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a b s t r a c t

District heating is expected to play an important role in the decarbonisation of the energy sector in the
coming years since low carbon sources such as waste heat and biomass are increasingly being used to
generate heat. The design of district heating often has competing objectives: the need for inexpensive
energy and meeting low carbon targets. In addition, the planning of district heating schemes is
subject to multiple sources of uncertainty, such as variability in heat demand and energy prices. This
paper proposes a decision support tool to analyse and compare system designs for district heating
under uncertainty using stochastic ordering (dominance) so that decision-makers can make robust
decisions. The uncertainty in input parameters of the energy system model together with general
scenarios are introduced to generate distributions of net present costs and emissions for each design.
To perform inference about the induced distributions of outputs, we apply the orderings in the mean
and dispersion. The proposed approach is demonstrated in an application to the waste heat recovery
problem in district heating in Brunswick, Germany. The results obtained show that heat pump, a low
carbon design option, is more robust in comparison to combined heat and power (CHP) and a mix of
CHP and heat pump under all three scenarios, highlighting that robustness is an attractive feature of
low-temperature waste heat recovery.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The transition to a net-zero economy is an urgent challenge,
nd many countries have agreed to put in place national action
lans to become carbon-neutral by 2050 or sooner [1,2]. A sig-
ificant aspect of the response is an increase in funding for heat
ecarbonisation and energy efficiency projects. In the context of
ight government budgets and the uncertainty associated with
he implementation of green technologies, a comprehensive han-
ling of risk is crucial in assessing the viability of these projects.
he aim of this paper is to demonstrate a new approach to
ealing with uncertainty for the planning of energy infrastructure
rojects in the form of stochastic ordering (dominance).
The context of this paper is waste heat recovery, in which heat

rom industrial and urban sources is used as a zero-carbon alter-
ative to fossil fuels in district heating networks. In particular,
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we consider a district heating project based on a real system in
Brunswick (Braunschweig), Germany, in which heat from a data
centre will be used as an input to a district heating network
for a newly constructed residential and commercial area in the
city. The system is one of four demonstrators on the ReUseHeat
project [3]. The main objective of ReUseHeat is to aid replication of
projects and provide advice to other investors. Here, ‘‘based on’’
refers to the matching of variables, that is matching the model
inputs and outputs to the metrics observed in the real-world. We
note that the modelling results were not used in the design of
the actual system. However, the model conclusions derived can
provide assistance for the design of similar projects.

A wide range of methods have been adopted to support de-
cisions in the energy systems domain under uncertainty. For
example, [4] pointed out the importance of uncertainty analy-
sis in energy systems. Different approaches include the use of
membership functions (fuzzy methods) and probability density
functions (stochastic methods) for describing the uncertainty of
input parameters. The effect of input parameters on model out-
puts can be quantified by simple statistical measures such as
the standard deviation, mean squared error, confidence intervals
and their multivariate and Bayesian counterparts. In addition,
there is a recent interest in the use of scenarios to capture wider
uncertainty issues [5].
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Abbreviations

CHP Combined heat and power
COP Coefficient of performance
FSD First-order stochastic dominance
KS Kolmogorov–Smirnov
MV Mean-Variance
NPC Net Present Cost
OSeMOSYS Open Source Energy Modelling System
SD Stochastic dominance

Mathematical variables and notations

vol(·) volume
α significance level
X,Y vectors of random variables
△(x1, . . . , xk+1) the k-dimensional simplex whose ver-

tices are x1, . . . , xk+1

∀ for all
E[·] expectation
Rd a coordinate space of dimension d over

the real numbers.
⪯△ dispersion ordering
⪯st first-order stochastic ordering
sup supremum, the least upper bound of a

set
FX (z), FY (z) cumulative density functions (cdfs) for X

and Y
FX (z), FY (z) cumulative density functions (cdfs) for

X and Y
g(·) increasing (non-decreasing) function
X, Y univariate random variables

