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Abstract
We give a 2-approximation algorithm for theMaximumAgreement Forest problem on
two rooted binary trees. This NP-hard problem has been studied extensively in the past
two decades, since it can be used to compute the rooted Subtree Prune-and-Regraft
(rSPR) distance between two phylogenetic trees. Our algorithm is combinatorial and
its running time is quadratic in the input size. To prove the approximation guarantee,
we construct a feasible dual solution for a novel exponential-size linear programming
formulation. In addition, we show this linear program has a smaller integrality gap
than previously known formulations, and we give an equivalent compact formulation,
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1 Introduction

Evolutionary relationships are often modeled by a rooted tree, where the leaves repre-
sent a set of species, and internal nodes are (putative) common ancestors of the leaves
below the internal node. Such phylogenetic trees date back to Darwin [11], who used
them in his notebook to elucidate his thoughts on evolution. For an introduction to
phylogenetic trees we refer to [12, 24].

The topology of phylogenetic trees can be based on different sources of data, e.g.,
morphological data, behavioral data, genetic data, etc., which can lead to different
phylogenetic trees on the same set of species. Such partly incompatible trees may
actually be unavoidable: there exist non-tree-like evolutionary processes that preclude
the existence of a phylogenetic tree, so-called reticulation events, such as hybridiza-
tion, recombination and horizontal gene transfer [17, 18]. Irrespective of the cause
of the conflict, the natural question arises to quantify the dissimilarity between such
trees. Especially in the context of reticulation, a particularly meaningful measure of
comparing phylogenetic trees is the Subtree Prune-and-Regraft distance for rooted
trees (rSPR-distance), which provides a lower bound on a certain type of these non-
tree evolutionary events. The problem of finding the exact value of this measure for a
set of species motivated the formulation of the Maximum Agreement Forest Problem
(MAF) by Hein, Jian, Wang and Zhang [16].

In the definition of MAF by Hein et al. we are given two rooted binary trees and a
bijection from the leaves of each tree to a given set of labels L. The problem is to find
a minimum set of edges to be deleted from the two trees, so that the rooted trees in
the resulting two forests form isomorphic pairs. Here, and throughout the paper, two
rooted trees are said to be isomorphic if (i) the labelled nodes of the two trees have
the same subset of labels, say A, and (ii) the two trees give rise to the same tree if we
take the minimal subtree spanning the nodes labelled by A and repeatedly identify a
node with its child if it only has a single child.

Since the introduction byHein et al. in [16], in which they also provedNP-hardness,
MAF has been extensively studied, mostly in its version of two rooted binary input
trees. After Allen and Steel [1] pointed out that the claim by Hein et al. that solving
MAF on two rooted directed trees computes the rSPR-distance between the trees is
incorrect, Bordewich and Semple [5] presented a subtle redefinition of MAF, whose
optimal value does coincide with the rSPR-distance. In this redefinition, the set of
labels is extended with a label ρ, which is assigned to the roots of the two input
trees. As before, we want to find a minimum set of edges so that the trees in the
resulting forests form isomorphic pairs; note that the fact that the roots of the input
trees have labels means that now there must be an isomorphic pair of trees in the
resulting forests containing the (original) roots. This has now become the standard
definition of MAF, for which Bordewich and Semple [5] showed that NP-hardness
still holds, and Rodrigues [20] showed that it is in fact APX-hard.

The problem has attracted a lot of attention, and indeed has become a canonical
problem in the field of phylogenetic networks. Many variants of MAF have been
studied, including versions where the input consists of more than two trees [6, 7], and
where the input trees are unrooted [29, 30] or non-binary [22, 27]. We will concentrate
on MAF in its classical form with two rooted binary input trees, and we will be
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concerned with the worst-case approximability of the problem. The literature includes
many other approaches to the problem, including fixed-parameter tractable algorithms
(e.g., [28, 30]) and integer linear programming [31, 32]. But the quest for better
approximation algorithms has become central within the MAF literature.

The first approximation algorithm for the problem with a fully correct analysis was
given by Bonet et al. [3] in 2006; they obtain an approximation factor of 5, with a
running time that is linear in the number of leaves. (The algorithm follows closely
the approach taken by Hein et al. [16] and Rodrigues et al. [21], who both claimed
3-approximation algorithms; but both papers turned out to have flaws in the analysis.)
This was followed by a sequence of three papers, each obtaining a 3-approximation
algorithm. The first, by Bordewich et al. [4], had a running time of O(n5), where n
denotes the number of leaves; Rodrigues et al. [22] substantially improved the running
time to O(n2). Finally, Whidden and Zeh [28] simplified the analysis and improved
the running time to O(n), matching the running time of the previous 5-approximation.

These algorithms all take a similar approach, andmake decisions that are in a certain
sense based on “local” information. We focus here on the algorithm and analysis of
Whidden and Zeh [28] (based on [22]), since it is the cleanest. The algorithmmaintains
a tree T ′

1 and a forest T ′
2; initially, these are precisely the two input trees. T ′

1 and
T ′
2 always have the same leaf set, which shrinks as the algorithm progresses; a leaf

is removed when the part of the algorithm’s solution involving that leaf has been
determined. The algorithm proceeds by considering any pair of leaves a, b in T ′

1 that
are siblings (two nodes are siblings in a tree if they have the same parent). Consider
their situation in T ′

2. If they are also siblings in T ′
2, then there is clearly no reason to

separate a and b in a solution, and they can be contracted together in both T ′
1 and T

′
2 to

yield a smaller instance. Otherwise, the algorithm deletes the edges directly above a
and b in both T ′

1 and T
′
2, resulting in two “trivial” trees consisting of a single leaf each

that can essentially be removed from the instance; and also makes one further cut in
T ′
2, which will be the edge directly above a sibling of either a or b in T ′

2. The process
of merging and deleting edges is then continued on the new instance, until eventually
a valid solution is found. (Note that the algorithmmight at first glance appear to create
many trivial trees consisting of only a single leaf; however, single leaves later in the
algorithm may represent larger collections of leaves that have been merged together
in earlier iterations.) A fairly direct combinatorial charging argument is used to show
that in each iteration of the algorithm (where the algorithm makes three cuts), at least
one edge deleted in the optimal solution can be uniquely charged for this iteration.

The next improvement in approximation factor, to a 2.5-approximation (at the cost
of an increased quadratic running time) came from Shi et al. [25]. Their approach, like
the 3-approximation algorithm described above, starts by choosing a pair of leaves a,
b that are siblings in the first tree. However, it pays more attention to the configuration
of the second tree and the positioning of a and bwithin it when deciding what edges to
cut. Since larger structures are considered, the analysis is substantially more involved.
A further improvement to a factor of 7/3 was then obtained by Chen, Machida and
Wang [10]; their algorithm also runs in quadratic time. Again, larger combinatorial
structures play a role; further, it does not begin with an arbitrary pair of sibling leaves
in the first tree, but chooses the pair more carefully.
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The first 2-approximation algorithm was given by a subset of the authors of
the current work [23] (independently and essentially concurrently with the 7/3-
approximation algorithmofChen et al. [10]). They do not explicitly discuss (or attempt
to optimize) the running time of the algorithm, beyond showing that it is polynomial
time. Subsequently, Chen, Harada and Wang [8] (see also [9]), building on the 7/3-
approximation algorithm [10], gave a very different factor 2 approximation algorithm,
with a cubic running time.

The 2-approximation algorithm presented in the current paper may be viewed as the
full version of the algorithm in [23]. However, while the algorithm presented here is
similar in spirit, it differs in many details, and the exposition is entirely new. Although
the algorithm and analysis remain quite subtle, this version is significantly shorter and
clearer. Moreover, we show how our algorithm can, with some care, be implemented
in quadratic time ( [23] discusses only a polynomial time bound). This improves over
the cubic running time of Chen et al. [8].

Our 2-approximation algorithm differs from previous works in two key aspects.

• Our algorithm takes a global approach; choicesmade by the algorithmmay depend
on large parts of the instance. This is in contrast to the “local” algorithms discussed
above. The cubic 2-approximation by Chen et al. [8] also requires non-local sub-
structures, suggesting this may be a crucial factor in achieving this approximation
bound.

• We introduce a novel integer linear programming formulation for the analysis.
Our approximation guarantee is proved by constructing a feasible solution to the
dual of this linear program, rather than arguing locally about the objective of the
optimal solution. We thus bring a powerful tool from the theory of approximation
algorithms to bear, one that has not been exploited in the study of MAF so far.
We use the integer linear programming formulation, and in particular, its linear
relaxation, only in our analysis. The algorithm itself is purely combinatorial. It
is essentially a dual-fitting algorithm: the analysis explicitly constructs a dual
solution with objective value at least half the cost of the primal solution returned
by the algorithm.

Although we do not need to solve the linear programming (LP) relaxation, it is
an interesting object of study, and it is natural to ask if it can indeed be efficiently
optimized. This is not immediately clear, since the formulation has an exponential
number of variables. Being able to solve the LP may, for example, be of future utility
in obtaining better approximation guarantees using LP-rounding techniques. We show
that the relaxation can be reformulated as a compact LP, with only a polynomial
number of variables and constraints. This immediately implies that it can be optimized
efficiently (in polynomial time). This may make the integer linear program amenable
for use with commercial integer programming solvers. There is a previous formulation
due to Wu [31], but our formulation is significantly stronger: the integrality gap of the
relaxation of Wu is at least 3.2, whereas for ours we show it is at most 2, and in fact
the worst example that we are aware of has integrality gap 1.25 (see the Appendix).

We have implemented and tested our algorithm, as well as the compact formulation
[19]. The implementation has been designed so that it is easy to step through the
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algorithm and explore its behaviour on a given instance; the reader may find it helpful
when examining the technical details of the algorithm.
OutlineWe define the problem and introduce necessary notation in Sect. 2. Section 3
describes the algorithm, and proves that it produces a feasible solution to MAF. In
Sect. 4, we introduce the linear program, and describe a feasible solution to its dual
that can be maintained by the algorithm. We then show the objective value of this
dual solution is always at least half the objective value of the MAF solution, which
proves the approximation ratio of 2. In Sect. 5, we show a compact formulation of
the (exponential sized) linear program used for the analysis. Section 6 gives some
concluding remarks and directions for further research. Finally, in the appendices, we
provide the details on how to implement our algorithm so that it runs in time quadratic
in the size of the input, and we give an example that shows that a previously known
integer linear program [31] is not as strong as the formulation introduced here.

2 Preliminaries

The input to the Maximum Agreement Forest problem (MAF) consists of two rooted
binary trees T1 and T2. There is a bijection from the leaves of each tree to a given set
of labels L.

Let V1 and V2 denote the node sets of T1 and T2 respectively, and let V = V1 ∪ V2.
We will take a small liberty, and treat L as being a subset of V1 and a subset of V2.
We call all nodes in V \ L internal nodes. We let L(u) denote the set of leaves that
are descendants of a node u ∈ V .

Wewill use the following notational conventions: we use u and v to denote arbitrary
nodes (including leaves); if the node we refer to is an internal node in V2, we will use
û and v̂; and we use the letters x, y and w to refer to leaves.

For A ⊂ L we use Vi [A] to denote the set of nodes in Ti that lie on a path between
any two leaves in A for i ∈ {1, 2}, and define V [A] := V1[A] ∪ V2[A].

Definition 1 We say that a set A ⊆ L covers a node u ∈ V if u ∈ V [A]. We say that
A, A′ ⊆ L overlap if V [A] ∩ V [A′] �= ∅; we also say that A overlaps A′ in U , for
U ⊆ V , if V [A] ∩ V [A′] ∩ U �= ∅. We say a partition P of L overlaps in U ⊆ V if
there exist A, A′ ∈ P , A �= A′, such that A and A′ overlap in U .

To give some intuition for the use of this definition, recall from the introduction
that the goal of the MAF problem is to find a minimum set of edges to be deleted from
the two input trees, so that the trees in the resulting two forests can be matched up into
isomorphic pairs. One of the requirements for a pair of trees to be isomorphic is that
they have the same set of labelled nodes. In other words, the trees in the two forests
induce the same partition P of L, and the fact that the forests are formed by deleting
edges from the input trees means that no two sets in P overlap.

Next, we will give a definition that allows us to precisely express the other require-
ment for a pair of trees to be isomorphic. For A ⊆ L, we let lcai (A) denote the lowest
common ancestor of A in Ti . We will sometimes omit braces of explicit sets and write,
e.g., lca1(x1, x2, x3) instead of lca1({x1, x2, x3}). For nodes u, v in the same tree, we
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use u ≺ v to indicate that u is a descendant of v and u � v if u is equal to v or a
descendant of v.

Definition 2 A set L ⊆ L is compatible if for all x1, x2, x3 ∈ L

lca1(x1, x2) ≺ lca1(x1, x2, x3) ⇔ lca2(x1, x2) ≺ lca2(x1, x2, x3).

We call a set of leaves incompatible if it is not a compatible set. Note that L ⊆ L
is compatible precisely if the minimum subtree spanning L in T1 and the minimum
subtree spanning L in T2 are isomorphic.

A feasible solution to MAF is a partition P = {A1, A2, . . . , Ak} of L such that
every component Ai is compatible, and Ai does not overlap A j , for any i �= j . The
cost of this solution is defined to be |P| − 1. This cost corresponds to the number of
edges that must be deleted from T1, as well as the same number from T2, so that in
both of the resulting forests, each Ai ∈ P is the leaf set of a single tree.

Remark In order for MAF to correspond to the rSPR distance, it is necessary to add
an additional label ρ to L (see figure below), that is assigned to the roots of T1 and T2.
This is the distinction between the original definition of MAF by Hein [16] and the
correction by Bordewich and Semple [5]. To maintain the property that only leaves
have labels, we instead add a new root to T1 and T2, which has as its two children a
leaf labelled ρ and the original root. We simply assume that this addition is already
included in the input instance, after which there is no need to distinguish this additional
leaf from the others.

T1

x1 x2 x3 x4

ρ
T2

x1 x3 x2 x4

ρ

When we describe and analyze our algorithm, the following extended notion of
compatibility is convenient.

Definition 3 Given K ⊆ L, we say a set L ⊆ L is K-compatible if L∩K is compatible.
A partition P = {A1, A2, . . . , Ak} of L is K-compatible if Ai is K -compatible for all
i = 1, 2, . . . , k.

