoretically-consistent estimate of consumption access for each

type of non-traded service (Snik). Indeed, consumption access can be recovered from either the consumption desti-

nation �xed e�ects or the residence �xed e�ects. First, summing the estimated consumption destination �xed e�ects

(ξSj(k)) weighted by the estimated bilateral travel cost (

(
d̃Sni`(k)

)−φSk
) across locations, and using our calibrated values

of θSk and αSk , we obtain our baseline estimate of consumption access:

Sni =
∏
k∈KS

Γ

(
θSk /α

S
k − 1

θSk /α
S
k

)[∑
`∈N

ξS`(k)

(
d̃Sni`(k)

)−φSk]αSkθSk
. (38)

Second, using the estimated residence �xed e�ects (ζSni,k), and our calibrated values of θSk and αSk , we obtain an-

other estimate of consumption access: Sni =
∏
k∈KS

[
Γ
(
θSk /α

S
k−1

θSk /α
S
k

)](
ζSni,k

)αSk
θS
k

. As sample size becomes su�ciently

20
In the international trade literature, extended gravity arises from third-country e�ects, where for example the probability that a �rm exports

from the US to France depends on whether it also exports to Germany (as in Morales, Sheu, and Zahler 2019). In our model of consumption trips,

there are two inter-linked third-location e�ects. The probability of travelling from residence n to consumption location j(k) for service k depends

on workplace i, while the probability of travelling from workplace i to consumption location j(k) also depends on residence n.
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large, these two sets of estimates of consumption access converge asymptotically towards one another if the model is

a correct speci�cation of the data generating process, as shown in an international trade context in Thibault (2015). In

practice, even in our �nite sample, we �nd that these two estimates are extremely highly correlated with one another,

as shown in Section D.3 of the online appendix.

In Table 3, we report the results of estimating the consumption extended gravity equation (35) for each type of

non-traded service separately. In all cases, we estimate negative and statistically signi�cant semi-elasticities of con-

sumption trips with respect to travel costs (−φSk ). We �nd that these estimated semi-elasticities are relatively constant

across the di�erent types of consumption trips, ranging from -1.08 to -1.19, with the most localized consumption trips

observed for “Finance, Real Estate, Communication, and Professional” and “Medical, Welfare and Health Care”. In Sec-

tion D.2 of the online appendix, we report a speci�cation check in which model the relationship between consumption

trips and travel costs non-parametrically and demonstrate a similar pattern of results.

Table 3: Estimation Results for Consumption Location Choice

Dependent Variable: Consumption Location Choice Probability

Finance

realestate

communication

professional

Wholesale

retail

Accomodations

eating

drinking

Medical

welfare

healthcare

Other

services

Model: (1) (2) (3) (4) (5)

Variables
log d̃Snij(k) -1.15

∗∗∗
-1.12

∗∗∗
-1.09

∗∗∗
-1.19

∗∗∗
-1.08

∗∗∗

(0.040) (0.036) (0.035) (0.038) (0.036)

Fixed-e�ects
Home and Work Location Pairs Yes Yes Yes Yes Yes

Consumption Location Yes Yes Yes Yes Yes

Fit statistics
AIC 129,480.5 130,876.3 131,837.4 128,831.5 132,020.7

BIC 291,657.6 293,164.9 294,084.1 290,841.4 294,295.3

Observations 2,981,924 2,983,860 2,983,134 2,979,020 2,983,618

Note: Results of estimating the consumption trip probability (35) using the Poisson Pseudo Maximum Likelihood (PPML) estimator. Observations

are triplets of municipalities in the Tokyo metropolitan area (residence n, workplace i, and consumption location j(k)). Each column regresses the

consumption trip probability for each type of non-traded service on the adjusted expected travel cost (d̃S
nij(k)

) from the previous step, consumption

location �xed e�ects, and residence-workplace pair �xed e�ects. Standard errors in parentheses are clustered two-way on consumption location

and residence-workplace pair.

As a speci�cation check, we re-estimated the consumption gravity equation under the false assumption that all

consumption trips originate from home. As shown in Table D.4.1 in Section D.4 of the online appendix, we �nd

substantially smaller semi-elasticities with respect to travel times in this robustness check (ranging from -0.8 to -0.6),

highlighting the importance of endogenous route choice. Furthermore, we �nd a better model �t for the consumption

gravity equation incorporating route choice than this alternative speci�cation, as evident from the smaller Akaike

Information Criteria (AIC) or the Bayesian Information Criteria (BIC) than in Panel (B) of Table D.4.1. This pattern of

results is consistent with the idea that workers may frequently consume non-traded services that are close to work but

far from home, precisely because they can easily access these non-traded services from work. In the model that falsely

assumes that all consumption trips originate from home, the way the model tries to rationalize these consumption

trips far from home is with arti�cially low semi-elasticities with respect to travel time.
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5.1.4 Estimating the Workplace Choice and Travel Access (An) (Step 4)

In our fourth step, we estimate the workplace choice and overall travel access (An), by using the observed frequencies

of commuting trips to reveal the relative attractiveness of residences and workplaces. From our parameterization of

commuting costs and the conditional commuting probabilities (14) and (15), the probability that a worker commutes

from residence n to workplace i can be written as the following extended gravity equation:

λWi|n =
ξWi exp

(
−φW τWni

)
(Sni)θ

W

exp
(
uWni
)

ζWn
, (39)

where uWni is a stochastic error that re�ects idiosyncratic determinants of bilateral commuting costs not captured in

bilateral travel times (τni).

In a conventional gravity equation for commuting, the key bilateral determinant of commuting �ows is bilateral

travel time τWni . In contrast, in our extended gravity equation for commuting (39), a worker’s choice of workplace

depends on the extent to which it enhances the worker’s access to consumption opportunities, which in turn depends

on the worker’s residence. Therefore, consumption access (Sni) varies bilaterally with both workplace and residence,

and enters as an additional determinant of bilateral commuting �ows alongside bilateral travel time

We estimate this extended commuting gravity equation (39) using the Poisson Pseudo Maximum Likelihood

(PPML) estimator, our measures of commuting travel times (τWni ), and our estimates of bilateral consumption ac-

cess (Sni) from the previous step. We again obtain three key sets of estimates from this extended gravity equation.