Another general approach for decision support in energy sys-
ems is optimisation frameworks (stochastic optimisation), which
perate by controlling the output variability of a component
r system, while keeping the output minimum (maximum) on
arget [6]. In particular, in mean–variance (MV) and capital asset
ricing models, widely used in finance and economics to assess
ifferent investment options, the aim is to achieve maximum
ield and minimum volatility. Mean–variance portfolio theory has
een employed for the modelling of uncertainties and risk in
nergy system planning [7,8]. These decision approaches rely on
he MV rule, which states that, when two alternative prospects
re considered, a rational decision-maker will choose an option
ith higher expected return and lower variance. However, the
V rule leads to a number of paradoxes such as the fact that

t is sometimes unable to rank the two choices when a clear
reference between them exists [9].
We note that the approaches described above operate with

tatistical summaries, which can fail to provide specific infor-
ation about the distribution of outputs. We are keen to pre-
erve the notion of robustness (uncertainty) by considering full
robability distributions using stochastic ordering (dominance).
tochastic ordering is a special methodological framework, which
nderlines decision making under uncertainty and has been ex-
loited in a number of fields, including robust design [10], port-
olio theory [11] and signal processing [12]. In particular, we note
hat stochastic dominance has been used previously to compare
2

the performance of algorithms in power and energy system opti-
misation [13]. An extensive review of stochastic ordering is given
in [14].

A stochastic ordering is a partial ordering on distributions. In
this paper we consider first-order stochastic dominance (FSD) [9].
Orderings provide a useful framework for comparing distribu-
tions in the following sense: suppose we are aiming to maximise
the return on our investment and have two choices to make
regarding the investment portfolio (Portfolio X and Portfolio Y ).
We assume that there is uncertainty associated with returns on
investment portfolios and we can construct probability distri-
butions of the return in each case. If the distribution of choice
X first-order stochastically dominates that of choice Y , for any
given level of return, the probability that the profit exceeds that
particular value is higher for choice X than it is for choice Y .
In other words, if we are only interested in maximising the
probability of the return exceeding some chosen value, we should
always choose Portfolio X . This seems like a sensible and intuitive
way to look at decision making under uncertainty and this is our
approach here.

Stochastic orderings roughly divide into two classes: orderings
that denote shift (in mean) and those that denote variability
(dispersion). We note that the ordering does not prescribe un-
certainty measures, but we claim that it provides a platform for
uncertainty analysis in the following sense. Given an ordering, a
suitable metric is one which is order-preserving with respect to
that ordering. This means that it is a function whose expectation
is ordered in the same direction as the stochastic underlying
ordering. Thus both the mean and the median themselves are
order-preserving with respect to first-order stochastic dominance
and both the standard deviation and the Gini coefficients are
ordered with respect to some well-known dispersion orderings.
Following this condition, stochastic ordering allows us to extend
the range of metrics for risk and uncertainty beyond the standard
measures.

This paper is structured as follows. Section 2 covers back-
ground regarding district heating. Section 3 provides an introduc-
tion to stochastic orderings. Section 4 describes a series of simple
computer experiments on a specially selected set of system de-
signs, choices of input variations and broader scenario-based
alternatives. Section 5 draws conclusions based on a selection of
stochastic orderings. Section 6 contains the concluding remarks.

2. Problem specification

2.1. District heating

District heating is a system in which heat is produced by some
centralised source and distributed via a network of insulated
pipes. It is particularly well-developed in northern Europe and
Scandinavia [15]. Historically, district heating has been powered
by the burning of fossil fuels such as coal and gas. However, more
recently, it has been seen as an opportunity to decarbonise the
heating sector via the use of waste heat from industry and other
sources, with an increasing focus on the opportunities of recover-
ing waste heat from low temperature, urban sources such as, for
example, metro stations [3]. The prevalence of low temperature
sources and their location near areas of heat demand provides an
opportunity in the wider agenda of carbon reduction [16].

A major difference between high and low temperature heat
recovery is that, in the latter case, the heat typically needs to
be upgraded before it is suitable for use in the network. This
requires the use of a heat pump to increase the temperature to
the required level. The installation of heat pumps poses additional
technical challenges due to a lack of maturity in the technology
and a lack of experience in installation and maintenance. In
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Table 1
Description of design options in the study.
Design type Description

Design Option 1
Combined Heat and Power (CHP) is employed to
meet both the baseload and seasonal heat
demand.

Design Option 2
A heat pump is employed to meet baseload heat
demand and CHP is used to meet seasonal heat
demand.

Design Option 3
A heat pump is employed with a small amount of
storage to meet both the baseload and seasonal
heat demand.

addition, heat pumps run on electricity and this creates addi-
tional operational costs and a vulnerability to increases in the
price of electricity. This is considered to be a major risk in low
temperature heat recovery [3].

