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1. Introduction

The blow-up lemma is a powerful tool developed by Komlós, Sárközy and Szemerédi [12] for embedding spanning
subgraphs of bounded degree. Roughly speaking, it says that sufficiently regular graphs with no atypical vertices be-
have almost like complete partite graphs for the purpose of embedding bounded degree graphs. The regularity method
of combining Szemerédi’s regularity lemma [17] with the blow-up lemma has led to many significant breakthroughs
in extremal graph theory.

There are at least two natural directions in which to generalise the above results: to sparse host graphs and to
hypergraphs. Sparse analogues of the regularity lemma were independently established by Kohayakawa [10] and
Rödl, while Allen, Böttcher, Hàn, Kohayakawa and Person [1] proved blow-up lemmas for sparse pseudorandom
graphs and random graphs. In the direction of hypergraphs, there are various generalisations of the regularity lemma
to hypergraphs (e.g. [15]) and Keevash [8] proved a hypergraph analogue of the blow-up lemma.

There has been significant interest in combining both directions. In the study of sparse graphs, it is somewhat
standard to consider suitably well-behaved graphs satisfying a pseudorandomness condition. A well-known and ex-
tensively studied pseudorandomness condition is one known as jumbledness. This is a somewhat strong condition
requiring significant control over edges between very small sets of vertices. For a variety of number theoretic appli-
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cations however, it is desirable to obtain results with a weaker notion of pseudorandomness given in terms of small
subgraph counts. This is sometimes referred to as linear forms conditions. Conlon, Fox and Zhao [5] proved a sparse
weak regularity lemma for hypergraphs with linear forms conditions. This was recently extended by Allen, Davies
and Skokan [3] to a sparse regularity lemma for hypergraphs in which they employed a concept of regularity known
as octahedron-minimality.

Here we continue this line of research by proving an almost-spanning embedding lemma for hypergraphs with
sufficient regularity of small subgraph counts, thereby establishing an approximate sparse hypergraph version of the
blow-up lemma. In order to formally state the result we require further definitions.

A complex is a hypergraph whose edge set E is down-closed: if e ∈ E and f ⊆ e then f ∈ E. A k-complex
is a complex whose edges are of size at most k. Our main focus is to embed a given k-complex H into another k-
complex G. We allow singletons and ∅ to be edges in hypergraphs. This represents a departure from the norm, but it is
consistent with the convention used by Allen, Davies and Skokan [3] and turns out to be convenient. For our purposes
it will be convenient to consider G as a weighted hypergraph. A weighted hypergraph on a vertex set V is a function
from the power set of V to the non-negative real numbers. A weighted-k-graph is a weighted hypergraph G with a
weight function g such that g(e) = 1 for all e ⊆ V(G) with |e| > k. The weighted analogue of a k-complex G is the
weighted-k-graph on V(G) with weight function

g(e) =


1 if |e| > k or e ∈ E(G),
0 otherwise.

We use the calligraphic letters D, G and H for weighted hypergraphs, and the corresponding lower case letters
d, g and h for their weight functions. For positive real numbers w, x, y and z, we write w = (x ± y)z to mean
(x − y)z ≤ w ≤ (x + y)z. Given � ∈ N and a complex H we write H(�) to mean the �-uniform hypergraph on V(H) with
edge set {e ∈ E(H) : |e| = �}. For a graph H we write ∆(H) to mean the maximum degree of H.

We will focus on a partite setting as follows. For an index set J, we will consider a k-complex H, a weighted-k-
graph G, a partition X = {Xj} j∈J of V(H) indexed by J, and a partitionV = {Vj} j∈J of V(G) indexed by J. We call the
sets Xj and Vj the parts of H and G respectively. We say that a set of vertices in H (resp. G) is J-partite if it contains
at most one vertex from each part of H (resp. G). We say that H is J-partite if all its edges are J-partite and say that G
is J-partite to mean that G is associated with a partition of V(G) indexed by J. For x ∈ X j we write Vx to mean Vj. For
a J-partite subset S ⊆ V(H) we write VS = Πx∈S Vx for the collection of J-partite |S |-subsets of V(G) with vertices in⋃

x∈S Vx. For J-partite S ⊆ V(H) the index of S is i(S ) := { j ∈ J : S ∩ Xj � ∅}. For κ ≥ 1 we say thatV is κ-balanced
if there exists m ∈ N such that m ≤ |Vj| ≤ κm for all j ∈ J. We say thatV and X are size-compatible if |Vj| = |Xj| for
all j ∈ J. We need the following notion of the ‘rough’ structure of H. Let R be a complex on a finite set J and let H
be a J-partite complex. For a partition X = {Xj} j∈J of V(H), we say that (H,X) is an R-partition if the set I ⊆ J is an
edge of R whenever there are edges in H with index I.