First, the estimated semi-elasticity of commuting �ows with respect to travel times (φW ) in equation (39) is again a

composite of the response of commuting �ows to commuting costs (θW ) and the response of commuting costs to travel

times (κW ) in equation (14), such that φW = θWκW . Second, the estimated workplace �xed e�ect (ξWi ) in equation

(39) captures the average attractiveness of workplace i across sectors in terms of its wage (wi,g) and productivity

draws (TWi,g ) in equation (14), such that:

ξWi =
∑
m∈K

TWi,mw
θW

i,m. (40)

Third, the estimated residence �xed e�ect (ζWn ) in equation (39) corresponds to the denominator in the conditional

commuting probability in equation (14) and captures the overall attractiveness of residence n in terms of its travel-time

weighted access to all workplaces:

ζWn =
∑
`∈N

∑
m∈K

TW`,mw
θW

`,m exp
(
−φW τWn`

)
(Sn`)θ

W

. (41)

From these estimated �xed e�ects, we recover a theoretically-consistent measure of overall travel access. Indeed,

as for consumption access in the previous step, we can recover travel access in two di�erent ways. First, summing

the estimated workplace �xed e�ects (ζWi ) weighted using the estimated bilateral travel costs (exp
(
−φW τWni

)
) across

locations, and using our calibrated value of θW , we obtain our baseline estimate of travel access:

An = Γ

(
θW − 1

θW

)[∑
`∈N

ξW` exp
(
−φW τWn`

)
(Sn`)θ

W

] 1

θW

. (42)

Second, using the estimated residence �xed e�ects (ζWn ) and our calibrated value of θW , we obtain another estimate of

workplace access: An = Γ
(
θW−1
θW

) (
ζWn
) 1

θW
. As sample size becomes su�ciently large, these two sets of estimates

of travel access again converge asymptotically towards one another if the model is a correct speci�cation of the data

34



generating process. In practice, even in our �nite sample, we �nd that these two estimates are extremely highly

correlated with one another, as shown in Section D.3 of the online appendix.

In Table 4, we present the results of estimating the commuting extended gravity equation (35). We include the

commuting travel time, consumption access from the previous step (Sn`) with a known exponent of θW , workplace

�xed e�ects and residence �xed e�ects. We estimate a negative and statistically signi�cant semi-elasticity of com-

muting �ows with respect to commuting time of−φW = −0.617. This estimated value of φW is signi�cantly smaller

than our estimates of φSk above, suggesting that workers’ consumption location choices are more responsive to travel

time than their workplace location choices. In Section D.2 of the online appendix, we report a speci�cation check

in which model the relationship between commuting trips and travel time non-parametrically, and show that our

semi-log speci�cation provides a good approximation to the data.

As a speci�cation check, we re-estimated the commuting gravity equation excluding the consumption access term

model (log (Sn`)θ
W

). As shown in Table D.4.2 in Section D.4 of the online appendix, we �nd a larger semi-elasticity

of commuting �ows with respect to travel time when consumption access is omitted (−0.649 instead of −0.617).

This downward bias arises because the estimated consumption access term log (Sn`)θ
W

tends to be larger for the

commuting pairs with longer distances, which gives rise to a downward omitted variables bias when this term is

omitted. Furthermore, we �nd a better model �t with the commuting gravity equation incorporating consumption

access than with this alternative speci�cation, as evident from the smaller Akaike Information Criteria (AIC) or the

Bayesian Information Criteria (BIC). This pattern of results is consistent with the idea that workers willingness to

commute longer bilateral distances may re�ect not only higher wages or other characteristics of their workplace itself

but also the greater access to consumption possibilities that this workplace provides. As for other large metropolitan

areas such as London and New York, the downtown area of Tokyo to which workers commute long distances on

average provide dense access to bars, restaurants and other non-traded consumption services.

Table 4: Estimation Results for Workplace Choice

Dependent Variable: Commuting Choice Probability

Model: (1)

Variables
Commuting Time (Hours) -0.617

∗∗∗

(0.037)

Fixed-e�ects
Home Location Yes

Work Location Yes

Fit statistics
AIC 1,212.0

BIC 5,557.3

Observations 58,564

Note: Results of estimating the commuting probability (39) using the Poisson Pseudo Maximum Likelihood (PPML) estimator. Observations are

all pairs of municipalities in the Tokyo metropolitan area (residence n and workplace i). Each column regresses the commuting probability on

commuting time, workplace �xed e�ects, residence �xed e�ects, and consumption access ((Sn`)) with a coe�cient restricted to equal θW . Standard

errors in parentheses are clustered two-way on residence and workplaces.
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5.1.5 Other Model Parameters (Step 5)

Together Steps 1-4 are su�cient to undertake our decomposition of the observed spatial variation in economic activity

into the contributions of travel access and a residual for amenities, within an entire class of quantitative urban models

with di�erent speci�cations of production technology and market structure. However, when we undertake counter-

factuals, such as for example for transport infrastructure improvements, we need to determine additional structural

parameters related to the supply-side of the economy (land supply, tradable and non-tradable production, and pro-

duction and amenity spillovers). In our �fth step, we calibrate these parameters directly from the data or using central

values from the existing empirical literature.

We calibrate the Cobb-Douglas cost shares for labor in each sector (βS , βT ) as 0.8, which are broadly consistent

with the labor share on production costs for Tokyo metropolitan area. We assume a share of land in construction

costs of µ = 0.75 following Epple, Gordon, and Sieg (2010) and Combes, Duranton, and Gobillon (2019). We explore

a range of values for the production and residential agglomeration parameters ranging from zero to the values es-

timated in Ahlfeldt, Redding, Sturm, and Wolf (2015): ηW ∈ [0, 0.08] and ηB ∈ [0, 0.15], which spans most of the

existing empirical estimates in the meta-analyses of Melo, Graham, and Noland (2009) and Ahlfeldt and Pietrostefani

(2019). In existing empirical estimates of residential agglomeration, consumption access is typically omitted, because

of the absence of readily-available data on consumption trips. Our estimates of consumption access are positively

correlated with the density of residents and indeed consumption trips provide one mechanism and microfoundation

for residential agglomeration forces. Therefore, one would expect estimated residential agglomeration forces to be

smaller after controlling for consumption access. We present some empirical evidence consistent with this view in

our counterfactuals below, when we compare our model’s predictions for the opening of a subway line in the city of

Sendai to the observed impact of the opening of the subway line in the data.

