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Abstract

In this paper, we consider Poisson thinning Integer-valued time series models, namely integer-valued
oving average model (INMA) and Integer-valued Autoregressive Moving Average model (INARMA),

nd their relationship with cluster point processes, the Cox point process and the dynamic contagion
rocess. We derive the probability generating functionals of INARMA models and compare to that of
luster point processes. The main aim of this paper is to prove that, under a specific parametric setting,
NMA and INARMA models are just discrete versions of continuous cluster point processes and hence
onverge weakly when the length of subintervals goes to zero.
2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Stochastic intensity model; Dynamic contagion process; Integer-valued time series; Poisson thinning

1. Introduction

The Hawkes process, which was first introduced in Hawkes [18,19], is a self-exciting point
rocess such that its intensity depends on the past of the point process itself. Due to its
implicity and flexibility, the Hawkes process can be viewed as a contagion process and applied
n different areas, for example seismology in Ogata [33], epidemiology in Kim [26], and
ociology in Mohler et al. [32]. It has gained in popularity in recent years. Finance in particular,
s a very popular area to apply Hawkes processes, see Bowsher [9], Large [29], Embrechts et al.
17], Bacry et al. [5,6,7,8], Aı̈t-Sahalia et al. [1], and Dassios and Zhao [15,16]. However, in

some context such as modelling the credit contagion in Jarrow and Yu [24], the clustering of
defaults is consistent with the Hawkes process, but the default intensity could be impacted
exogenously by other factors, which means the distribution of cluster centres may not act as a
homogeneous Poisson process in the real financial data. In order to address this, Dassios and
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Zhao [14] introduced the dynamic contagion process by generalizing the Hawkes process (with
exponential decay kernel) and the Cox process with shot noise intensity (exponential decay
kernel) used in Dassios and Jang [13], which allows the cluster centres act as a stochastic
process.

The standard time series models (AR, MA, ARMA, etc.), on the other hand, are used
or sequences of real-valued data. A natural question would be whether we can use time
eries models for count data. An early contribution has been done by Jacobs and Lewis
21,22,23], who introduced the discrete Autoregressive and Moving average model (DARMA)
or stationary discrete time series. However, the correlation structure of DARMA is quite
ifferent from the standard time series model. Later, a new model called Integer-valued
utoregressive (INAR) time series was defined and examined by McKenzie [30] and Al-Osh
nd Alzaid [2]. The idea here is to manipulate the operation between coefficients and variables
s well as the innovation terms in a way that the values are always integer. The properties of the
NAR model are explored by Al-Osh and Alzaid [3], Jin-Guan and Yuan [25], and McKenzie
31]. The Integer-valued Moving Average model (INMA) was introduced and developed by Al-
sh and Alzaid [4], Brännäs and Hall [10], and Brännäs et al. [11]. They apply the similar

dea of the INAR model to a standard MA model.
It seems that no one had studied the connection between point processes and integer-valued

ime series until Kirchner [27], who showed that Hawkes point processes are continuous-time
ersions of Poisson thinning INAR time series with infinite order and vice versa. The author
lso mentioned that one can introduce the INARMA model by adding the moving average
art into the INAR model and hence make a connection to the dynamic contagion process,
hich is the main motivation of this paper. Basically, we formally define the INMA model

n a similar way to Kirchner and prove that the INMA model with infinite order is actually a
iscrete version of a Cox point process. We then define the INARMA and prove that it is also
discrete version of the dynamic contagion process, as Kirchner expected.
The paper is organized as follows: Section 2 specifies the terminology and reviews the

efinitions of three cluster point processes, namely the dynamic contagion process, the Cox
rocess and the Hawkes process, and their probability generating functionals. Section 3 reviews
he definition of INAR model, defines the INMA model and INARMA model, and derives
heir probability generating functionals. Section 4 provides further details on the convergence
f probability generating functionals between the INARMA models and the cluster point
rocesses. Section 5 establishes the weak convergence result from the INARMA models to
heir corresponding cluster point processes. Section 6 verifies the convergence theorem by
alculating the joint probability generating functions numerically through simulation. A few
oncluding remarks are in the final section.