A homomorphism from a complex H to a weighted hypergraph G is a map φ : V(H) → V(G) such that |φ(e)| = |e|
for each e ∈ E(H). The weight of φ is

G(φ) :=
∏

e∈E(H)

g(φ(e)).

Given the partite setting, we say that a homomorphism from H to G is a partite homomorphism if it maps each Xj into
Vj. Define

G(H) :=


∏
j∈J

|Vj|−|X j |


∑
φ

∏
e∈E(H)

g(φ(e)),

where the sum is over all partite homomorphisms φ from H to G. This is the expected weight of a uniformly random
partite homomorphism from H to G. Our main theorem reads as follows.

Theorem 1.1. Given k,∆,∆R ∈ N, µ > 0 and κ ≥ 1, there exist η > 0 and c ∈ N such that for all finite sets J there
exists n0 ∈ N such that the following holds for all n ≥ n0. Let R be a k-complex on J. Let H and G be J-partite
k-complexes with κ-balanced vertex partitions X = {Xj} j∈J and V = {Vj} j∈J respectively such that G has n vertices.
LetD be a weighted-k-graph on J with d(∅) = 1, d({ j}) = 1 for all j ∈ J and d(e) > 0 for all e ⊆ J. Suppose that the
following hold.
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(BUL1) ∆(R(2)) ≤ ∆R, ∆(H(2)) ≤ ∆ and (H,X) is an R-partition.

(BUL2) |Xj| ≤ (1 − µ)|Vj| for each j ∈ J.

(BUL3) For all J-partite k-complexes F on at most c vertices we have

G(F) = (1 ± η)D(F).

Then there is an embedding φ : V(H)→ V(G) of H into G such that φ(x) ∈ Vx for each x ∈ V(H).

To provide some context, we shall state the blow-up lemma of Komlós, Sárközy and Szemerédi [12] using our
terminology. We shall provide some additional definitions for this statement. Note that 2-complexes are graphs. Let
G be a J-partite graph with vertex partition V = {Vj} j∈J . Let A and B be two disjoint nonempty subsets of V(G).
Let a ∈ V(G) \ B. Write eG(A, B) for the number of edges between A and B. Write degG(a; B) for the number of
neighbours of a in B within the graph G. For a pair i, j ∈ J such that i � j, we say that (Vi,Vj) is (η, δ)-super-regular
if for all A ⊆ Vi and B ⊆ Vj satisfying |A| > η|Vi| and |B| > η|Vj|, we have eG(A, B) > δ|A||B|, and furthermore we have
degG(a; Vj) > δ|B| for all a ∈ A and degG(b; Vi) > δ|A| for all b ∈ B.

Theorem 1.2 (Blow-up Lemma [12]). Given ∆ ∈ N, δ > 0 and a finite set J, there exists η > 0 such that the following
holds for any graph R on J. Let H and G be J-partite graphs with size-compatible vertex partitions X = {Xj} j∈J and
V = {Vj} j∈J respectively. Suppose that

(BL1) ∆(H) ≤ ∆, (H,X) is an R-partition and |Vj| > 0 for all j ∈ J,

(BL2) (Vi,Vj) is (η, δ)-super-regular for each i j ∈ E(R).

Then there is an embedding φ : V(H)→ V(G) of H into G such that φ(x) ∈ Vx for each x ∈ V(H).

The blow-up lemma of Komlós, Sárközy and Szemerédi [12] is a powerful tool for finding large subgraphs in dense
graphs. In the following two subsections we shall present two applications of our result which involve finding large
substructures in sparse hypergraphs.

1.1. Application: hypergraph Maker-Breaker games

In a (1 : b) biased Maker-Breaker game, we are given a ground set X and a collection F ⊂ P(X) of winning sets.
Alternately, Maker claims up to 1, and then Breaker up to b, of the elements of X, until no unclaimed elements of X
remain. Maker wins if she has claimed all the elements of any winning set (and perhaps some further elements), and
Breaker wins otherwise. Since this is a finite game of perfect information, it is determined: one of the two players has
a winning strategy with best play. The threshold bias b∗ of the game is defined to be the smallest natural number b
such that Breaker wins the (1 : b)-game; assuming ∅ � F , this number is well-defined.

In particular, given k and n, if H is any k-graph, we can take X to be the edges of K(k)
n and F to be the edge sets of

all isomorphic copies of H in K(k)
n . Thus Maker wins this H-game if the edges of K(k)

n she eventually claims contain
an isomorphic copy of H.

The H-game is fairly well understood when H is a fixed 2-graph and n is large — in particular, Bednarska and
Łuczak [4] determined the order of magnitude of the threshold bias (though even for H = K3, where the threshold
bias is Θ(n1/2), we do not know the constant multiplying n1/2), and their methods extend to give a lower bound on the
threshold bias also for fixed k-graphs. However when H depends on n, much less is known. The threshold bias for the
Hamiltonicity game in graphs was determined by Krivelevich [13], and recently Liebenau and Nenadov [14] found
asymptotically the threshold bias for the Kr-factor (that is, n

r vertex-disjoint copies of Kr). There is also a general
lower bound on the threshold bias for any bounded-degree graph on up to n vertices, which is a consequence of the
Sparse Blow-up Lemma, due to Allen, Böttcher, Kohayakawa, Naves and Person [2].

