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Abstract. By extending de Paula and Tang (2012) and Aradillas-López and Gandhi (2016),

we derive testable restrictions for uniqueness of equilibrium in games with multi-dimensional

actions. We discuss two models of payoff functions which imply certain covariance restrictions

for players’ actions. These restrictions can be used to construct an identified set of strategic

parameters under multiple equilibria.

1. Introduction

Multiplicity of equilibria often causes problems when researchers estimate game theoretic
models. de Paula and Tang (2012) proposed a test for uniqueness of equilibrium and derived
partial identification results for incomplete information games where players take binary actions.
Aradillas-López and Gandhi (2016) extended their results to games where players have ordered
choices. Their tests and identification strategies are based on covariance restrictions between
actions and strategic parts of players’ payoff functions. Although their results are quite insightful,
they focus on the case where each player’s choice set is one-dimensional. This note extends
Aradillas-López and Gandhi’s (2016) analysis and derives covariance restrictions in games where
players take multi-dimensional actions.

2. Main results

There are two players p = 1, 2, and each player has two-dimensional action space Ap =

Ap1 × A
p
2 ⊆ R2. Let Y p = (Y p

1 , Y
p

2 ) ∈ Ap be player p’s action. A lowercase yp represents p’s
potential action. Let Ξp be a random vector of player p’s payoff shifter, which can be decomposed
into observable exogenous variables X and p’s private payoff shock Ep, i.e., Ξp = (X, Ep). X and
Ep can be correlated in an arbitrary way, and the dimension of Ep is unrestricted. A lowercase
ξp = (x, εp) represents a potential value of Ξp. Player p’s payoff function is given by νp(yp, yq; ξp),
where yq is another player q’s action.

We impose the following assumption on players’ information structure.

Assumption 1. X is public information, E1 is observed only by player 1, and E2 is observed
only by player 2. E1 and E2 are independent conditional on X. The distribution of (X, E1, E2)

and payoff structures are common knowledge for the players 1 and 2.

The conditional independence assumption on the private shocks is prevalent in the literature
on estimation of games using covariance restrictions (see, de Paula and Tang, 2012; Aradillas-
López and Ghandi, 2016). We note that the elements of E1 or E2 can be arbitrarily correlated.
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Player p’s expected payoff is written as

ν̄pσ(yp; ξp) =
∑
yq∈Aq

σq(yq) · νp(yp, yq; ξp),

where q is another player and σq : Aq → [0, 1] is p’s belief over q’s action. A typical solution
concept of static incomplete information games is Bayesian Nash equilibrium (BNE), in which
each player chooses an action that maximizes its expected utility given the equilibrium belief.
Given that players’ shocks are independent (Assumption 1), BNE can be characterized as a
collection of choice probabilities σ∗(x) = {σp∗(·|x) : Ap → [0, 1]|p = 1, 2} conditional on X = x,
where

(1) σp∗(y
p|x) = EΞp|X

[
I
{
yp = arg max

y∈Ap
ν̄pσ∗(y; Ξp)

}∣∣∣∣X = x

]
,

for each yp ∈ Ap and x, where I{·} is the indicator function. Hereafter, we assume that
arg maxy∈Ap ν̄pσ∗(y; Ξp) is singleton with probability one. This assumption is widely employed in
the literature.

The next assumption requires that the observed data are generated according to some BNE.

Assumption 2. Each observation is generated according to a BNE, i.e., for p = 1, 2,

Y p = arg max
y∈Ap

ν̄pσ∗(y; Ξp) for some BNE σ∗(X),

with probability one.

We allow that observations are generated from multiple equilibria after conditioning on X.
We note that this assumption does not impose any equilibrium selection mechanisms.

Aradillas-López and Gandhi (2016) considered the case of a univariate action variable with an
ordinal structure on the action set, and derived a covariance restriction between p’s action and
some strategic component of p’s payoff function, which can be used for inference on the strategic
component. Their key idea for deriving testable implications is to explore certain separability
and monotonicity conditions for the payoff function. This paper extends their analysis to the
case of multi-dimensional action variables, where it is not trivial how to extend shape constraints
on the payoff functions, such as separability and monotonicity.

