
1. Introduction
Geomagnetic response at Earth to solar driving is a problem of long-standing and topical interest (Baker, 2000; 
Milan et al., 2017; Pulkkinen, 2007), both in terms of understanding the underlying fundamental nonlinear phys-
ics of the Sun-Earth system and improving space weather preparedness. Geomagnetic indices such as the auroral 
electrojet (AE) index (Davis & Sugiura, 1966) and disturbance storm-time (Dst) index (Sugiura, 1964) and their 
higher resolution counterparts (Gjerloev, 2012) are central to characterizing space weather activity and are avail-
able over the last five solar cycles.

Statistical studies of long-term geomagnetic indices are aimed both at fundamental understanding of the nonlin-
ear magnetospheric response to solar driving and quantification of space weather risk. The properties of burst 

Abstract The overall level of solar activity, and space weather response at Earth, varies within and between 
successive solar cycles and can be characterized by the statistics of bursts, i.e., time series excursions above a 
threshold. We consider nonoverlapping 1-year samples of the auroral electrojet index (AE) and the SuperMAG-
based ring current index (SMR), across the last four solar cycles. These indices, respectively, characterize high 
latitude and equatorial geomagnetic disturbances. We suggest that average burst duration 𝐴𝐴 𝐴𝐴𝐴 and burst return 
period 𝐴𝐴 �̄�𝑅 form an activity parameter, 𝐴𝐴 𝐴𝐴𝐴∕ 𝐴𝑅𝑅 which characterizes the fraction of time the magnetosphere spends, 
on average, in an active state for a given burst threshold. If the burst threshold takes a fixed value, 𝐴𝐴 𝐴𝐴𝐴∕ 𝐴𝑅𝑅 for 
SMR tracks sunspot number, while 𝐴𝐴 𝐴𝐴𝐴∕ 𝐴𝑅𝑅 for AE peaks in the solar cycle declining phase. Level crossing theory 
directly relates 𝐴𝐴 𝐴𝐴𝐴∕ 𝐴𝑅𝑅 to the observed index value cumulative distribution function (cdf). For burst thresholds at 
fixed quantiles, we find that the probability density functions of τ and R each collapse onto single empirical 
curves for AE at solar cycle minimum, maximum, and declining phase and for (−)SMR at solar maximum. 
Moreover, underlying empirical cdf tails of observed index values collapse onto common functional forms 
specific to each index and cycle phase when normalized to their first two moments. Together, these results 
offer operational support to quantifying space weather risk which requires understanding how return periods of 
events of a given size vary with solar cycle strength.

Plain Language Summary Earth's magnetosphere and ionosphere have their own space weather. 
Space weather storms can cause technological problems including electrical grid damage and satellite 
system disruption. The overall driving of space weather follows the solar cycle of activity which has a 
period of approximately 11-years. Geomagnetic indices, based on magnetic field observations at the Earth's 
surface, provide almost continuous monitoring of magnetospheric and ionospheric activity. We analyze two 
geomagnetic index time series, AE and SMR, which track activity in the auroral region and around the Earth's 
equator, respectively. We identify bursts or excursions above thresholds in the AE and SMR time series. We 
find that the ratio of average burst duration to return period provides a useful activity parameter which tracks 
the solar cycle in a well-defined way. No two solar cycles are the same, each solar maximum has a different 
strength. However, the distributions of the bursts, and the observations from which they are constructed, have 
properties that repeat from one solar cycle to the next. These results provide constraints that could be used in 
model predictions for the statistics of future space weather on solar cycle scales.
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distributions have been related to those characteristic of a wider class of complex systems (Barabási, 2010; Chap-
man et al., 1998; Consolini, 1997; Freeman & Watkins, 2002; Takalo, 1993; Watkins et al., 2016).

Space weather risk quantification has inspired statistical studies of the observed values of the geomagnetic indi-
ces, and of the return periods of bursts or events identified in these time series. For example, Riley (2012) and 
Love et al. (2015) applied probabilistic analysis to Dst to assess the probability of occurrence of extreme space 
weather events. Chapman et al. (2018) characterized space weather parameter distributions, including AE and 
Dst, for the last five solar maxima and showed that the tail of their distributions follows a single functional form, 
independent of the strength of each solar cycle. Kakad and Kakad (2020) examined the probability distribution 
functions associated with AE and Dst indices and noticed significant narrowing in the probability distribution 
function for solar cycle 24 as compared to cycles 20–23, suggesting a decrease in the strength of associated 
current systems during this time. Extreme value theory (EVT) may be applied to model the index distributions. 
The Dst index which is limited to 1-hr cadence and the 1-hr AE time series are regularly used in such studies. For 
example, by applying the peak over threshold method to Dst Tsubouchi and Omura (2007) estimated occurrence 
probabilities of intense geomagnetic storms and Acero et al.  (2018) studied an upper bound to the Dst index 
distribution. Nakamura et al.  (2015) utilized EVT to provide statistical evidence for finite upper limits to AE 
indices and to estimate the annual expected number and probable intensity of extreme substorm events. Alberti 
et al. (2021) explored the complexity of the 1-min AE index and the Dst-like, 1-min SYM − H index and reported 
no difference between the last two solar cycles in terms of complexity measures for the two geomagnetic indices.

Geomagnetic activity shows a solar cycle dependence (Borovsky & Denton, 2006; Denton et al., 2006; Gonzalez 
et al., 1999; Hathaway, 2015; Richardson et al., 2002), driven by changes in the character of the solar wind during 
the different phases of the solar cycle (Borovsky, 2020). Interplanetary coronal mass ejections (ICMEs) are asso-
ciated with intense geomagnetic activity and are more frequent at solar maximum. Corotating interaction regions 
(CIRs) are most frequent during the declining phase of the solar cycle. CIR-driven storms are normally weaker 
than CME-driven storms, with less intensive auroral activity, but often have a longer duration of several days. 
Space-age geomagnetic indices, such as AE and Dst, are only available for the last five solar cycles. Accessing a 
larger number of solar cycles relies on the aa or Ap 3-hourly range indices (Mayaud, 1980); however, these time 
series are highly discretized by construction (Chapman, Horne, & Watkins, 2020) and thus cannot be straight-
forwardly thresholded to construct bursts as in our study here. Nevertheless, they reveal solar cycle variation in 
activity. Lockwood et al. (2018, 2019) examined the Ap, aa, Dst, and AE indices and found a monotonic rela-
tionship between the mean observed annual values and the fraction of a given year during which a “large event” 
threshold was exceeded. Lockwood et al. (2018) found that annual distributions of Ap, AE, and aa values follow 
a lognormal form which maintains a very constant shape over years of index availability. Haines et al. (2019) 
found that for geomagnetic storms, as measured by the aaH index, more intense storms have longer durations. 
Chapman, McIntosh, et al. (2020) found solar cycle ordering for extreme geomagnetic events in the aaH index. 
Elvidge (2020) applied EVT to the aa index to estimate return levels for geomagnetic activity at times of solar 
maximum and solar minimum. Owens et al. (2021) use the aaH index to find that storms of all magnitudes occur 
more frequently during solar maximum than around solar minimum and that extreme events occur more frequent-
ly during large solar cycles than small cycles. Chapman, Horne, & Watkins (2020) found a good correspondence 
between annual minimum Dst values and extreme activity in aa which can be used to translate between the two 
indices on an annual time scale.