As an application of Theorem 1.1, we prove the following general lower bound on the threshold bias for the H-
game, where H is any almost-spanning bounded-degree k-graph.
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Theorem 1.3. Given integers ∆, k ≥ 2 and γ > 0 there exists a constant ν > 0 such that the following holds for all
sufficiently large n. Let H be any (1−γ)n-vertex k-graph, and let b = nν. Then Maker wins the (1 : b) H-game on K(k)

n .

The proof of this theorem is rather similar to the deduction of the k = 2 version of this result in [1]. Namely, we
show that Maker has a randomised strategy that wins against any given Breaker strategy with positive probability. If
Breaker had a winning strategy, then this would be impossible (Maker would always lose against Breaker’s winning
strategy) and hence Breaker does not have a winning strategy. Since the game is determined, it follows that Maker has
a deterministic winning strategy.

Proof. Given ∆ and k, we let c, η be returned by Theorem 1.1 for input k, (k − 1)∆, µ = 1
2γ and κ = 2. Let J =

[(k − 1)∆ + 1]. We set ν = 1
2

(
c+k

k

)−1
. Let b = nν, and let ε � η be sufficiently small for the following calculations.

Observe that a strategy for Breaker is simply a rule which, given the edges claimed by respectively Maker and Breaker
in their previous turns, outputs the edges that Breaker should claim in the current turn; in particular, to define a Breaker
strategy we do not need to specify the winning sets of the game. Fix any Breaker strategy.

Fix any partition V(K(k)
n ) = V1 ∪ · · · ∪ V(k−1)∆+1 with parts of sizes differing by at most one. Let Q denote the

complete partite k-graph with parts V1, . . . ,V(k−1)∆+1. Maker’s strategy is now the following. She randomly orders the
edges of Q, and in her ith turn tries to claim the ith edge in her list; if this edge was previously claimed by Breaker,
she claims no edge in that turn.

Let � = ε
(

n
k

)
b−1. Let Γ be the graph of the first � edges in Maker’s list, and G the subgraph of edges which

Maker successfully claimed. Observe that Γ is distributed as the uniform random �-edge subgraph of Q. We claim that
e(G) ≥ (1 − 3ε)�. To see this, observe that in the ith turn, Maker chooses uniformly at random from the edges of Q
which she has not previously chosen. Of these, at most ib ≤ �b = ε

(
n
k

)
were chosen by Breaker in previous rounds, and

hence Maker’s probability of picking a claimed edge is at most 2ε. The total number of edges Maker fails to claim is
therefore stochastically dominated by Bin(�, 2ε), which with high probability by Chernoff’s inequality is at most 3ε�.

Let p = �/e(Q); let p+ = (1 + ε)p, and let p− = (1 − ε)p. Note that p = Θ(n−ν). With high probability, when we
choose edges of Q independently with probability p− to obtain Qp− , we obtain less than � edges; when we choose with
probability p+ to obtain Qp+ , we obtain more than � edges. There is then a standard coupling Qp− ⊆ Γ ⊆ Qp+ which
succeeds with high probability. Namely, choose e(Qp− ) and e(Qp+ ) from the binomial distributions Bin(e(Q), p−) and
Bin(e(Q), p+) respectively, and fail if we do not obtain e(Qp− ) ≤ � ≤ e(Qp+ ). If we do not fail, then choose Qp− by
selecting e(Qp− ) edges uniformly at random, Γ by adding � − e(Qp− ) further edges uniformly at random, and Qp+ by
adding a further e(Qp+ ) − � uniform random edges.

We view each of these four partite k-graphs as k-complexes by adding all partite edges of uniformity less than k,
and let D denote the weighted-k-graph on [(k − 1)∆ + 1] in which all edges of uniformity less than k have weight
1, and all edges of uniformity k have weight p. Let F be any k-complex as in (BUL3). By a minor modification of
a theorem of Kim and Vu [9, Theorem 4.3.1], the number of embeddings of F into each of Qp− and Qp+ is within
a (1 ± 1

2η)-factor of their expectations. Specifically, the theorem as stated there refers to a random subgraph of K(k)
n ;

however all of the expectations computed in the proof there are upper bounds for the corresponding expectations in
our setting, and in addition the expected number of F-copies in Qp− and Qp+ is of the same order of magnitude as in
a p+-random subgraph of K(k)

n , so the proof applies in our setting also. Thus, by definition ofD, with high probability
we have Qp− (F),Qp+ (F) = (1 ± 1

2η)D(F) for all the k-complexes F of (BUL3), and so the same applies to Γ.
On the other hand, for any given such F, the number of embeddings of F using a given k-edge e in Qp+ is stochas-

tically dominated by the number of copies of F using e in the p+-random subgraph of K(k)
n . As proved by Kim and

Vu [9, Theorem 4.2.4], with high probability for all edges e this quantity is at most (p+)snt, where F has s+ 1 k-edges
and t + k vertices.