2.1. First model: Multi-dimensional separability. We first consider an extension of the
separability assumption in Aradillas-López and Gandhi (2016, Assumption 1) to the multi-
dimensional case. In particular, we impose the following assumption on p’s payoff.

Assumption 3. The payoff function νp can be expressed as

νp(yp, yq; ξp) = νp,a(yp; ξp)−
2∑

k=1

νp,bk (ypk; ξ
p) · ηpk(y

q;x),

for some νp,a(·), νp,bk (·), and ηpk(·) with k = 1, 2.

In words, the payoff function can be decomposed so that the strategic part (i.e., the second
term) is additively separable with respect to each dimension of the action. For the univariate
case, this assumption reduces to Aradillas-López and Gandhi (2016, Assumption 1).

2



For each belief σq, the expected payoff for p from choosing yp can be expressed as

ν̄pσ(yp; ξp) =
∑
yq∈Aq

σq(yq) · νp(yp, yq; ξp) = νp,a(yp; ξp)−
2∑

k=1

νp,bk (ypk; ξ
p) · η̄pσ,k(x),

where η̄pσ,k(x) =
∑

yq∈Aq σq(yq) · ηpk(y
q;x). Hereafter we focus on inference for parameters con-

tained in the component ηp1(·). Then for each yp2 ∈ A
p
2, ξ

p, pair of actions v > u in Ap1, and
pair of beliefs σ and σ′, we obtain the following characterization for the changes in the expected
payoff between (v, yp2) and (u, yp2):

[ν̄pσ(v, yp2 ; ξp)− ν̄pσ(u, yp2 ; ξp)]− [ν̄pσ′(v, y
p
2 ; ξp)− ν̄pσ′(u, y

p
2 ; ξp)]

= [η̄pσ′,1(x)− η̄pσ,1(x)] · [νp,b1 (v; ξp)− νp,b1 (u; ξp)].(2)

We note that due to separability in Assumption 3, the right hand side of this expression is
independent of yp2 .

To derive moment inequalities from this characterization, we impose monotonicity of νp,b1 (·)
with respect to the first argument.

Assumption 4. For each v > u in Ap1 and ξp, it holds νp,b1 (v; ξp) ≥ νp,b1 (u; ξp).

Under this assumption and (2), the inequality η̄pσ,1(x) ≥ η̄pσ′,1(x) implies

ν̄pσ(v, yp2 ; ξp)− ν̄pσ(u, yp2 ; ξp) ≤ ν̄pσ′(v, y
p
2 ; ξp)− ν̄pσ′(u, y

p
2 ; ξp),

for each v > u in Ap1 and ξp. Based on this, we obtain the following lemma for optimal choices
under given beliefs. Let ypσ(ξp) = (ypσ,1(ξp), ypσ,2(ξp)) = arg maxy∈Ap ν̄pσ(y; ξp), which is assumed
to be singleton in R2.

Lemma 1. Suppose Assumptions 1-4 hold true. Pick any x, σ, σ′, and ξp such that η̄pσ,1(x) ≥
η̄pσ′,1(x) and ypσ,2(ξp) = ypσ′,2(ξp). Then it holds I{ypσ,1(ξp) ≤ yp1} ≥ I{ypσ′,1(ξp) ≤ yp1} for each
yp1 ∈ A

p
1.

Based on this lemma, we can derive the covariance restrictions (or moment inequalities) for
observables.

Theorem 1. Suppose Assumptions 1-4 hold. Then, for each yp1 ∈ A
p
1, it holds

E[I{Y p
1 ≤ y

p
1} · η

p
1(Y q;X)|X,Y p

2 ] ≥ E[I{Y p
1 ≤ y

p
1}|X,Y

p
2 ] · E[ηp1(Y q;X)|X,Y p

2 ],

with probability one.