5.2 Quantifying the Contributions of Workplace and Consumption Access

We now use our estimates from Steps 1-4 above to quantify the contributions of travel access and the residual of

residential amenities to explaining the observed spatial concentration of economic activity and to examine the relative

importance of workplace access and consumption access for overall travel access. We start by re-writing the residential

choice probabilities (17) in the following form:(
λBn
)1/θB

Qα
H

n = BnAn, (43)

where Bn is a composite amenities parameter for residence n that includes common amenities (Bn), the parameter

determining average idiosyncratic amenities (TBn ), the common price of the traded good (PTn = PT = 1), and the

common reservation level of utility (Ū ):

Bn ≡ Bn
(
TBn
)1/θB (

PTn
)−αT (

Ū/ϑB
)−1

(44)

In these residential choice probabilities (43), we observe the share of residents (λBn ) and the price of �oor space

(Qn), and we estimated travel access (An) from Steps 1-4 above (equation (42)). Therefore, we can use these residential

choice probabilities (43) to recover the unobserved composite amenities (Bn) as a structural residual that exactly

rationalizes the observed data as an equilibrium of the model. This residential choice decomposition has an intuitive

interpretation. The left-hand side of these residential choice probabilities (43) corresponds to a summary measure
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of the relative attractiveness of locations. If we observe a location that has relatively many residents (λBn ) and high

price of �oor space (Qn) on the left-hand side, despite having relatively low values of composite access (An) on the

right-hand side, this is rationalized in the model by that location having relatively high residential amenities (Bn).

We now decompose the variance of this summary measure of the relative attractiveness of locations into the

contributions of travel access (An) and residential amenities (Bn). In particular, we use a regression-based variance

decomposition, as implemented in the international trade literature in Eaton, Kortum, and Kramarz (2004). We esti-

mate an ordinary least squares (OLS) regression of each of the components on the right-hand side of the residential

choice probabilities (43) on the summary measure of the relative attractiveness of locations from the left-hand side:

lnAn = cA0 + cA1 ln

((
λBn
)1/θB

Qα
H

n

)
+ uAnt, (45)

lnBn = cB0 + cB1 ln

((
λBn
)1/θB

Qα
H

n

)
+ uBnt,

Noting that OLS is a linear estimator with mean zero residuals, and using the residential choice probabilities (43),

we have cA0 + cB0 = 0 and cA1 + cB1 = 1. Implicitly, this variance decomposition allocates the covariance terms equally

across each of the two components of the residential choice probabilities. The relative values of the slope coe�cients

{cB1 , cA1 } provide measures of the relative importance of travel access (An) and residential amenities (Bn) in explaining

the observed variation in our summary measure of the relative attractiveness of locations.

We next examine the relative importance of workplace access and consumption access for overall travel access,

by considering a special case of our quantitative urban model without consumption trips (αSk = 0 for all k ∈ KS
,

αT = 1−αH , λSj(k)|ni = 0 and Sni = 1). In this special case, we ignore the data on consumption trips, and estimate a

standard quantitative urban model of workplace-residence choice using only the data on commuting trips. As a result,

travel accessibility (Anocons

n ) depends on workplace access alone, and can be constructed using the estimates from our

extended gravity equation estimation of equation (39), but omitting the consumption access term (log (Sn`)θ
W

):

Anocons

n = Γ

(
θW − 1

θW

)[∑
`∈N

ξW` exp
(
−φW τWn`

)] 1

θW

, (46)

where φW and ξW` are the estimated travel time coe�cient and workplace �xed e�ects from the extended commuting

gravity equation (39). Using this measure of travel access without consumption trips (Anocons

n ) in equation (43), we

can recover a corresponding measure of amenities without consumption trips (Bnocons

n ), and implement our variance

decomposition in equation (45) above.
21

Table 5 reports the results of these variance decompositions for our model including consumption trips (Panel A)

and the special case excluding consumptiont trips (Panel B). Observations correspond to municipalities in the Tokyo

metropolitan area for which we have land price data. We measure the price of �oor space (Qn) using the observed

land price data (Q̃n) and our assumption of competitive construction sector (such that Qn ∝ Q̃1−µ
n ). In our model

including consumption trips, we �nd that travel access (An) is about as important as the residual of residential ameni-

ties (Bn) in explaining variation in the relative attractiveness of locations (Qα
H

n

(
λBn
)1/θB

), with a contribution of 56

percent compared to 44 percent. In contrast, when we consider a conventional quantitative urban model excluding

21
As a robustness check, Panel (B) of online appendix Table D.4.3 construct travel access without consumption trips (Anocons

n ) using the estimates

of φW and ξW` from a conventional commuting gravity equation excluding consumption access. Although the estimated travel time coe�cients

di�er between these two gravity equation speci�cations, we �nd a similar pattern of results for the relative importance of consumption access and

residential amenities in this robustness test as in our baseline speci�cation.
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consumption trips, we �nd a substantially reduced contribution from travel access (Anocons

n ) of only 37 percent, with

the residual of residential amenities making up the remaining 63 percent. One implication of these �ndings is that

a substantial component of the variation in conventional measures of residential amenities may re�ect unobserved

di�erences in the geography of access to consumption opportunities. A key advantage of our smartphone GPS data is

that allows us to measure and quantify the relative importance of these consumption trips. Once we incorporate this

information on consumption trips, we �nd that the contribution from the residual of residential amenities declines

substantially. A second implication of these �ndings is that workplace access (Anocons

n ) is far from perfectly correlated

with overall travel access incorporating consumption trips (An), such that we �nd a much smaller contribution from

travel access when we restrict attention to commuting information alone.

Table 5: Decomposition of Variation in the Relative Attractiveness of Locations (log
[(
λBn
)1/θB

Qα
H

n

]
) into the Con-

tributions of Travel Access (An) and Residential Amenities (Bn)

logAn logBn
(1) (2)

Panel A: Baseline Model

logQα
H

n

(
λBn
)1/θB

0.566
∗∗∗

0.434
∗∗∗

(0.049) (0.049)

Observations 201 201

R
2

0.403 0.284

Panel B: No Consumption Trips

logQα
H

n

(
λBn
)1/θB

0.373
∗∗∗

0.627
∗∗∗

(0.036) (0.036)

Observations 201 201

R
2

0.352 0.606

Note: Ordinary least squares (OLS) estimates of the regression-based variance decomposition in equation (45). Panel (A) corresponds to our baseline

model, in which we compute travel access (An) incorporating consumption trips; Panel (B) corresponds to the special case of our model in which

we abstract from consumption trips (Anocons

n ), such that αSk = 0 for all k ∈ KS
, αT = 1 − αH , λS

j(k)|ni = 0 and Sni = 1. Observations are

municipalities in the Tokyo metropolitan area. Heteroskedasticity robust standard errors in parentheses.

6 Counterfactuals

In this section, we use our theoretical framework to undertake counterfactuals for changes in travel costs to provide

further evidence on the role of consumption trips in shaping the spatial distribution of economic activity. In Section

6.1, we introduce the system of equations for undertaking these counterfactuals. In Section 6.2, we examine the

contribution of consumption trips towards agglomeration by undertaking a counterfactual in which we assume no

travel costs for commuting and consumption trips, thus eliminating the spatial frictions in commuting or consumption.