Suppose that all the above mentioned likely events occur. Since G has at most 3ε� ≤ 3εp+nk edges fewer than Γ, it
has at most 3ε(p+)s+1nt+k fewer embeddings of F than Γ. We claim that the embeddings of F into G make up almost
all of the homomorphic copies of F counted by G(F): to see this, observe that the number of homomorphic copies of
F is Θ(nv(F) pek(F)), where ek(F) ≤

(
c
k

)
counts the number of k-edges of F. By choice of ν, this is Ω(nv(F)−1/2), whereas

trivially any homomorphic copy of F in G which is not an embedding uses at most v(F)−1 vertices of G, and so there
are at most nv(F)−1 such. By choice of ε, and since n is sufficiently large, we see that G(F) = (1 ± η)D(F), as required
by (BUL3).
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Now let H be any k-graph with vertex degree at most ∆ and at most (1 − γ)n vertices. We view this as a k-complex
by taking the down-closure. Note that ∆(H(2)) ≤ (k − 1)∆. By the Hajnal-Szemerédi Theorem [7], there is a partition
of V(H) into (k − 1)∆+ 1 parts X1, . . . , X(k−1)∆+1 which differ in size by at most one and such that all the edges of H(2)

(and so all the edges of H) are partite; this gives (BUL1). Since we chose µ = 1
2γ, we have |Xi| ≤ (1 − µ)|Vi| for each

i, verifying (BUL2).
By Theorem 1.1, we conclude that H is a subgraph of G, as desired.

Note that this proof actually gives a slightly stronger conclusion than Theorem 1.3 claims: Maker actually ends
up claiming a k-graph which contains not just any one H satisfying the conditions of the theorem, but all of them
simultaneously (i.e. it is universal). To the best of our knowledge, previous to this result it was not even known that
Maker has a winning strategy in the (1 : b) H-game for any connected hypergraph H with v(H) = Θ(n) and any b
growing with n (of course, b constant follows from Keevash [8]).

1.2. Application: size Ramsey numbers for bounded degree hypergraphs

The size Ramsey number r̂�(H) of a k-graph H is defined to be the minimum of e(Γ) over k-graphs Γ with the
following property: however the edges of Γ are �-coloured, one of the colour classes contains a subgraph isomorphic
to H. We have the trivial bound r̂�(H) ≤

(
r�(H)

k

)
, where r�(H) is the usual �-colour Ramsey number, since a complete

graph on r�(H) vertices by definition has the desired property. It was proved by Cooley, Fountoulakis, Kühn and
Osthus [6] that when H is an n-vertex k-graph with maximum degree at most ∆, there is a constant C depending on k,
� and ∆ such that r�(H) ≤ Cn, from which it follows r̂�(H) = O(nk).

For k = 2, i.e. graphs, Rödl and Szemerédi [16] proved that for some graphs H with ∆(H) = 3 we have r̂2(H) =
ω(n), and conjectured that there is ε > 0 such that for some H we have r̂2(H) ≥ n1+ε, and for all H with ∆(H) ≤ ∆ we
have r̂�(H) = O(n2−ε), where ε depends on ∆ only. The former conjecture remains open, but the latter was proved by
Kohayakawa, Rödl, Schacht and Szemerédi [11], who showed it holds with any ε < 1

∆
. This bound, which is generally

believed to be rather far from optimal, nevertheless remains the state of the art.
For k ≥ 3, to the best of our knowledge there was no result improving on the trivial bound. We prove the following

polynomial improvement.

Theorem 1.4. For every k and ∆, there exists ε > 0 such that the following holds for each constant � and all sufficiently
large n. For any n-vertex k-graph H with ∆(H(2)) ≤ ∆, we have r̂�(H) ≤ nk−ε.

Much of this proof is a fairly standard application of hypergraph regularity (though in a sparse setting) and we skip
the details familiar from the dense setting. In this proof we refer to the notion of an (η∗, c∗)-THC graph for H, which
we define in Definition 2.2; for the purposes of this proof, it is not essential to understand this definition as it is a
black-box technical requirement for another theorem which will give us the counting condition we need.

Proof. Given k and ∆, let η > 0 and c be returned by Theorem 1.1 for input k, ∆, µ = 1
2 and κ = 2. Let c∗ =

max(2c− 1, 4k2 + k). Let ρ > 0 be sufficiently small such that [3, Lemma 4], with p = Cn−ρ, can handle k-graphs with
maximum degree and degeneracy at most c∗ on at most c∗ vertices. Let p = Cn−ρ.