Intuitively Lemma 1 characterizes co-movement of η̄ps,1(x) and I{yps,1(ξp) ≤ yp1} across differ-
ent equilibria s = σ, σ′ given that ypσ,2(ξp) = ypσ′,2(ξp), and this co-movement implies non-zero
correlation for observables I{Y p

1 ≤ y
p
1} and η

p
1(Y q;X) given (X,Y p

2 ). This intuition is analogous
to the ones in de Paula and Tang (2012) and Aradillas-López and Gandhi (2016) except for
conditioning on Y p

2 due to multi-dimensional actions.
We can also show that if the BNE is unique, then the above moment inequalities become

equalities. This is an immediate implication of the assumption of conditional independence
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between E1 and E2. Thus, we can conduct a statistical test for uniqueness of the BNE by testing
the zero covariance restrictions. Such a test is considered as a multi-dimensional version of de
Paula and Tang’s (2012) test for uniqueness of the BNE.

If there are multiple equilibria, we can use these moment inequalities to conduct inference on
parameters that specify ηp1(Y q;X) = ηp1(Y q;X|θp1). To implement inference on θp1, we can employ
several existing econometric methods for (conditional) moment inequalities, such as adaptations
of Andrews and Shi (2013) and Chernozhukov, Lee and Rosen (2011), and the method proposed
in Aradillas-López and Gandhi (2016). Since our moment inequalities are conditional on Y p

2 ,
richer support of Y p

2 will lead to more restrictions which can help to obtain more informative
identified regions for θp1.

Remark 1. Assumptions 3 and 4 are needed to derive the restriction on ηp1 . However, we do not
have to impose any restrictions on the shape of another player q’s payoff function νq(yq, yp; ξp).
We also allow that νp,b2 (yp2 ; ξ) is not monotone with respect to yp2 .

Remark 2. The results in this paper can be extended to more general setups with multi-
players and multi-dimensional actions.1 Each player p ∈ {1, . . . , P} has Kp-dimensional action
space Ap =

∏Kp

k=1A
p
k, where A

p
k denotes player p’s action set for the k-th dimension. Let Y p =

(Y p
1 , . . . , Y

p
Kp) ∈ Ap be player p’s action variable. We use A−p =

∏
q 6=pAq and Y −p = (Y q)q 6=p to

denote the action space and a profile of action variables of all players other than p, respectively.
Let Y p

−k be p’s action variable other than k-th dimension. Suppose p’s payoff function νp can be
expressed as

νp(yp, y−p; ξp) = νp,a(yp; ξp)−
Kp∑
k=1

νp,bk (ypk; ξ
p) · ηpk(y

−p;x),

where the lowercase letters represent potential actions. Then, under similar assumptions as
above, we can derive the following covariance restriction

E[I{Y p
k ≤ y

p
k} · η

p
k(Y

−p;X)|X,Y p
−k] ≥ E[I{Y p

k ≤ y
p
k}|X,Y

p
−k] · E[ηpk(Y

−p;X)|X,Y p
−k].

2.2. Second model: Strategic interaction through one channel. As another example, this
subsection considers the situation where only one channel directly affects the strategic interaction
term. We now impose the following assumption.

Assumption 5. νp can be expressed as

νp(yp, yq; ξp) = νp,a(yp; ξp)− νp,b(yp1 ; ξp) · ηp(yp2 , y
q;x),

for some νp,a(·), νp,b(·), and ηp(·).

In this case, the expected payoff for player p of choosing yp under belief σ can be written as

ν̄pσ(yp; ξp) =
∑
yq∈Aq

σq(yq) · νp(yp, yq; ξp) = νp,a(yp; ξp)− νp,b(yp1 ; ξp) · η̄pσ(yp2 , x),

1Details are available in the working paper version of this paper: https://www.sanken.keio.ac.jp/publication/KEO-
dp/161/KEO-DP161.pdf.
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where η̄pσ(yp2 , x) =
∑

yq∈Aq σq(yq) · ηp(yp2 , yq;x). Then for each yp2 ∈ A
p
2, ξ

p, pair of actions v > u

in Ap1, and pair of beliefs σ and σ′, we obtain the following characterization for the changes in
the expected payoff between (v, yp2) and (u, yp2):

[ν̄pσ(v, yp2 ; ξp)− ν̄pσ(u, yp2 ; ξp)]− [ν̄pσ′(v, y
p
2 ; ξp)− ν̄pσ′(u, y

p
2 ; ξp)]

= [η̄pσ′(y
p
2 , x)− η̄pσ(yp2 , x)] · [νp,b(v; ξp)− νp,b(u; ξp)].(3)

In addition, we maintain the assumption on monotonicity of vp,b(·) with respect to the first
argument.