3 The Red-Blue algorithm

The algorithm maintains a partition P of L, which at the end of the algorithm will
correspond to a feasible solution to MAF. The algorithm will maintain the invariant
that P does not overlap in V2. Observe that this is equivalent to defining P to be the
leaf sets of the trees in a forest, obtained by deleting edges from T2. InitiallyP = {L}.

Very informally, an iteration begins by coloring the leaves with three colors, red,
blue, and white. The coloring is such that in T1, there is a node u that has the red and
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blue leaves as its descendants; the set B of blue leaves is the set of “left” descendants
of u and the set R of red leaves is the set of “right” descendants of u. The remaining
leavesW are white. Furthermore, it will be the case that the current partition is feasible
for the problem restricted to R and for the problem restricted to B. The current iteration
will work to make the partition feasible for the problem restricted to R ∪ B (in fact,
it will be feasible for the problem restricted to R ∪ B ∪ {w} for all w ∈ W ). Observe
that a forest corresponding to a feasible solution to the full instance can have at most
one tree that has leaves of multiple colors, because if there were two such trees then
their leaf sets overlap on node u in T1. Also, a multicolored tree in a feasible solution
must be such that there is a node û in T2 such that (i) no white leaf of the tree
is a descendant of û, and (ii) the blue and red leaves of the tree are left and right
descendants of û. We say the component is (R ∪ B)-compatible if (ii) holds. The
iteration will refine the multicolored components of the partition into (all but one)
unicolored components. The natural idea would be to do this by intersecting each (or
all but one) component with each color, but then the resulting partition might overlap
in V2; if not, we call the original partition splittable. So we first refine the partition
such that it is splittable. In order to achieve the desired approximation guarantee,
we need to be careful about the ordering of the steps we take to make the partition
splittable, so that we can simultaneously maintain a feasible dual LP solution with
an objective value that tracks the number of components; we do this by first making
it (R ∪ B)-compatible (which works toward splittability as well). Once the partition
is (R ∪ B)-compatible and splittable, we refine the partition by splitting all but at
most one component into unicolored components. Finally, we look for a split that
can be undone; the careful order in which the components are refined also serves to
guarantee that such a merging of components is possible where needed to prove the
approximation guarantee. We now give a precise definition, using the notation from
the previous section.

As explained above, our algorithm works towards feasibility by iteratively refining
P , focusing each iteration on a set of leaves L(u) for some u ∈ V1; u is a node such
that the current partition is infeasible for L(u) in some (quite narrowly defined) way.
At the end of the iteration the solution is feasible if we restrict our attention to L(u),
and even if we consider L(u) ∪ {w} for any arbitrary w ∈ L \ L(u).

We use the following definition to specify which setsL(u) the algorithm considers.

Definition 4 Given an infeasible partitionP that does not overlap in V2, we call u ∈ V1
a root of infeasibility if at least one of the following holds:

(a) P is not L(u)-compatible;
(b) P overlaps in V1[L(u)];
(c) P isL(u)-compatible, and there exists a component A ∈ P such that A\L(u) �= ∅

and (A ∩ L(u)) ∪ {w} is incompatible for all w ∈ A \ L(u).

While the first two conditions can be naturally interpreted as failures of feasibility
within V1[L(u)], condition (c) is more subtle. It says that while A isL(u)-compatible,
every leafw ∈ A\L(u) provides a certificate that A is in fact incompatible. A different
view of this is that every leaf in A\L(u) lies below lca2(A∩L(u)) in T2. We note that
replacing condition (c) by requiring only the existence of at least one such leaf leads
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Fig. 1 If P = {L}, then node u satisfies case (a) of Definition 4; if P = {{B1}, {B2,W1},
{R1, R2,W2,W3}}, it satisfies case (b) and if P = {{R1}, {B1, B2,W1, R2,W2}, {W3}}, it satisfies (c)

to an algorithm that appears to be “too greedy”; more precisely, the approximation
guarantee we can prove in that case is worse than 2.

Observe that if u ∈ V1 is a root of infeasibility, then any ancestor of u is a root of
infeasibility as well. We will say an internal node u in tree Ti is the “lowest” node with
property � if property � does not hold for any of u’s descendants in Ti . The algorithm
will thus identify a lowest node u ∈ V1 that is a root of infeasibility.

We illustrate the three conditions of a root of infeasibility in Fig. 1. R1, R2, B1,
B2, W1, W2 and W3 represent nonempty subtrees that appear in both T1 and T2 —
for the examples it suffices to think of these as a subtree consisting of a single leaf.
We will adopt this viewpoint and, with a slight abuse of notation, we will refer to the
labels of these leaves as R1, R2, B1, B2, W1, W2 and W3, respectively. If P = {L},
u satisfies (a). Note that u is indeed a lowest root of infeasibility, since {R1, R2,W3}
and {B1, B2,W3} are compatible sets, so u� and ur do not satisfy (c) (nor (a) or
(b)). If P = {{B1}, {B2,W1}, {R1, R2,W2,W3}}, node u satisfies (b). Again, u is a
lowest root of infeasibility (clearly u� and ur do not satisfy (a) or (b); they also do
not satisfy (c) since {B2,W1} is compatible, as is {R1, R2,W3}). Finally, if P =
{{R1}, {B1, B2,W1, R2,W2}, {W3}}, node u satisfies (c). Observe that in this case u
is again a lowest root of infeasibility. For u′ ∈ {u�, ur }, (a) and (b) are clearly not
satisfied; neither is (c) because the only A ∈ P such that A\L(u′) �= ∅, A∩L(u′) �= ∅
is A = {B1, B2,W1, R2,W2}, but then A∩L(u′)∪{w} is not incompatible forw = W2
(and also not incompatible for w = W1 if u′ = ur ).

Given a root of infeasibility u ∈ T1, we partitionL into R, B,W , where R = L(ur )
and B = L(u�) for the two children ur and u� of u. We will refer to this partition as
a coloring of the leaves; we will refer to the leaves in R as red leaves, the leaves in B
as blue leaves and the leaves inW as white leaves. We note that ur and u� are lca1(R)

and lca1(B), respectively, and we use these interchangeably. We call a component of
P tricolored if it has a nonempty intersection with R, B andW , and bicolored if it has
a nonempty intersection with exactly two of the sets R, B,W . A component is called
multicolored if it is either tricolored or bicolored, and unicolored otherwise.

Observation 1 Let u be a lowest root of infeasibility for P , and consider the coloring
R, B,W, where R = L(ur ) and B = L(u�) for the two children ur and u� of u.
Then the set of multicolored components of P consists of either at most two bicolored
components or exactly one tricolored component.

Proof If u is a lowest root of infeasibility, P does not overlap in V1[R] and V1[B],
and so at most one component of P covers ur = lca1(R), and at most one covers
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u� = lca1(B). Since any multicolored component covers at least one of lca1(R) and
lca1(B), there can be at most two multicolored components. Furthermore, because
any tricolored component covers both lca1(R) and lca1(B), if there is a tricolored
component there can be no other multicolored component. 
�
Wenote that the above observation can be refined; it is possible to show thatP contains
either one tricolored component or exactly two bicolored components; see Lemma 12
in Sect. 4.3.

We now give the overall algorithm. In the description, but also in the descriptions
of the various procedures that follow, the � in front of certain lines will be used to refer
to these lines in the analysis in Sect. 4.2.

Red- Blue Algorithm

P ← {L}.
pairslist ← ∅.
while P is not feasible do
� Let u ∈ T1 be a lowest root of infeasibility, with children u� and
ur .

Let R = L(ur ), B = L(u�) and W = L \ (R ∪ B).
Make- (R ∪ B)- compatible(P, (R, B,W )).
Make- Splittable(P, (R, B,W )).
Split(P, (R, B,W )).
Find- Merge- Pair(pairslist,P, (R, B,W )).

end while
Merge- Components(pairslist,P).

The various procedures in the Red-Blue Algorithm will be described in detail in
the subsequent subsections, along with lemmas regarding the properties they ensure.
For now, we give a very high-level description.

An iteration of the main while-loop starts by finding a lowest root of infeasibility
u, yielding a coloring (R, B,W ) of the vertices; if there is no root of infeasibility,
then the current partition is feasible, and the main loop terminates. The goal of the
iteration, essentially, is to ensure that by the end of the iteration, u is no longer a
root of infeasibility, while maintaining the invariant that the partition does not overlap
on V2. Until the very end of the algorithm, the partition is only ever refined; since
each iteration must modify the partition, the number of iterations is bounded by |L|.
(Alternatively, our analysis shows that if u is chosen for some iteration of the algorithm,
then from the end of the iteration until the very end of the algorithm, u will never again
be a root of infeasibility.)

The process of refining the partition to make u no longer a root of infeasibility
proceeds in two main stages. First, the procedure Make-(R ∪ B)-compatible refines
the partition if necessary so that it is (R ∪ B)-compatible, i.e., so that condition (a)
fails to hold. The procedures Split and Make- Splittable will together ensure that
conditions (b) and (c) also both fail to hold, so that u is no longer a root of infeasibility
at the end of the iteration. In particular, they ensure that the partition does not overlap
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Fig. 2 Illustration of Make- (R ∪ B)- compatible(P, (R, B,W )). Because P and P ′ do not overlap in
V2, we can represent these partitions as the leaf sets of trees in a forest obtained by deleting edges from T2.
In this figure and the following figures the dashed edges represent deleted edges. In this example P = {L}.
ThenMake- (R∪B)- compatible(P, (R, B,W )) must choose û = lca2(R1, B1), and refines the partition
to {{B1, R1}, {B2,W1, R2,W2,W3}}, which is (R ∪ B)-compatible

in V1[L(u)], and that the final partition is (R ∪ B ∪ {w})-compatible for every w ∈ L
(which is stronger than (c) not holding).

Finally,Find- Merge- Pairs andMerge- Components are needed for the approx-
imation bound only.All the other steps in the algorithmonly refine the current partition.
In some particular cases, it is possible and necessary to undo some of these refinements.
This is done in a carefulway at the very end of the algorithmbyMerge- Components,
using information prepared by Find- Merge- Pairs. The reason that the merges are
done at the end, rather than during the main loop, is primarily for analysis purposes.

In order to simplify the statement of the lemmas, we will make statements
like “let P ′ be the partition after ProcedureName(P, (R, B,W ))”. This implic-
itly assumes that (R, B,W ) was a coloring chosen in the beginning of the current
iteration of the Red-Blue Algorithm (and thus, that lca1(R ∪ B) was a lowest root
of infeasibility at that moment), and that P ′ is the partition resulting from calling
ProcedureName(P, (R, B,W )) in the current iteration.

3.1 Make-(R ∪ B)-compatible

If P is not (R ∪ B)-compatible, we start by refining P with the following procedure
so that each of its components is (R ∪ B)-compatible.

procedure Make- (R ∪ B)- compatible(P, (R, B,W ))
while there exists A ∈ P that is not (R ∪ B)-compatible do
� Let û be a lowest internal node in V2[A] s.t. A ∩L(û) intersects

both R and B.
P ← P \ {A} ∪ {A ∩ L(û), A \ L(û)}.

end while
end procedure

An example is given in Fig. 2. We note that in general, the choice of û does not
have to be unique, and that multiple refinements may be needed to make the partition
(R ∪ B)-compatible.

As observed above, for any partition P that does not overlap in V2, there is a set
of edges in T2 such that P consists of the leaf sets of the trees in the forest obtained
after deleting these edges. Our refinement is equivalent to deleting the parent edge of
û, and hence the resulting partition does not overlap in V2 if the original partition did
not overlap in V2.
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Lemma 1 Let P ′ be the partition afterMake- (R ∪ B)- compatible(P, (R, B,W )).
Then P ′ is a refinement of P that does not overlap in V2 and is (R ∪ B)-compatible.

Proof First, observe P is R-compatible and B-compatible, since u’s children are not
roots of infeasibility. If P is (R ∪ B)-compatible then P is not modified by the
procedure, and the lemma is vacuously true. Otherwise, the procedure refines P , and,
as argued above, the resulting partition P ′ does not overlap in V2 provided that P
does not overlap in V2. The procedure ends when there are no sets in P that are not
(R∪B)-compatible, so the only thing left to show is that this procedure halts. Because
û was chosen to be the lowest internal node in V2[A] such that A ∩ L(û) intersects
both R and B, the children of û, say ûr and û�, are so that A ∩ L(ûr ) and A ∩ L(û�)

can only intersect one of R and B. Therefore A∩L(û) is (R ∪ B)-compatible, where
A was not, and thus the number of (R ∪ B)-compatible components in P increases,
which can only happen at most |L| times. 
�

Observe that if P is (R∪ B)-compatible, then any refinement of P is also (R∪ B)-
compatible, and hence wemay assume that the partition at any later point in the current
iteration of the Red-Blue Algorithm is (R ∪ B)-compatible.

3.2 Make-splittable

The goal of the next two procedures is to further refine the partition so that there is no
overlap in V1[R ∪ B]. We will do this in two steps. The first of these procedures will
make the partition “splittable”. To describe this informally, we view the components
of the partition as the trees of the forest obtained by deleting edges from T2. We call
a component A that intersects k colors splittable, if there are k − 1 edges that can
be deleted from T2 to “split” the tree into k unicolored components. We can phrase
this property succinctly using the notion of overlapping: if the sets A ∩ R, A ∩ B and
A ∩ W do not overlap in V2, then there are disjoint trees in T2 that have each of these
sets as leaf sets, and we can therefore split the tree associated with A in T2 into these
three trees by deleting at most two edges.

Definition 5 Given a coloring (R, B,W ) of L, a set A ⊆ L is splittable if A ∩ R,
A∩ B and A∩W do not overlap in V2. A partition is splittable if every component in
the partition is splittable.

procedure Make- Splittable(P, (R, B,W ))
while there exists A ∈ P that is not splittable do
� Let û be a lowest internal node in V2[A] such that A ∩ L(û) is

bicolored and A \ L(û) intersects precisely the same colors as A.
P ← P \ {A} ∪ {A ∩ L(û), A \ L(û)}.

end while
end procedure

As a first example of Make- Splittable, consider P = {{B1, R1}, {B2,W1, R2,

W2,W3}} that was the output of Make- (R ∪ B)- compatible depicted in Fig. 2. In
this example P is already splittable. In Fig. 3 a more interesting example is given.
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Fig. 3 Illustration of Make- Splittable(P, (R, B,W )). P = {{R1}, {B1, B2,W1, R2,W2}, {W3}},
and the set A = {B1, B2,W1, R2,W2} is not splittable. Make- Splittable(P) would choose û =
lca2(B2,W1) and replace A by {B2,W1} and {B1, R2,W2}

Lemma 2 Make- Splittable is well-defined, in that a node û satisfying the desired
properties in line � can always be found.