. Cluster point processes

In this section, we will first define the space we are working on and provide some
erminology and notation concerning the integer-valued random measure. Then, we recall the
efinitions of three cluster point processes, namely the dynamic contagion process, the Cox
rocess and the Hawkes process. Finally, we derive their probability generating functionals by
aking advantage of their cluster representation.

.1. Preliminaries

We will use most of the notation and terminology from Daley and Vere-Jones [12].
hroughout this paper, we work on the probability space (Ω ,F ,P), where F is the σ−algebra
457
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generating by Ω . A measure µ on the half-line R+, a complete separable metric space, is
boundedly finite if µ(A) < ∞ for every bounded Borel set A ∈ B(R+). Hence denote M#

R+

s the space of all boundedly finite measures and B(M#
R+

) as its σ−algebra.

efinition 2.1. A point process N on the state space R+ is a measurable mapping from a
robability space (Ω ,F ,P) into (N #

R+
,B(N #

R+
)), N : Ω ↦→ N #

R+
, such that N (A) is an integer-

alued random variable for each bounded A ∈ B(R+). N #
R+

is the family of all boundedly finite
nteger-valued measure µ ∈ M#

R+

For a point process (random measure) N ∈ N #
R+

, they are well-defined only on some
ounded area. Consequently, the distribution of a point process is completely determined by
he finite dimensional distributions, see Proposition 9.2 II in Daley and Vere-Jones [12]

efinition 2.2. The finite dimensional distributions of a random measure N are the joint
istributions for all finite families of bounded Borel sets A1, . . . , Ak of N (A1), . . . , N (Ak)

Fk(A1, . . . , Ak; x1, . . . , xk) = P{N (Ai ) ≤ xi (i = 1, . . . , k)}. (1)

Usually, for a non-negative random measure, one would use the Laplace functional to
escribe the joint distribution of the random measure. As we work on the space (N #

R+
,B(N #

R+
)),

here are advantages in moving from the Laplace functional to the probability generating
unctional (p.g.fl)

efinition 2.3. The probability generating functional (p.g.fl) of a point process N on the
omplete separable metric space R+ is defined by

G[h] = E
[

exp
{∫

R+

log h(x)N (dx)
}]

, h ∈ V(R+), (2)

here V(R+) is the class of all real-valued Borel functions h defined on R+ with 1−h vanishing
utside some bounded set and satisfying 0 ≤ h(x) ≤ 1, ∀x ∈ R+. Later, we will use V0(R+),
he subset of V(R+) satisfying infx∈R+

h(x) > 0

One can always use G[h] to describe Fk by setting h(x) = hi , x ∈ Ai , where hi is a constant.
hen the G[h] will reduce to the joint probability generating function (joint p.g.f).

G[h] = E
[

exp
{∫

R+

log h(x)N (dx)
}]

= E

[
exp

(∫
∪i=1,...,k Ai

log h(x)N (dx)

)]

= E

[
k∏

i=1

hN (Ai )
i

]
n other words, the p.g.fl G[h] is the limit version of the joint p.g.f where the set Ai has the
ength dx → 0 and k → ∞. When describing the finite dimensional distributions Fk , the p.g.fl
nd the joint p.g.f are therefore equivalent. For convenience, we will also use the term ‘p.g.fl’
or those INARMA models to describe their joint p.g.f in Section 3.
458



Z. Chen and A. Dassios Stochastic Processes and their Applications 147 (2022) 456–480

D
w

w

s

w

‘

2.2. The dynamic contagion process

We first define a generalized version of the dynamic contagion process as in [14]

efinition 2.4. The generalized dynamic contagion process is a cluster point process N (DC P),
ith stochastic intensity λ(DC P) such that