The observed values of geomagnetic indices track solar cycle activity. Indeed, we show here that quantiles of 
the AE and SMR index distributions track solar cycle variation over multiple solar cycles. The question is then 
how the likelihood of events varies with solar cycle activity. Counting events in order to construct empirical 
distributions can be problematic as geomagnetic storms can have multiple onsets and substorms are generally 
not isolated (Kamide et al., 1998). One approach is to define a threshold and investigate bursts, or excursions 
of the variable, above this threshold (e.g., Consolini, 1997; Freeman et al., 2000; Hush et al., 2015; Moloney & 
Davidsen, 2011, 2014; Tindale et al., 2018; Uritsky et al., 2001). In order to construct bursts from geomagnetic 
index time series, we will therefore exploit the 1-min resolution AE index and the recently constructed high-time 
resolution equatorial index, SMR, for the years 1975–2017. SMR is produced using the SuperMAG collaboration 
of ground-based magnetometers (Gjerloev, 2012), is available at 1-min cadence, and has been introduced as a 
high-spatial resolution counterpart to the Dst index. In this paper, available AE and SMR geomagnetic index data 
are divided into 1-year nonoverlapping intervals so that properties of bursts may be studied over the evolution 
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of four solar cycles. We consider two definitions of bursts using (i) a fixed value threshold and (ii) a quantile 
threshold defined by the underlying cumulative distribution function (cdf) of the observations in each year-long 
sample. These burst definitions are sensitive to different aspects of the overall solar cycle variation of geomag-
netic activity. A fixed value threshold directly identifies events exceeding a given amplitude and is sensitive to 
the overall rise and fall of solar cycle activity. A quantile threshold from the underlying observation cdf will itself 
rise and fall with the overall level of solar cycle activity, the threshold will resolve the change in behavior of the 
underlying functional form of the distribution across different solar cycle phases. We will focus on how burst du-
ration, τ (time spent above threshold), and return period, R (time between threshold upcrossings), vary across the 
last four solar cycles. We remark that the return period defined in the threshold crossing problem for discrete time 
series considered here is different from the waiting time between events from time-dependent point processes, 
which has also been of continuing interest (e.g., Nurhan et al., 2021; Wheatland, 2000).

An identity from the level crossing (LC) theory (Lawrance & Kottegoda, 1977, see also Chapman et al., 2019) 
provides a relationship between the empirical distribution of observations and the parameters of bursts in a time 
series. For a given threshold, the dimensionless ratio of mean burst duration to mean burst return time (𝐴𝐴 𝐴𝐴𝐴∕ 𝐴𝑅𝑅 ) is 
directly related to the cdf of the underlying observations from which the bursts were constructed. We consider 𝐴𝐴 𝐴𝐴𝐴 
and 𝐴𝐴 �̄�𝑅 for year-long AE and SMR samples. While 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 individually show complex behavior, we find that the 
ratio 𝐴𝐴 𝐴𝐴𝐴∕ 𝐴𝑅𝑅 shows ordering with sunspot number (SSN), suggesting that 𝐴𝐴 𝐴𝐴𝐴∕ 𝐴𝑅𝑅 is a useful “activity parameter”: it 
quantifies the fraction of time a geomagnetic index spends above a fixed value threshold.

LC theory gives the average return time for events that exceed a specific quantile for a given average duration. 
The minute-resolution indices provide a sufficiently large statistical sample that we can directly investigate if, and 
how, the probability density function (pdf) of burst return time and burst duration track solar cycle variability, we 
find the results depend on solar cycle phase. Knowledge of the underlying cdf of the index observations used to 
construct the bursts is required to relate results for quantile thresholds to physical values. Chapman et al. (2018) 
previously found that the tail of the distribution of 1-hr resolution AE and Dst observations follows a functional 
form that does not vary from one maximum to the next, it is simply scaled by its mean and variance between 
weaker and stronger solar cycles. We recover this result here with higher time resolution 1-min AE and SMR. This 
suggests robust dynamics of space weather “climate” which do not predict when individual events will occur, but 
do suggest an overall activity level that floats up and down with the solar cycle level of activity. We suggest that 
combining (i) the solar cycle modulated single functional form for the observation cdf “near-tail” with (ii) the 
relationship between the cdf and average burst return times from LC theory provides a framework for translating 
predictions of future solar cycle activity into predictions of event return times. Throughout this paper we will refer 
to distributional properties (cdf, pdf, quantiles) that have been estimated from samples comprised of finite-length 
time intervals of observations. Our aim is to use these estimates to characterize how the overall level of activity 
is varying on solar-cycle time scales, and our use of this terminology should be read in this context, rather than 
implying strict stationarity. The sample time scale used here, nonoverlapping calendar years, is sufficiently long 
to contain large numbers of bursts, and sufficiently short to resolve solar-cycle time variation.

The paper is organized as follows. Section 2 introduces the data used throughout this paper and describes how 
quantiles of the empirical distributions of annual index samples vary with solar cycle activity. Section 3 explains 
the methodology of burst construction and offers an informal proof of the aforementioned identity from LC 
theory. Section 4 presents mean burst parameters calculated for the AE and (−)SMR indices across solar cycles 
21–24 for bursts above fixed value and quantile thresholds. In Section 5, the burst parameter pdfs are compared 
for fixed value and quantile thresholds at select phases of the solar cycle. Section 6 characterizes the functional 
form for the near-tail region of underlying empirical distributions of AE and (−)SMR observations at maximum, 
minimum, and declining phases of the solar cycle. Section 7 discusses the implications of these results for the 
study of space weather climatology. Finally, the findings of the paper are summarized in Section 8.

2. The AE and SMR Indices and Their Variation Over the Last Four Solar Cycles
Two key features of magnetospheric response to solar driving, as observed at the Earth's surface, are the en-
hancement of the ring current and auroral activity at high latitudes. The AE index can be used as a good monitor 
of global energy deposition rates (Ahn et al., 1983). Indices such as Dst, SYM − H, and SMR, which respond to 
the horizontal component at the equator, can be interpreted as representing the energy of the suprathermal ions 
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circulating about the Earth in the ring current (Newell & Gjerloev, 2012). As such, the auroral and equatorial 
indices parameterize the magnetic perturbations on the ground arising from distinct systems of magnetospheric 
and ionospheric current. It has been established that both time series exhibit irregular and bursty behavior (Al-
berti et al., 2021). Understanding the underlying temporal changes in these indices can elucidate the behavior 
of the overall magnetosphere-ionosphere system. Geomagnetic storms can last several days and substorms have 
time scales of a few hours but both are characterized by periods of rapid energy release (Sandhu et al., 2019, and 
references therein). High-time resolution observations are required to resolve the bursty nature of the system and 
we require homogeneous, multisolar cycle observations to investigate statistical variation within and between so-
lar cycles. In this paper, we will utilize the AE and SMR indices, as both are available at 1-min resolution, almost 
continuously, for solar cycles 21–24.