Proof If A is bicolored and not splittable, then there exists û ∈ V2[A] such that both
A ∩L(û) and A \L(û) are bicolored: just take û to be a lowest node in V2[A ∩C1] ∩
V2[A ∩ C2] for distinct C1,C2 ∈ {R, B,W }; such a node exists because A is not
splittable, and the fact that û is in V2[A ∩ Ci ] for i = 1, 2 implies that A ∩ L(û) and
A \ L(û) intersect Ci .

It remains to prove the lemma for the case that A is tricolored. For this to hold, we
need that P is (R ∪ B)-compatible, which by Lemma 1 is indeed true when Make-
Splittable is called. So suppose A is tricolored and not splittable. Note that V2[A∩R]
and V2[A ∩ B] cannot intersect because A is (R ∪ B)-compatible. Assume without
loss of generality that V2[A ∩ R] ∩ V2[A ∩ W ] �= ∅, and let û be a lowest node in
V2[A∩R]∩V2[A∩W ]. Note that both A∩L(û) and A\L(û)must intersectW and R,
and that A∩L(û) cannot intersect B, since then A would not be (R ∪ B)-compatible.
So A ∩ L(û) is bicolored , and A \ L(û) is tricolored. 
�
Lemma 3 Let P ′ be the partition after Make- Splittable(P, (R, B,W )). Then P ′
is a refinement of P that does not overlap in V2 and in which every component is
splittable.

Proof ByLemma 2, and since each iteration increases the number of components inP ,
Make- Splittablemust terminate, and by its definition, the final partitionP ′ contains
only splittable components. Clearly P ′ is a refinement of P; it does not overlap in V2
by the same arguments as used in the proof of Lemma 1. 
�

Before continuing, we summarize the properties of the partition resulting after
Make- Splittable that will be useful in the proof of the approximation guarantee in
Sect. 4. To describe these, we need the notion of a top component.

Definition 6 If A is a component in the partition at the beginning of an iteration,
and A is multicolored, then A is a top component. If A is a top component of the
current partition, and A gets subdivided into A \ L(û) and A ∩ L(û) by Make-
(R ∪ B)- compatible or Make- Splittable, then A \ L(û) (but not A ∩ L(û)) is a
top component of the resulting partition.

We note that by Observation 1, there are always either exactly one or two top
components at the start of the iteration, and hence throughout (until the call to Split,
after which the notion is no longer defined).
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Lemma 4 LetP(0) denote the partition at the start of a given iteration, and (R, B,W )

the coloring of the leaves that is selected, letP(1) denote the partition afterMake- (R∪
B)- compatible(P(0), (R, B,W )), and let P(2) denote the partition after Make-
Splittable(P(1), (R, B,W )). Then the following properties hold:

1. Only multicolored components are subdivided by the iteration, i.e., if A ∈ P(0) \
P(2), then A is multicolored.

2. The number of tricolored components in P(2) is the same as in P(1).
3. Any tricolored component in P(1) or P(2) that is not a top component contains no

compatible tricolored triple.
4. Any bicolored component A inP(2) that is not a top component satisfies that lca2(A)

is not covered by A ∩ C for any color C ∈ {R, B,W }. In other words, L(û�) ∩ A
and L(ûr ) ∩ A are unicolored where û� and ûr are the children of lca2(A).

5. If xW is in component A in P(0), and xW is not a descendant of lca2(A∩ (R ∪ B))

(and thus xW is a white leaf) , then either A ∈ P(2) or xW is in a top component in
P(2).

Proof The fact that property 1 holds can be read from the description of Make-
(R∪B)- compatible andMake- Splittable. Property 2 follows from thedescription
of Make- Splittable.

For property 3, we prove that when a non-top component is created from a top
component, this non-top component cannot have compatible tricolored triples. This
implies that no non-top component can have a compatible tricolored triple. First
consider non-top components created by Make- (R ∪ B)- compatible from a top
component A. The fact that node û picked inMake- (R ∪ B)- compatible is always
chosen as low as possible implies that when the non-top component A′ = A∩L(û) is
created, it holds that lca2(xR, xB) = û for any xR ∈ A′∩R, xB ∈ A′∩B. Therefore, for
any xW ∈ A′ ∩W , it must be the case that either lca2(xW , xR) ≺ û or lca2(xW , xB) ≺
û. But then {xR, xB , xW } is incompatible, because lca1(xR, xB) ≺ lca1(xR, xB, xW ).
So non-top components inP(1) can indeed not have compatible tricolored triples. Non-
top components created by Make- Splittable from a top component are bicolored
by definition, so these cannot have compatible tricolored triples either. Therefore,
property 3 holds.

A similar argument showsproperty 4. First, consider a non-top component A created
byMake- (R∪B)- compatible. A intersects R and B, so if A is bicolored, it contains
no white leaves, so lca2(A) is not covered by A∩W = ∅. Now, because lca2(A) is the
node û picked inMake- (R ∪ B)- compatible, which is as low as possible, lca2(A)

is not covered by A ∩ R nor A ∩ B. For a non-top component A created by Make-
Splittable, the fact that lca2(A) is the node û picked in Make- Splittable which
is chosen as low as possible again implies that lca2(A) is not covered by A ∩ C for
any color C ∈ {R, B,W }.

For property 5, if A /∈ P(2), consider a node û selected by Make- (R ∪ B)-
compatible or Make- Splittable that leads to a subdivision of A. It suffices to
argue that û � lca2(A∩ (R∪ B)), because then the fact that xW is not a descendant of
lca2(A∩ (R∪ B)) implies that xW always remains in a top component. For û selected
byMake- (R ∪ B)- compatible this fact holds because û is a lowest node such that
A ∩ L(û) intersects R and B. For û selected by Make- Splittable this fact holds
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because û is a lowest node such that A ∩ L(û) is bicolored, and A \ L(û) intersects
the same colors as A. 
�

3.3 Split

We now “split” the multicolored components of the partition: essentially, we further
refine the partition by intersecting each multicolored component with R, B and W .
Thus a component intersecting k colors will be split into k unicolored components.
The fact that the components of the partition were splittable ensures that the resulting
partition does not overlap in V2. We will, however, need to be slightly more careful in
order to achieve the approximation guarantee; in particular, we will sometimes need
to perform what we call a Special- Split.

procedure Split(P, (R, B,W ))
for each multicolored component A do

if A is tricolored, and there exists a tricolored triple in A that is
compatible then

Special- Split(A,P, (R, B,W ))
else

P ← P \ {A} ∪ {A ∩ R, A ∩ B, A ∩ W } (where empty sets
are not added)

end if
end for

end procedure

Remark Our analysis in Sect. 4 needs the Special- Split, Find- Merge- Pair and
Merge- Components procedures only in one (of three) cases that will be described
in Lemma 12. Without these procedures, it is trivial to see that the resulting partition
is feasible, and we will see in Sect. 4 that the proof of the approximation ratio is
quite simple in these cases. On first reading, the reader may thus choose to skip
the description of these procedures, and also read Sect. 4 only up to the proof of
Proposition 14.

We emphasize that the Special- Split procedure is only called if A is tricolored,
and there is at least one tricolored compatible triple in A. Hence, by property 3 of
Lemma 4, Special- Split is only applied to tricolored top components.

procedure Special- Split(A,P, (R, B,W ))
if every tricolored triple in A is compatible then

P ← P \ {A} ∪ {A ∩ R, A \ R}.
else
� Let û = lca2(A ∩ (R ∪ B)).

P ← P \ {A} ∪ {A \ L(û), A′ ∩ R, A′ ∩ B, A′ ∩ W } where
A′ = A ∩ L(û).

end if
end procedure
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Fig. 4 Two illustrations of Split(P, (R, B,W )). In the top exampleP = {{R1}, {B2,W1}, {B1, R2,W2},
{W3}} and Split(P) would simply refine each set of P by intersecting it with the three color classes. The
result is that every leaf is a singleton inP ′. In the bottom example,P = {{B1, R1}, {B2,W1, R2,W2,W3}}.
The set A = {B2,W1, R2,W2,W3} is tricolored and contains triple {B2, R2,W3} that is tricolored and
compatible, but not every tricolored triple in A is compatible, e.g., {B2, R2,W2} is not compatible. In this
case, the Special- Split replaces A by {{B2}, {R2}, {W1,W2}, {W3}}

We refer to Fig. 4 for examples of the split operations in the two cases.
We now describe the property that the partition produced by Split will have,

which goes beyond merely being (R ∪ B)-compatible and non-overlapping in V2 and
V1[R ∪ B].
Definition 7 Let K ⊆ L. A partition P is K-feasible if for all w ∈ L, P is K ∪ {w}-
compatible, and no two components in P overlap in V2 ∪ V1[K ].
Wewill simply sayP is feasible if it isL-feasible, which we note does indeed coincide
with the definition of a feasible solution to MAF. We make two additional remarks
about the notion of K -feasibility:

• This stronger compatibility notion will be used in Lemma 7 to show that if P is
(R∪ B)-feasible, then future iterations of the Red-Blue Algorithm will not further
subdivide (the restriction of the partition to) R ∪ B. This is not necessarily true if
P is only (R ∪ B)-compatible and does not overlap in V2 ∪ V1[R ∪ B]. See Fig. 5
for an example.

• If u ∈ V1 is a root of infeasibility forP , thenP is notL(u)-feasible. The converse is
not true, however: ifP contains a single component containingL(u)which isL(u)-
compatible, but this component contains both w ∈ L \L(u) such that L(u) ∪ {w}
is compatible, andw′ ∈ L\L(u) such thatL(u)∪{w′} is not compatible, thenP is
notL(u)-feasible, but u is not a root of infeasibility. See Fig. 6 for an example. The
stronger notion of a u being a root of infeasibility versus not being L(u)-feasible
is needed when we prove the approximation guarantee in Sect. 4.

Before we prove that the outcome of Split is (R ∪ B)-feasible, we prove the
following technical lemma that gives sufficient conditions for a partition to not overlap
in V1[R ∪ B].
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Fig. 5 An example where P is (R ∪ B)-compatible and does not overlap in V2 ∪ V1[R ∪ B], but that is
not (R ∪ B)-feasible. In this example, P = {L}, which clearly does not overlap in any node. If we stop the
current iteration withP , then lca1({B1, B2}) and lca1({W1,W2}) are lowest roots of infeasibility; nomatter
which one is chosen, the next iteration would further subdivide the partition restricted to R∪ B. Because we
want to ensure this does not happen, the current iteration of the Red-Blue Algorithm will further subdivide
the partition induced on R ∪ B: it will create components {B1,W1}, {B2,W2, R1} in Make- Splittable
and split everything into singleton components in Split

Fig. 6 An example whereP is notL(u)-feasible, but u is not a root of infeasibility. (To emphasize that u is
not a root of infeasibility, the leaves are labelled with x1, x2, x3, w1 and w2, in contrast to earlier figures.)
In this example, P = {L}, which does not overlap in any node, and P is L(u)–compatible because the
triple L(u) is compatible. But P is not L(u)-feasible because L(u) ∪ {w1} is not compatible. On the other
hand, u is not a root of infeasibility because L(u) ∪ {w2} is compatible

Lemma 5 Let P be the partition and (R, B,W ) be the coloring at the start of an
iteration. Let P ′ be a refinement of P that does not overlap in V2 and that is (R ∪ B)-
compatible. Then P ′ does not overlap in V1[R ∪ B] if the following two conditions
are met:

(i) P ′ has at most one multicolored component;
(ii) for the multicolored component A∗ ∈ P ′ (if it exists), either lca2(R ∪ B) ≺

lca2(A∗) or any node v̂ with lca2(A∗) ≺ v̂ � lca2(R ∪ B) is covered only by
components in P ′ that are subsets of W , or that are also components of P .

Proof Suppose the conditions of the lemma hold for P ′. First, observe that P ′ having
at most one multicolored component implies that P ′ contains at most one component
covering lca1(R ∪ B). Hence, if we suppose for a contradiction A′, A′′ ∈ P ′ exist
that overlap in V1[R ∪ B], then they must overlap in V1[R] or V1[B]. Without loss
of generality, assume that A′, A′′ ∈ P ′ overlap in V1[R]. Since they do not overlap
in lca1[R ∪ B], we may assume also without loss of generality that A′ ⊆ R and
A′′ ⊆ R ∪ B ∪ W .

Since lca1(R ∪ B) was chosen as a lowest root of infeasibility, lca1(R) was not
a root of infeasibility for P . This implies that no two components of P overlap in
V1[R], so it must be the case that A′ and A′′ were both part of a single component
in P and were split. Also, P must have been R-compatible, so (A′ ∪ A′′) ∩ R is
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a compatible set. We will show that these facts imply that if A′ and A′′ overlap in
V1[R], then they must overlap in V2[R], thus contradicting that P ′ does not overlap
in V2.

Let v be a lowest node in V1[R] such that A′ ∩ L(v) �= ∅ and A′′ ∩
L(v) �= ∅ where we note that v exists since A′, A′′ overlap in some node
in V1[R]. Observe that a child of v cannot be in both V1[A′] and V1[A′′], as
this contradicts the choice of v, and v itself is in V1[A′] and V1[A′′] only if
A′ and A′′ also contain leaves in L \ L(v). Let x ′, x ′′ be in A′ ∩ L(v) and
A′′ ∩ L(v) respectively, and choose y′, y′′ in A′ \ L(v) and A′′ \ L(v). Note
that x ′, y′ ∈ R because A′ ⊆ R, and x ′′ ∈ R because x ′′ is a descendant of
v ∈ V1[R], and the coloring guarantees that all descendants of nodes in V1[R] are
red.

First, assume both A′ and A′′ are unicolored (that is, both red). Then also y′′ ∈ R, so
{x ′, x ′′, y′, y′′} ⊆ R is a compatible set. Note that lca1(x ′, x ′′) = v ≺ lca1(x ′, x ′′, y′)
and similarly lca1(x ′, x ′′) ≺ lca1(x ′, x ′′, y′′). Since {x ′, x ′′, y′, y′′} is compatible, we
must also have lca2(x ′, x ′′) ≺ lca2(x ′, x ′′, y′) and lca2(x ′, x ′′) ≺ lca2(x ′, x ′′, y′′).
But then lca2(x ′, x ′′) is on the path from x ′ to y′ as well as on the path from x ′′ to y′′.
Hence, A′ and A′′ overlap in lca2(x ′, x ′′) ∈ V2, contradicting that P ′ does not overlap
in V2.