Given �, we let dk =
1
2� . Let εk be small enough for [3, Theorem 6] with input ηk =

η
2c and dk, and let ε(t) be

sufficiently small, for each t ∈ N, to play the role of each of ε1, . . . , εk−1 for densities d1, . . . , dk ≥ t−1. Let integers t1
and n0, and η∗ > 0, be returned by [3, Lemma 23] for input k, q = ∆ + 1, s = �, εk and ε. Suppose that additionally
η∗ is small enough to play the role of η0 in [3, Theorem 6] with input as above and with any t ≤ t1. Finally we choose
C = 2t1.

Let Γ = G(k)(Cn, p). We apply [3, Lemma 4], with input η∗, c∗, c∗, c∗, k, and with J = [∆ + 1], for each J-partite
k-complex H on at most c vertices. Since there are boundedly many such (independent of n), the good event of [3,
Lemma 4] w.h.p. holds for each such H simultaneously. That is, for any partition V(Γ) =

⋃
j∈J V j with parts of size at

least n/ log n, Γ is (η∗, c∗)-THC for H, with density graph P whose edges of uniformity smaller than k all have weight
1, and whose k-edges have weight p. Suppose that this good event occurs. Note that in particular by choice of c∗ we
have Γ(H) = (1±η∗)pe(H) for any k-graph H on at most 4k vertices, which is the condition required for [3, Lemma 23].

We claim that however E(Γ) is �-coloured, there is some colour class which contains H as a subgraph. Since
E(Γ) = O(nk−ρ), this proves the theorem.
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Given a colouring of E(Γ), we apply the regularity lemma [3, Lemma 23], with input as above, to this colouring. We
select uniformly at random a collection of r�(K

(k)
∆+1) clusters from the resulting returned family of partitions; between

each pair of clusters, we select one of the 2-cells in the family of partitions uniformly at random, and so on up to
(k − 1)-cells.

Since the fraction of k-polyads in the family of partitions which are not εk-oct-regular in any one of the � colours is
at most �εk, the expected number of irregular polyads we selected randomly is at most

(
r�(K

(k)
∆+1)

k

)
�εk < 1, and in particular

with positive probability we selected no irregular polyads. Fix such a choice. We now draw an auxiliary complete
k-graph F whose vertices are the selected clusters, and where we colour any given k-edge with a majority colour
appearing on the corresponding selected polyad. By definition of r�(K

(k)
∆+1), there is a colour χ and a set V1, . . . ,V∆+1

of clusters such that every k-polyad among these clusters has density at least 1
�

in colour χ.
We now let J = [∆+ 1] and G be the J-partite k-complex on V1, . . . ,V∆+1 obtained by taking all the selected i-cells

for each 2 ≤ i ≤ k−1, and the supported k-edges of Γ of colour χ. The good event of [3, Lemma 4] holding means that
the partite subgraph of Γ on these clusters is (η∗, c∗)-THC for each J-partite H with at most c vertices. This, together
with the oct-regularity and density of the cells of uniformity less than k (guaranteed by [3, Lemma 23]) and density
at least d and εk-oct-regularity for uniformity k (by construction) is what we need to apply [3, Theorem 6], obtaining
that for each J-partite k-complex F with at most c vertices, we have G(F) = (1 ± η)D(F) where D(F) is the density
graph of G (which is the same as the relative density graph mentioned in [3, Theorem 6] except that the weights differ
on k-edges by a factor p).

Given H, we consider it as a k-complex by down-closure, and greedily J-partition vertices of H into parts (Xi)i∈[∆+1]
such that no edge of H(2) is in any one part. Since each cluster Vi has at least Cn/t1 = 2n vertices, in particular
|Xi| ≤ 1

2 |Vi| as required for (BUL2), and by the F-counting results we just established, Theorem 1.1 gives an embedding
of H into G. In particular, we find an isomorphic copy of the k-graph H in the colour χ edges of Γ.

Again, note that this proof (as with the proof of Kohayakawa, Rödl, Schacht and Szemerédi [11]) actually gives
a stronger conclusion: the graph Γ has a colour class which contains simultaneously all n-vertex k-graphs H with
∆(H(2)) ≤ ∆. This property is called partition universality.

2. Proving Theorem 1.1

2.1. Pseudorandomness for weighted hypergraphs

While our main theorem is stated in terms of small subgraph counts, our proof method involves a related notion
of pseudorandomness known as typically hereditary counting, which we define in Definition 2.2. This was introduced
by Allen, Davies and Skokan [3]. We need some additional definitions to give a formal definition of this notion. We
require the definition of the link graph of a vertex v in a weighted hypergraph G. Let J be an index set and let G be a
weighted hypergraph with vertex sets {Vj} j∈J . Let i ∈ J. For a vertex v ∈ Vi we let Gv be the weighted hypergraph on
the vertex sets {Vj} j∈J\{i} with weight function gv defined as follows. For f ⊆ J \ {i} and e ∈ Vf , we set

gv(e) = g(e) · g(e ∪ {v}).