2.1. Data Sets

The AE index was introduced by Davis and Sugiura (1966) and is generated by the World Data Center for Geo-
magnetism, Kyoto (Nose et al., 2015). AE is produced at 1-min cadence using data from up to 12 ground-based 
magnetometer stations at latitudes within the band of the auroral oval. Background-subtracted horizontal field 
(H) components of each station are compared. The upper index, AU, is the largest positive H-component distur-
bance and the lower index, AL, is the largest negative H-component disturbance. The AE index is then the differ-
ence between upper and lower indices, AE = AU − AL. We use the final AE index for the years 1975–1987 and 
the provisional AE index for the years 1990–2017. There exist two gaps in the AE data availability, 1976–1977 
and 1988–1989. The SuperMAG auroral electrojet index, SME (Newell & Gjerloev, 2011), uses data from more 
magnetometer stations than the official IAGA approved AE indices to capture the electrojet behavior more ef-
fectively. However, the number of magnetometer stations used to construct SME varies over long (multiple solar 
cycle) time scales so that it is unsuitable for this cross-solar cycle study (Bergin et al., 2020).

The SMR index is the ring current index compiled by the SuperMAG collaboration (Newell & Gjerloev, 2012). It 
is conceptually the same as the disturbance storm-time (Dst) index (Sugiura, 1964) and SYM − H index (Iyemo-
ri, 1990). SMR is produced at 1-min cadence. Low and midlatitude magnetometer stations in the SuperMAG 
collaboration provide H-component data. Baseline removal is applied (Gjerloev, 2012), along with a correction 
factor for magnetic latitude. The stations are separated into four magnetic local time (MLT) zones, with centers at 
00, 06, 12, and 18 MLT. The partial ring current index, SMR00, is defined as the average corrected H-component 
for all available stations within the 6-hr MLT zone centered at 00 MLT. Likewise for the other partial ring current 
indices, SMR06, SMR12, and SMR18. SMR is the average of the four partial ring current indices, SMR = (SMR00 + 
SMR06 + SMR12 + SMR18)/4. Space weather activity such as enhancement of the ring current results in a decrease 
in the SMR index. Here, we plot minus the value of the index, (−)SMR, throughout for convenience.

We use the 13-month smoothed international SSN published by SILSO World Data Center (1973–2020) to char-
acterize the solar activity cycle and we use the SILSO identification of dates for the minima and maxima of 
each individual solar cycle. In Sections 5 and 6, 1-year samples of AE and (−)SMR from minima, maxima, and 
declining phases of solar cycles 21–24 are investigated. Samples around solar maximum are the calendar years 
1979, 1989, 2001, and 2014 and around solar minimum are the years 1976, 1986, 1996, and 2008. Due to the 
aforementioned gap in AE data availability for 1976 and 1989, we use AE from the year 1975 for the solar cycle 21 
minimum sample and 1990 for the sample of AE at solar maximum of cycle 22. The calendar years 1983, 1993, 
2004, and 2016 are selected to represent the declining phase of the solar cycles, following Chapman, Horne, & 
Watkins (2020) and Chapman, McIntosh, et al. (2020).

2.2. Quantiles and the Cumulative Distribution Function

In Figure 1, we plot the distributions of AE and (−)SMR index observations for nonoverlapping calendar year 
samples across the last four solar cycles. The cdf for the observed calendar year samples are calculated in two 
steps. (i) We first obtain the empirical cdf. For a given observation xk, in a set of rank-ordered observations 
{x1 < x2 < … < xk < … < xN}, taken from a time series, and where N is the number of observations in the set and 
k is the rank order, the corresponding value of the empirical cdf is 𝐴𝐴 𝐴𝐴(𝑥𝑥𝑘𝑘) =

𝑘𝑘

𝑁𝑁
 . The qu quantile defines the value u 

for which the observations x > u exceed that of the proportion q of the rank-ordered data set. In general, C(u) = qu 
is the fraction of observations for which x ≤ u. (ii) We then use the kernel estimator of the cdf (Silverman, 1986) 
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to resample the empirical distributions at 1 nT intervals. The MATLAB kernel estimator for the cdf is given by 
𝐴𝐴 𝐹𝐹ℎ(𝑥𝑥) =

1

𝑛𝑛

∑𝑛𝑛

𝑖𝑖=1 𝐺𝐺

(

𝑥𝑥−𝑥𝑥𝑖𝑖

ℎ

)

 , where x1, x2, …, xn are random samples from an unknown distribution, n is the sample 
size, K(⋅) is the kernel smoothing function, h is the bandwidth, and 𝐴𝐴 𝐴𝐴(𝑥𝑥) = ∫

𝑥𝑥

−∞
𝐾𝐾(𝑡𝑡)𝑑𝑑𝑡𝑡 . We use a constant width 

Gaussian kernel. We present the cdf and the distribution quantiles of nonoverlapping 1-year samples of the AE 
index (Figure 1bi) and the (−)SMR index (Figure 1bii). We compare the time variation of the distributions to the 
solar cycle variation exhibited by the SSN and the 13-month smoothed SSN for solar cycles 21–24. Overlaid in 
the plots are the dates of solar cycle minima/maxima.

We see that quantiles of the indices track solar cycle variation. For each AE index quantile, in Figure 1bi the peak 
in activity is seen in the declining phase of the solar cycle, after the solar maximum. The weak nature of cycle 
24 is evident, particularly at the deep minimum in quantiles at 2008. We compare the variation of maximum AE 
value within each calendar year sample to the sunspot cycle in Figure 1ci to demonstrate the extreme values that 
can be reached by AE. The 5,000 nT peak associated with the “great geomagnetic storm” at solar minimum in 
1986 (Hamilton et al., 1988) is not reflected in the cdf variation. For each (−)SMR index quantile, in Figure 1bii, 
the dual-peak solar cycle distribution described by Gonzalez et al. (1990) can be seen, where the dip is centered 
on solar cycle maximum.

Figure 1. (a) Daily sunspot number (SSN) for the years 1975–2017 are plotted (black). Overplotted (red) is the 13-month 
smoothed monthly SSN. Labeled are solar cycles 21–24. The (bi) available Kyoto 1-min auroral electrojet (AE) index 
time series and (bii) (−) SuperMAG 1-min ring current index (SMR) from 1975 to 2017 are shown as a time variation in 
distribution. The cumulative distribution function (cdf) values, for each nonoverlapping 1-year sample, are indicated by color 
and are plotted versus index value (y axis) and time (x axis). Quantiles are indicated in black solid lines on the cdfs. The 
maximum (ci) AE and (cii) (−)SMR value in each nonoverlapping 1-year sample. In all panels, gray dashed lines indicate 
solar minimum and dotted lines indicate solar maximum, identified from the monthly smoothed SSN. Overplotted in (b, c) is 
the transformed 13-month smoothed monthly SSN (red).
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3. Burst Statistics and Level Crossing Theory
An identity from level crossing (LC) theory directly relates the distribution 
of the raw observations that constitute any given time series to the average 
properties of bursts in that time series. We will now explore how the solar 
cycle variation of the raw observations, discussed above, translates into the 
solar cycle variation of bursts, i.e., events identified by threshold crossing.