Now, suppose that while A′ is unicolored, A′′ is multicolored. Since {x ′, x ′′, y′} ⊆
R is compatible, lca2(x ′, x ′′) ≺ lca2(x ′, x ′′, y′), so the fact that x ′, y′ ∈ A′
implies that lca2(x ′, x ′′) ∈ V2[A′]. Now, it must be the case that lca2(A′′) ≺
lca2(x ′, x ′′), because x ′′ ∈ A′′ and otherwise A′ and A′′ overlap in lca2(x ′, x ′′),
contradicting that P ′ does not overlap in V2. The fact that x ′, x ′′ ∈ R implies
that lca2(x ′, x ′′) � lca2(R ∪ B). So lca2(A′′) ≺ lca2(x ′, x ′′) � lca2(R ∪ B),
and by property (ii), it must thus be the case that lca2(x ′, x ′′) is covered only
by components in P ′ that are subsets of W or that are also components of P .
But this is a contradiction because lca2(x ′, x ′′) is covered by A′ ∈ P ′ \ P .


�
The next lemma states that the partition resulting after Split is (R ∪ B)-feasible.

Lemma 6 Let P ′ be the partition after Split(P, (R, B,W )). Then P ′ is a refinement
of P that is (R ∪ B)-feasible.

Proof It is easy to see that every component is (R ∪ B ∪ {w})-compatible for all
w ∈ L: each component is either unicolored (and thus (R ∪ B ∪ {w})-compatible
by the fact that the partition is R-compatible and B-compatible), or it is the result
of a Special- Split on a component in which all tricolored triples are compatible,
and hence, since all triples in R ∪ B are compatible by the fact the component is
(R ∪ B)-compatible, it was already (R ∪ B ∪ {w})-compatible for all w ∈ L before
the Special- Split.

To see that P ′ does not overlap in V2, note that the fact that P does not overlap in
V2 and is splittable (by Lemma 3) implies that A∩ R, A∩ B, A∩W do not overlap in
V2 for any A ∈ P . If A is split by a Special- Split into A∩ R and A∩ (B ∪W ), then
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A is (R ∪ B ∪ {w})-compatible for all w ∈ L (again, because A has no incompatible
tricolored triples and A is (R ∪ B)-compatible). This implies that there is a node
ûr ∈ V2 such that A ∩ L(ûr ) = A ∩ R; hence, A ∩ R and A \ R do not overlap in
V2.

It remains to show that no two components in P ′ overlap in V1[R ∪ B]. We
check the sufficient conditions in Lemma 5. The only possible multicolored com-
ponents of P ′ are bicolored components created by Special- Split on a component
in P that is tricolored and in which every tricolored triple is compatible. By prop-
erty 3 of Lemma 4, the only tricolored components that have a compatible tricolored
triple are top components. By Observation 1, the partition at the start of the itera-
tion had at most one tricolored component, and thus there can be at most one top
component, say A, that is tricolored in P . Since A is (R ∪ B ∪ {w})-compatible
for all w ∈ L, there is a node ûr ∈ V2 such that A ∩ L(ûr ) = A ∩ R. Split
subdivides A into A ∩ R and A \ R, where A \ R is the unique multicolored
component in P ′. Let A∗ = A \ R, and suppose that there exists a component
A′ ∈ P ′ that covers a node v̂ on the path from lca2(A∗) to lca2(L). Then lca2(A′)
must be on this path, too, so lca2(A∗) � lca2(A′). Observe that A′ cannot be
A \ A∗ = A ∩ L(ûr ). Also, since A was the unique top component in P , no
component created in the current iteration has a lowest common ancestor above
lca2(A). So A′ must have been a component in the partition at the start of the
iteration, and by Lemma 5 we conclude that P ′ does not overlap in V1[R ∪ B].


�

3.4 Find-merge-pair andmerge-components

The astute reader may have noted that the Red-Blue Algorithm sometimes increases
the number of components bymore than necessary to be (R∪B)-feasible.One example
of this is given in Fig. 5. More generally, it follows from the arguments in the proof
of Lemma 6 that if there is a tricolored component in which every tricolored triple is
compatible, then not further subdividing this component would also leave a partition
that is R ∪ B-feasible. Find- Merge- Pair and Merge- Components aim to merge
two components of the partition produced at the end of Split, so that the partition with
the merged components is still (R ∪ B)-feasible. Find- Merge- Pair thus looks for
a pair of components that can be merged, by scanning the components of the current
partition, and finding two leaves in R ∪ B that are in different sets of the partition
now, but that were in the same component at the start of the current iteration. We note
that a pair of components may also be found when no Special- Split is done on a
tricolored component in which every tricolored triple is compatible; in other words,
Find- Merge- Pair and Merge- Components can do more than simply reversing
those splits on tricolored components in which every tricolored triple is compatible.
In the proof of the approximation guarantee (in particular, in Proposition 15), we will
show the existence of very specific components that can bemerged. However, merging
any pair of components created in the current iteration leads to the same approximation
guarantee.
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procedure Find- Merge- Pair(pairslist,P, (R, B,W ))
if exists x1, x2 ∈ R ∪ B such that

x1 and x2 were in the same component at the start of the current
iteration,

x1 and x2 are in distinct components A1 and A2 in P , and
P \ {A1, A2} ∪ {A1 ∪ A2} is (R ∪ B)-feasible

then
pairslist ← pairslist ∪ {(x1, x2)}

end if
end procedure

Although we could simply merge the components containing x1 and x2 for the pair
found byFind- Merge- Pair, wewill not do so until the very end of the algorithm. The
reason we keep such “superfluous” splits is because they increase the objective value
of the dual solution we use to prove the approximation guarantee of 2 (see Sect. 4).
We “reverse” these superfluous splits (i.e., we will merge components) at the end of
the algorithm; this is reminiscent of a “reverse delete” in approximation algorithms
for network design [13]. The reason to delay these merges is thus to simplify the
description of the dual solution in the analysis only.

procedure Merge- Components(pairslist,P)
for each pair (x1, x2) in pairslist do

Let A1 and A2 be the sets inP containing x1 and x2, respectively.
P ← P \ {A1, A2} ∪ {A1 ∪ A2}.

end for
end procedure

The proof that we will be able to merge the components containing the pair of
leaves identified by Find- Merge- Pair at the end of the algorithm will rely on the
fact that (i) because the partition is (R∪ B ∪{w})-compatible for any w ∈ L, merging
the components containing the identified leaves x1, x2 ∈ R ∪ B cannot increase
the number of incompatible triples contained in a component, and (ii) because the
partition is (R ∪ B)-feasible, future iterations of the algorithm will not further refine
the partition induced on R∪ B. This is the reason why we do not allow Find- Merge-
Pair to choose leaves in W (and only choosing leaves in R ∪ B is sufficient to prove
the claimed approximation guarantee).

Lemma 7 Let (R, B,W ) be the coloring during some iteration of the Red-Blue Algo-
rithm, and let P be the partition at the end of the iteration. Then the algorithm does
not refine the partitioning restricted to R∪ B in later iterations: for any x, x ′ ∈ R∪ B
that are in the same component of P , x and x ′ are in the same component in any
partition at any later point of the algorithm’s execution.

Proof Suppose for a contradiction that a later iteration with coloring (R′, B ′,W ′)
separates two leaves x, x ′ ∈ R ∪ B in the same component of P . Let A be the
component containing x and x ′ at the start of this iteration. Since P is (R ∪ B)-
feasible, no v ∈ V1[R∪ B] is a root of infeasibility, and hence all leaves in R∪ B, and
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in particular x and x ′, must have the same color in the coloring (R′, B ′,W ′). Notice
that by the definition of Split, x and x ′ cannot be separated during Split. Hence, they
must be separated during Make-(R ∪ B)-compatible or Make- Splittable. In both
cases there must exist some û ∈ V2 such that A∩L(û) is multicolored with respect to
the coloring (R′, B ′,W ′), and A∩L(û) contains precisely one of x, x ′. By relabeling
if needed, assume that x ∈ A ∩ L(û) and x ′ ∈ A \ L(û). Let w ∈ A ∩ L(û) be any
leaf with a color (in the coloring (R′, B ′,W ′)) different from x , and note that

lca2(x, w) � û ≺ lca2(x, x
′, w). (1)

Because all leaves in R∪B, have the same color in (R′, B ′,W ′), and becausew has a
different color than x in (R′, B ′,W ′), we know that lca1(x, x ′) ≺ lca1(x, x ′, w). But,
since P is (R ∪ B ∪ {w})-compatible, this implies that if w is in the same component
as x and x ′ in (a refinement of)P , then lca2(x, x ′) ≺ lca2(x, x ′, w), contradicting (1),
because only one of lca2(x, x ′) and lca2(x, w) can be strictly below lca2(x, x ′, w).


�

3.5 Correctness of the algorithm

Theorem 8 The Red-Blue Algorithm returns a feasible solution to MAF.

Proof In each iteration through the main loop of the algorithm, the partition is strictly
refined. Thus there are less than |L| iterations.When themain loop terminates, lca1(L)

is not a root of infeasibility, and so the partition at this stage is feasible. It remains to
prove that merging components usingMerge- Componentsmaintains the feasibility
of the partition.

We prove this by induction on k, the number of pairs in pairslist. If k = 0,
Merge- Components does nothing, and so the returned partition is indeed feasible.

So suppose k > 0. Observe that the result of Merge- Components applied to
a partition P is the unique finest coarsening of P in which every pair of nodes in
pairslist is in the same component, and hence does not depend on the order in
which the pairs in pairslist are considered. We may thus assume without loss of
generality that they are considered in the reverse order in which they were added to
pairslist.

LetP ′ be the partition obtained duringMerge- Components after the components
have beenmerged for all pairs onpairslist, except the pair (x1, x2) that was added
to pairslist first. Let P be the partition at the moment when (x1, x2) was added
to pairslist during the main loop of the algorithm, i.e. the partition at the end of
Split in the iteration where (x1, x2) was added to pairslist; let R, B,W be the
three color sets of that iteration. In all subsequent iterations P was further refined,
and any of the pairs aside from (x1, x2) added to pairslist consists of two leaves
that were in the same component in the partition at the start of the iteration in which
were they added to pairslist, and hence in the same component ofP . Thus,P ′ is
a refinement ofP and P ′ is a coarsening of the partition at the end of the last iteration.
Thus by Lemma 7, P and P ′ induce the same partition of R ∪ B. Moreover, by the
induction hypothesis, every component of P ′ is compatible.
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Let A1, A2 be the components in P containing x1, x2 respectively. By the choice
of x1, x2, (A1 ∪ A2) is R ∪ B ∪ {w}-compatible for every w ∈ L, and A1 ∪ A2 does
not overlap any component of P \ {A1, A2} in V2 ∪ V1[R ∪ B].

If A1, A2 are unicolored, they both contain leaves in R ∪ B only, because x1, x2 ∈
R∪B by definition of Find- Merge- Pair. As argued above,P ′ contains components
A1 and A2 as well. Furthermore, in this case, the set A1 ∪ A2 is a subset of R ∪ B
and thus R ∪ B ∪ {w}-compatibility for all w ∈ L implies the set is compatible. Since
V1[A1 ∪ A2] ⊆ V1[R ∪ B], A1 ∪ A2 cannot overlap any set A ∈ P \ {A1, A2}; this
implies it also does not overlap any set A′ ∈ P ′ \ {A1, A2}, since P ′ is a refinement
of P .

If A1 and A2 are not both unicolored, observe that only one of A1, A2 is bicolored
and contains leaves in B ∪W , because P does not overlap in V1[R ∪ B] so it can only
have onemulticolored component, and the only type of multicolored components after
Split, are subsets of B ∪W . Suppose without loss of generality that A1 is unicolored
and A2 contains leaves in B ∪ W . As mentioned before, by Lemma 7, P ′ and P have
the same components restricted to R ∪ B, whence P ′ contains component A1 and a
component A′

2 ⊆ A2, where A′
2 ∩ (R ∪ B) = A2 ∩ (R ∪ B).

We need to show that A1 ∪ A′
2 is compatible and does not overlap any component

in P ′ \ {A1, A′
2}. For the latter, suppose in order to derive a contradiction that A1 ∪ A′

2
overlaps A′ ∈ P ′ \ {A1, A′

2}. Observe that the only nodes in V [A1 ∪ A′
2] that are

not in V [A1] ∪ V [A′
2] are in V2 ∪ V1[R ∪ B], so the overlap must be on a node

v ∈ V2 ∪ V1[R ∪ B]. Since P ′ is a refinement of P , there must exist A ∈ P such that
A′ ⊂ A, and thus A1 ∪ A′

2 overlaps A in v as well. But then A1 ∪ A2 also overlaps A
in v contradicting that P \ {A1, A2} ∪ {A1 ∪ A2} is (R ∪ B)-feasible.

To show that A1 ∪ A′
2 is compatible, note that A′

2 is a component of P ′, and thus,
by the induction hypothesis, A′

2 is compatible. By the choice of A1, A1, we know
A1∪A′

2 ⊂ A1∪A2 is (R∪B∪{w})-compatible for allw ∈ L. So to show that A1∪A′
2

is compatible, it suffices to consider x, w,w′ ∈ A1 ∪ A′
2 with x ∈ A1 and w,w′ ∈

A′
2 ∩ W . Fix any xB ∈ A′

2 ∩ B, and note that x ∈ R ∪ B. Therefore, lcai (xB, w) =
lcai (x, xB , w) = lcai (x, w) for i = 1, 2, since lcai (x, xB) ≺ lcai (x, xB , w) is implied
by A1 ∪ A2 being R ∪ B ∪ {w}-compatible. So {x, w,w′} is compatible exactly when
{xB, w,w′} is compatible. Because, as we noted, A′

2 is compatible, we conclude that
A1 ∪ A′

2 is compatible. 
�

4 Proof of the approximation guarantee

We showed in the previous section that the Red-Blue Algorithm returns a feasible
solution P . In order to prove that our algorithm achieves an approximation guarantee
of 2, we will use linear programming duality.