In Section 6.3, we examine the role of consumption trips in shaping the welfare e�ects of transport infrastructure

improvements by undertaking a counterfactual for the construction of a new subway line.
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6.1 Counterfactual Equilibrium

In this section, we introduce the system of equations that we use to solve for a counterfactual equilibrium. This

system of equations can be solved using either the observed initial travel shares (as in the conventional exact-hat

algebra approach of Dekle, Eaton, and Kortum 2007) or using the initial travel shares predicted by the estimated

model (as in the covariate-based approach of Dingel and Tintelnot 2020). In our baseline speci�cation, we use this

covariate-based approach to address concerns about granularity and the resulting potential for over�tting using the

exact-hat algebra approach. In Section G.5 of the online appendix, we report a robustness test in which we use the

observed initial travel shares following the conventional exact-hat algebra approach. In our empirical application, we

�nd a relatively similar pattern of results using both approaches.

In each case, we rewrite the counterfactual equilibrium conditions of the model in terms of the initial travel shares

and endogenous variables and the counterfactual changes in these endogenous variables. In our baseline speci�ca-

tion, we consider the closed-city speci�cation of the model, in which total population for the city as a whole (L̄) is

exogenous, and hence the change in travel costs a�ects worker welfare.
22

We denote the value of a variable in the

initial equilibrium by x, the value of this variable in the counterfactual equilibrium by x′ (with a prime), the relative

change in this variable by x̂ = x′/x (with a hat). Given values for the model parameters (αH , αT ,

{
αSk
}

,

{
θSk
}

,

θW , θB , κW , κS , ηB , ηW , βS , βT , µ), assumed changes in travel cost {d̂Wni , d̂Snij(k)}, and the initial travel shares

and endogenous variables ({λWig|n, λ
S
j(k)|ni, λ

B
n }, {Hj,k, Hn,U}, {Eni}), we solve for the counterfactual equilibrium by

solving the following system of equations, as derived in Section E of the online appendix.

(i) Changes in Commuting and consumption probabilities From equations (10) and (14), the counterfactual

changes in the conditional commuting probabilities (λ̂Wig|n) and conditional consumption probabilities (λ̂Sjk|n) satisfy:

λ̂Wig|n =
ŵθ

W

i,g

(
d̂Wni

)θW
ŜθWni∑

`∈N
∑
m∈K ŵ

θW
`,m

(
d̂Wn`

)θW
ŜθWn` λW`m|n

, (47)

λ̂Sj(k)|ni =

(
P̂Sj(k)

)−θSk (
d̂Snij(k)

)θSk
∑
`∈N

(
P̂S`(k)

)−θSk (
d̂Sni`(k)

)θSk
λS`(k)|ni

. (48)

Using equations (10), (12), (14) and (16), the corresponding changes in travel access (Ân) and consumption access (Ŝn)

can be written in terms of the own commuting shares (λ̂WnT |n) and own consumption shares (λ̂Sn(k)|ni):

Ân =

[
ŵθ

W

n,g

(
d̂Wnn

)θW
ŜθWnn /λ̂Wng|n

] 1

θW

, (49)

for some g ∈ K , and

Ŝni =
∏
k

[(
P̂Sn,k

)−θSk (
d̂Snin(k)

)θSk
/λ̂Sn(k)|ni

]αSk
θS
k

. (50)

22
It is straightforward to instead consider the open-city speci�cation, in which case total population is endogenous, and the welfare e�ects of

the change in travel costs accrue only to landlords, as in the public �nance literature following George (1879).
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(ii) Changes in residential location decision From equation (17), the counterfactual changes in residential prob-

abilities (λ̂Bn ) satisfy:

λ̂Bn =
ÂθBn Q̂−α

HθB

n B̂θ
B

n∑
`∈N ÂθB` Q̂−α

HθB

` B̂θBn λB`
. (51)

(iii) Changes in commercial and residential �oor space demand From equations (21) and (22), the changes in

commercial �oor space in each sector (Ĥi,g) are given by:

Ĥi,g =
ŵi,g

ˆ̃Li,g

Q̂i
, (52)

where the change in labor input adjusted for e�ective units of labor (
ˆ̃Li,g) can be expressed as:

ˆ̃Li,g =
1

ŵi,g

∑
n∈N E

′

niλ
′W
ig|nλ

B′

n∑
n∈N Eniλ

W
ig|nλ

B
n

. (53)

From equation (19), the changes in residential �oor space (Ĥi,U ) satisfy:

Ĥi,U =
Êiλ̂

B
i

Q̂i
, (54)

where the counterfactual residential income E
′

n is given by equation (20):

E
′

n =
∑
i∈N

E
′

niλ
′W
i|n , (55)

and the changes of commuting-pair speci�c income Êni satisfy:

Êni =
Ân
Ŝni

. (56)

(iv) Changes in the price of �oor space From equation (31), the change in the price of �oor space (Q̂i) and the

overall quantity of �oor space (Ĥi) are related as follows:

Q̂i = Ĥ
1−µ
µ

i , (57)

where the change in this overall quantity of �oor space (Ĥi) is a weighted average of the changes in the quantities of

commercial �oor space in each sector (Ĥi,k) and the quantity of residential �oor space (Ĥi,U ):

Ĥi =
Hi,U Ĥi,U +

∑
k∈K Hi,kĤi,k

Hi,U +
∑
k∈K Hi,k

. (58)

(v) Changes in endogenous productivities and amenities From equations (27) and (28), the changes in endoge-

nous productivities (Âi,k) and amenities (B̂n) as a result of agglomeration forces satisfy:

Âi,k = L̂η
W

i , (59)

B̂n = R̂η
B

n . (60)
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(vi) Changes in nontraded goods prices From equation (24), the changes in non-traded goods prices (P̂j,k) satisfy:

P̂Sj(k) =
1

Âj,k
ˆ̃Lβ

S

j,kĤ
1−βS
j,k

∑
n,i∈N E

′

niλ
′S
j(k)|niλ

′W
i|nλ

′B
n∑

n,i∈N Eniλ
S
j(k)|niλ

W
i|nλ

B
n

. (61)

(viii) Changes inWages From the zero-pro�t condition (21), the changes in wages in each sector and location with

positive production (ŵi,k) are given by:

ŵi,k =

(
Âi,kP̂

S
i(k)

Q̂1−βS
i

)1/βS

. (62)

We solve this system of equations (47)-(62), starting with an initial guess of the relative change in each endogenous

variable (x̂ = 1), and updating this initial guess until the solution to this system converges to equilibrium. Using the

resulting counterfactual changes in the endogenous variables of the model (λ̂Wig|n, λ̂Sj(k)|ni, Ân, Ŝn, λ̂Bn , Ĥi,g , Ĥi,U ,

ˆ̃Li,g , Q̂i, Âi,k , B̂n, P̂Si(k), ŵi,k), together with equation (18), we can compute the implied change in expected utility

(Ê[u]) induced by the change in travel costs as follows:

Ê[u] =

[∑
`∈N

λB` B̂
θB

` Âθ
B

` Q̂−α
HθB

`

] 1

θB

, (63)

where we have used our choice of numeraire (PT` = 1 for all ` ∈ N ).