We call Gv the link graph of the vertex v in the weighted hypergraph G. Since we are working in the weighted setting,
we need to work with the sum of the weights of the vertices in a set instead of the size of that set. In particular, it
will be convenient to work with a normalised version of this notion. Let G be a weighted hypergraph with vertex sets
{Vj} j∈J . For a subset U ⊆ Vj we write ‖U‖G := |Vj|−1∑

u∈U g(u).
It will be convenient to work with partite homomorphisms which send exactly one vertex of H to each part of G.

The following ‘copying process’ enables a reduction to this setting from the general partite setting.

Definition 2.1 (Standard construction). Let J be an index set, H be a k-complex with its vertex set partitioned into
X = {Xj} j∈J and G be a weighted-k-graph with its vertex set partitioned into V = {Vj} j∈J. The standard construction
for (G,V) with respect to (H,X) is a V(H)-partite weighted-k-graph G′ with vertex sets {V ′x}x∈V(H) where for each
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x ∈ V(H) the set V ′x is a copy of the set V j such that x ∈ Xj, and where for each f ⊆ V(H) and each e′ ∈ V ′f we define

g′(e′) =


g(e) if f ∈ E(H),
1 if f � E(H),

where e is the natural projection of e′ to V(G). We will omit mention of the complex H and the partitions X and V
when they are clear from context.

Here we state the definition of typically hereditary counting.

Definition 2.2 (Typically hereditary counting (THC) [3]). Given k ∈ N, a vertex set J endowed with a linear order τ
and a weighted-k-graphD on J, we say that the J-partite weighted-k-graph G is an (η, c)-THC graph if the following
two properties hold.

(THC1) For each J-partite k-complex R with at most c vertices, we have

G(R) = (1 ± v(R)η) g(∅)
d(∅)D(R).

(THC2) If |J| ≥ 2 and x is the first vertex of J, there is a set V ′x ⊆ Vx with ‖V ′x‖G ≥ (1 − η)‖Vx‖G such that for each
v ∈ V ′x the graph Gv is an (η, c)-THC graph on J \ {x} with density graphDx.

We say thatD is a density weighted-k-graph of G.
Let H be a J-partite k-complex with vertex partition X, G be a J-partite weighted-k-graph with vertex partitionV

and D be a density weighted-k-graph for G. We say that G is an (η, c)-THC graph for H if the standard construction
for (G,V) with respect to (H,X) is an (η, c)-THC graph with the standard construction for D with respect to (H,X)
as its density weighted-k-graph.

In broad terms, being THC means having the following two properties. Firstly, we can accurately count copies of
small complexes and find that these counts are close to their expected values in a ‘random graph’ setting. Secondly, we
are also able to accurately count in the link graph Gv for most vertices v, in ‘typical’ link graphs of Gv, and so on. In
particular, THC goes beyond ‘we can accurately count all small subgraphs’ in that we may take ‘typical’ links a very
large number of times while still preserving THC. Quantitatively, note that the parameters of THC remain unchanged
in (THC2). This hereditary property turns out to be extremely useful for our proof of Theorem 1.1 as it allows us to
maintain this pseudorandomness condition in the course of a vertex-by-vertex embedding procedure which embeds
vertices in a ‘typical’ and ‘valid’ manner.

It may seem that being THC is a strictly stronger condition than having small subgraph counts alone, because we
also require a hereditary property in the form of (THC2). It turns out that these two notions of pseudorandomness
are highly related. The following theorem of Allen, Davies and Skokan [3] tells us that (weighted) hypergraphs with
certain small subgraph counts are in fact THC graphs. It implies a qualitative equivalence between the two notions of
pseudorandomness and quantifies the additional counts required to obtain the hereditary property (THC2). Note that
the conclusion does not specify the linear order on the indexing set which forms part of the definition of THC. In fact,
the proof of Theorem 2.3 by Allen, Davies and Skokan [3] is valid for any choice of linear order on V(H).

Theorem 2.3 ([3]). For all k,∆ ≥ 2, c ≥ ∆ + 2 and 0 < η < 1/2, there exists η0 > 0 such that whenever 0 < η′ < η0
the following holds. Let H be a k-complex with ∆(H(2)) ≤ ∆. Suppose that G is a V(H)-partite weighted-k-graph with
vertex sets {Vx}x∈V(H) which is identically 1 on any Vf such that f � E(H), and D is a density weighted-k-graph on
V(H) such that for all V(H)-partite k-complexes F on at most (∆ + 2)c vertices we have

G(F) = (1 ± η′) g(∅)
d(∅)

D(F).

Then G is an (η, c)-THC graph.