4.1 The linear programming relaxation

Let C be the set of all compatible subsets of L. Introduce a variable xL for every
compatible set L ∈ C, where in an integral solution, xL = 1 indicates that L forms part
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of the solution toMAF. The constraints ensure that in an integral solution, {L : xL = 1}
is a partition, and that V [L]∩V [L ′] = ∅ for two distinct sets L, L ′ with xL = xL ′ = 1.
The objective encodes the size of the partition minus 1.

minimize
∑

L∈C
xL − 1,

s.t.
∑

L:v∈L
xL = 1 ∀v ∈ L,

∑

L:v∈V [L]
xL ≤ 1 ∀v ∈ V \ L,

xL ≥ 0 ∀L ∈ C.

(LP)

The equality constraint on the leaves can be replaced by the inequalities∑
L:v∈L xL ≥ 1 for all v ∈ L. For given a solution x̃ for which the constraint for

some leaf v is not tight, we can simply choose some set L containing v with x̃L > 0,
and decrease x̃L while (if |L| > 1) increasing x̃L\{v}. This cannot increase the cost of
the solution, and clearly maintains feasibility. By repeating this process, we obtain a
solution to (LP) of cost no larger than the cost of the original x̃ .

In fact, it will be convenient for our analysis to expand the first set of constraints
(in their inequality rather than equality form) to contain a constraint for every (not
necessarily compatible) set of leaves A, stating that every such set must be intersected
by at least one component in the chosen MAF solution. All these constraints of this
expanded set are clearly implied by the constraints for A a singleton, which are exactly
the first set of constraints in (LP).

minimize
∑

L∈C
xL − 1,

s.t.
∑

L:A∩L �=∅
xL ≥ 1 ∀A ⊆ L, A �= ∅

∑

L:v∈V [L]
xL ≤ 1 ∀v ∈ V \ L,

xL ≥ 0 ∀L ∈ C.

(LP′)

This expanded formulation provides us a more expressive dual:

maximize
∑

v∈V \L
yv + ∑

A⊆L,A �=∅
zA − 1,

s.t.
∑

v∈V [L]\L
yv + ∑

A:A∩L �=∅
zA ≤ 1 ∀L ∈ C,

yv ≤ 0 ∀v ∈ V \ L,

zA ≥ 0 ∀A ⊆ L, A �= ∅.

(D′)

Wewill refer to the left-hand side of the first family of constraints, i.e.,
∑

v∈V [L]\L yv+∑
A:A∩L �=∅ zA, as the load on set L , and denote it by load(y,z)(L). By weak duality,

we have that the objective value of any feasible dual solution provides a lower bound
on the objective value of any feasible solution to (LP), and hence also on the optimal
value of any feasible solution to MAF. Hence, in order to prove that an agreement
forest that has |P| components is a 2-approximation, it suffices to find a feasible dual
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solution with objective value 1
2 (|P|−1), i.e., for every new component created by the

algorithm, the dual objective value should increase by 1
2 (on average).

4.2 The dual solution

The dual solutionmaintained is as follows. Throughout themain loop of the algorithm,
zA = 1 if and only if A is a component in P . In the last part of the algorithm, when
we merge components according to pairslist, we do not update the dual solution;
these operations affect the primal solution (i.e., P) only.

Initially, yv = 0 for all v ∈ (V1∪V2)\L. At the start of each iteration, we decrease
yu by 1, where u = lca1(R ∪ B). Whenever in the algorithm we choose a component
A and a node û ∈ V2[A], and separate the component A into A ∩L(û) and A \L(û),
we decrease yû by 1. To be precise this happens in Make- (R ∪ B)- compatible,
Make- splittable and in one case in Special- Split (where we actually further
refine A ∪ L(û)). The lines where such nodes are chosen are indicated by � in the
description of the algorithm and the procedures it contains.

Lemma 9 The dual solution maintained by the algorithm is feasible.

Proof We prove the lemma by induction on the number of iterations. Initially, zA = 0
for all A �= L and zL = 1 and hence every compatible set L has a load of 1.

At the start of an iteration, we decrease ylca1(R∪B) by 1, thus decreasing the load by
1 on any multicolored compatible set L . We show that the remainder of the iteration
increases the load by at most 1 on a multicolored compatible set and that it does not
increase the load on any unicolored compatible set.

First, observe that Make- (R ∪ B)- compatible and Make- Splittable do not
increase the load on any set: Separating A into A ∩ L(û) and A \ L(û) increases the
load on sets L that intersect both A∩L(û) and A \L(û), since zA gets decreased from
1 to 0, and zA∩L(û) and zA\L(û) increase from 0 to 1. However, in this case û ∈ V [L],
and thus decreasing yû by 1 ensures that the load on L does not increase.

To analyze the effect of Split, we use the following two claims.

Claim 10 In the procedure Split(P, (R, B,W )) the load on any compatible set L is
increased by at most the number of components A ∈ P such that L∩A is multicolored.

Proof. If the load on L is increased because Split splits a bicolored component A into
two unicolored components, then L must intersect both new components, so L ∩ A is
bicolored (and thus multicolored) and the load on L is increased by 1.

Consider the case where the load on L is increased because a tricolored component
A is split into A∩ R, A∩ B and A∩W . This split happens when all tricolored triples
in A are incompatible. Therefore L ∩ A cannot be tricolored. Since the load on L
increased by splitting A, we conclude that L ∩ A must be bicolored and the load on L
is increased by 1.

Finally, suppose the load on L is increased because Special- Split(A,P, (R, B,

W )) is executed for a component A. We consider the two cases of Special- Split. In
the first case, A is split into two components, one of which contains all red leaves in A.
The load on a set L thus increases by 1 if L∩A ismulticolored and L∩A∩R �= ∅ and by
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0 otherwise. In the second case, A is split into four components; we think of this as first
splitting A into A∩L(û) and A\L(û), and then splitting A∩L(û) by intersecting with
R, B andW . Since yû is decreased by 1, splitting A into A∩L(û) and A\L(û) does not
affect the load on any set L . Splitting A∩L(û) by intersecting with R, B,W increases
the load on L by 1 if L ∩ A ∩ L(û) is bicolored and by 2 if it is tricolored. We show
below that L∩A∩L(û) cannot be tricolored,which implies that the load on L increases
by at most 1 if A ∩ L is multicolored, thus proving the claim. Suppose L ∩ A ∩L(û)

contains a triple xB ∈ B, xR ∈ R, xW ∈ W . The fact that A is (R ∪ B)-compatible
implies that lca2(xB, xR) = lca2(A ∩ (R ∪ B)) = û. Since xW ∈ L(û), we thus have
either lca2(xB, xW ) ≺ û = lca2(xB, xR) or lca2(xR, xW ) ≺ û = lca2(xB, xR). In
either case, {xB, xR, xW } is incompatible, contradicting that L is compatible. �
Claim 11 If L is compatible, and A and A′ do not overlap in V2, then L∩ A and L∩ A′
cannot both be multicolored.

Proof. Assume that |A| ≥ 2, |A′| ≥ 2 (otherwise, the claim is vacuously true).
Since V2[A] and V2[A′] are disjoint, we may assume without loss of generality that
lca2(x, y) ≺ lca2(x, y, x ′) for all x, y ∈ A and x ′ ∈ A′. Hence, if L ∩ A and
L ∩ A′ are both multicolored sets, then there exist x, y, x ′, y′ ∈ L where x, y
have different colors, x ′, y′ have different colors, lca2(x, y) ≺ lca2(x, y, x ′), and
lca2(x, y) ≺ lca2(x, y, y′). We claim this implies {x, y, x ′, y′} is incompatible, a
contradiction since x, y, x ′, y′ ∈ L and L is compatible.

Clearly one of x, y has the same color as one of x ′, y′. Suppose without loss
of generality that x, x ′ have the same color. If x and x ′ are both red, y is either
blue or white. x and x ′ being red implies lca1(x, x ′) ≺ lca1(x, y, x ′), which, since
lca2(x, y) ≺ lca2(x, y, x ′), shows that {x, x ′, y} is an incompatible triple. The case
when x and x ′ are blue is analogous. If x and x ′ are bothwhite, then y and y′ are in R∪B.
This implies lca1(y, y′) ≺ lca1(x, y, y′), and so, since lca2(x, y) ≺ lca2(x, y, y′), this
implies {x, y, y′} is an incompatible triple. �

It follows immediately from the two claims that Split increases the load by at most
1 on any multicolored compatible set and that it does not increase the load on any
unicolored set, which completes the proof of the lemma. 
�

4.3 The primal and dual objective values

Let P , pairslist be the partition and pairslist at the end of an iteration, and
let D = ∑

v∈V \L yv + |P| − 1 be the objective value of the dual solution at this time.
In this section, we show that every iteration of our algorithm maintains the invariant
that

2D ≥ (|P| − 1 − |pairslist|) . (2)

Observe that the approximation guarantee immediately follows from this inequality,
since the objective value of the algorithm’s solution is P −1−|pairslist| (where
P , pairslist are the partition and pairslist at the end of the final iteration),
and by weak duality D gives a lower bound on the optimal value of the MAF instance.

To prove that the algorithm maintains the invariant, we will show that a given
iteration increases the left-hand side of (2) by at least as much as the right-hand
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side. We let �D be the change in the dual objective during the iteration and �P
be the increase in the number of components minus the number of pairs added to
pairslist (either 0 or 1) during the current iteration.

Since at the start of the algorithm, the partition consists of exactly one component,
and yv = 0 for all v ∈ V \ L, (2) holds before the first iteration. So to show (2), it
suffices to show that

2�D ≥ �P (3)

for any iteration.
In what follows, we use the following to refer to the state of the partition at various

points in the current iteration:P(0) at the start;P(1) afterMake- (R∪B)- compatible;
P(2) after Make- Splittable; and P(3) after Split.

We begin by showing that the coloring (R, B,W ) and the partition P(0) satisfy the
conditions of one of three cases.

Lemma 12 Given an infeasible partition P(0) that does not overlap in V2, let u ∈
V1 be a lowest root of infeasibility, and let u� and ur be u’s children in T1. Let
R = L(ur ), B = L(u�), and W = L \ (R ∪ B). Then P(0) is R-compatible and
B-compatible and satisfies exactly one of the following three additional properties:

Case 1 P(0) has exactly one multicolored component, say A0, where A0 is tricolored,
not (R ∪ B)-compatible, and there exists xW ∈ A0 \L(lca2(A0 ∩ (R ∪ B))),
i.e., A0 contains a compatible tricolored triple.

Case 2 P(0) has exactly two multicolored components, say AB, AR, where AB ∩R =
∅ and AR ∩ B = ∅.

Case 3 P(0) has exactly one multicolored component, say A0, where A0 is tricolored,
(R ∪ B)-compatible and A0 contains no compatible tricolored triple.

We will see in the proof below that Cases 1, 2 and 3 correspond to a lowest root of
infeasibility satisfying (a), (b) and (c) respectively in Definition 4. We refer the reader
to Fig. 1 for an illustration of the three cases.

Proof Observe that if P(0) is infeasible, then the root of T1, i.e., lca1(L) is a root of
infeasibility, and that no v ∈ L is a root of infeasibility. Hence, u is well-defined and
R and B are non-empty. Note that P(0) is R-compatible and B-compatible, since u’s
children are not roots of infeasibility.

Wewill show that if u satisfies condition (a) in the definition of a root of infeasibility,
then the conditions of Case 1 are satisfied, if (b) holds, the conditions of Case 2 are
satisfied, and if (c) holds, then the conditions of Case 3 are satisfied.

We start with (b): P(0) overlaps in V1[L(u)]. Observe that, because u is a lowest
root of infeasibility, the only node in V1[L(u)] on which P(0) overlaps is u, and
thus there must be at least two multicolored components if (b) holds. If there are
two multicolored components, both containing, say, red leaves, then they overlap in
ur = lca1(R), which implies ur is a root of infeasibility, contradicting the choice of u.
Similarly, there is at most one multicolored component containing blue leaves. Hence,
the conditions of Case 2 are satisfied.

If (b) does not hold, i.e., the partition does not overlap in V1[L(u)], then there is at
most one multicolored component; the conditions in (a) and (c) both imply there is at
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least one. Thus there is exactly one multicolored component, which we will call A0.
We let R0 = R ∩ A0, B0 = B ∩ A0 and û = lca2(R0 ∪ B0) = lca2(A0 ∩ (R ∪ B))

(where we stress that û is a node in V2, whereas u is a node in V1).
If (a) holds, then A0 is not (R ∪ B)-compatible, and thus R0 �= ∅, B0 �= ∅. To

derive a contradiction, suppose that Case 1 is not implied, i.e., there does not exist
xW ∈ A0 \ L(lca2(A0 ∩ (R ∪ B))), i.e., A0 ⊆ L(û). Observe that, because A0 is
not (R ∪ B)-compatible, lca2(R0) = û or lca2(B0) = û. Suppose the former holds
without loss of generality. But then lca1(R0) is a root of infeasibility satisfying (c),
because A0 \ R0 �= ∅, and for all w ∈ A0 \ R0, R0 ∪ {w} is incompatible, by the fact
that w ∈ L(lca2(R0)), and w /∈ L(lca1(R0)). But lca1(R0) is a descendant of u, thus
contradicting the choice of u.

Suppose now (c) holds, i.e., P(0) is (R ∪ B)-compatible, and in particular A0 is
(R ∪ B)-compatible. Because A0 is multicolored, we can assume without loss of
generality that R0 �= ∅. If B0 = ∅, then (c) holds for lca1(R0), which is a descendant
of u, thus contradicting the choice of u. Since A0 \ (R0∪ B0) �= ∅ by condition (c), we
conclude A0 is tricolored. It remains to show every tricolored triple is incompatible.
Suppose for a contradiction that {x, y, w} ∈ A0 is a tricolored triple that is compatible.
Let w be the white leaf in the triple, then compatibility requires that lca2(x, y) ≺
lca2(x, y, w). On the other hand, the fact that A0 is (R ∪ B)-compatible implies
that lca2(x, y) = lca2(R0 ∪ B0). But then any tricolored triple in A0 containing w is
compatible, so that A ∩ (R ∪ B) ∪ {w} is compatible, contradicting that condition (c)
holds. 
�

Recall that the coloring is defined only at the start of the iteration. The lemma
ensures that the partitions during the iteration always have either one (in Cases 1 and
3) or two (in Case 2) top components. Furthermore, we can use the lemma to show that
the components created byMake- (R∪ B)- compatible andMake- Splittable are
multicolored.