As discussed above, conventional quantitative urban models without consumption trips correspond to a special

case of our model, in which αSk = 0 for all k ∈ KS
, αT = 1 − αH , λSj(k)|ni = 0 and Sni = 1. In this special case,

the change in expected utility (Ê[u]) as a result of the change in travel costs continues to be given by equation (63),

but the change in travel access (Ân) reduces to the change in workplace access (Ânocons

n ). Therefore, if one assumes

no consumption trips, whereas in reality they occur, there are two sources of bias in these counterfactual predictions

for the impact of changes in travel costs. First, the general equilibrium predictions of the model for the changes

in all endogenous variables (such as the price of �oor space, the probability of working in each location and the

probability of living in each location) are in general di�erent with and without consumption trips. The reason is that

these consumption trips change the relative attractiveness of locations as workplaces and residences (because of their

di�erential access to other locations for consumption) and change relative factor demand across locations (through

travel from each location to consume non-traded goods in other locations). Second, even if the general equilibrium

predictions for all other endogenous variables were the same, abstracting from consumption trips would lead to a

systematic understatement of the welfare gains from reductions in travel costs. The reason is that these reductions

in travel costs lower the costs of consumption trips and raise consumption access (Ŝni > 1), which in turn increases

travel access (Ân > 1), and hence raises expected utility in equation (63). Intuitively, the special case of the model

without consumption trips undercounts the travel journeys that bene�t from the reduction in travel costs, which leads

to an understatement of the welfare gains from this reduction in travel costs.

6.2 Travel Costs and the Spatial Concentration of Economic Activity

In our �rst set of counterfactuals, we provide further evidence on the role of travel costs for commuting and consump-

tion in shaping the spatial concentration of economic activity, by reducing each of these sources of spatial frictions.

In a �rst exercise, we halve travel costs for commuting trips (κW
′

= 0.5 ·κW ′ ), maintain travel costs for consumption

trips equal to their estimated value (κSk = φSkα
S
k /θ

S
k > 0), and solve for the counterfactual equilibrium distribution of
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economic activity. In a second exercise, we halve travel costs for consumption trips (κS
′

k = 0.5 · κSk ), maintain travel

costs for commuting trips equal to their estimated value (κW = φW /θW > 0), and solve for the counterfactual equi-

librium. Finally, in a third exercise, we halve travel costs for both commuting and consumption trips (κW
′

= 0.5 ·κW ′

and κS
′

k = 0.5 ·κSk ), and solve for the counterfactual equilibrium. We use the parameter values from Table 1, with the

agglomeration parameters given by ηB = 0.08 and ηW = 0.15. In Table F.0.1 in Section F of the online appendix, we

report robustness tests using alternative values for these agglomeration parameters.

In Figure 10, we display the results of these three counterfactuals. In Panel (A), we show counterfactual em-

ployment by residence against observed employment by residence (both variables are normalized to have a mean of

zero in logs). In Panel (B), we show the corresponding �gure for employment by workplace. To provide a point of

comparison, we begin by displaying the 45 degree line (labeled “Baseline”). On top of this, we overlay the linear �t

and its con�dence interval for the same outcomes under our three counterfactuals. If employment is una�ected by

the change in travel costs, the counterfactual plot coincides with the 45-degree line. If the regression slope is �atter

than 45 degree line, counterfactual employment is more decentralized than actual employment, because employment

decreases in locations with higher actual employment, and increases in locations with lower actual employment.

Figure 10: Counterfactuals for Reducing Travel Costs for Commuting and Consumption Trips

(A) Employment by Residence (B) Employment by Workplace

Note: Panel (A) shows counterfactual employment by residence against observed employment by residence; right panel shows the analogous plot

for employment by workplace; baseline corresponds to the observed distributions for our baseline sample for April 2019; the three counterfactuals

halve travel costs for consumption trips, for commuting trips, and for both consumption and commuting trips, respectively. All counterfactuals

use the parameter values from Table 1, with the agglomeration parameters given by ηB = 0.08 and ηW = 0.15. In Table F.0.1 in Section F of the

online appendix, we report robustness tests using alternative values for these agglomeration parameters.

We �rst discuss how the three counterfactuals change the spatial distribution of employment by residence (Panel

A). We start with our �rst counterfactual of halving the travel cost for consumption trips. We �nd that the regression

slope is shallower than 45 degree line (a coe�cient is 0.77 instead of one), such that the spatial inequality of the

residential population decreases by about 23 percent (= 1− 0.77). This result is intuitive. In the initial equilibrium in
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the data, employment in non-traded services is spatially concentrated, and workers trade o� the lower prices of �oor

space in outlying locations against the higher costs of travelling to consume non-traded services. When we halve the

travel cost parameter for consumption trips in the counterfactual, we reduce this di�erence in consumption travel

costs between central and outlying locations, which increases the relative attractiveness of outlying locations.

In our second counterfactual, we halve travel costs for commuting trips (labelled “reduce travel costs for commut-

ing trips”). We again �nd that the regression slope is signi�cantly �atter than 45 degree line (a coe�cient of 0.39),

such that the observed spatial inequality of the residential population decreases by about 61 percent (= 1−0.39). The

intuition is similar to our �rst counterfactual. When we halve the travel costs for commuting trips in the counterfac-

tual, we reduce the di�erence in commuting costs between central and outlying locations, which increases the relative

attractiveness of outlying locations. Comparing the magnitude of these �rst and second counterfactuals, commuting

costs are more important than consumption travel costs for the spatial concentration of residents, but the contribution

from consumption travel costs is more than half that from commuting costs.

In our third counterfactual, we halve travel costs for both commuting and consumption trips (labelled “reduce

travel costs for commuting and consumption trips”). Here the reductions in travel costs for the two types of trips

reinforce one another, resulting in an even �atter regression slope (a coe�cient of 0.20), such that the spatial inequality

of the residential population decreases by about 80 percent (= 1− 0.20).