At present, low temperature heat recovery is not widespread.
here are a number of reasons for this, including a lack of political
nd commercial awareness, a lack of interest from heat ‘owners’,
he immaturity of the technology and a lack of a legal and reg-
latory framework [3]. However, one of the biggest barriers, in
ur opinion, to the widespread rollout of low temperature waste
eat recovery is a gap between the risk assessment required
y financial institutions and that which is typically provided
y project developers. With the methodology presented in this
aper, we aim to contribute towards closing this gap.

.2. Heat recovery in Brunswick

We construct a simple model based on the Brunswick (Braun-
chweig) in Germany within the ReUseHeat project [3]. The aim
f the demonstrator is to supply heat to the newly developed
esidential area with 400 housing units, using waste heat from a
earby data centre. The diagram in Fig. 1 shows that excess heat
rom a data centre needs to be upgraded to a suitable temperature
ith a heat pump. The new housing units will also be connected
o the existing city-wide network, which, at present, supplies 45
ercent of residents in the city using a gas-powered combined
eat and power (CHP) unit. The intention is then that heat from
he data centre will cover the baseline demand (demand that is
resent throughout the year such as for hot water) and heat from
he CHP will cover seasonal demand.

For the study described in this paper, we plan to assess three
ifferent design options to meet the demand for heat, which are
ummarised in Table 1. Each design option is evaluated in terms
f its Net Present Costs (mln e) and CO2-equivalent emissions (in
etric tonnes).
To construct a model and run simulations, we employ an

pen source optimisation model for energy planning called Open
ource Energy Modelling System (OSeMOSYS) [17]. OSeMOSYS
s a deterministic, linear optimisation model that obtains the
nergy supply mix that minimises the Net Present Cost (NPC),
ubject to a number of chosen constraints. We have selected
SeMOSYS for two main reasons. Firstly, it provides us with the
lexibility to operate on a local (city) level and to define our
wn scenarios. Secondly, OSeMOSYS is an open source model and
herefore freely available for comparative project modelling.

. Uncertainty and stochastic orderings

We consider the use of stochastic ordering for describing and
omparing uncertainty. The rationale is that stochastic orderings
re weaker than a limited list of specific metrics. In particular,
tochastic ordering is a partial ordering, whereas the commonly
3

used metrics of uncertainty, such as standard deviation, impose
total ordering.

Suppose X and Y are two real-valued random variables rep-
resenting the values of NPC (or emission levels) associated with
two energy system designs, which we refer to as design options
1 and 2. We construct a probability distribution for each output
under each design option FX (z) and FY (z) respectively.

We can say that design option 1 has first-order stochastic
dominance (SD) over design option 2, written Y ⪯st X , if:

FX (z) ≤ FY (z) ∀z ∈ R, (1)
FX (z) < FY (z) for at least one value of z ∈ R.

Marshall and Arnold [19] presented the following conditions
equivalent to X ⪯st Y :

(i) E
[
g(X)

]
≤ E

[
g(Y )

]
for all increasing (non-decreasing)

functions g(·);
(ii) g(X) ⪯st g(Y ) for all increasing (non-decreasing) functions

g(·);

The class of functions g(·) that satisfies (i.) and (ii.) is said to be
the set of order-preserving functions with respect to a stochastic
ordering. From Eq. (1), we conclude that, to look for first-order SD,
we can simply plot the empirical cdfs. If one always lies below
the other, we can claim that it dominates with respect to any
increasing function.

3.1. Dispersion ordering

We consider dispersion orderings (sometimes known as dis-
persive orderings), which are a particular case of stochastic or-
derings. Dispersion measures the extent to which a distribution
is stretched or squeezed, and therefore dispersion orderings com-
pare the spread of the probability distributions [20,21]. In prac-
tice, decision-makers are interested to consider multiple met-
rics at the same time. Dispersion orderings can be extended for
the multivariate variable case based on the idea of independent
copies.