The qualitative equivalence between being THC and having small subgraph counts plays a central role in our proof
of Theorem 1.1 for technical reasons. While the recursive nature of the hereditary property of THC is extremely useful
for analysing the evolution of a vertex-by-vertex embedding procedure, it also makes direct verification of the property
of being THC rather difficult. Conversely, small subgraph counts are usually easier to obtain, but they are harder to
analyse in relation to a vertex-by-vertex embedding procedure. Furthermore, the interplay between these two notions
allows us to extract additional information about subgraph counts.
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2.2. Proof outline for Theorem 1.1

Our proof draws on ideas used in the proofs of the graph blow-up lemma in [12] and of sparse graph blow-up
lemmas in [1]. We also incorporate ideas from [3] in relation to the notions of pseudorandomness previously discussed.

We want to embed a k-complex H with a partition X into a sparse pseudorandom k-complex G with a compatible
partition V, where the notion of sparse pseudorandomness is that the small subgraph counts in G are roughly the
same as those obtained if G were truly random, up to a small constant relative error. Theorem 2.3 tells us that G is a
THC graph for H. Our proof strategy involves embedding H into G by using a random greedy algorithm similar to
those of Komlós, Sárközy and Szemerédi [12] and Allen, Böttcher, Hàn, Kohayakawa and Person [1]. The following
definitions will be useful. Let φ be a partial partite homomorphism of H into G. That is, a homomorphism with
domain Dom(φ) ⊆ V(H) such that φ(x) ∈ Vx for all x ∈ Dom(φ). Let the candidate graph Gφ be the weighted-k-
graph obtained from G by repeatedly taking links of vertices in Im(φ). For each x ∈ V(H) \ Dom(φ) we define the
candidate set Cφ(x) := {v ∈ Vx : gφ(v) = 1}. Since Gφ is a {0, 1}-weighted hypergraph, we have |Cφ(x)| = Gφ(x)|Vx|.
Our algorithm will generate a sequence φ0, . . . , φ|V(H)| of partial partite homomorphisms of H into G and we will use a
subscript t to mean that the relevant object is with reference to φt. For example, we write Ct(x) to mean the candidate
set of x with reference to φt.

Our random greedy algorithm proceeds as follows. We have k-complexes H and G which satisfy the conditions of
Theorem 1.1 and we select an arbitrary linear order τ on V(H). We also partition the vertices of G into two parts at
random, a small set Vq and the remainder Vmain. We choose vertices into Vq independently with probability which is
significantly larger than η but significantly smaller than µ. We embed the elements of V(H) vertex-by-vertex according
to the order given by τ. At time τ(x), when we need to embed x, we look at the vertices of Cτ(x)−1(x)∩Vmain. Provided
that not too many of them have been previously used to embed a vertex, we pick a vertex uniformly at random from
the unused vertices, which preserves the THC property, and embed x there. If on the other hand exceptionally many
vertices of Cτ(x)−1(x) ∩ Vmain have been used previously, we pick instead a vertex of Cτ(x)−1(x) ∩ Vq which preserves
the THC property uniformly at random, and embed x there. In this latter case we say x goes to the queue.

This is much the same as the approach of [1] so far, although making it work in hypergraphs is rather more
complicated, and the THC property is critical here. It is the THC property which guarantees for us that any vertex
which does not go to the queue can be embedded (and we choose its image from a reasonably large set of vertices).
As in [1], it is not too hard to prove a Queue Lemma, which states that with high probability the number of vertices in
any Xi which go to the queue is much smaller than |Vi ∩ Vq|.

What is much more difficult than in [1] is to show that with high probability we succeed in embedding all the
vertices which go to the queue. Let us first explain how it is that we could fail. We have some x ∈ Xi which goes to
the queue, and which we therefore want to embed to Cx := Cτ(x)−1(x) ∩ Vq. This set is guaranteed to be quite well
behaved, however it is (because we are working in sparse hypergraphs) very tiny compared to the set of all vertices
in Xi which go to the queue. If before τ(x) we have already used too many (say more than half) of the vertices of Cx,
then our strategy will fail.

What we therefore need to do is to argue that for each x′ ∈ Xi which goes to the queue, it is rather unlikely that
we will embed x′ to Cx. What we would ideally like is to say that the chance of embedding x′ to Cx should be about
|Cx |
|Vi∩Vq | , i.e. the probability we would get if x′ were embedded to Vi ∩ Vq uniformly at random. Provided that we can
establish such a bound, then the Queue Lemma together with a standard martingale concentration argument will tell
us that our strategy is very unlikely to fail.

This too is rather similar to the approach of [1]. However, establishing the desired probability bound is much harder
in our setting. In [1], a rather strong quasirandomness condition is used at this point, which says that we cannot have
exceptionally many 2-edges between pairs of sets in G, even when the pairs of sets are much smaller than linear-sized.
Even in the k = 2 case of Theorem 1.1, such a statement need not be true; we can only control density between
linear-sized pairs of sets.