We now turn to how the three counterfactuals would change the spatial distribution of employment by workplace

(Panel B). In our �rst counterfactual of halving the travel cost for consumption trips, the regression slope of counter-

factual employment by workplace is 0.92, such that the spatial inequality of employment by workplace decreases by

8 percent (= 1− 0.92). Theoretically, there are two counteracting forces for how the reduction in consumption travel

costs a�ects the spatial concentration of employment by workplaces. On the one hand, consumers can now travel

more easily to locations that o�er lower prices for nontradable services. This force tends to increase the concentration

of employment by workplace. On the other hand, �rms in the outskirts can now expect a higher volume of consumer

travel, increasing the relative attractiveness of these locations for �rms. This force acts to decrease the concentra-

tion of employment by workplace. Quantitatively, we �nd that the latter force dominates, such that the reduction in

consumption travel costs decreases the spatial concentration of employment by workplace.

In our second counterfactual of halving the travel cost for commuting trips, the regression slope of counterfactual

employment by workplace is 0.67, such that the spatial inequality of employment by workplace decreases by 33 percent

(= 1 − 0.67). As in our �rst counterfactual, there are two counteracting forces for how the reduction of commuting

travel cost a�ects the spatial concentration of employment by workplace. On the one hand, workers can now more

easily commute to central locations that o�er higher wages. This force tends to increase the spatial concentration

of employment by workplace. On the other hand, �rms can now expect more commuters even if they locate in the

outskirts. This force tends to decrease the spatial concentration of employment by workplace. Quantitatively, we

�nd that the latter force dominates, such that the reduction in commuting travel costs also decreases the spatial

concentration of employment by workplace.

In our third counterfactual of halving the travel costs for both commuting and consumption trips, we �nd that the

regression slope of counterfactual employment by workplace is 0.78, such that the spatial inequality of employment by

workplace decreases by 22 percent (= 1−0.78). Interestingly, this reduction is smaller than our second counterfactual

of halving only the commuting cost, which re�ects the interaction of the two counteracting forces from the reduction
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in consumption and commuting travel costs discussed above.

Overall, the results of these counterfactuals for changes in travel costs provide further evidence that consumption

access is quantitatively important for the spatial concentration of economic activity in urban areas relative to the

workplace access that has received much greater emphasis in previous research.

6.3 Transportation Infrastructure

In our second set of counterfactuals, we examine the role of consumption access in shaping the impact of transport

infrastructure improvements. In particular, we use our smartphone data and quantitative model to evaluate the impact

of the construction of a new subway (underground) line in the city of Sendai. Before the construction of this new line,

there had been only one Nanboku (North-South) subway line, which had been in operation since 1987. In December

2015, the new Tozai (East-West) subway line opened, thereby providing a substantial expansion in the overall subway

network, as shown in Figure 11.

Figure 11: Map of the City of Sendai

We use our model to undertake counterfactuals for the impact of this new subway line. Our goals are twofold. First,

we show that our counterfactual predictions closely align with the observed changes in land prices, residents, and

travel access before and after the subway opening. Since we calibrate the model using only the observed smartphone

data before the subway opening, these results indicate that our model has ex ante predictive power for evaluating

the impact of transport infrastructure improvements. Second, we use our counterfactuals to evaluate the welfare

gains from the opening of the new subway line. We �nd that these welfare gains are substantially underestimated by
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omitting consumption trips, in part because of the resulting undercounting of trips. These results are consistent with

the view that that existing quantitative urban models that focus on commuting may underestimate the welfare gains

from transport infrastructure improvements, because they abstract from all the other types of trips that occur within

urban areas and bene�t from the resulting reduction in travel costs.

In Section 6.3.1, we report reduced-form evidence on the impact of the Tozai Subway line on �oor space prices,

residential population and travel access. We compare the results of di�erences-in-di�erences speci�cations estimated

using the actual data and the counterfactual predictions of our model. In Section 6.3.2, we present the model’s coun-

terfactual predictions for the welfare gains from the opening of the Tozai Subway Line and evaluate the contribution

from consumption access towards these welfare gains.

6.3.1 Di�erence-in-Di�erence E�ects of Tozai Subway Line

We start by analyzing how the Tozai Subway Line has changed urban landscape of the city of Sendai using our

smartphone data and land price data. Our analysis is based on the following di�erence-in-di�erence regression:

∆ log Yn = c0 + c1Tn + un, (64)

where n indexes Oaza; Tn is a dummy variable that equals one if the Oaza includes the new stations of the Tozai

Subway Line (except for Sendai station which is also a station for the existing Nanboku Subway Line) and zero other-

wise; ∆ log Yn is the log di�erence of an outcome of interest before and after the opening of the Tozai Line; any �xed

e�ect in the level of the outcome of interest is di�erenced out; the constant c0 captures any common change in the

outcome of interest across all locations; and the coe�cient c1 is an estimate of the treatment e�ect from the opening

of a station on the new Tozai Subway Line. We consider the following outcomes: (i) the price of �oor space (Qn); (ii)

the residential probability or share of the city’s residential population in each Oaza (λBn ); (iii) travel access (An); and

(iv) residential amenities (Bn).

We �rst estimate this regression using the observed data for the pre- and post-periods. We measure the price of

�oor space (Qn) using the observed land price data (Q̃n) and our assumption of competitive construction sector (such

that Qn ∝ Q̃1−µ
n ). For the land price data, we use 2009 as the pre-period (the earliest available year to mitigate antic-

ipation e�ects) and 2018 as the post-period. We construct the residential probability (λBn ) using our smartphone data.

We estimate travel access An and residential amenities Bn using our smartphone data and the procedure developed

in Section 5.1 for the pre- and post-period separately. For these variables constructed from our smartphone data, we

use June 2015 as the pre-period (shortly before the opening of the new subway line), and we use June 2017 as our

post-period (the same month two years after the pre-period). To better proxy the changes in travel time from the

opening of the new subway line in this context where residents use di�erent travel modes, we extend our baseline

model to incorporate a mode choice between public transportation and cars when estimating the e�ective change in

travel time, as discussed in Appendix G.1.
23

In Panel (A) of Table 6, we present the results of estimating equation (64) using the observed data. As shown in

Columns (1) and (2), we �nd larger increases in �oor space prices and residential population in Oaza containing new

stations than in other Oaza following the opening of the new subway line, which is consistent with these locations

23
We use the same parameters as in Table 1, except for φW and φSk , which we re-estimate from our extended consumption and commuting

gravity equations for the city of Sendai, as discussed in Section G.2 of the online appendix.
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becoming relatively more attractive. As reported in Column (3), we also observe a larger increase in our estimate of

travel access in locations with new stations, which is consistent with the idea that the increase in �oor space prices

and residential population in these location is driven by the model’s mechanism of an improvement in travel access.