Let X and Y be two d-dimensional random vectors, i.e. X =

(X1, . . . , Xd) and Y = (Y1, . . . , Yd). For instance, X1 and Y1 are
two random variables representing the values of NPC for design
option 1 and design option 2 respectively, whereas X2 and Y2
are random values that correspond to emission levels for these
design options. Let us construct multivariate cdfs FX (z) and FY (z)
and define a function, φ(X1,X2, . . . ,X k+1), that describes the
separation between them. In [22], it is shown that, if we take

φ(x1, . . . , xk+1) = (vol{△(x1, . . . , xk+1)})2,

where △(x1, . . . , xk+1) is the k-dimensional simplex (in d dimen-
sions) whose vertices are x1, . . . , xk+1 ∈ Rd, then E[φ(X1, . . . ,

X k+1)] is a function of the variance–covariance matrix Σ of the
underlying distribution. This prompts a dispersion ordering X ⪯△

Y defined by

vol{△(X1, . . . ,X k+1)} ⪯st vol{△(Y 1, . . . ,Y k+1)}, (2)

where X1, . . . ,X k+1 and Y 1, . . . ,Y k+1 are independent draws
from the FX (z) and FY (z), respectively. If Eq. (2) holds, we can say
that X is less dispersive than Y . In other words, less uncertainty
is associated with the distribution of the random vector X than
the random vector Y .

The case in which k = d was introduced by Oja [23] and
discussed in [24] and is referred to as the Simplex ordering.
Here, we remove the requirement that k = d and refer to
the approach as the Generalised Simplex ordering. Note, again,
that whenever we see the ordering ⪯st , we can write down
the class of order-preserving functions, g(·), in the present case
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Fig. 1. An outline of the Brunswick demonstrator.
Source: BS|ENERGY. Adopted from [18].
f vol{△(X1, . . . ,X k+1)}. Dispersion orderings based on Haus-
orff distance [25] and Mahalanobis distance [26] are possible
lternatives to the Simplex ordering.
We would also like to add small remarks about the computa-

ion of simplex volume. Firstly, the simplex volume is a scale-free,
omogeneous measure and therefore no pre-processing is re-
uired for the Generalised Simplex ordering. We also note that
omputing the simplex volume can become computationally ex-
ensive, in particular when we are operating with large data sets.
o deal with this, [21] proposed the use of bootstrap resamples
rom the data set to obtain the distances. Despite this, we believe
he properties of the Generalised Simplex ordering make it an
ttractive choice and we provide a demonstration of its use in
ection 5,

.2. Quantifying the difference between cdfs

It is useful to quantify the extent of the difference between
wo cdfs when one dominates another. Here, we use a
olmogorov–Smirnov (KS) distance measure. For two random
ariables X and Y with cdfs FX (z) and FY (z) respectively, the KS

distance between X and Y is given by

D = sup
z

|FX (z) − FY (z)|, z ∈ R.

Noting that the value of D lies in the range [0, 1], the statistic tells
us the maximum difference between the two cdfs. If D is small,
the extent to which one dominates the other is small and vice
versa.

3.3. Hypothesis testing for stochastic orderings

In the studies presented in Section 5, the distributions of
the outputs are produced using an energy systems simulation
(OSeMOSYS [17]) and therefore we can only approximate the un-
derlying cdf of the output variables that would be produced with
an infinite sample size. Thus we make use of the Kolmogorov–
Smirnov (KS) test proposed by [27] which defines the null hy-
pothesis to be the case that Y first-order stochastically dominates
X and the alternative hypothesis that the null hypothesis is false.
If the null hypothesis can be rejected, we do not have enough
evidence that one dominates the other.

Formally, let X1, . . . , Xn and Y1, . . . , Ym be samples from FX and
FY , respectively. We proceed to define the hypotheses for testing
first-order stochastic dominance as

H : X ⪯ Y against H : X ⪯̸ Y , (3)
0 st 1 st

4

where ⪯̸st stands for the negation of ⪯st . Following [27,28], the
hypothesis testing in Eq. (3) is equivalent to

H0 : FY (z) ≤ FX (z) for all z ∈ R,

H1 : FX (z) < FY (z) for some z ∈ R.

Let us consider the two d-dimensional random vectors X and Y ,
we propose the following test for dispersion ordering

H0 : X ⪯△ Y against H1 : X ⪯̸△ Y ,

where ⪯̸△ stands for the negation of ⪯△. This hypothesis testing
is equivalent to

H0 : vol{△(Y 1, . . . ,Y d+1)} ⪯st vol{△(X1, . . . ,Xd+1)},
H1 : vol{△(Y 1, . . . ,Y d+1)} ⪯̸st vol{△(X1, . . . ,Xd+1)}.