Lemma 13 Only multicolored components are created by Make- (R ∪ B)-
compatible and Make- Splittable, i.e., if A ∈ P(2) \ P(0), then A is multicol-
ored.

Proof It follows immediately from the description of Make- Splittable that com-
ponents created by this procedure are multicolored. Observe that Make- (R ∪
B)- compatible is used only if P(0) is not (R ∪ B)-compatible. By Lemma 12,
this impliesP(0) must have exactly one multicolored component A0, which contains a
white leaf xW that is not a descendent of lca2(A0)∩ (R∪ B)). From the description of
Make- (R∪ B)- compatible, we (possibly repeatedly) subdivide the top component
A0 into A0∩L(û) and A0\L(û). From the description ofMake- (R∪B)- compatible,
it is clear that the newly created non-top component A0 ∩L(û) intersects both R and
B, and the new top component A0 \L(û)must have a leaf in R∪ B, because otherwise
A0 is already (R ∪ B)-compatible. So û � lca2(A0 ∩ (R ∪ B)), and xW must also be
in the new top component A0 \ L(û), thus ensuring that the top component remains
multicolored. 
�

For Cases 2 and 3, the analysis is quite simple.
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Proposition 14 Let the initial partition P(0) and coloring (R, B,W ) satisfy the con-
ditions of Cases 2 or 3 in Lemma 12. Then 2�D ≥ �P.

Proof We first make two observations that apply in Cases 2 and 3: (i) P(0) is already
(R ∪ B)-compatible, so P(1) = P(0), and (ii) Split(P(2), (R, B,W )) will not per-
form any Special- Split, because no component of a refinement of P(0) can have
a tricolored triple that is compatible (since we are in Case 2 or 3). From these two
observations we derive that

|P(3)| − |P(2)| = |P(2)| − |P(0)| + 2. (4)

To see this, note that, since no Special- Split is performed, |P(3)| − |P(2)| is equal
to the number of bicolored components in P(2) plus twice the number of tricolored
components in P(2). By Lemma 13 P(2) has |P(2)| − |P(0)| more multicolored com-
ponents than P(0), and, since P(1) = P(0), property 2 of Lemma 4 implies that
P(2) has the same number of tricolored components as P(0). So in Case 2, P(2) has
|P(2)|−|P(0)|+2 bicolored components and zero tricolored components, and in Case
3, P(2) has |P(2)| − |P(0)| bicolored components plus one tricolored component, and
indeed (4) holds.

In addition, we note that

�D = |P(3)| − |P(2)| − 1. (5)

To see this, note that at the start of the iteration, the dual objective value is reduced
by 1 when yu is decreased by 1 for u = lca1(R ∪ B). Make- splittable does not
change the dual objective value, because, even though |P| increases by 1 every time
the number of components increases by 1,

∑
v yv decreases by 1 as well. Finally, since

Split will not perform any Special- Split, the increase in the dual objective value
due to Split is equal to the increase in the number of components due to Split, which
is |P(3)| − |P(2)|.

Note that the size of pairslist may increase but will never decrease, and thus

�P ≤ |P(3)| − |P(2)| + |P(2)| − |P(0)|
= 2

(
|P(3)| − |P(2)|

)
− 2 by (4)

= 2�D by (5).


�
We now prove a similar proposition for Case 1, the proof of which is more involved.

Proposition 15 Suppose the initial partition P(0) and coloring (R, B,W ) satisfy the
conditions of Case 1 in Lemma 12. Then 2�D ≥ �P.

Proof In Case 1, we start with P(0) containing one tricolored component A0, which
is not (R ∪ B)-compatible. A0 is the only component that will be subdivided in the
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current iteration (by property 1 of Lemma 4). Note that P(1) and P(2) therefore have
exactly one top component.

Let xW be a white leaf in A0 that is not a descendant of lca2(A0 ∩ (R ∪ B)), which
exists by the definition of Case 1. By property 5 in Lemma 4, xW is contained in the
top component ofP(2), and by Lemma 13 this component is multicolored. Therefore,
the top component of P(2) is either bicolored, or it is tricolored and a Special- Split
is performed on the top component.

Let χ be an indicator variable that is 1 if the top component in P(2) is tricolored
and has a tricolored triple that is incompatible; in other words, χ = 1 if Special-
Split subdivides the top component into four components. If χ = 0, then either the
top component is bicolored or it is tricolored and all its triplets are compatible; in
other words, χ = 0 if the top component is subdivided into two components by Split
(possibly via Special- Split). Thus splitting the top component increases the number
of components by 1 + 2χ .

Now, let t be the number of tricolored components in P(2) that are not top compo-
nents. We claim that

|P(3)| − |P(2)| = |P(2)| − |P(0)| + 1 + 2χ + t . (6)

To show this, we need to argue that the increase in the number of components due to
splitting the multicolored non-top components is |P(2)| − |P(0)| + t . Since P(0) has
one multicolored component, Lemma 13 implies that P(2) has |P(2)| − |P(0)| + 1
multicolored components. Precisely one of these is a top component, so P(2) has
|P(2)|−|P(0)|multicolored non-top components. By property 3, each of the tricolored
components that are not top components do not require a Special- Split and are thus
subdivided into three components by Split. Hence, splitting the components that are
not top components increases the number of components by |P(2)| − |P(0)| + t .

Next, we analyze the increase in the dual objective. We claim that

�D = |P(3)| − |P(2)| − 1 − χ. (7)

To see this, note that the dual objective is decreased by 1 when we decrease ylca1(R∪B)

by 1 at the start of the iteration. As argued in the proof of the previous proposition, the
dual objective is not affected by Make- Splittable. The same argument used there
implies that the same holds for Make- (R ∪ B)- compatible. Finally, if χ = 0, the
increase in the dual objective due to Split is equal to the increase in the number of
components, |P(3)| − |P(2)|. If χ = 1, the same holds, but Special- Split on the top
component also decreases yû0 by 1.

So we get that

|P(3)| − |P(0)| = |P(3)| − |P(2)| + |P(2)| − |P(0)|
= 2

(
|P(3)| − |P(2)|

)
− 1 − 2χ − t by (6)

= 2�D + 1 − t by (7).
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Hence, if t ≥ 1 we have �P ≤ 2�D as required. So the rest of the proof, which
requires quite some extra technicalities, deals with the situation of Case 1 and t =
0. Recall that �P is equal to |P(3)| − |P(0)| minus the number of pairs added to
pairslist in the current iteration; hence, to conclude that �P ≤ 2�D if t = 0,
we need to show a pair is added to pairslist by Find- Merge- Pair.

We will say that a component A ∈ P(3) is able to reach û if û ∈ V2[A] or if
lca2(A) ≺ û and all intermediate nodes on the path from lca2(A) to û are not covered
by any component in P(3). The following lemma (which is actually valid in general,
and not only for Case 1) enumerates precisely the situations when a merge is possible.


�
Lemma 16 Let A0 ∈ P(0), and letQ denote the set of components inP(3) that are sub-
sets of A0. Then there exists a pair of elements in A0 that can be added topairslist
if and only if at least one of the following is true:

(a) Q contains a bicolored component.
(b) There is a node û ∈ V2 that can be reached by two red components or two blue

components in Q.
(c) There is a node û ∈ V2 that can be reached by a red and a blue component in

Q, but is not covered by these components. Furthermore, the node û must satisfy
that the nodes on the path from û to lca2(A0) are not covered by any red or blue
component in Q.

Proof Since any two multicolored components overlap in lca1(R ∪ B) and P(2) does
not overlap in lca1(R ∪ B) by Lemma 6, there is at most one tricolored component in
P(2). By the definitions of Split and Special- Split, P(3) therefore has at most one
multicolored component, which has blue and white leaves and is created by applying
Special- Split to the tricolored component in P(2). If this blue-white component
exists in Q, we denote it by A∗.
(a) IfQ contains a bicolored component A∗, let A∪ A∗ be the tricolored component

from which Special- Split formed a red component A and the bicolored com-
ponent A∗. We show that we can merge A and A∗, which boils down to undoing
the Special- Split operation, to obtain a new partition that is (R ∪ B)-feasible.
Since A ∪ A∗ was not overlapping with any other component in V2, undoing the
Special- Split yields a component that does not overlap any other component
of the partition in V2. For every w ∈ W , A ∪ A∗ is (R ∪ B ∪ {w})-compatible
since A∪ A∗ is (R∪ B)-compatible and, by the conditions of the Special- Split
operation, every tricolored triple in A ∪ A∗ is compatible. Since A ∪ A∗ was the
unique top component in P(2), any component of P(2) (and hence of its refine-
ment P(3)) overlapping a node v̂ such that lca2(A ∪ A∗) ≺ v̂ � lca2(R ∪ B)

must be a component in P(0). Therefore, by Lemma 5, the new partition does not
overlap in V1[R ∪ B].

(b) IfQ does not contain a bicolored component A∗, suppose A, A′ ∈ Q are distinct
red components in Q so that A and A′ can both reach the same node û in V2.
Then merging A and A′ gives a new partition that does not overlap in V2, and
which has no multicolored components. Since A0∩ R is compatible, so is A∪ A′.
By Lemma 5 and the fact that the new partition does not have any multicolored

123



N. Olver et al.

components, it does not overlap in V1[R ∪ B]. Hence, merging A and A′ gives a
new partition that is (R ∪ B)-feasible.
The same applies if A and A′ are both blue components in Q.

(c) If Q does not contain a bicolored component A∗, suppose there exist A, A′ ∈ Q
with A red and A′ blue such that (i) there exists û ∈ V2 \(V2[A]∪V2[A′]) that can
be reached by both A and A′; and (ii) the nodes on the path from û to lca2(A0) are
not in V2[A′′] for any red or blue component A′′ in Q. Observe that (ii) implies
that any component A′′ such that V2[A′′] contains nodes on the path from û to
lca2(A0) must be subsets of W : A′′ must be in Q if V2[A′′] contains a node on
this path, and by the case assumption, Q contains no multicolored component.
Merging A and A′ gives a new partition that does not overlap in V2 and the
new component A ∪ A′ is (R ∪ B)-compatible by (i). Thus the new partition is
(R ∪ B)-compatible, and since it has no components with white leaves as well as
leaves in R ∪ B, it is vacuously also (R ∪ B ∪ {w})-compatible for any w ∈ L.
A ∪ A′ is the unique bicolored component in this new partition, thus satisfying
condition (i) of Lemma 5. Moreover, it satisfies that any node on the path from
û = lca2(A ∪ A′) to lca2(A0) is not covered by a component that is not white.
By Lemma 12, A0 must have been the unique multicolored component in P(0),
and thus the components of the partition that overlap a node on the path from
lca2(A0) to lca2(R ∪ B) were not changed in the current iteration. Therefore,
also condition (ii) of Lemma 5 is satisfied, and the lemma implies that the new
partition does not overlap in V1[R ∪ B]. Hence, merging A and A′ gives a new
partition that is (R ∪ B)-feasible.

We note that the above three cases encompass all possible merge opportunities within
Q. If two components cannot reach the same node û ∈ V2, then merging them gives a
partition that overlaps in V2. If red and blue components A and A′ can only reach nodes
in V2 that are covered by either A or A′, then A∪A′ is not (R∪B)-compatible. And if a
red and blue component A and A′ can reach a node û ∈ V2 that is not in V2[A]∪V2[A′],
but some node on the path from û to lca2(A0) is covered by a component A′′ ∈ Q
that is red or blue, then A∪ A′ will overlap A′′ in V1[R] or V1[B]. To see this, assume
A′′ is red (the blue case is analogous) and let v̂ be the node in V2[A′′] closest to û on
the path from û to lca2(A0). Then v̂ = lca2(A ∪ (A′′ ∩ L(v̂)) ≺ lca2(A′′), and since
A ∪ A′′ are compatible in R, we should also have lca1(A ∪ (A′′ ∩ L(v̂)) ≺ lca1(A′′).
Thus A′′ and A overlap on a node on the path from lca1(A) to lca1(R ∪ B). 
�

We are now ready to complete the proof of Proposition 15, by showing that in Case
1 and if t = 0 (i.e., if P(2) has no tricolored components that are not top components),
then at least one of (a), (b) and (c) in Lemma 16 holds for P(3). By the conditions of
Case 1, the unique tricolored component A0 in P(0) is not (R ∪ B)-compatible, and
there exists xW ∈ A0 \ L(lca2(A0 ∩ (R ∪ B))).

If (a) holds, we are done, so suppose (a) does not hold, i.e.,P(3) has only unicolored
components. We first make some observations which we later use to conclude that (b)
or (c) must hold. Let û be the last node chosen in Make- (R ∪ B)- compatible to
subdivide the top component. Because A0 is not (R ∪ B)-compatible, at least one
iteration of Make- (R ∪ B)- compatible has to be executed on the component, so
the existence of û follows. Let A ⊆ A0 be the top component that is subdivided into
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Fig. 7 Illustration of the last part of the proof of Proposition 15. The sets W ′ and R′ described in the proof
are implicitly shown in the figure: W = W ′

1 ∪ W ′
2 and R′ = R′

1 ∪ R′
2

A ∩ L(û) and A \ L(û) at this point (after which the current partition is P(1)). We
observe some properties of the two new components:

• Letting û� and ûr be the children of û, then A ∩ L(û�) ⊆ B and A ∩ L(ûr ) ⊆ R.
To see this, note that by definition of Make- (R ∪ B)- compatible, A ∩ L(û�)

and A ∩ L(ûr ) each have a non-empty intersection with exactly one of R and B,
and they cannot intersect W because otherwise A ∩ L(û) is a tricolored non-top
component ofP(1), and thenP(2) would also have a tricolored non-top component
by the definition of Make- Splittable, contradicting that t = 0.

• Because A ⊆ A0 was the top component at the moment Make- (R ∪ B)-
compatible subdivided A into A ∩ L(û) and A \ L(û), A \ L(û) is the top
component inP(1). By Lemma 13, A\L(û) intersects R∪ B. By the conditions of
Case 1 and property 5 in Lemma 4, it contains a node xW that is not a descendant
of lca2(A0 ∩ (R ∪ B)). Finally, A \ L(û) is the only component in P(1) that can
cover a node on the path in T2 from û to lca2(A0) (by the fact that A0 was the
unique top component in P(0) and A \L(û) is the unique top component in P(1)).