In contrast, as shown in Column (4), there is no evidence of a larger increase in the structural residual of residential

amenities in these locations. Therefore, we �nd that the model is quantitatively able to explain the observed increase

in �oor space prices and residential population through its mechanism of an improvement in travel access, without

requiring increases in the residual of residential amenities in these locations. Notably, if we consider the special case

of our model excluding consumption trips, we �nd a smaller increase in travel access (0.042 instead of 0.054) and a

larger increase in the residual of residential amenities (0.017 instead of 0.004), as shown in Table G.3.1 in Section G.3

of the online appendix. Hence, we also �nd that incorporating consumption trips is important for the quantitative

success of the model’s mechanism in explaining the observed data.

To provide further evidence on the predictive power of our model, we next undertake counterfactuals for the

impact of the reduction in travel time from the opening of the new subway line using only information from the

pre-period, and estimate the same reduced-form regressions using the model’s counterfactual predictions. In our

baseline speci�cation, we assume the standard value for production agglomeration forces from the existing empirical

literature (ηW = 0.08), and assume that our mechanism of consumption access captures all agglomeration forces in

residential decisions (ηB = 0). In Panel (B) of Table 6, we present the results from estimating equation (64) using

these counterfactual predictions for the change in each economic outcome of interest. We �nd that the model’s

counterfactual predictions align closely with the observed patterns in the data. In Column (1), we estimate a positive

and statistically signi�cant treatment e�ect for the price of �oor space, which is somewhat larger than that in the

observed data, perhaps in part because the model may not fully capture the expansion in the supply of �oor space

following the opening of the new subway line. In Columns (2) and (3), we also estimate positive and statistically

signi�cant treatment e�ects for the residential probability and travel access, which lie within the 95 percent con�dence

intervals around the estimated treatments in the observed data. Finally, in Column (4), the model necessarily implies

zero treatment e�ect for residential amenities in the absence of residential agglomeration forces (ηB = 0), which is

consistent with our �nding above using the observed data that the estimated treatment e�ect for residential amenities

is close to zero and statistically insigni�cant.
24

As an additional speci�cation check, we estimate the same reduced-form regressions for the same sample period,

but use a dummy variable that takes the value one for Oazas that contain stations on the existing Nanboku (North-

South) Subway Line (which opened in 1987) rather than stations on the new Tozai (East-West) Subway Line (which

opened in 2015). If there are positive or negative network e�ects from the new Tozai Subway Line on locations with

stations on the existing Nanboku Subway Line, we would expect to again detect statistically signi�cant treatment

e�ects. In Section G.4 of the online appendix, we show that we �nd no evidence of statistically signi�cant treatments

e�ects on the price of �oor space, residential population, travel access, and residential amenities for this existing

Nanboku Subway Line. These results are consistent with a limited net impact of network e�ects on the existing

subway line and suggest that our earlier estimates for the Tozai Subway Line are indeed capturing e�ects speci�c to

24
In a robustness test in Section G.3 of the online appendix, we estimate ηB using the identifying assumption that the log change in residential

fundamentals (bn in equation (28)) is uncorrelated with proximity to new subway stations. We �nd a small estimate of ηB = 0.01. In the special

case of the model that abstracts from consumption trips, we obtain a somewhat larger estimate of ηB = 0.05, again highlighting the importance

of incorporating consumption trips for the model’s mechanism of travel access to explain the observed data.

46



this new subway line. Consistent with these �ndings using the observed data, we also �nd no evidence of statistically

signi�cant treatment e�ects for the existing Nanboku Subway Line using our counterfactual predictions of the model.

Table 6: Di�erence-in-Di�erence Estimates for the Opening of the Tozai Subway Line Using the Observed Data and

our Model’s Counterfactual Predictions

∆ logQn ∆ log λBn ∆ logAn ∆ logBn
(1) (2) (3) (4)

Panel A: Data

Dummy (Tozai Line Stations) 0.046
∗∗∗

0.311 0.054
∗∗∗

0.004

(0.014) (0.210) (0.008) (0.036)

Observations 368 305 305 305

R
2

0.030 0.007 0.123 0.0001

Panel B: Model Prediction (ηB = 0; ηW = 0.08)

Dummy (Tozai Line Stations) 0.091
∗∗∗

0.300
∗∗∗

0.073
∗∗∗

0.000

(0.010) (0.032) (0.008) (0.000)

Observations 370 370 370 370

R
2

0.197 0.191 0.199

Note: Results of estimating the di�erence-in-di�erence regression (64) using the observed outcome variables (Panel A) and the counterfactual model

predictions (Panel B). The treatment dummy is an indicator that takes the value one when the Oaza includes stations of the new Tozai Subway Line

(except for Sendai station which is also a station for the existing Nanboku Subway Line) and zero otherwise. Observations are the 370 Oaza in the

City of Sendai. In Panel (A), 2 observations are missing in Column (1) because land price data is not available, and 65 observations are missing in

Columns (2)-(4), because we observe no residents in either the pre- or post-period in our smartphone data. Standard errors are clustered by Oaza.

6.3.2 Welfare Gains from the Tozai Subway Line

Having shown that the model is quantitatively successful in rationalizing the observed change in the spatial distri-

bution of economic activity following the opening of the Tozai Subway Line, we now use the model to evaluate the

welfare impact of the opening of this new subway line for our baseline closed-city speci�cation.

In Table 7, we present the results for the di�erent model speci�cations shown in the left-most column. In the

second column, we report the percentage point increase in expected utility for the residents of the city of Sendai. In

our baseline speci�cation in the �rst row, we again assume the standard value for production agglomeration forces

from the existing empirical literature (ηW = 0.08), and assume that our mechanism of consumption access captures

all agglomeration forces in residential decisions (ηB = 0). In robustness checks in the subsequent rows, we report

results for a number of alternative speci�cations. In the third column, we report the change in expected utility in each

of these alternative speci�cations as a percentage of that in our baseline speci�cation in the �rst row.

As reported in Row (1), we �nd an increase in the �ow of expected utility from the opening of the new Tozai

Subway Line of 2.74 percentage points in our baseline speci�cation. Therefore, even though we take into account

the existence of other modes of transport prior to the opening of the new line (such as buses), we �nd substantial

welfare gains from the reduction in bilateral travel times achieved by the opening of the new subway line. To provide

a point of comparison, Row (2) reports results for the special case of our model excluding consumption trips (αSk = 0
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for all k ∈ KS
, αT = 1 − αH , λSj(k)|ni = 0 and Snt = 1). In this speci�cation, we �nd a welfare gain from the

new subway line of 1.44 percentage points, or 53 percent of that in our baseline speci�cation. Therefore, we �nd

that the undercounting of travel journeys from focusing solely on commuting trips is quantitatively important for the

evaluation of the welfare e�ects of observed transport infrastructure improvements.