3.1. Identifying Bursts in the Time Series

A burst in a time series is defined as an excursion above a threshold, u. The 
burst return period, R, is the time between consecutive threshold upcrossings, 
the burst duration, τ, is the time between threshold upcrossing and down-
crossing, and size is the integrated area while the time series exceeds the 
threshold, as illustrated in Figure 2. We will consider two different defini-
tions of the burst threshold. Bursts may be identified as the data interval 
above a fixed value, sample-invariant threshold which is constant across the 
solar cycles, e.g., u = 500 nT. Alternatively, bursts may be identified as the 
data interval above a sample-specific quantile threshold, qu. For any calendar 
year sample of observations, the time-varying threshold u(t), is defined by 
the quth quantile of the sample, e.g., given qu = 0.9, the burst threshold u(t) 
varies in time such that it is always at a value that exceeds that of 90% of 
the rank-ordered sample. Figure 1 then plots the observed index values that 
correspond to a given quantile threshold.

Bursts of duration τ that approach the time resolution of the data, i.e., τ short-
er than a TR1 of 5 min, are excluded from this analysis. Likewise, consecutive 
pairs of bursts separated by R shorter than TR2 of 5 min are treated as a single 
burst. We have varied TR1 and TR2 independently (TR1 ≠ TR2) and find that the 

number of bursts monotonically decreases with increasing TR1 or TR2 and their annual means, 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 , vary in 
step but importantly the ratio of 𝐴𝐴 𝐴𝐴𝐴 to 𝐴𝐴 �̄�𝑅 does not change within the 95% confidence interval estimate. As a sample, 
for a threshold of u = 500 nT applied to AE where TR1 = 5 min, on average 300 of 1,300 fluctuations above u fall 
into the τ < TR1 category. For a threshold of u = 40 nT applied to (−)SMR where TR1 = 5 min, on average 40 of 
250 fluctuations fall into this category.

3.2. Mean Burst Duration and Return Period From Level Crossing Theory

The properties of bursts identified in the observed discrete time series are constrained by their empirical cdfs 
via an identity from LC theory (Cramér & Leadbetter, 2004; Lawrance & Kottegoda, 1977; Vanmarcke, 2010). 
Equations 1–4 offer an informal proof of this identity, following the aforementioned references. Let 𝐴𝐴 {𝑥𝑥𝑘𝑘}

𝑁𝑁

𝑘𝑘=1 be 
the time-indexed observations in a time series sample, where N is the number of observations in the sample. For 
a threshold u, the mean burst duration is

𝜏𝜏(𝑢𝑢) =
#𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜 𝑢𝑢

𝐵𝐵(𝑢𝑢)
=

∑𝑁𝑁

𝑘𝑘=1
𝟙𝟙(𝑥𝑥𝑘𝑘 𝑜 𝑢𝑢)

𝐵𝐵(𝑢𝑢)
, (1)

where B(u) is the number of bursts above the threshold u and 𝐴𝐴 𝟙𝟙 is an indicator function such that

�(�� > �) =

⎧

⎪

⎨

⎪

⎩

1, if �� > �

0, if �� ≤ �.
 (2)

The mean burst return period is

�̄�𝑅(𝑢𝑢) =
𝑁𝑁

𝐵𝐵(𝑢𝑢)
. (3)

Figure 2. Bursts in 24 hr of the AE time series on 22 May 2000 are plotted 
(black) with an example threshold of u = 300 nT in red. Definitions of relevant 
burst parameters are labeled. Burst return period, R, is the time between 
subsequent threshold upcrossings. Burst duration, τ, is the time between 
threshold upcrossing and subsequent downcrossing. Burst size is the integrated 
area between the time series and the threshold and is indicated here by gray 
shading.
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So, the ratio of mean burst duration to mean burst return period is

𝜏𝜏(𝑢𝑢)

�̄�𝑅(𝑢𝑢)
=

∑𝑁𝑁

𝑘𝑘=1 𝟙𝟙(𝑥𝑥𝑘𝑘 > 𝑢𝑢)

𝑁𝑁
=

𝑁𝑁 −
∑𝑁𝑁

𝑘𝑘=1 𝟙𝟙(𝑥𝑥𝑘𝑘 ≤ 𝑢𝑢)

𝑁𝑁
= 1 −

1

𝑁𝑁

𝑁𝑁
∑

𝑘𝑘=1

𝟙𝟙(𝑥𝑥𝑘𝑘 ≤ 𝑢𝑢) = 1 − 𝐶𝐶(𝑢𝑢), (4)

where C(u) is the value of the cdf evaluated at the threshold u.

Thus, mean burst duration and return time are not independent quantities. Together they form a dimensionless 
“activity parameter” which describes the fraction of time the magnetosphere spends, on average, in an active 
state. It will be larger when events last longer and/or occur more frequently, signifying enhanced geomagnetic 
activity. Many short duration bursts will have the same value of the activity parameter as a few, long duration 
bursts. We may determine the average event duration for a given average return period, or vice versa. For a fixed 
threshold value u, the activity parameter will track the solar cycle variation in C(u) that we have seen in Figure 1. 
For a threshold at a fixed quantile, i.e., fixed value of C(u), the activity parameter should not vary and we will use 
this result from LC theory as a check on the fidelity of our distributions in Section 4.

4. Mean Burst Return Periods and Durations in AE and SMR
We can directly obtain the distribution of burst parameters from the geomagnetic index time series and hence can 
independently determine the mean burst duration (𝐴𝐴 𝐴𝐴𝐴 ) and mean return period (𝐴𝐴 �̄�𝑅 ) for nonoverlapping consecutive 
calendar year samples of the AE index and the (−)SMR index across solar cycles 21–24. We can then see how 
these contribute to the ratio 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 across multiple solar cycles. Figure 3 plots 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 for AE bursts identified above 
a fixed value threshold of 500, 700, and 900 nT in each annual sample. We would expect larger events to have 
longer duration on average, and indeed the mean burst duration 𝐴𝐴 𝐴𝐴𝐴 , in Figure 3a, tends to be smallest around solar 
minimum and is largest around solar maximum. However, except for the quiet cycle 24, 𝐴𝐴 𝐴𝐴𝐴 peaks after each solar 
maximum SSN peak. Since events are more frequent during the active phase of the solar cycle, we would expect 
the mean return period 𝐴𝐴 �̄�𝑅 to be roughly anti-correlated with the SSN. 𝐴𝐴 �̄�𝑅 , plotted in Figure 3b and again in Fig-
ure 3c with a zoom on the y axis, does indeed peak at the solar minima, however, except for cycle 24, the average 
return period is shortest after the SSN peak at maximum, in the declining phase of the solar cycle. In addition to 
these overall trends, the detailed behavior varies from one cycle to the next. For example, 𝐴𝐴 �̄�𝑅 has an additional peak 
at 1980 and at 2015 near the solar maxima. The minimum before the notably weak cycle 24 was particularly quiet 
relative to previous minima, it has a relatively low SSN, and we can see that it has a very long 𝐴𝐴 �̄�𝑅 . For u = 900 nT, 

𝐴𝐴 𝐴𝐴𝐴 does not have a minimum at the cycle 21 minimum.