To test stochastic ordering, we proceed to adopt a one-tailed
Kolmogorov–Smirnov (KS) test.

This approach is similar to that used by [21] who tested the
Hausdorff and Simplex dispersion orderings.

We note that an assumption of the KS test is that the sam-
ples should be independent of each other and, although, in each
sample, the simulations are performed independently, the input
parameters induced by the scenarios are common to both and
therefore the assumption fails. Similar technical difficulties arise
with the bootstrap methodology. Nonetheless, we note that the
effect of this failed assumption is small and diminishes with
sample size (which is generally large). We therefore believe that
these results are informative for our analysis and provide a useful
diagnostic technique in general.

Another issue requiring us to be cautious is the use of multiple
testing. In our experiments, we consider three options (N = 3)
and, as a result, we perform three pairwise post-hoc tests to
assess the differences between them. To account for this multiple
testing, we make use of the Bonferroni correction. Therefore, if
we specify a significance level of α = 0.05, the corresponding
significance level for each individual hypothesis is adjusted to
α/N = 0.05/3 = 0.0167.

4. Experimental design

We demonstrate the use of stochastic ordering to assess the
aforementioned waste heat recovery project in Brunswick (see
Section 2.2 for more details). Three different design options are
considered, each of which differ according to the technology
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Fig. 2. First row: NPC (mln e) against CO2-equivalent emissions (Mton) for all three design options under the three scenarios. Second row: NPC against emissions
or all three design options, plotted separately for each scenario.
ix employed for supplying domestic heat. These are outlined
n Table 1. Each design option is evaluated in terms of its Net
resent Cost (NPC) (mln e) and CO2-equivalent emissions (in
etric tonnes). Here, we analyse the uncertainty in the outputs
f the model induced by variations in four different inputs:

1. Operational costs.
2. Discount rate.
3. Coefficient of Performance (COP) for the heat pump (units

of heat delivered per unit of electricity).
4. Emission Activity Factor (the emissions produced (in met-

ric tonnes) from operating a particular technology in the
energy system).

ariations in the four input variables are expected to impact both
he NPC and emissions levels. For each input variable, we specify
hree levels: low, medium and high. We then perform simulations
ith a full factorial design (often known as a fully crossed design)
o that all possible combinations across the model inputs are
onsidered [29]. This gives a total of 81 simulation runs.
We consider each of the design options under three different

cenarios. Scenario Analysis is a widely used uncertainty tool
n energy systems studies [5]. Examples of scenarios related to
nergy include the Future Energy Scenarios (FES) published by
he UK National Grid [30] and World Energy Scenarios [31], both
f which consider different pathways to decarbonisation.
5

We define three scenarios that differ in terms of selected el-
ements of government climate policy and consumer engagement
with green technology. A description of the three scenarios is
given in Table 2. In the Green scenario, a combination of high
consumer engagement and government incentive schemes are
used to rapidly reach net zero. In the Market scenario, there
is a reliance on market forces and only limited government in-
tervention in the energy system planning. Finally, the Neutral
scenario captures the middle ground between the two. Since the
operational lifetime of a typical heat pump is around twenty
years, this time horizon is used for the study.

Under each scenario, we produce model simulations that, for
a given set of model inputs, generate the volume of emissions
and NPC over a 20 year period as model outputs. In Section 5.1,
we consider the empirical cdfs of the model outputs under dif-
ferent scenarios and design options. Then, in Section 5.2, we
consider the Generalised Simplex dispersion ordering to com-
pare the effects of different scenarios and design options on
uncertainty.

5. Results

Fig. 2 shows scatter plots of the two model outputs obtained
for each of the three design options and under each scenario.
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Fig. 3. Empirical cdfs for NPC for (i) all three design options plotted together for each individual scenario (first row), (ii) all three scenarios plotted together for each
individual design option (second row).
Focusing first on emissions, since the emissions factor for natural
gas is higher than for electricity, the highest level of emissions
is produced by design option 1, followed by design option 2 and
then design option 3. From the second row in Fig. 2, we observe
that the different scenarios have only a small impact on the levels
of emissions under each of the design options, since government
intervention strategies considered in this paper mainly aim at
changing behaviour through cost.