In Row (3), we consider another special case of the model, in which we falsely assume that all consumption trips

originate from home locations, thereby ruling out travel to consume non-traded services from work or on the way

between home and work.
25

In this special case, we �nd somewhat larger welfare gains from the new subway line of

2.99 percentage points, or 9 percent larger than our baseline speci�cation. This pattern of results is intuitive, because

excluding the option of consumption travel from work or on the way between home and work increases average travel

distances for consumption trips, and hence increases the magnitude of the welfare gain from the reduction in travel

times achieved by the opening of the new subway line.

Table 7: Counterfactual Increase in Expected Utility in Sendai from the new Tozai Subway Line

Percentage Point Increase in Residential Utility Relative to Baseline (%)

(1) Baseline (ηB = 0; ηW = 0.08) 2.74 1.00

(2) No consumption trips 1.44 0.53

(3) No trip chains for consumption trips 2.99 1.09

(4) Include residential spillover (ηB = 0.15) 3.24 1.18

(5) Eliminate production spillover (ηW = 0) 2.61 0.95

Note: The second column reports model counterfactuals for the percentage point increase in expected utility as a result of the reduction in travel time from the opening

of the new Tozai (East-West) subway line in the city of Sendai. The �rst row presents results for our baseline speci�cation (residential agglomeration forces of ηB = 0,

workplace agglomeration forces of ηW = 0.08) and the subsequent rows present results for a number of alternative speci�cations. The third column reports the

change in expected utility in each of these alternative speci�cations as a percentage of the change in our baseline speci�cation in the �rst row.

In the remaining two rows, we examine the sensitivity of our results to alternative assumptions about the strength

of residential and production agglomeration forces. In Row (4), we introduce residential agglomeration forces by

assuming ηB = 0.15 instead of ηB = 0. In this speci�cation, we �nd welfare gains from the new subway line that are

around 18 percent larger than those in our baseline speci�cation. In Row (5), we exclude productivity spillovers by

assuming ηW = 0 instead of ηW = 0.08. In this case, we �nd welfare gains from the new subway line that are around

5 percent smaller than those in our baseline speci�cation. Therefore, we �nd that agglomeration forces magnify the

welfare gains from transport infrastructure improvements, consistent with the �ndings of existing studies, such as

Tsivanidis (2018) and Heblich, Redding, and Sturm (2020). However, the impact of these agglomeration forces on

the welfare gains from transport infrastructure improvements (comparing Rows (4) and (5) to Row (1)) is smaller

than the impact of excluding consumption trips (comparing Row (2) to Row (1)), again highlighting the relevance of

consumption access for the evaluation of the welfare e�ects of transport infrastructure improvements.

Naturally, there a number of caveats worthy of discussion. A full cost-bene�t analysis would involve a comparison

of the net present value of these welfare gains from the transport infrastructure improvement to the construction costs,

the net present value of operating pro�ts or losses, and the net present value of maintenance costs. Nevertheless, for a

marginal project for which the net present values of these bene�ts and costs lie close to one another, an underestimate

of the increase in the �ow of expected utility from a transport infrastructure of 47 percent because of abstracting from

25
More speci�cally, we consider the limiting case in which TR

r(k)
→ 0 for r (k) ∈ {WW,HW,WH} and TRHH > 0, which ensures that

workers always travel to consume non-traded services from home.
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consumption trips could well be consequential for making the case for that transport improvement.

7 Conclusions

We provide new theory and evidence on the role of consumption access in understanding the spatial concentration

of economic activity. We use smartphone data that records the global positioning system (GPS) location of users

every 5 minutes to provide an unprecedented level of detail on patterns of travel by hour and day within the Tokyo

metropolitan area. Guided by our empirical �ndings, we develop a quantitative model of internal city structure that

captures the fact that much of the travel that occurs within urban areas is related not to commuting but rather to

the consumption of non-traded services, such as trips to restaurants, co�ee shops and bars, shopping expeditions,

excursions to cinemas, theaters, music venues and museums, and visits to professional service providers.

We begin by establishing four key empirical properties of these non-commuting trips. First, we show that they are

more frequent than commuting trips, so that concentrating solely on commuting substantially underestimates travel

within urban areas. Second, we �nd that they are concentrated closer to home and are more responsive to travel

time than commuting trips, which implies that focusing solely on commuting yields a misleading picture of bilateral

patterns of travel within cities. Third, combining our smartphone data with highly spatially-disaggregated data on

employment by sector, we show that these non-commuting trips are closely related to the availability of nontraded

sectors, consistent with our modelling of them as travel to consume non-traded services. Fourth, we �nd evidence of

trip chains, in which these consumption trips can occur along the journey between home and work.

We next develop our quantitative theoretical model of internal city structure that incorporates these consump-

tion trips. Workers choose their preferred residence, workplace and consumption locations, taking into account the

bilateral costs of travel and idiosyncratic draws for amenities for each residence, productivity for each workplace,

service quality for each consumption location, and preferences for each route. We use the model’s gravity equations

for commuting and consumption trips to estimate the relative valuation that users place on di�erent locations and

construct theoretically-consistent measures of travel access. We next use the model’s residential choice probabilities

to show that travel access is about as important as the residual of residential amenities in explaining the relative at-

tractiveness of locations, with a contribution of 56 percent compared to 44 percent. In a special case of our model

excluding consumption trips, we �nd a substantially smaller contribution from travel access of 37 percent, suggesting

that conventional measures of amenities may in part capture consumption access, and highlighting the usefulness of

smartphone data in measuring consumption trips that are otherwise hard to observe.

Finally, we show how the model can be used to undertake counterfactuals for the impact of changes in travel

costs on the spatial distribution of economic activity. In a �rst set of counterfactuals, we eliminate spatial frictions

for commuting and consumption trips, and show that both sets of spatial frictions make substantial contributions to

the concentration of economic activity. In a second set of counterfactuals, we evaluate the impact of the construction

of new transport infrastructure on the spatial distribution of economic activity. We show that abstracting from con-

sumption trips leads to a substantial underestimate of the welfare gains from a transport infrastructure improvement

(because of the undercounting of trips) and leads to a distorted picture of changes in travel patterns within the city

(because of the di�erent geography of commuting and non-commuting trips).

Taken together, our �ndings suggest that access to consumption opportunities as well as access to employment
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opportunities plays a central role in understanding the concentration of economic activity in urban areas.
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