The ratio of average duration to return period (𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 ), i.e., the activity parameter, is plotted in Figure 3d. Figure 3d 
shows that 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 exhibits the same pattern of variation through each of the four solar cycles, with minima coincid-
ing with each SSN solar minimum and peaking in the declining phase for all four cycles. This suggests that 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 
shows a clearer ordering with the SSN over solar cycle scales than 𝐴𝐴 𝐴𝐴𝐴 or 𝐴𝐴 �̄�𝑅 independently. Both 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 contain 
information about the details of the burst events, but they are not independent of each other as they are constrained 
by the LC theory (Equation 4), that is they are constrained by the overall activity level of the system which is 
characterized by 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 .

Figure 4 is in the same format Figure 3 except that it now plots 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 for AE bursts identified above quantile 
thresholds at the 0.9, 0.95, and 0.99 quantile of each annual sample. The observed values of AE to which quantile 
thresholds correspond are now tracking the overall level of solar cycle activity, as can be seen from Figure 1bi. 
We now do not see strong solar cycle ordering in the variation of 𝐴𝐴 𝐴𝐴𝐴 in Figure 4a or 𝐴𝐴 �̄�𝑅 , in Figures 4b and 4c. On 
these plots, the behavior at cycle 24 is similar in amplitude to that of the previous cycles, suggesting that once the 
overall solar cycle activity level is removed, the events in weak cycle 24 are not behaving differently from those 
in previous cycles. The activity parameter 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 is constrained to be a constant by the LC theory (Equation 4); 
Figure 3d confirms that this is indeed the case for our empirically determined 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 , confirming the accuracy of 
our quantile estimation.

Figures 5 and 6 repeat the above analysis for SMR. Figure 5 plots 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 for (−)SMR bursts identified above a 
fixed value threshold of 40, 60, and 100 nT in annual samples. Although 𝐴𝐴 𝐴𝐴𝐴 in Figure 5 is larger at the maxima, the 
signal shows high variability; it does not show robust ordering with the SSN for all four solar cycles. Peaks in 𝐴𝐴 �̄�𝑅 
are found at the solar cycle minima and the shortest 𝐴𝐴 �̄�𝑅 values are observed either in the declining phase or at the 
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maxima of the solar cycle, most evident for 40 and 60 nT thresholds in Figure 5c. The activity parameter 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 in 
Figure 5d shows a rather clearer signal of variation with the solar cycle of activity including (except for cycle 23) 
tracking the double peak in the SSN. Figure 6 plots 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 for (−)SMR bursts identified above quantile thresh-
olds at the 0.9, 0.95, and 0.99 quantiles in each annual sample. As with AE, we see that using a fixed quantile burst 
threshold eliminates much of the solar cycle variation.

The AE and SMR indices respond to different magnetospheric and ionospheric current systems and events are 
characterized by different signatures in the time series. Significant disturbances in the auroral electrojets result 
in rapid sporadic signatures in the AE index whereas the ring current recovers more gradually from large distur-
bances (Milan et al., 2017). This is reflected in differences in the statistical sampling of the mean return time and 

Figure 3. AE mean burst parameters at fixed value thresholds. Burst analysis of the time series is used to plot the mean 
(a) burst duration, (b, c) burst return period, and (d) ratio of duration to return period for bursts in the AE time series over a 
threshold of 500 nT (purple), 700 nT (blue), and 900 nT (green). Data are sampled in nonoverlapping 1-year periods. Shading 
indicates 95% confidence intervals for the mean, given by 𝐴𝐴 𝐴𝐴𝐴 ± (1.96 × 𝜎𝜎(𝐴𝐴)∕

√

𝐵𝐵) where x is duration or return period of 
bursts in the 1-year sample, 𝐴𝐴 𝐴𝐴𝐴 is their mean, σ(x) is their standard deviation and B is the number of bursts recorded. The 
13-month smoothed monthly sunspot number (SSN) (solid gray), rescaled to the y axes is plotted. Gray dashed lines indicate 
solar minima and dotted lines indicate solar maxima, identified from the monthly smoothed SSN.
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duration of bursts constructed with quantile thresholds of the AE and (−)SMR indices. Equation 3 defines 𝐴𝐴 �̄�𝑅 for 
a given threshold as the number of observations in a sample divided by the number of bursts over that threshold. 
We consider 1-min resolution, 1-calendar year samples of AE and (−)SMR so that the number of observed values 
of the indices from which the bursts are constructed is essentially the same across all samples and 𝐴𝐴 𝐴𝐴 ∕�̄�𝑅 , where 
T is a calendar year, 𝐴𝐴 �̄�𝑅 is the time-varying number of bursts in each sample. For example, we applied a quantile 
threshold of 0.95 to both indices. Where we consider the AE index in Figure 4, 𝐴𝐴 �̄�𝑅 of ∼10 hr corresponds to ∼900 
bursts in the sample. 𝐴𝐴 𝐴𝐴𝐴 varies between 30 min and 1 hr. On the other hand, when the 0.95 quantile threshold is ap-
plied to the (−)SMR index, seen in Figure 6, 𝐴𝐴 �̄�𝑅 fluctuates around 50 hr, equating to ∼200 bursts. 𝐴𝐴 𝐴𝐴𝐴 varies between 
2 and 4 hr. Bursts in the (−)SMR index are longer in duration so lead to more recorded amplified values per event, 
thus the quantile threshold picks out fewer events.

To summarize, LC theory does not specify how 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 vary independently. While 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 show some overall 
solar cycle trends we find there is considerable variation in how they track each cycle in detail. However, from the 

Figure 4. AE mean burst parameters at quantile thresholds. Burst analysis of the time series is used to plot the mean (a) burst 
duration, (b, c) burst return period, and (d) ratio of duration to return period for bursts in the AE time series over a quantile 
threshold of 0.9 (purple), 0.95 (blue), and 0.99 (green). Data are sampled in nonoverlapping 1-year periods. Format as in 
Figure 3.
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LC theory identity the ratio 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 must track the value of the underlying cdf, C(u) or quantile of the observed values 
of the index. If we construct bursts with a fixed quantile threshold then 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 is constant. If on the other hand, we 
construct bursts with a fixed threshold value u then C(u) will vary with solar cycle activity level. In Figure 1, we 
see that the quantiles of the observed index values track SSN quite well. This then constrains the ratio 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 to also 
track the level of solar cycle activity, for bursts constructed with a fixed value threshold. 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 may thus provide an 
overall activity parameter that relates changes in overall solar driving, the amplitude of the observed index, and 
the statistics of the burst parameters.