Differences in the three scenarios have a much larger impact
on NPC. Under the Market and Neutral scenarios, design option
1 corresponds to the lowest NPC values, which can be explained
by the high investment cost of the heat pump. However, under
the Green scenario, the opposite is true due to a high carbon
penalty. Therefore, under the Green scenario, design options 2
6

and 3 become more attractive alternatives, thus demonstrat-
ing the value of considering different scenarios when informing
decision-makers.

5.1. Orderings in the mean

Fig. 3 shows the empirical cdfs of the NPC of each design
option under each of the three scenarios (first row) and of each
scenario under the three design options (second row). In Table 3
values of the Kolmogorov–Smirnov (KS) distance measure be-
tween the cdfs of different design options under each scenario are
shown. The numbers in the table represent the distance between
the cdfs when the design option denoted in the column domi-
nates that denoted in the row and indicate the extent to which
one design option dominates the other. In each cell, there are
three numbers that correspond to the Market, Neutral and Green
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p

Fig. 4. Empirical cdfs for CO2-equivalent emissions for (i) all three design options plotted together for each individual scenario (first row), (ii) all three scenarios
lotted together for each individual design option (second row).
.

Table 2
Description of the selected scenarios in the study.
Scenario Description

Green scenario

Penalty per Mton of emissions: 100 e per Mton.
Annual change in baseload and seasonal heat
demand: −1%.
Increasing gas prices and decreasing electricity
prices.

Neutral scenario

Penalty per Mton of emissions: 40 e per Mton.
Baseload and seasonal heat demand fluctuate
around the central projections.
Gas and electricity prices stay within the central
projected values.

Market scenario

No penalty per Mton of emissions.
Annual change in baseload and seasonal heat
demand: 1%.
Decreasing gas prices and increasing electricity
prices.

scenarios, respectively. Cases in which there is no dominance in
this direction are denoted with a dash. In addition, we test the
first-order stochastic ordering and provide the corresponding p-
values in Table 4. Cases where the cdfs cross and first-order SD
clearly does not exist are denoted by an ‘na’.

From the first row of Fig. 3, we observe that, under the Market
scenario, design option 3 has first-order SD over design option 2
which has first-order SD over design option 1. Under the Green
7

Table 3
Kolmogorov–Smirnov distances between empirical cdfs of NPC and CO2-
equivalent emissions for pairs of design options. The KS values correspond to
the Market, Neutral and Green scenarios and are only shown when the cdf for
the design option in the row is dominated by that in the column. NA values
indicate that the cdfs cross, and first-order SD does not exist in either direction

Design 1 Design 2 Design 3

NPC
Design 1 1/0.37/– 1/0.41/–
Design 2 –/–/0.48 0.33/NA/–
Design 3 –/–/0.57 –/NA/0.23

Emissions
Design 1 –/–/– –/–/–
Design 2 1/1/1 –/–/–
Design 3 1/1/1 1/1/1

scenario, the ordering is reversed, mainly due to the increased fi-
nancial support from policy makers for renewable energy sources.
Under the Neutral scenario, the cdfs for design option 2 and de-
sign option 3 cross, so first-order SD cannot discriminate between
these two options. However, we observe that design option 1 is
dominated by the other two options. We therefore conclude that,
if the sole aim is to minimise NPC, under the Green scenario,
design option 3 would be the preferred option whilst design
option 1 would be the preferred option under the Neutral and
Market scenarios. The reason for this difference is that, under
the Green scenario, the government introduces high penalties
for generation of emissions, which makes design option 1 an
unattractive option for providing heat.
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c

Fig. 5. First row: empirical cdfs of the Generalised Simplex metric for all three design options plotted together for each individual scenario. Second row: empirical

dfs of the Generalised Simplex metric for all three scenarios plotted together for each individual design option.
Table 4
Observed p-values for NPC and CO2-equivalent emissions using first-order stochastic ordering. The
three p-values in each table entry correspond to the Market, Neutral and Green scenarios and an
asterisk denotes that stochastic dominance is rejected at the chosen significance level. NA values
indicate that the cdfs cross, and therefore no hypothesis test is performed.