Assumption 6. For each v > u in Ap1 and ξp, it holds νp,b(v; ξp) ≥ νp,b(u; ξp).

Under this assumption (3), the event η̄pσ(yp2 , x) ≥ η̄pσ′(y
p
2 , x) implies

ν̄pσ(v, yp2 ; ξp)− ν̄pσ(u, yp2 ; ξp) ≤ ν̄pσ′(v, y
p
2 ; ξp)− ν̄pσ′(u, y

p
2 ; ξp),

for each v > u and ξp. Based on this, we obtain the following lemma for optimal choices under
given beliefs. Let ypσ(ξp) = (ypσ,1(ξp), ypσ,2(ξp)) = arg maxy∈Ap ν̄pσ(y; ξp) which is assumed to be
singleton in R2.

Lemma 2. Suppose Assumptions 1-2 and 5-6 hold true. Pick any x, σ, σ′, and ξp such
that η̄pσ(yp2 , x) ≥ η̄pσ′(y

p
2 , x) and ypσ,2(ξp) = ypσ′,2(ξp) = yp2. Then it holds I{ypσ,1(ξp) ≤ yp1} ≥

I{ypσ′,1(ξp) ≤ yp1} for each yp1 ∈ A
p
1.

Based on this lemma, we can derive covariance restrictions (or moment inequalities) for ob-
servables.

Theorem 2. Suppose the Assumptions 1-2 and 5-6 hold. Then, for each yp1 ∈ A
p
1, it holds

E[I{Y p
1 ≤ y

p
1} · η

p(Y p
2 , Y

q;X)|X,Y p
2 ] ≥ E[I{Y p

1 ≤ y
p
1}|X,Y

p
2 ] · E[ηp(Y p

2 , Y
q;X)|X,Y p

2 ],

with probability one.

Similar comments to Theorem 1 apply. A test for the uniqueness of the BNE and inference
on parameters to specify ηp(Y p

2 , Y
q;X) can be conducted by the existing econometric methods.

Remark 3. As with the first model, we can consider more general games with multi-players
and multi-dimensional actions. Suppose νp can be expressed as

νp(yp, y−p; ξp) = νp,a(yp; ξp)− νp,b(yp1 ; ξp) · ηp(yp−1, y
−p;x).

In words, there exists only one channel yp1 which directly affects the strategic interaction term
νp,b. Then, under the similar conditions, we can derive the following covariance restrictions.

E[I{Y p
1 ≤ y

p
1} · η

p(Y p
−1, Y

−p;X)|X,Y p
−1] ≥ E[I{Y p

1 ≤ y
p
1}|X,Y

p
−1] · E[ηp(Y p

−1, Y
−p;X)|X,Y p

−1].

3. Supplementary material: numerical illustration

In the supplementary material, we provide some numerical examples to illustrate identified
sets of payoff parameters for multi-dimensional action games obtained from our theorems. We
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present the identified sets for two-player games with two-dimensional binary actions and payoff
functions satisfying Assumption 3. Our examples illustrate situations where the sign of an
interaction effect can be identified and also variations in x can help to shrink the identified sets.
Also in our examples, we find that the equilibrium selection mechanism has a negligible impact
on the identified set as long as it selects each equilibrium with strictly positive probability.

Although it is beyond the scope of this paper, it is interesting to further investigate how
the identified sets changes (or collapses to singleton) by various elements to specify the multi-
dimensional action games, such as equilibrium selection mechanisms (including the case of unique
equilibrium), support of covariates and actions, number of players, dimensions of actions, and
shapes of payoff functions.

Appendix A. Mathematical appendix

Since the proofs of Lemma 2 and Theorem 2 are similar to those of Lemma 1 and Theorem 1,
respectively, here we only present the proofs for Lemma 1 and Theorem 1.