Using the above, we now showwe can find two components inP(3) that are subsets
of A and that satisfy condition (b) or (c) of Lemma16.As argued above, A∩L(û�) ⊆ B
and A ∩ L(ûr ) ⊆ R, so A ∩ L(û) is splittable; Split will subdivide A ∩ L(û) into a
blue component A ∩L(û�) and a red component A ∩L(ûr ). There are a few cases to
consider (illustrated in Fig. 7).

1. If there is no node on the path in T2 from û to lca2(A0) that is covered by a red or
blue component inP(3), then we are done because û with A∩L(û�) and A∩L(ûr )
satisfy (c).

2. If there are nodes on the path from û to lca2(A0) that are covered by red or blue
components, let v̂ be the node closest to û for which this is the case. Suppose
without loss of generality that v̂ ∈ V2[R′] for some red component R′. We will
show that there is another red component that can reach v̂, so these two components
and v̂ satisfy condition (b).
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(a) If the nodes between û and v̂ are not covered by any components in P(3), then
the red component A ∩ L(ûr ) can reach v̂.

(b) Otherwise, let ŵ be the node closest to v̂ on the path from û to v̂ that is
covered by a component in P(3). By definition of v̂, this component is white,
sayW ′ ∈ P(3). We claim (and prove below) that inMake- Splittable a node
û′ must have been chosen that created a non-top component A′ = W ′ ∪ R′′,
which was subsequently split into the white componentW ′ and red component
R′′ to obtain P(3). By property 4 in Lemma 4, û′ is not covered by R′′ nor
W ′, so R′′ and W ′ are the leaves in A′ ∩ L(û′

r ) and A′ ∩ L(û′
�), with û′

r , û
′
�

being the two children of û′. Hence, R′′ can reach û′. On the other hand, ŵ is
covered by W ′, and thus ŵ ≺ û′ ≺ v̂. By definition of ŵ, the nodes on the
path from û′ to v̂ are not covered by any component in P(3), and thus R′′ can
also reach v̂.

It remains to prove that in 2(b), Make- Splittable selected a node û′ that created
a non-top component W ′ ∪ R′′ ⊂ L(û′), which was subsequently split into W ′, R′′
to obtain P(3). First, observe that W ′ and R′ were part of the top component in P(1)

(because they cover nodes on the path from û to lca2(A0)). They cannot both have
been part of the top component of P(2), because by the conditions of Case 1 and
property 5 of Lemma 4, the top component of P(2) contains a white leaf xW that is
not a descendant of lca2(A0 ∩ (R ∪ B)), and thus W ′ ∪ {xW } covers all nodes on the
path from ŵ to lca2(A0 ∩ (R ∪ B)), which includes v̂. So R′ and W ′ ∪ {xW } overlap
and cannot be in the same component of the splittable partition P(2). Thus, Make-
Splittable must have selected some û′ when W ′ and R′ became part of different
components. Note that W ′ became part of a non-top component. It remains to show
this component contains no blue leaves. Note that otherwise such a blue leaf xB , and
a red leaf xR ∈ R′ ∩ L(v̂) and a red leaf yR ∈ R′ \ L(v̂) (which exists because v̂ is
the lowest node on the path from û to lca2(A0) covered by R′) would all belong to
the component A \L(û) ∈ P(1), but since lca2(xB, xR) = v̂ ≺ lca2(xB, xR, yR), this
triple would be incompatible, contradicting that P(1) is (R ∪ B)-compatible. 
�
Theorem 17 The Red-Blue Algorithm is a 2-approximation for the maximum agree-
ment forest (MAF) problem.

Proof By Theorem 8, the Red-Blue Algorithm returns a feasible solution to MAF.
We showed how to construct a feasible solution for the dual linear program (D’); by
Propositions 14 and 15, the objective value of the solution to MAF returned by the
Red-Blue Algorithm is at most twice the objective value of this dual solution. The
approximation guarantee follows by linear programming duality. 
�

5 A compact formulation of the LP

Here we give a compact formulation for (LP). This shows that it can be optimized
efficiently. While this is not needed in our algorithm, it is possible that an LP-rounding
based algorithm could achieve a better approximation guarantee, in which case this
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formulation will be of use. Moreover, the compact linear program explicitly encodes
the structure of compatible sets in a way that (LP) does not; we believe this may
provide additional structural insights in the future.

We remark that (LP) can also be shown to be polynomially solvable by providing
a separation oracle for the dual. The dual of (LP) is similar to (D′), the dual of (LP′),
except that z is indexed only by singletons and not arbitrary subsets ofL. This dual has
a polynomial number of variables, but an exponential number of constraints. By the
equivalence of separation and optimization, it suffices to provide a separation oracle
for this dual. In particular, it suffices to solve the problem of finding a most violated
constraint amongst

∑

v∈V [L]\L
yv +

∑

v∈L
zv ≤ 1 ∀L ∈ C,

for some given y and z. If we relabel zv to yv , making y a vector indexed by V , we
can restate this as follows. Given some (positive or negative) weights y on the nodes
of V , find a compatible subset L which maximizes

∑
v∈V [L] yv . This is a weighted

variant of the maximum agreement subtree problem; in other words, the maximum
agreement subtree problem is the problem where yv = 1 for all v ∈ L. Similar to the
usual (unweighted) version [26], this can be solved in polynomial time via dynamic
programming.

Assume for convenience thatL = {1, 2, . . . , n}.Wewill deviate from the notational
conventions in the previous sections, and use i and j to denote leaves, and t ∈ {1, 2}
to index the two input trees.

Let Z denote the set of all pairs (i1, i2) ∈ L2 for which i1 ≤ i2. Consider a
compatible set L ⊆ L. For t ∈ {1, 2}, we will use Tt [L] to denote the subtree of Tt
on Vt [L]. Compatibility implies that T1[L] and T2[L] are isomorphic. What we will
now do is represent the structure of these isomorphic trees by an out-arborescence
F(L), where the nodes of the arborescence are elements of Z , and more precisely, are
a subset of {(i, j) : i, j ∈ L, i ≤ j}. We do this as follows.

• If L contains only a single element i , then F(L) is the arborescence consisting of
the single vertex (i, i).

• Otherwise, let L1 and L2 be the partition of L into the leaves below the two
children of the root of T1[L]. Take i1 be the smallest element of L1 and i2 the
smallest element of L2; we assume i1 < i2 (otherwise, swap L1 and L2). The root
of F(L) will be chosen as r := (i1, i2). Now recursively apply this procedure to
L1 and L2, yielding arborescences F(L1) and F(L2); let r1 and r2 denote their
respective roots. Note that F(L1) and F(L2) are necessarily disjoint, since L1 and
L2 are disjoint. Then F(L) is defined to be the union of F(L1) and F(L2), along
with the arcs (r , r1) and (r , r2).
Observe that the pair r1 is of the form (i1, i ′1) for some i ′1, since i1 remains the
smallest element of L1, whereas r2 is of the form (i2, i ′2) for some i ′2. We call
(r , r1) the left arc and (r , r2) the right arc leaving r .

So put differently, this procedure takes the tree T1[L] (or T2[L]; it makes no dif-
ference), contracts all nodes with only a single child, orients all edges away from the
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root, and then assigns a label to each node. This label consists of a pair of leaves in
L , chosen minimally amongst the leaves in each of the two subtrees below the node
(aside from leaves, which are labelled by repeating the leaf twice). We also note that if
L is not a compatible set, then we could still apply this procedure, but it would return
different results when applied to T2[L] instead of T1[L].

With this representation of a compatible set in mind, we now construct a certain
directed graph D on the vertex set Z . It essentially contains all possible arcs that could
appear in an arborescence constructed from a compatible set. We will use U1 for arcs
that can appear as left arcs, and U2 for arcs that can appear as right arcs: the arc set
of D is U1 ∪ U2. With a slight abuse of notation, define lcat (r) = lcat (i1, i2) for
any r = (i1, i2) ∈ Z ; we can think of lcat (r) as being the node in Tt that the pair r
identifies. Given two nodes r = (i1, i2) and s = ( j1, j2) in Z :

• (r , s) ∈ U1 if lcat (s) ≺ lcat (r) for all t ∈ {1, 2} and i1 = j1;
• (r , s) ∈ U2 if lcat (s) ≺ lcat (r) for all t ∈ {1, 2} and i2 = j1.

For any L ⊆ L, define ZL = {(i, i) : i ∈ L}; these are the set of pairs in Z that
appear as labels for the leaves L . Let F denote the set of out-arborescences in D with
leaf set contained in ZL and where each internal node has one outgoing arc inU1 and
one outgoing arc in U2. Then the above discussion implies that L ∈ C if and only if
there is an F(L) ∈ F with leaf set ZL . Let χF ∈ {0, 1}U1∪U2 be the characteristic
vector of the arc set of F , for any F ∈ F . Let CF denote the cone generated by
{χF : F ∈ F}, i.e., y ∈ CF if and only if there exists x ∈ R

C with x ≥ 0 such that
y = ∑

L∈C:|L|≥2 xLχF(L).
We begin by giving a description of CF . For r ∈ Z , let δ+(r) denote the arcs in D

leaving r , and δ−(r) the arcs entering r . For S ⊆ U1 ∪U2, let y(S) = ∑
a∈S ya .

Lemma 18

CF = {
y ∈ R

U1∪U2+ : y(δ+(r) ∩U1) = y(δ+(r) ∩U2) ∀r ∈ Z \ ZL
y(δ+(r) ∩U1) ≥ y(δ−(r)) ∀r ∈ Z \ ZL

}
.

Proof Let Y denote the cone described by the right hand side of the claimed equality.
First, we observe that Y ⊇ CF . Consider any F ∈ F . Then for any r ∈ F ∩ Z \ ZL,
F has precisely one arc entering r , precisely one arc leaving r that is in U1, and one
arc leaving r that is inU2. Hence χF ∈ Y , and therefore any conic combination of the
χF ’s is also in Y .

It remains to show thatY ⊆ CF . Suppose y ∈ Y ; we prove that y ∈ CF , proceeding
by induction on the number of nonzero elements of y. The claim trivially holds if y = 0,
since CF is a cone. So suppose y �= 0.

We first claim that for any r ∈ Z for which either r ∈ ZL or y(δ+(r)) > 0, there
exists an arborescence F ∈ F rooted at r and contained in the support of y, by which
we mean the set of arcs in D for which y is nonzero. To prove this, we can proceed
by induction on | lca1(r)|. The claim is trivial if | lca1(r)| = 1, since then r ∈ ZL
and we take an arborescence consisting only of the node r . Otherwise, choose any
(r , r1) ∈ U1 ∩ δ+(r) and (r , r2) ∈ U2 ∩ δ+(r) that are both in the support of y. Notice
that one of them must exist because y(δ+(r)) > 0, and then the other must exist as
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well, because of the equality in the definition of CF . As a result, y(δ−(r1)) > 0,
and so the second constraint in the definition of Y implies that either r1 ∈ ZL or
y(δ+(r1)) > 0; the same holds for r2. Hence by induction, we obtain arborescences
F1 and F2 in the support of y rooted at r1 and r2 respectively. We have already noted
that there is no node that both r1 and r2 can reach; thus F1 and F2 are disjoint. We
obtain F by combining F1, F2 and the arcs from r .

Now choose r = (i1, i2) ∈ Z such that y(δ−(r)) = 0 but y(δ+(r)) > 0 (such an r
clearly exists, since D is acyclic and y �= 0). By the above, we can find an arborescence
F ∈ F rooted at r and contained in the support of y, Now set y′ = y − εχF , where
ε is chosen maximally so that y′ ≥ 0. For every node s contained in F that is distinct
from r and not in ZL, χF (δ−(s)) = χF (δ+(s)∩U1) = χF (δ+(s)∩U2) = 1. Further,
χF (δ−(r) = 0 < χF (δ+(r) ∩ U1) = χF (δ+(r) ∩ U2). It follows that y′ ∈ Y . The
choice of ε ensures that y′ has strictly smaller support than y, and so by induction, we
deduce that y′ ∈ CF . Hence y = y′ + εχF is too. 
�

Using Lemma 18, we now describe our compact formulation that we baptize LP�.
For t ∈ {1, 2} and v ∈ Vt , let lca−1(v) = {r ∈ Z : lcat (r) = v}, i.e., the set of all
pairs of leaves with one leaf in v’s left subtree, and the other in its right subtree.

min
∑

r∈Z\ZL

(
y(δ+(r) ∩U1) − y(δ−(r))

) +
∑

i∈L
x̄i − 1 (LP�-1)

s.t. y(δ+(r) ∩U1) = y(δ+(r) ∩U2) ∀r ∈ Z (LP�-2)

y(δ+(r) ∩U1) ≥ y(δ−(r)) ∀r ∈ Z (LP�-3)

x̄i = 1 − y(δ−(i, i)) ∀i ∈ Z (LP�-4)
∑

r∈lca−1(v)

y(δ+(r) ∩U1) ≤ 1 ∀v ∈ V \ L (LP�-5)

x̄i ≥ 0 ∀i ∈ L
ya ≥ 0 ∀a ∈ U1 ∪U2

Lemma 19 (LP�) is equivalent to (LP).

Proof We begin by showing the “easy” direction, that a feasible solution x to (LP)
can be converted to a feasible solution (y, x̄) to (LP�) with the same objective value.
Set x̄i = x{i} for all i ∈ L, and y = ∑

L∈C:|L|≥2 xLχF(L). By the “easy” direction
of Lemma 18 (and the equality

∑
L∈C:i∈L xL = 1 for all i ∈ L), we can deduce that

(y, x̄) is feasible to (LP�). Further, the objective values match: for any L ∈ C with
|L| ≥ 2, the contribution of the term xLχF(L) in y to the objective value is exactly
xL (only the root of F(L) contributes), and the term

∑
i∈L x̄i captures the fractional

value of singleton components.
The “hard” direction, that a feasible solution (y, x̄) to (LP�) can be converted to a

feasible solution x to (LP) of the same objective value, follows in exactly the same
way, but using the “hard” direction of Lemma 18. The constraints (LP�-2) and (LP�-3)
ensure that y ∈ CF , and thuswe can expand y = ∑

L∈C:|L|≥2 xLχF(L) for some x ≥ 0.
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Extending this x to singleton sets by defining x{i} = x̄i for all i ∈ L yields the desired
solution to (LP). 
�

6 Conclusion

We have described a factor-2 approximation algorithm for the MAF problem with
a quadratic running time. Unlike previous algorithms for the problem, we crucially
exploit the power of linear programming duality in our analysis. A number of clear
directions remain for future work.