Figure 5. (−)SMR mean burst parameters at fixed value thresholds. Burst analysis of the time series is used to plot the mean 
(a) burst duration, (b, c) burst return period, and (d) ratio of duration to return period for bursts in the (−)SMR time series 
over threshold of 40 nT (purple), 60 nT (blue), and 100 nT (green). Data are sampled in nonoverlapping 1-year periods. 
Format as in Figure 3.
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5. Burst Parameter Probability Density Functions
In Section 4, we found that the variation in 𝐴𝐴 �̄�𝑅 , and to a lesser extent 𝐴𝐴 𝐴𝐴𝐴 , from one solar maximum to the next that 
is seen when we threshold bursts at a fixed value, is suppressed when we threshold at a quantile. We now com-
pare the probability density functions (pdfs) of burst parameters, not just the mean, for fixed value and quantile 
thresholds.

We select 1 year at each solar cycle maximum to compare across the four solar cycles, as described in Section 2.1. 
We obtain the pdfs of burst durations and burst return periods, these are shown in Figure 7 for AE and Figure 8 
for (−)SMR. Bin widths are determined using the Freedman-Diaconis rule (Freedman & Diaconis, 1981) and the 
uncertainties are calculated as the square root of the bin count. A log scale is applied to the x axes. We compare 
the distributions of burst parameters obtained by thresholding at a fixed quantile, and at a fixed value of the index 
time series.

Figure 6. (−)SMR mean burst parameters at quantile thresholds. Burst analysis of the time series is used to plot the mean (a) 
burst duration, (b, c) burst return period, and (d) ratio of duration to return period for bursts in the (−)SMR time series over 
quantile threshold of 0.9 (purple), 0.95 (blue), and 0.99 (green). Data are sampled in nonoverlapping 1-year periods. Format 
as in Figure 3.
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In Figure 7a, a fixed value threshold at 500 nT is applied to the AE time series and in Figure 7b, we use a sam-
ple-specific quantile threshold at the 90th quantile. In Figure 8, we present the distribution of return periods and 
durations of bursts in (−)SMR above (a) fixed value threshold of 40 nT and (b) quantile threshold at the 90th 
quantile. The distribution of burst return periods and duration clearly vary from one solar maximum to the next 
when the bursts are constructed using a fixed value threshold, for both AE and (−)SMR. However, when the sam-
ple-specific quantile threshold is used, the resulting burst distributions show little variation between one solar 
maximum and the next and in some cases effectively collapse onto each another, within uncertainties.

The variation from one solar maximum to the next in 𝐴𝐴 �̄�𝑅 , and to a lesser extent 𝐴𝐴 𝐴𝐴𝐴 , that is seen when we threshold 
at a value, is suppressed when we threshold at a quantile, as shown in Section 4. We now have the much stronger 
result, that this approximately holds for the pdfs of τ and R. Provided future solar cycles behave as in the past, this 
has the potential to constrain predictions of space weather activity. Given a prediction of the value of the quantile 
of the observed values of the index, then the distribution of duration and return period of bursts above this quan-
tile may be known, since it simply follows the empirical distributions of burst parameters plotted here. We have 
attempted single functional form fits to these distributions but no robust functional form was found. We repeated 
this analysis for samples during minimum and declining phases of the solar cycle. In each case, where a quantile 
threshold is applied to the AE time series sample, the pdfs of τ and R vary only weakly from one cycle minimum 
or declining phase to the next. In the case of (−)SMR, where bursts are identified above a quantile threshold, dis-
tributions of τ and R show more cycle-to-cycle variability than those found for solar cycle maximum, in Figure 8.

Figure 7. Bursts are identified above (a) fixed value threshold of 500 nT and (b) quantile threshold at qu = 0.9 in 1-year 
samples of the AE index at the maxima of solar cycles 21 (red), 22 (yellow), 23 (blue), and 24 (green). Probability density 
function of burst (i) return periods, R, and (ii) duration, τ, are plotted on a log x axis scale. Uncertainties are calculated as the 
square root of the bin count and are indicated by shading. Overplotted is the distribution mean (vertical dashed line).
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6. Rescaling Properties of the Distributions of Observations
The LC theory identity (Equation 4) relates the underlying distribution of observed values to the ratio of the av-
erage duration and return times of bursts obtained by thresholding the time series, 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 . In this section, we focus 
on how the underlying distribution of observed values varies across multiple solar cycles. Chapman et al. (2018) 
found that the cdf of observations of a variety of parameters that track solar wind coupling, including OMNI 1-hr 
AE index and 1-hr (−)Dst index, share the same functional form for large-to-extreme observations in the tail re-
gion of the distribution, across successive solar maxima. In this section, we apply the same analysis to the Kyoto 
1-min AE index and SuperMAG 1-min (−)SMR index.

We plot the survival distribution function (sdf) of AE index observations for 1-year samples at solar cycle max-
imum. S(x) = 1 − C(x) where x is a set of time series observations, S(x) is the sdf and C(x) is the empirical cdf. 
Uncertainties in the sdfs are estimated using Greenwood's formula (Greenwood, 1926) and are indicated by shad-
ed region in these figures. The tails of the index empirical distributions are identified as exceedences of a quantile 
threshold, qE. The entire 1-year distribution is rescaled by the mean, μ, and standard deviation, σ, of the sample 
observations which exceed qE. The method of determination of the qE threshold quantile is discussed in detail by 
Chapman et al. (2018) but in summary, data-data quantile-quantile plots are used to identify two components in 
the distribution, one relating to the relatively quiet intervals of the time series and another during large bursts or 
storms. This threshold quantile is found at qE = 0.75 for the AE index and qE = 0.9 for the (−)SMR index. The 

Figure 8. Bursts are identified above (a) fixed value threshold of 40 nT and (b) quantile threshold at qu = 0.9 in 1-year 
samples of the (−)SMR index at the maxima of solar cycles 21 (red), 22 (yellow), 23 (blue), and 24 (green). Probability 
density function of burst (i) return periods, R, and (ii) duration, τ, are plotted on a log x axis scale. Uncertainties are 
calculated as the square root of the bin count and are indicated by shading. Overplotted is the distribution mean (vertical 
dashed line).



Journal of Geophysical Research: Space Physics

BERGIN ET AL.

10.1029/2021JA029986

14 of 19

observed index values to which qE corresponds for each 1-year sample may be read from Figure 1. The general-
ized Pareto distribution (GPD), commonly used in extreme value theory to characterize the statistics of extreme 
observations, is here applied as a flexible fitting distribution. The GPD survival function is

𝑆𝑆(𝑥𝑥) =

(

1 + 𝜉𝜉

(

𝑥𝑥 − 𝑢𝑢

𝜙𝜙

))−
1
𝜉𝜉

 (5)

with threshold parameter, u, shape parameter, ξ, and scale parameter, ϕ.