A.1. Proof of Lemma 1. Pick any x, σ, σ′, and ξp such that η̄pσ,1(x) ≥ η̄pσ′,1(x) and ypσ,2(ξp) =

ypσ′,2(ξp) = yp2 . Furthermore, take any yp1 ∈ A
p
1. Then define

Ipσ(yp1 , y
p
2 ; ξp) = max

u≤yp1
min
v>yp1

I{ν̄pσ,1(v, yp2 ; ξp)− ν̄pσ,1(u, yp2 ; ξp) ≤ 0}.

By Assumption 4, the inequality η̄pσ,1(x) ≥ η̄pσ′,1(x) implies

(4) Ipσ(yp1 , y
p
2 ; ξp) ≥ Ipσ′(y

p
1 , y

p
2 ; ξp).

Also, when ypσ,2(ξp) = ypσ′,2(ξp) = yp2 , the definition of Ipσ(·) yields

(5) I{ypσ,1(ξp) ≤ yp1} = Ipσ(yp1 , y
p
2 ; ξp), I{ypσ′,1(ξp) ≤ yp1} = Ipσ′(y

p
1 , y

p
2 ; ξp).

Combining (4) and (5), the conclusion follows.

A.2. Proof of Theorem 1. The proof is analogous to that of Aradillas-López and Gandhi (2016,
Theorem 1). Given X = x, let {σ∗j(x)}Jj=1 be the set of BNE and PSj (x) be the probability that
the equilibrium σ∗j(x) is selected. The probability that equilibrium σ∗j(x) is selected conditional
on Y p

2 = yp2 is written as

PSj (x, yp2) =
PSj (x) · σp∗j(y

p
2 |x)∑J

j′=1 P
S
j′ (x) · σp∗j′(y

p
2 |x)

,

where with slight abuse of notation, σp∗j(·|x) represents the conditional density function of
Y p

2 |X = x under the equilibrium σ∗j(x). Pick any yp1 ∈ A
p
1. Observe that for almost every
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x and yp2 ,

E[I{Y p
1 ≤ y

p
1} · η

p
1(Y q;X)|X = x, Y p

2 = yp2 ]

=
J∑
j=1

PSj (x, yp2) · EΞp|X,Y p
2

[I{ypσ∗j,1(Ξp) ≤ yp1} · η
p
1(yqσ∗j (Ξ

q);X)|X = x, Y p
2 = yp2 ]

=
J∑
j=1

PSj (x, yp2) · EΞp|X,Y p
2

[I{ypσ∗j,1(Ξp) ≤ yp1}|X = x, Y p
2 = yp2 ] · EΞq |X [ηp1(yqσ∗j (Ξ

q);X)|X = x]

= EΞp|X,Y p
2

 J∑
j=1

PSj (X,Y p
2 ) · I{ypσ∗j (Ξ

p) ≤ yp1} · η̄
p
σ∗j,1(X)

∣∣∣∣∣∣X = x, Y p
2 = yp2

 ,
where the second equality follows from Ξp ⊥ Ξq|X and Y p

2 ⊥ Ξq|X (by Assumption 1). We also
have that for almost every x and yp2 ,

E[I{Y p
1 ≤ y

p
1}|X = x, Y p

2 = yp2 ] · E[ηp1(Y q;X)|X = x, Y p
2 = yp2 ]

=
J∑
j=1

PSj (x, yp2) · EΞp|X,Y p
2

[I{ypσ∗j,1(Ξp) ≤ yp1}|X = x, Y p
2 = yp2 ]

×
J∑
j=1

PSj (x, yp2) · EΞq |X [ηp1(yqσ∗j (Ξ
q);X)|X = x]

=

J∑
j=1

PSj (x, yp2) · EΞp|X,Y p
2

[I{ypσ∗j,1(Ξp) ≤ yp1}|X = x, Y p
2 = yp2 ]×

J∑
j=1

PSj (x, yp2) · η̄pσ∗j,1(x)