λ
(DC P)
t =

N∗
t∑

i :ci <t

Υi f (t − ci ) +

N (DC P)
t∑

i :τi <t

χiη(t − τi ), (3)

here

• N ∗
t ≡ {ci }i=1,2,... are the arrival times of the Poisson process with the constant rate ρ > 0

• N (DC P)
t ≡ {τi }i=1,2,... are the arrival times of the generalized dynamic contagion process

• {Υi } are i.i.d externally excited jump sizes, realized at times {ci }, with distribution H (x),
mean µΥ and Laplace transform ĥ(u)

• {χi } are i.i.d self-exciting jump sizes, realized at times {τi }, with distribution G(y), mean
µχ and Laplace transform ĝ(u). They are independent of {Υi }

• f (u) is an Riemann integrable function for any bounded interval in R+

• η(u) is another Riemann integrable function for any bounded interval in R+

Note that the stationary condition for this point process would be
∫

∞

0 f (u)du < ∞ and
µχ

∫
∞

0 η(u)du < 1. Following from this definition, we define the other two cluster point
processes — the Cox process and the Hawkes process as special cases.

Definition 2.5. The (Marked) Cox process with shot-noise intensity, also called doubly
stochastic process, is a cluster point process N (C) with stochastic intensity λ(C) such that

λ
(C)
t =

N∗
t∑

i :ci <t

Υi f (t − ci ). (4)

It is clear that this is a special case of the dynamic contagion process by letting η(u) =

0, ∀u ∈ R+. On a bounded area [0, T ] where T > 0, the process can be considered as
a cluster process in which the cluster centres ci arrive as a homogeneous Poisson process
N ∗

∼ Pois(ρ). Conditional on the arrival of ci , we then have a cluster whose size follows
N 1

t ∼ Pois(Υi f (t − ci )) with ci ≤ t ≤ T . These clusters are mutually independent and cluster
centres are not included in N (C). In order words, the arrivals of cluster centres are indicators
that some events will happen around them.

Definition 2.6. The (Marked) Hawkes process is a self-exciting point process N (H ) with
tochastic intensity λ(H ) such that

λ
(H )
t = ν +

N (H )
t∑

i :τi <t

χiη(t − τi ), (5)

here ν is a positive constant.

Similarly, this is another special case of the dynamic contagion process by replacing the
Cox component’ in λ

(DC P) by a positive constant ν. From Hawkes and Oakes [20], the Hawkes
t
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process can also be interpreted as a cluster point process. The immigrants (cluster centres) arrive
as a homogeneous Poisson process Pois(ν). Each immigrant generates a Galton–Watson type

ranching process with expected branching ratio µχ

∫
∞

0 η(u)du. A cluster is then formed by
ncluding all the generations (include the immigrant) from the branching process.

Back to the dynamic contagion process, it is actually a Hawkes process with immigrants
rriving as a Cox process rather than a homogeneous Poisson process. Here are the probability
enerating functionals for these cluster point processes.

roposition 2.1. Let z(.) ∈ V0(R+) such that 1 − z(.) vanishes outside [0, T ], where T > 0.
he probability generating functional (p.g.fl) of the Cox process N (C) on [0, T ] is given by

G(C)(z(.)) = exp
{
ρ

∫ T

0
(F (C)(z(.)|c) − 1)dc

}
F (C)(z(.)|c) = ĥ

(
−

∫ T −c

0
f (u)(z(c + u) − 1)du

)
.