Most obviously, is the question of whether the approximation factor can be further
improved. The approximation ratio of our algorithm implies an upper bound of 2 on
the integrality gap of our linear program. However, the largest lower bound on the
integrality gap of our linear program that we are aware of is 5/4; Fig. 8 in Appendix 2
shows one of many examples achieving this bound. Despite extensive computational
experiments on instances with a small number of leaves, we have not been able to
find any examples with an integrality gap larger than 5/4. It is thus possible that our
formulation could be used as the basis for an improved algorithm (though we would
expect such an algorithm to be quite different from the algorithm presented here).

One natural idea would be to apply another powerful and successful technique in
the theory of approximation algorithms, namely LP rounding. We have shown that the
LP relaxation can be efficiently optimized via an equivalent compact formulation. It
should, however, be noted that such an approach will be much slower than the purely
combinatorial algorithm presented here, where the ILP formulation is used only in the
analysis. It may thus not be the most promising approach for an algorithm of practical
relevance.

Our ILP formulation may also be useful for exactly solving the MAF problem.
Although it is NP-hard, ILP solvers are very successful in practice. Since our formula-
tion appears to be quite strong, itmaywork better in practice than simpler formulations,
such as the one of Wu.

Aside from improving the approximation factor, another natural avenue to pursue
is improving the running time. A factor-2 approximation algorithm with a linear or
near-linear running time, to match what has been achieved with a factor-3 approxi-
mation, would clearly be very desirable. It does not seem straightforward to improve
the running time of our current algorithm; quite substantial changes would likely be
needed.

Another very natural direction is to consider other variants of theMAFproblem. For
instance, the variation with more than two trees, where the current best approximation
factor is 3 [7]; or the generalization to non-binary trees. It is straightforward to extend
our formulation to both of these setting.

Finally, it must be admitted that our algorithm, and especially its analysis, is far
from simple. A truly simple algorithm for MAF with an approximation factor of 2, if
one can be found, will certainly require understanding its structure even more deeply.
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Appendix A The running time

It is quite clear from the definition of theRed-BlueAlgorithm that it runs in polynomial
time. In this section we show that it can be implementated to run in O(n2) time, where
n denotes the number of leaves. (We work in the random access machine model of
computation, and assume a word size of 
(log n).)

We note that our presentation is focused on showing the bound on the running time
as straightforwardly as possible, and there are some placeswhere amore careful imple-
mentation is more efficient. However, we have not been able to find an implementation
with an overall running time of o(n2).

We assumeP is a given partition (not overlapping in V2), that is stored such that we
can query the size of any component in constant time, and that for each node û ∈ V2,
we can query Aû , the component inP that covers û (which will be equal to ∅ ifP does
not cover û), and s(û) = |L(û) ∩ Aû |. Note that we can determine this information
by a bottom-up pass of T2 in O(n) time. We will recompute it whenever we refine P;
since there can only be at most n − 1 refinement operations, the total time to maintain
this information is O(n2).

By Harel [14] (see also [2, 15]), we furthermore may assume that the computation
of lcai (u, v) for given nodes u, v ∈ Vi takes constant time (after a linear preprocessing
time). It immediately follows from this that we can determine whether or not u � v

in tree Ti in constant time as well.
We will show that the time between subsequent refinements of P is O(n). This

bounds the time of the main loop of the algorithm by O(n2). The only remaining part
of the algorithm is theMerge- Components step, which will perform at most n − 1
merges, each of which can clearly be done in O(n) time.
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Finding a lowest root of infeasibility

Wemake a single pass through T1, in bottom-up order (starting from the leaves), until
we find a root of infeasibility. We will spend constant time per node, thus showing
that the time to find a lowest root of infeasibility is O(n).

For each nodeu ∈ V1 thatwehave already considered, Au references the component
A ∈ P which covers u, with Au = ∅ if there are no such components. (If there are
multiple such components, u is a root of infeasibility.) Furthermore, p̂u is equal to
lca2(Au ∩ L(u)), and s(u) is the size of Au ∩ L(u). Observe that for any x ∈ L, we
know Ax , the component containing x , and s(x) = 1 and p̂x = x .

Given a non-leaf node u ∈ V1, with children u1 and u2 that have already been
considered, we can determine whether u is a root of infeasibility, and, if not, determine
Au, p̂u and s(u), in constant time: If either (or both) of Au1 and Au2 do not cover u
(which can be determined by checking if Aui = ∅ or s(ui ) = |Aui |), set all the values
according to which child (if any) does cover u, and end the consideration of node u.
So assume from now on that both do cover u.

If Au1 �= Au2 , then u satisfies the second condition of a root of infeasibility, and
we are done. Otherwise, Au = Au1 = Au2 . Set p̂u = lca2( p̂u1 , p̂u2) and s(u) =
s(u1) + s(u2). If p̂u1 ⊀ p̂u or p̂u2 ⊀ p̂u , then L(u) is incompatible, and u satisfies
the first condition of a root of infeasibility. If s( p̂u) = |Au | and s(u) < |Au | then u
satisfies the third condition for being a root of infeasibility: by s(u) < |Au |, we know
Au \L(u) �= ∅. For anyw ∈ Au \L(u), lca1(Au∩L(u)) � u � lca1(Au∩L(u)∪{w}),
while by s( p̂u) = |Au |we know that lca2(Au∩L(u)) = lca2(Au). So Au∩L(u)∪{w}
is incompatible for any w ∈ Au \L(u). Otherwise, u is not a root of infeasibility, and
we finish our consideration of u.

Once we have determined the coloring (R, B,W ), we compute |A ∩ C | for each
component A ∈ P and C ∈ {R, B,W }. We also compute three additional labels for
each node û ∈ V2: sC (û) = |Aû ∩L(û)∩C | forC ∈ {R, B,W }. This information can
be determined by a bottom-up traversal of T2 in O(n) time.We assume this information
is updated whenever the partition is refined.

Make-(R ∪ B)-compatible

Consider the nodes of T2 in bottom-up order, until we find a node û such that both
sB(û) > 1 and sR(û) > 1. Since û is a lowest such node, if |Aû ∩ R| = sR(û) and
|Aû∩B| = sB(û), then Aû is (R∪B)-compatible; otherwise û is precisely as indicated
inMake- (R ∪ B)- compatible.

Make-splittable

We again consider the nodes in T2 in bottom-up order. For any node û with Aû �= ∅,
using sC (û) for C ∈ {R, B,W }, we can check in O(1) time whether Aû ∩ L(û) is
bicolored, and that for any C ∈ {R, B,W } with Aû ∩ C �= ∅, that sC (û) < |Aû ∩ C |
(and hence (Aû \ L(û)) ∩ C �= ∅).
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Split

Note that a regular split of a component A canbedone inO(n) time, by simply checking
the color of each leaf in A and partitioning A accordingly. We now show how to check
if A needs aSpecial- Split (and if sowhich of the two possible refinements is applied)
by considering the nodes in V2[A] in bottom-up order.

If A is tricolored, then the fact that A is (R ∪ B)-compatible and splittable implies
that there exist û R and û B that are covered by A and for which A ∩ L(û R) = A ∩ R
and A∩L(û B) = A∩ B. Using a bottom-up traversal of V2 will find û R and û B (they
are the first nodes v̂ encountered such that Av̂ = A and sC (v̂) = |A ∩ C | for C = R
and B respectively).

Given û R and û B , we check if a Special- Split is required, by considering
û = lca2(A ∩ (R ∪ B)) = lca2(û R, û B); a Special- Split is required exactly if
s(lca2(û R, û B)) < |A|, since in that case any xW ∈ A\L(lca2(û R, û B)) forms a com-
patible triple with any xR ∈ A∩R, xB ∈ A∩B. If, in addition, sW (lca2(û R, û B)) = 0,
we know that every tricolored triple in A is compatible.

Find-merge-pair

We need to determine if there exist two components (both intersecting R∪ B) that can
be merged, in time O(n). If such components are found, then we can take a non-white
leaf in each component and add this pair to pairslist. Recall Lemma 16, which
enumerates all possible situations where a potential merge may exist.

(a) P has a bicolored component. This component must have been created by an
application of Special- Split, splitting some component A ∪ A∗ ∈ P(2) into A
and A∗. As discussed in the proof of Lemma 16, simply undoing this split is a
valid merge. Since Special- Split is invoked at most once per iteration, we can
simply add a pair to pairslist during Special- Split.

(b) There is a node û ∈ V2 that can be reached by two red or two blue components
that were part of the same component at the start of the current iteration. By
Lemma 12 (and property 1 of Lemma 4), any two components that are not white
that were created in the current iteration must have been part of the same partition
at the start of the iteration.Wemay assume that we can check for each component
in constant time whether it was created in the current iteration.
We work bottom-up in T2, and set Bû to be the set of red and blue components
that were created in the current iteration, and that can reach û for every û ∈ V2.
If Bû contains two components of the same color, these two components can be
merged, and we terminate.
Note that if Bû ever contains three components, we will have found a merge
and the algorithm will terminate. This ensures that we can compute this for û in
constant time, given the values of Aû and Bû1 and Bû2 for the children of û.

(c) There is a node û ∈ V2 that can be reached by a red and a blue component
that were part of the same component A0 at the start of the current iteration,
but is not covered by these components. Furthermore, the node û must satisfy
that the nodes on the path from û to lca2(A0) are not covered by any red or blue
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component.Note that by Lemma 12, A0 is the only component that was modified
in the current iteration, so for this second condition we can simply check that no
node on the path from û to the root of V2 is covered by a red or blue component
that was created in the current iteration.
If we did not find two components of the same color that can be merged, we have
found Bû for every û ∈ V2, where |Bû | ≤ 2. We now work top-down in T2. If we
encounter a node û that is covered by a red or blue component that was created
in the current iteration, we stop and do not consider the descendants of û (since
for any such a descendant, û is on its path to lca2(A0)). If we encounter a node û
such that |Bû | = 2 and û is not covered by any component, the two components
in Bû can be merged, and we may terminate.

Appendix B Integrality gap lower bounds

We show a lower bound on the integrality gap of 16
5 for the integer linear program

formulation ofWu [31]. Recall that a solution toMAF can be viewed as the leaf sets of
the trees in a forest, obtained by deleting edges from the input trees. The formulation
has binary variables xe for every edge e ∈ T1, indicating whether e is deleted from T1.
We use P1(i, j) to denote the set of edges in T1 on the path between leaves i and j ,
and P2(i, j) to denote the set of edges in T2 on the path between leaves i and j . Wu’s
linear program [31] is given by:

minimize
∑

e

xe

s.t.
∑

e∈P1(i, j)∪P1(i,k)∪P1( j,k)

xe ≥ 1 for all incompatible triples i, j, k

∑

e∈P1(i, j)

xe +
∑

e∈P1(k,�)

xe ≥ 1
for all two pairs (i, j) and (k,�) for which
P1(i, j)∩P1(k,�)=∅, and P2(i, j)∩P2(k,�) �=∅

The first family of constraints ensures that at least one edge of the paths between i
and j , i and k, and j and k has to be deleted for each inconsistent triple i , j and k.
The second family of constraints ensures that at least one edge is deleted for every
pair of paths between i and j , and k and � that are disjoint in T1, but for which the
corresponding paths in T2 are not disjoint.

Lemma 20 The integrality gap of the linear program of Wu [31] is at least 16
5 .

Proof Let n = 2k for some k even. We label each internal node in both T1 and T2 with
a binary string: the roots get the empty string as label, and given an internal node u
its left child gets u’s label with a “0” appended, and its right child gets u’s label with
a “1” appended. In T1, the leaves are labelled in the same way as the internal nodes,
with a binary string of length k. In T2, the binary string is reversed to give the label of
the leaf. For example, the leftmost leaf (of both trees) has label 00 · · · 0, and the leaf
to the right of it has label 0 · · · 01 in T1, and 10 · · · 0 in T2.
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Fig. 8 Example with integrality gap of 5
4 for the new LP introduced in Section 4. An optimal solution to

the LP-relaxation is indicated by the colors: the compatible sets corresponding to each of the components
{1, 2, 3}, {1, 5, 8} and {4, 6, 7} (indicated by the colors red, blue and green respectively) have an x-value
of 1

2 , as well as every singleton leaf set, except leaf 1; all other x-values are 0. The objective value of this

solution is 1
2 (3 + 7) − 1 = 4. An optimal solution to the ILP has 6 components, i.e., an objective value of

5. (One such optimal solution has the component {1, 2, 3} along with singleton components)

Consider the internal nodes whose labels are strings of length strictly less than k/2;
there are exactly 2k/2 − 1 = √

n − 1 such nodes in each tree. We claim that any
component A must cover at least |A| − 1 of these internal nodes. To see this, consider
the set of internal nodes in Vt that have two children in the subtree of Tt induced by
A for t = 1, 2. We will call such nodes bifurcating. Observe that there are 2(|A| − 1)
such nodes. Furthermore, since A is compatible, there is a 1-1 mapping f from the
bifurcating nodes in V1 to the bifurcating nodes in V2, where,L(u)∩A = L( f (u))∩A.
Now, the label for a bifurcating node u ∈ V1 is the maximum length prefix that the
binary strings for the leaves inL(u)∩ A have in common, and the label for f (u) is the
reverse of the maximum length suffix the leaves in L(u)∩ A have in common. Hence,
at least one of u and f (u)’s labels has length less than k/2.

The fact that any component A must cover at least |A| − 1 of the 2
√
n − 2 internal

nodeswith labels of length less than k/2 implies that any partition that does not overlap
must have at least n − 2

√
n + 2 components. Thus the optimal value of the integer

program is at least n − 2
√
n + 1.

On the other hand, the LP relaxation of the integer program has a feasible solution
with objective value 5

16n: set a value of
1
4 on the edges to each leaf in the tree (i.e.,

from an internal node with a label of length k − 1 to a node with a label length k),
and a value of 1

8 on all edges between nodes with labels of length k − 2 to nodes with

labels of length k − 1. This implies a lower bound of limn→∞ n−2
√
n+1

5
16 n

= 16
5 on the

integrality gap. 
�
As remarked in the introduction, the largest integrality gap for our formulation that

we are aware of is 5/4. The instance is described in Fig. 8.
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