= EΞp|X,Y p
2

 J∑
j=1

PSj (X,Y p
2 ) · I{ypσ∗j,1(Ξp) ≤ yp1}

×
 J∑
j=1

PSj (X,Y p
2 ) · η̄pσ∗j,1(X)

∣∣∣∣∣∣X = x, Y p
2 = yp2

 .
Combining these equations, we obtain

E[I{Y p
1 ≤ y

p
1} · η

p
1(Y q;X)|X = x, Y p

2 = yp2 ]

−E[I{Y p
1 ≤ y

p
1}|X = x, Y p

2 = yp2 ] · E[ηp1(Y q;X)|X = x, Y p
2 = yp2 ]

= EΞp|X,Y p
2

 J∑
j=1

PSj (X,Y p
2 ) · I{yPσ∗j ,1(Ξp) ≤ yp1} · η̄

p
σ∗j ,1

(X)

−

 J∑
j=1

PSj (X,Y p
2 ) · I{ypσ∗j ,1(Ξp) ≤ yp1}

×
 J∑
j=1

PSj (X,Y p
2 ) · η̄pσ∗j ,1(X)

∣∣∣∣∣∣X = x, Y p
2 = yp2

 ,
for almost every x and yp2 . Note that conditioning on Y p

2 = yp2 is equivalent to conditioning on
the event {ypσ,2(Ξp) = ypσ′,2(Ξp)}. Now the object inside the above conditional expectation is
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nonnegative since for each (x, yp1 , y
p
2) and each ξp such that ypσ,2(ξp) = ypσ′,2(ξp), we have

J∑
j=1

PSj (x, yp2) · I{ypσ∗j ,1(ξp) ≤ yp1} · η̄
p
σ∗j1(x)

−

 J∑
j=1

PSj (x, yp2) · I{ypσ∗j ,1(ξp) ≤ yp1}

×
 J∑
j=1

PSj (x, yp2) · η̄pσ∗j ,1(x)


=

J∑
`=1

J∑
j=1

PS` (x, yp2)PSj (x, yp2) · I{ypσ∗j ,1(ξp) ≤ yp1} · (1− I{ypσ∗`,1(ξp) ≤ yp1}) · {η̄
p
σ∗j ,1

(x)− η̄pσ∗`,1(x)}

≥ 0,

where the inequality follows from Lemma 1. More specifically, if η̄pσ∗j ,1(x) − η̄pσ∗`,1(x) < 0 and
I{ypσ∗j ,1(ξp) ≤ yp1} = 1, then Lemma 1 implies 1− I{ypσ∗`,1(ξp) ≤ yp1} = 0, and thus I{ypσ∗j ,1(ξp) ≤
yp1} · (1− I{ypσ∗`,1(ξp) ≤ yp1}) · {η̄

p
σ∗j ,1

(x)− η̄pσ∗`,1(x)} cannot be negative.
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SUPPLEMENTARY MATERIAL FOR “INFERENCE ON INCOMPLETE
INFORMATION GAMES WITH MULTI-DIMENSIONAL ACTIONS”

HIDEYUKI TOMIYAMA AND TAISUKE OTSU

1. Numerical example

In this supplement, we provide some numerical examples to illustrate identified sets for multi-
dimensional action games obtained from our theorems. There are two players, p and q. For the
sake of simplicity, we assume both players are symmetric. Player p makes a two-dimensional
choice, yp = (yp1 , y

p
2) ∈ {0, 1} × {0, 1}, and hence, there are 16 possible outcomes. We assume

the following payoff functions

νp(yp, yq; ξp) = yp1(x
p
1 + αp

1y
p
2 + βp11y

q
1 + βp12y

q
2) + yp2(x

p
2 + αp

2y
p
1 + βp21y

q
1 + βp22y

q
2) + ε(yp),

where ε(yp) follows the (i.i.d.) Type-I extreme value distribution, α = (αp
1, α

p
2) and β =

(βp11, β
p
12, β

p
21, β

p
22) are parameters, and xpk (for k = 1, 2) is a covariate that affects only player

p’s payoff from the k-th dimension action. This model fits into Assumption 3 in the paper by
setting

νp,a(yp; ξp) = yp1x
p
1 + yp2x

p
2 + (αp

1 + αp
2)y

p
1y

p
2 + ε(yp),

νp,bk (ypk; ξ
p) = ypk,

ηpk(y
p;x) = −(βpk1y

p
1 + βpk2y

p
2),

for k = 1, 2. Since the payoff function is symmetric, hereafter, we focus on the identified set of
βp11 and βp12. To derive the identified set, we implement the following simulation procedure.