Design 1 Design 2 Design 3

NPC
Design 1 1/1/0∗ 1/1/0∗

Design 2 0∗/< 0.001∗/1 1/NA/0.012∗

Design 3 0∗/< 0.001∗/< 0.001∗ < 0.001∗/NA/1

Emissions
Design 1 0∗/0∗/0∗ 0∗/0∗/0∗

Design 2 1/1/1 0∗/0∗/0∗

Design 3 1/1/1 1/1/1
Table 5
Kolmogorov–Smirnov distances between empirical cdfs of NPC and CO2-
equivalent emissions for pairs of scenarios. The KS values correspond to design
option 1, design option 2 and design option 3 and are only shown when the
cdf for scenario in the column lies below that in the row. NA values indicate
that cdfs cross, and first-order SD does not exist.

Market Neutral Green

NPC
Market 1/NA/– 1/NA/–
Neutral –/NA/0.33 0.78/0.20/–
Green –/NA/0.33 –/–/0.18

Emissions
Market –/–/– –/–/–
Neutral 0.33/0.33/0.22 –/–/–
Green 0.56/0.56/0.44 0.33/0.33/0.22
8

Table 3 shows that in the Market and Neutral scenarios design
option 2 dominates design option 1 with a KS distance of 1 and
0.37, respectively. We conclude that there is greater difference
between design option 2 and design option 1 under the Market
scenario than under the Neutral scenario. In the Green scenario,
the dominance is reversed and design option 1 dominates design
option 2 with a KS distance of 0.48. Focusing on Table 4, for
NPC, the p-values related to the tests with the null hypothesis
that design option 1 first-degree stochastically dominates design
option 2 under Market, Neutral and Green scenarios are 0/ <

0.001/1. We therefore reject the null hypothesis for the Market
and Neutral scenarios whilst there is not enough evidence to
reject the null hypothesis for the Green scenario. These results
are in line with the findings observed in Fig. 3.
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Table 6
Observed p-values for NPC and CO2-equivalent emissions using first-order stochastic ordering. The
p-values correspond to design option 1, design option 2 and design option 3, where p-values with
asterisk are less than or equal to significance level. NA values indicate that cdfs cross, and first-order
SD does not exist and we cannot perform hypothesis tests.

Market Neutral Green

NPC
Market 1/NA/< 0.001∗ 1/NA/< 0.001∗

Neutral 0∗/NA/1 1/1/0.06
Green 0∗/NA/1 0∗/0.042/1

Emissions
Market < 0.001∗/< 0.001∗/0.018 0∗/0∗/0∗

Neutral 1/1/1 < 0.001∗/< 0.001∗/0.018
Green 1/1/1 1/1/1
T
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Focusing now on the effects of each scenario on the three
esign options, under design option 1 the Green scenario domi-
ates the Neutral scenario which dominates the Market scenario.
n this case, the ordering indicates that the highest NPC values
re generated under the Green scenario. For design option 3,
n the other hand, the ordering between scenarios is reversed,
nd we conclude that the highest NPC values correspond to the
arket scenario. Under design option 2, the cdf for the Neutral
cenario dominates that of the Green scenario whilst the cdf for
he Market scenario crosses the other two cdfs and thus there
s no ordering. Overall, the difference in orderings may lead a
lanner to think carefully about their choice of design option
nder different possible futures. If, for example, they consider
olicy featured in the Green scenario to be likely, they may
hoose design option 2 or 3 to mitigate that risk.
In Table 5, we present KS distances for the NPC and emissions

ssociated with each scenario under the selected design options
o quantify how different these empirical cdfs are. Notably, for
PC, under design option 1, we observe high values of the KS dis-
ance between pairs of scenarios. This demonstrates a substantial
cenario effect which is much larger than for the other two design
ptions. Table 6 provides p-values for the one-sided KS test. The
igh p-values indicate that there is not enough evidence to reject
he stochastic ordering in design option 1 and design option 3
bserved in Fig. 3.
Fig. 4 shows the empirical cdfs corresponding to emission lev-

ls. The empirical cdfs of emissions for each design option under
ach of the three scenarios (top row) demonstrate that, under
ll three scenarios, design option 1 dominates design option 2,
hich dominates design option 3. In Table 3, we observe KS
alues equal to 1, which indicates that empirical cdfs of emissions
nder all three scenarios significantly differ from each other.
hese findings are supported by p-values provided in Table 4.
otably, the specified scenarios differ in terms of the extent to
hich policy is driven by ‘green’ considerations and confirms
ur expectation that waste heat recovery is a carbon reducing
echnology under most reasonable policy decisions.