In Figure 9ai, we plot the sdfs of 1-year AE index samples from the period of solar maximum of solar cycles 21–
24. In Figure 9aii, we show these distributions, rescaled by μ and σ of exceedences of the 0.75 quantile. We see 
that between the 0.75 quantile and the 0.999 quantile, the distributions lie over one another, within uncertainties. 
In Figure 9aii, it is shown that each individual sdf tail may be fit with a generalized Pareto distribution function 
that is a good fit up until the 0.999 quantile. Figure 9aiii shows how the four rescaled cycle observation samples 
may be combined to form an aggregate, where the tail of that aggregate distribution may be fit by one GPD mas-
ter distribution, at least until the 0.999 quantile. Figure 9b shows the sdfs of 1-year (−)SMR samples from solar 
maxima 21–24. It is seen that the GPD may be fit as a master distribution to the tail of the distribution between 
the 0.9 and 0.999 quantile where the distributions have been rescaled by the mean and variance of exceedences of 
the 0.9 quantile. We refer to the observations that are above the qE threshold but below the 0.999 quantile as the 
near-tail region of the distribution. Observations above qE correspond to large amplitude events in the long tail 
component of the distribution as opposed to the distribution core of smaller amplitude, more frequently occurring 
values. Observations below the 0.999 quantile exclude the most extreme values in the distribution far-tail, which 
we find are not characterized by the GPD master distribution. The near-tail is thus comprised of large-to-extreme 
observations. We emphasize that we are using the GPD distribution here simply as a fitting distribution to char-
acterize the functional form of the empirical distribution of the observations (here, the rank-order plot). This is 

Figure 9. Single functional form for the empirical distribution long tail of 1-year intervals of the (a) AE and (b) (−)SMR 
indices at solar maximum. (i) Survival distributions of the index observations for cycles 21 (red), 22 (yellow), 23 (blue), 
and 24 (green) are plotted, uncertainties calculated using Greenwood's formula are shaded. (ii) The survival distributions of 
the index samples, rescaled to the mean and standard deviation of the exceedences of the qE quantile threshold, are plotted. 
Overplotted (dashed line) are the 95% confidence intervals of generalized Pareto distribution (GPD) fits for the cycle-specific 
exceedences. (iii) The survival distributions of the rescaled index samples are plotted. Overplotted (solid black curve) is the 
GPD fit for the exceedences aggregated over all four solar cycles. The quantile qE (dotted black line) is approximately at the 
transition between two regimes of the distributions. The 0.999 quantile is indicated (dashed black line).
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distinct from the approach of GPD based analysis of the most extreme events, 
which should only be applied in a domain in which extreme value statistics 
holds (based on the behavior of the mean excess, and following declustering 
of the data [Coles, 2001]).

We see a roll-off in the tail of the AE and particularly the (−)SMR index ob-
servations above the 0.999 quantile where the curves no longer collapse onto 
a single functional form. These are the most extreme values observed during 
the 1-year time series samples and amount to ∼10 hr of observations total. In 
the case of AE, these correspond to ∼100 upcrossings of the 0.999 threshold 
in the time series, that is multiple short duration, high-intensity events. For 
reference there are ∼3,000 upcrossings of qE = 0.75 in each time series sam-
ple. In each (−)SMR time series sample there are ∼1,000 upcrossings of the 
qE = 0.9 threshold but only 30 upcrossings of the 0.999 quantile threshold, 
relating to events of long duration relative to AE. This shows that beyond the 
0.999 quantile there is a crossover to a domain where the observations, and 
their distribution, arise from relatively few bursts. This is a different regime 
to that of the near-tail where the observations arise from a large number of 
bursts, therefore we cannot assume the functional form of the distribution for 

the near-tail will straightforwardly map across to the far-tail of the most extreme events. There may indeed be a 
crossover to distinct behavior, but a more detailed statistical study would be required to understand it.

We repeat this analysis for AE and (−)SMR observation samples from solar minimum and the declining phase. We 
find that, up to the 0.999 quantile, the rescaled sdfs may be fit by master GPD distributions within uncertainties, 
the parameters of which are tabulated in Table 1. The GPD shape parameter, ξ, is indicative of the Fisher-Tippett 
subclass to which the distribution belongs (Embrechts et al., 2013). We see that for solar minimum, maximum, 
and declining phase the AE index distribution tails are close to the Gumbel distribution class (ξ = 0) and approach 
the exponential case (ξ = 0, ϕ = 1). This is in agreement with the findings of Chapman et al. (2018) for the 1-hr 
AE index at 3.5 years of solar maximum (ξ = −0.071, ϕ = 1.169). Regarding the (−)SMR index, the shape of the 
GPD fits fall in the Frechét class (ξ > 0) and is subexponential. This result is also in agreement with the results of 
Chapman et al. (2018) for the 1-hr (−)Dst index at 3.5 years of solar maximum (ξ = 0.198, ϕ = 0.664). The mean 
and variance of the distribution are finite when ξ < 1/2, this is true for all samples examined here. In summary, 
we find that the near-tail of the underlying distribution of observed index values follows a functional form that 
is solar cycle invariant. Solar cycles vary in overall activity so that the absolute likelihood of observations of a 
given size will vary from one sample to the next. However, the relative likelihood of large, as compared to small, 
observed values does not vary between cycles. Furthermore, these results suggest that the mean and variance of 
large-to-extreme observations are sufficient to quantify the near-tail distribution for any given solar cycle phase. 
While not inclusive of the most extreme events that might be expected in an annual sample, large-to-extreme 
observations are operationally relevant for long-term planning and system design (Owens et al., 2021).

7. Discussion
Geomagnetic activity occurs across a broad range of scales. One method to quantify this is to construct bursts 
from geomagnetic index time series by specifying a threshold. The statistics of bursts then provide an indicator of 
the overall space weather climate. Bursts identified in this manner will also in a broad sense capture space weath-
er events, although we stress that a clear identification of geomagnetic storms and substorms requires additional 
diagnostics of magnetospheric activity. With this in mind, we have investigated how the statistical properties of 
bursts vary across the last four solar cycles, for which we have high-time resolution geomagnetic index data. In 
Figure 1, we see that the variation in quantiles of annual AE and (−)SMR samples track the solar cycle variation 
in SSN. Therefore, where we identify bursts by thresholding above a fixed value, the burst statistics reflect the 
overall level of solar activity as captured by the SSN. On the other hand, thresholding at a quantile will tend to 
suppress solar cycle variation in burst statistics.

We have considered the burst return period, R, and burst duration, τ, which are both commonly studied; τ is also 
an important factor in terms of burst size (Tindale et al., 2018; Uritsky et al., 2001) and burst time-integrated 

Index qE

Solar cycle 
phase𝐴𝐴 𝐴𝐴𝐴 (nT) ξ ϕ

AE 0.75 Minimum 236 −0.007 ± 0.003 1.014 ± 0.004

Maximum 281 −0.048 ± 0.002 1.107 ± 0.004

Decline 322 −0.042 ± 0.002 1.088 ± 0.004

(−)SMR 0.9 Minimum 21 0.224 ± 0.005 0.603 ± 0.004

Maximum 37 0.246 ± 0.006 0.602 ± 0.004

Decline 31 0.264 ± 0.006 0.601 ± 0.004

Note. Exceedences are defined above the quantile threshold, qE. For each solar 
cycle phase, 𝐴𝐴 𝐴𝐴𝐴 is the average of the index values to which qE corresponds for 
solar cycles 21–24.