• For each value of x = (xp1, x
p
2, x

q
1, x

q
2) with support X , we characterize the BNE (i.e., 4×2

choice probabilities σ∗(x)) by using 1000 randomly drawn starting points for the fixed
point iteration based on eq. (1) in the paper.
• We assume the true equilibrium selection probabilities are consistent with the 1000 gener-
ated equilibria. For instance, suppose we obtain σ∗(x) = ((0.2, 0.4, 0.2, 0.2), (0.2, 0.4, 0.2, 0.2))

250 times and σ∗(x) = ((0.2, 0.2, 0.4, 0.2), (0.2, 0.2, 0.4, 0.2)) 750 times. Then, we assume
the equilibrium selection mechanism picks σ∗(x) = ((0.2, 0.4, 0.2, 0.2), (0.2, 0.4, 0.2, 0.2))

with probability 0.25 and σ∗(x) = ((0.2, 0.2, 0.4, 0.2), (0.2, 0.2, 0.4, 0.2)) with probability
0.75.
• Based on the simulated BNE and equilibrium selection probabilities, we search (βp11, β

p
12)

that satisfies the inequality constraint in Theorem 1 for every x ∈ X and yp2 ∈ {0, 1}.

Figure 1 depicts the identification sets using different parameter values and cardinalities of X .
Note that (βp11, β

p
12) can be identified up to scale. In Figure (A), we set αp

1 = αp
2 = −2, βp11 =

βp22 = 5, βp12 = βp21 = 1, and X = {(0, 0, 0, 0)} (i.e., X is singleton). Then, we can identify

1



Figure 1. Identified sets

(a) (b)

(c) (d)
Note: (A) sets αp

1 = αp
2 = −2, βp11 = βp22 = 5, βp12 = βp21 = 1, and x ∈ {(0, 0, 0, 0)}; (B) sets

αp
1 = αp

2 = −2, βp11 = βp22 = 5, βp12 = βp21 = 1, and x ∈ {−2,−1, 0, 1, 2}4; (C) sets αp
1 = αp

2 = −1,
βp11 = −5, β

p
12 = 1, βp21 = −1, β

p
22 = 5, and x ∈ {(0, 0, 0, 0)}; and (D) sets αp

1 = αp
2 = −1,

βp11 = −5, β
p
12 = 1, βp21 = −1, β

p
22 = 5, and x ∈ {−2,−1, 0, 1, 2}4.

βp11 ≥ β
p
12. This is consistent with the result of de Paula and Tang (2012), which identifies the sign

of interaction effect using only one value of x. Since ηpk(y
p;x) contains two parameters (βp11, β

p
12),

we can identify only the sign of βp11 − βp12. However, we can shrink the identified set using
variation of x. In Figure (B), we use the same parameter value but set X = {−2,−1, 0, 1, 2}4

(i.e., cardinality of X is 54). Then, we can identify βp11 ≥ βp12, β
p
11 ≥ 0, and βp12 ≥ 0. Figure

(C) sets αp
1 = αp

2 = −1, βp11 = −5, βp12 = 1, βp21 = −1, βp22 = 5 and X = {(0, 0, 0, 0)}. The
identified set is not informative because the equilibrium is unique. However, as with the case of
Figure (A) and (B), we can shrink the identified set using a variation of X. In Figure (D), we
set X = {−2,−1, 0, 1, 2}4 and can identify the sign of βp11 and βp12. In any setting, we obtain the
same identified set even when we try different sets of 1000 starting points, which typically yield
different equilibrium selection mechanisms. This indicates that in this numerical example, the
equilibrium selection mechanism has a negligible impact on the identified set as long as it selects
each equilibrium with strictly positive probability.
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