.2. Generalised Simplex dispersion ordering

In Section 5.1, we demonstrated how to assess the impacts of
ifferent design options by considering orderings in the mean. We
ow focus on dispersion, and note that a dispersive probability
istribution indicates a high level of uncertainty (risk), which is
ssumed to be a negative attribute. Here, we focus primarily on
he effects of scenarios on each of the design options.

Fig. 5 displays empirical cdfs for the Generalised Simplex
rdering. Those of the three design options under each of the
hree different scenarios are shown in the top row, whilst those
f the three scenarios under each of the three design options are
hown in the second row. We observe that under the Green and
eutral scenarios there is a clear ordering: design option 3 is
esser than design option 2 which is lesser than design option

in the Generalised Simplex dispersion order. Under the Market B

9

Table 7
Kolmogorov–Smirnov distances between Generalised Simplex empirical cdfs for
pairs of design options. The KS values correspond to the Market, Neutral and
Green scenarios and are only shown when the cdf for design option in the
column lies below that in the row. NA values indicate that cdfs cross, and
first-order SD does not exist.

Design 1 Design 2 Design 3

Design 1 NA/–/– –/–/–
Design 2 NA/0.33/0.49 –/–/–
Design 3 0.19/0.49/0.63 0.19/0.21/0.24

Table 8
Observed p-values for different design options using the Generalised Simplex
dispersion ordering. The p-values correspond to the Market, Neutral and Green
scenarios, where those with an asterisk are less than or equal to the chosen
significance level. NA values indicate that cdfs cross, and first-order SD does
not exist and we cannot perform hypothesis tests.

Design 1 Design 2 Design 3

Design 1 NA/0∗/0∗ 0∗/0∗/0∗

Design 2 NA/0.98/1 0∗/0∗/0∗

Design 3 1/1/1 1/1/1

scenario, design option 3 is dominated by the other two design
options, though the cdfs of design options 1 and 2 cross. We
can conclude that under the Generalised Simplex ordering, design
option 3 is the most robust option under all three scenarios.

Table 7 shows the KS distances between the empirical cdfs
associated with the pairs of design options under the Market,
Neutral and Green scenarios, respectively, and the p-values in
able 8 correspond to the KS tests of the dispersion ordering.
he KS distances between the design options in Table 7 are on
verage smaller under the Market Scenario than under the Green
cenario, suggesting that the difference in robustness is profound
or the case in which government prioritise green issues. In
ll cases in which the dispersion ordering is demonstrated, the
ifference according to the KS test is significant.
For a planner, the above results are informative in that they

emonstrate the relative robustness of different design options
nder each of the three scenarios, which is an important criterion
or decision-makers.

. Concluding remarks

The importance of informing decision-makers and stakehold-
rs about the uncertainty associated with design choices is in-
reasingly recognised in energy systems [4]. The present paper
emonstrates the use of stochastic ordering (dominance) in the
ontext of local energy planning under uncertainty. In particular,
e have introduced variability at two levels: local variability in

nputs and more general scenarios to account for changes in
onsumer behaviour and the political environment. Based on a
enerated data set, we have considered stochastic orderings both
n shift and dispersion.

In our analysis of the waste heat recovery system in
runswick, we have demonstrated that, under a Green scenario,
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hich assumes active government policy to meet the 2050 net-
ero carbon target, lower CO2-equivalent emissions can be pro-
uced at a lower cost by employing a heat pump with heat from
data centre. In addition, we have found using the Generalised
implex ordering that this design choice is more robust (less
olatile) compared to the other options under all three scenarios.
e argue that, if it can be shown to be true in general, this

obustness is an attractive feature of low-temperature waste heat
ecovery. We note that, in a number of cases, the cdfs cross
nd therefore first-order SD failed to discriminate between these
espective choices. One possible next step is to consider higher-
rders of stochastic dominance, which can be performed as an
xtension to the presented analysis.
We consider the proposed approach for analysing and com-

aring different options for providing residential heat in district
eating as a competitive alternative to traditional uncertainty
etrics used in energy systems. Our non-parametric method
ffers orderings in uncertainty based on distribution functions,
hich are easy to visualise and communicate to decision-makers
nd other stakeholders. In addition, very limited information
s required from decision-makers and experts to construct SD,
ontrary to the traditional mean–variance analysis where the
pecification of a utility function is necessary [32,33]. An exten-
ion to the proposed approach is to introduce new uncertainty
etrics by specifying order-preserving functions of the presented
rderings.
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