Table 1 
Generalized Pareto Distribution Parameters, ξ and ϕ, for Fits to 
Exceedences of the Aggregated 1-Year AE and (−)SMR Index Samples From 
Solar Cycles 21–24
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effects (Haines et al., 2019; Mourenas et al., 2018). LC theory stipulates that for a given time series sample, the 
burst distribution averages 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 are not independent quantities; their ratio, 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 , can be determined wholly from 
the quantiles of the underlying empirical distribution of the observations from which the bursts were constructed. 
We suggest that 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 provides a dimensionless activity parameter which characterizes the fraction of time the 
magnetosphere spends in an active state for a given period.

Figures 3 and 5 show that when a fixed value threshold is applied, 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 exhibit detailed variation which is not 
consistent from one solar cycle to the next. However, 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 tracks the variation of SSN. We find that 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 is peaked 
in the declining phase for AE year-long samples and approximately follows the SSN double peak for (−)SMR. We 
have seen that annual distribution quantiles from these year-long samples track SSN so the aforementioned 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 
tracking of SSN is a result from LC theory. 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 could in principle be predicted, given a prediction for the SSN for 
an upcoming solar cycle (see e.g., Nandy, 2021).

In Figures 4 and 6, thresholding at a quantile involves a threshold that moves up and down, tracking solar cycle 
activity; hence, we do not see any robust features in 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 and LC theory constrains 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 to be constant. Qual-
itatively, when activity is high we see more frequent and larger (i.e., longer duration) events, so that for small 𝐴𝐴 𝐴𝐴𝐴 
we observe large 𝐴𝐴 �̄�𝑅 and vice versa. Quantitatively, although 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̄�𝑅 show detailed variation over the solar cycle, 
knowledge of one of 𝐴𝐴 𝐴𝐴𝐴 or 𝐴𝐴 �̄�𝑅 constrains the value of the other.

For moderate amplitude space weather events, there is sufficient data to directly identify bursts in a time series 
and then to subsequently obtain the mean return period and duration. Extreme space weather events are rare 
events, and at these correspondingly high thresholds there are insufficient bursts to directly estimate their mean 
duration or mean return period. In this case, LC theory provides an estimate of the average duration of a burst of 
a given occurrence frequency or the average occurrence frequency of a burst of a given duration, at any threshold 
for which the cdf of the underlying raw observations (i.e., the observed values of the indices) may be obtained.

We can obtain the pdf of burst parameters directly by thresholding the time series. In Figures 7 and 8, we compare 
across cycles 21–24 the distributions of return period and duration at solar maximum (we repeated this analysis 
for all solar cycle phases). The bursts can again be defined by thresholding at a fixed value, or at a fixed quantile. 
If thresholded at a fixed value, the distributions of burst parameters, and their means, vary from one solar cycle 
to the next. However, if thresholded at a quantile, the burst parameter distribution means “standardize” to a single 
value for all the distinct solar cycles, this is the case for the AE index at solar minimum, maximum, and declining 
phase and for the (−)SMR index at solar maximum. Furthermore, except at the smallest values, the pdfs of burst 
durations and burst return periods fall roughly on top of each other, that is they tend to collapse onto a single func-
tional form. This result connects knowledge of space weather climate to the overall intensity of space weather; 
Figures 7 and 8 empirically determine the mapping between a burst duration or return period and its likelihood of 
occurrence, for bursts at a given quantile threshold. Figure 1 then plots how that quantile translates into the phys-
ical value of the index that the burst has exceeded. A corollary is that more intense solar maxima have events that 
are both more frequent (shorter return period) and longer duration than less intense solar maxima, in a manner 
that is directly determined by how the quantiles of the index itself, rather than the bursts, vary across solar cycles.

The near-tail region of the distribution of AE and (−)SMR indices, when rescaled by the mean and standard 
deviation for a given year-long sample, are shown to exhibit collapse to a single master GPD which is unique to 
solar minimum, maximum, or declining phase of solar cycles 21–24 (shown in Figure 9), extending the results of 
Chapman et al. (2018). Lockwood et al. (2018) also found that the distribution shape of annual AE indices did not 
differ significantly from one cycle to the next. Results such as these tell us that while the overall amplitude of ob-
servations may vary from one solar cycle to the next, if we have knowledge of just the moments of the exceedence 
distributions of the observed values of the index time series, we can, based on past solar cycles, estimate the cdf. 
This in turn allows us to quantify the behavior of the burst statistics in terms of the overall activity parameter 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 
and, in the case of AE or (−)SMR at maximum, estimate the pdf of burst durations and return periods.

8. Summary
We analyze the time series burst statistics and the empirical distributions for 1-year samples of the 1-min Kyoto 
AE index and the 1-min SuperMAG SMR index over solar cycles 21–24. We find that quantiles of year-long sam-
ples of the values of the AE and (−)SMR distributions track the solar cycle variation of the daily sunspot number 
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(SSN). Bursts in the time series are defined as excursions above a threshold which is either (i) a fixed value or 
(ii) a quantile of the distribution of the observed index values. We study the solar cycle dependence of the distri-
butions of the burst return periods (time between consecutive threshold upcrossings), R, and the burst durations 
(time between threshold upcrossing and downcrossing), τ.

Our main results are as follows:

1.  At fixed value burst thresholds the ratio of the mean burst duration to return period, 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 , is peaked in the 
declining phase for AE annual samples and follows the SSN double peak for (−)SMR. At fixed quantile burst 
thresholds level crossing (LC) theory constrains 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 to be constant.

2.  We obtain the pdfs of burst duration τ and return period R for bursts identified in year-long samples at three 
different phases of the solar cycle. Fixed quantile threshold bursts have pdfs that fall on single empirical 
curves for each of (i) the AE index at solar minimum, maximum, and declining phase and (ii) the (−)SMR 
index at solar maximum. This goes beyond the constraint on average 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 from LC theory.

3.  The “near-tail” of the empirical cdfs of the observed values of the AE and (−)SMR indices collapse onto 
common functional forms specific to each index and cycle phase when normalized to the first two moments 
of their exceedence distributions.

LC theory constrains how the ratio 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 of bursts depends on the underlying distribution of the observed quantity, 
here, the AE and SMR indices. Ordered behavior in the distribution of the observed quantity then translates to 
ordered behavior in the burst 𝐴𝐴 𝐴𝐴𝐴 /𝐴𝐴 �̄�𝑅 , suggesting that it is a useful activity parameter to relate overall solar activity to 
magnetospheric response. Furthermore, there is ordered behavior in the burst parameter pdfs which is consistent 
with, but goes beyond, the constraint of LC theory. Taken together, these results may combine to offer important 
constraints in the quantification of overall space weather activity levels.

Data Availability Statement
The AE index used in this paper was provided by the WDC for Geomagnetism, Kyoto (http://wdc.kugi.kyoto-u.
ac.jp/wdc/Sec3.html) and was retrieved from the WDC Kyoto interface (at http://wdc.kugi.kyoto-u.ac.jp/aeasy/
index.html). The SMR index was retrieved from the SuperMAG interface (at https://supermag.jhuapl.edu/indi-
ces/). Sunspot data are from the World Data Center SILSO, Royal Observatory of Belgium, Brussels (http://sidc.
be/silso/datafiles).
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