(6)

roof. See Appendix A.1. □

roposition 2.2. Let z(.) ∈ V0(R+) such that 1 − z(.) vanishes outside [0, T ], where T > 0.
he probability generating functional (p.g.fl) of the generalized dynamic contagion process

N (DC P) on [0, T ] is given by

G(DC P)(z(.)) = exp
{
ρ

∫ T

0

(
ĥ
(

−

∫ T −u

0
(F (H )(z(.)|u + v) − 1) f (v)dv

)
− 1

)
du
}

F (H )(z(.)|u) = z(u)ĝ
(

−

∫ T −u

0
(F (H )(z(.)|u + v) − 1)η(v)dv

)
,

(7)

here F (H )(z(.)|u) is the p.g.fl of a cluster generated by an immigrant (cluster centre) arriving
t time u, and including that immigrant. While F(z(.)|u) = F(zu(.)) and zu(.) = z(u + .) is
imply the translation of z().

roof. See Appendix A.2 □

orollary 2.1. Let z(.) ∈ V0(R+) such that 1− z(.) vanishes outside [0, T ], where T > 0. The
robability generating functional (p.g.fl) of the Hawkes process N (H ) on [0, T ] is given by

G(H )(z(.)) = exp
{
ν

∫ T

0

(
F (H )(z(.)|u) − 1

)
du
}

F (H )(z(.)|u) = z(u)ĝ
(

−

∫ T −u

0
(F(z(.)|u + v) − 1)η(v)dv

)
.

(8)

roof. This result generally follows from Theorem 2 in [20]. We can also derive it from
roposition 2.2 by simply letting λ(C)

u = ν in Eq. (34). □

. Poisson thinning Integer-valued time series model

In this section, we will review the Poisson thinning INAR model from Kirchner [27]. Then
e will define the INMA and INARMA models in a similar way to the INAR model, and derive

heir probability generating functionals. To conform with the preliminaries of point process,

he integer-valued models will be defined on the positive state space R+.
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H

3.1. Integer-valued Autoregressive model - INAR(∞)

The following results (Definition 3.1, Propositions 3.1, 3.2) are mainly from Kirchner [27].
owever, the INAR model in our case is defined on the positive state space R+ and so the

results are slightly different from [27].

Definition 3.1. The INAR(∞) is defined as

Xn =

∞∑
k=1

αk ◦ Xn−k + εn

= α1 ◦ Xn−1 + · · · + αn−1 ◦ X1 + εn

(9)

where

• {Xk}k=...,−2,−1,0 ≡ 0 as the process is defined on positive state space R+

• αk ≥ 0 (reproduction coefficients)
• εn

i.i.d
∼ Pois(α0), with α0 > 0 (immigration parameter)

• The thinning operator ◦ is defined as

αk ◦ Xn−k =

Xn−k∑
i=1

ϵ
(n,k)
i ϵ

(n,k)
i

i.i.d
∼ Pois(αk),

where ϵ
(n,k)
l are independent over n ∈ Z, k ∈ N, i ∈ N

Note that the stationary condition for this model is
∑

∞

k=1 αk < 1. In the early study of the
integer-valued time series models, the operator ◦ is defined as a binomial thinning operator,
which means ϵi are Bernoulli random variables. However, Kirchner defines it as a Poisson
operator, which will lead to the simpler formulas of probability generating functional. In
addition, the p.g.fl derived later can be compared directly to that of the Hawkes process. The
following proposition gives the branching representation of the INAR model.

Proposition 3.1. The INAR(∞) process Xn has the following representation

Xn
d
=

∑
i∈Z

εi∑
j=1

F (i, j)
n−i , (10)

where F (i, j)
n−i are independent over i, j and they are the copies of a branching process Fn which

is defined by

Fn =

∞∑
g=0

G(g)
n , n ∈ Z. (11)

The generation Gn are constructed recursively by

G(0)
n = 1{n=0} G(g)

n =

n∑
k=1

αk ◦ G(g−1)
n−k =

n∑
k=1

G(g−1)
n−k∑

m=1

ϵ(n,k,g)
m , n ∈ Z, g ∈ N, (12)

with ξ
(n,k,g)
m are independent over n, k, g, m and also independent of εi , i ∈ Z. Furthermore,

we have the following distributional equality for the generic family-process (F )
n
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P