We now outline how we can provide an upper bound for the probability of embedding x′ to Cx. Suppose (for
purposes of illustration) that we are at some time τ such that we already embedded all neighbours of x (so Cx is fixed),
and we also embedded all vertices whose H-distance from x′ is exactly 3, but none of the vertices closer to x′. Let F
denote the subgraph of H induced by the set of (at most (∆ + 1)3) vertices at distance 3 or smaller to x′ in H; we say
the roots of F are the vertices at distance exactly 3 from x′, which are already embedded. When we go on to embed
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the remaining vertices of F, it turns out that we will choose a rooted J-partite copy of F in G more or less uniformly
at random. Again for illustration, suppose we in fact choose one uniformly at random. What we would like to know,
then, is the fraction of rooted F-copies in G such that the vertex x′ is in Cx; this is the probability of embedding x′ to
Cx.

The THC property tells us (up to a small relative error) what the total number of rooted F-copies is: this is precisely
what (THC1) with F′ consisting of F with the roots removed gives. However it cannot tell us how many of these copies
put x′ into Cx. Similarly, it follows from the THC property with some work (because Cx is a candidate set) that we
can also count copies of any graph F2 on up to c vertices, some of which are required to be embedded to Cx and the
rest of which are embedded to specified parts of G. However we cannot use this to count rooted copies of F with x′

in Cx, because we cannot specify that the roots of F have to be embedded to any subsets of parts of G, let alone to
specific vertices.

The solution here is the following. We let F1 denote the subgraph of F induced by vertices at distance 1, 2 or 3
from x′, with again the vertices at distance 3 from x′ being the roots. We let F2 denote the subgraph of F induced by
x′ together with vertices at distance 1 from x′. Note that there can be edges of F which are contained in both F1 and
F2, namely those all of whose vertices are at distance 1 from x′. But every edge of F is contained in at least one of
F1 and F2. We say the vertices of F at distance exactly 1 from x′ are the middle of F. See Figure 2.2 for an example
(with uniformity 2).

F

x′

F∗1 F∗2

x′

duplicate x′

Figure 1. The graphs F, F∗1 and F∗2, with roots grey diamonds and middle solid diamonds.

Fix an embedding ψ of the middle of F. Then the number of ways to extend this to a rooted embedding of F
with x′ embedded to Cx is given by c(ψ)d(ψ), where c(ψ) is the number of rooted embeddings of F1 whose middle
is embedded according to ψ; and d(ψ) is the number of embeddings of F2 such that x′ is mapped to Cx and the
middle is embedded according to ψ. It follows that the quantity we are trying to upper bound — the number of rooted
embeddings of F such that x′ is embedded to Cx — is given by

∑
ψ c(ψ)d(ψ) ≤

√(∑
ψ c(ψ)

)2(∑
ψ d(ψ)

)2
, (1)

where the inequality is the Cauchy-Schwarz inequality. Now,
(∑
ψ c(ψ)

)2 counts pairs of rooted copies of F1 with
middle ψ, summed over ψ. This is the same thing as counting rooted homomorphic copies of F∗1, where F∗1 is obtained
from F1 by duplicating all the vertices at distance exactly 2 from x′ and all the edges containing them. Similarly, letting
F∗2 be obtained from F2 by duplicating the vertex x′ and all the edges it contains,

(∑
ψ d(ψ)

)2 counts homomorphic
copies of F∗2 in which x′ and its duplicate are embedded to Cx.

Good estimates on these two homomorphism counts are things we can obtain from the THC property. For the
former, rooted copies of F∗1, this is given directly from (THC1) with the graph F∗1 with the roots removed; again,
for F∗2 we need to do a bit more work, but as above it follows from the fact that Cx is a candidate set. These two
observations plus (1) gives us an upper bound on the desired number of rooted copies of F with x′ embedded to Cx.
This upper bound turns out to be roughly what one would expect if the edges were distributed at random, and in
particular what we obtain is that the probability of embedding x′ to Cx is roughly the same as if x′ were uniformly
embedded to Vi ∩ Vq, as we wanted.

We should stress that the above sketch is an oversimplification. We will not generally know what Cx is before
embedding vertices close to x′. We cannot generally assume that all vertices at distance 3 from x′ are embedded
before any at distance 2. And (which we skipped entirely in the above) we might be worried that the event of a vertex
x′ going to the queue is correlated with x′ being exceptionally likely to be embedded to Cx (so that we cannot simply
multiply the probability we calculated above by the number of vertices which go to the queue). But all of these caveats
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can be dealt with: what we finally conclude is that for each x, it is very unlikely that more than half of Cτ(x)−1(x) ∩ Vq

is used before time τ(x), and hence the greedy embedding succeeds with high probability.

References
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