(Fn)n∈Z
d
=

⎛⎜⎝1{n=0} +

n∑
i=1

G(1)
i∑

j=1

F (i, j)
n−1

⎞⎟⎠ . (13)

roposition 3.2. Let z. = {zi }i=1,...,n be a sequence of constants such that 0 < zi ≤ 1. The
probability generating functional (p.g.fl) of the INAR sequence {X t }t=1,...,n is given by

G(Xn )(z.) = exp

{
n∑

i=1

α0(F(z.|i) − 1)

}

F (Xn )(z.|i) = zi exp

{
n−i∑
k=1

αk (F(z.|i + k) − 1)

}
,

(14)

where F (Xn )(z.|t) = F (Xn )(zt+.) is the p.g.fl of the cluster generated by an immigrant (cluster
centre) arriving at time t.

Proof. The (discrete) p.g.fl is given by

G(Xn )(z.) = E[
n∏

t=1

zX t
t ] = E exp

⎧⎨⎩
n∑

t=1

log zt

t∑
i=1

εi∑
j=1

F (i, j)
t−i

⎫⎬⎭
= E exp

⎧⎨⎩
n∑

i=1

εi∑
j=1

n∑
t=i

log zt F (i, j)
t−i

⎫⎬⎭ .

The sum
∑n

t=i F (i, j)
t−i can be interpreted as the cluster, which includes all the generation from

time i to time n, generated by one of the immigrants in εi . Conditionally on the immigration
sequence εi and exploiting its independence from the family process F (i, j)

n , we have

G(Xn )(z.) =

n∏
i=1

E

⎡⎣ εi∏
j=1

E exp

{
n∑

t=i

log zt F (i, j)
t−i

}⎤⎦
=

n∏
i=1

E
[
F (Xn )(z.|i)εi

]
= exp

{
n∑

i=1

α0(F (Xn )(z.|i) − 1)

}
,

where the p.g.fl of the cluster F (Xn )(z.|i) satisfies the following recursive equation

F (Xn )(z.|i) = E exp

{
n∑

t=i

log zt Ft−i

}

= E exp

⎧⎪⎨⎪⎩
n−i∑
t=0

log zi+t

⎛⎜⎝1{t=0} +

t∑
k=1

G(1)
k∑

j=1

F (k, j)
t−k

⎞⎟⎠
⎫⎪⎬⎪⎭
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t

T

P

= zi

n−i∏
k=1

E

⎡⎢⎣G(1)
k∏

j=1

E exp

{
n−i∑
t=k

log zi+t F (k, j)
t−k

}⎤⎥⎦
= zi exp

{
n−i∑
k=1

αk
(
F (Xn )(z.|i + k) − 1

)}
. □

Since the sequence {X t }t=1,...,n takes only integer values, if we fix a bounded area [0, T ]
and let X t count the number of points for the equal-length area ((t − 1)∆, t∆] where ∆ =

T
n ,

he p.g.fl of {X t }t=1,...,n will look like the discrete version of the p.g.fl of the Hawkes process.

Proposition 3.3. Consider the following parametric setting.

• Fix the bounded area [0, T ], T < ∞

• Choose n > 0, the number of all subintervals over [0, T ]
• Set the length of subintervals ∆ =

T
n , the immigrant parameter α0 = ν∆ and the

reproduction coefficient αk = χiη(k∆)∆, k > 0
• χi are i.i.d random variables corresponding to the cluster centre X i∆ arriving at i∆,

with Laplace transform ĝ(u) = E[e−uχi ]
• Let zi = z(i∆), where z(.) ∈ V0(R+)

hen the probability generating functional of {X t }t=1,...,n becomes

G(Xn )
(∆) (z(.)) = exp

{
ν

n∑
i=1

(F(z(.)|i∆) − 1)∆

}

F (Xn )(z(.)|i∆) = z(i∆)ĝ

(
−

n−i∑
k=1

(F(z(.)|(i + k)∆) − 1)η(k∆)∆

)
.

(15)

roof. By substituting αk = χiη(k∆)∆, k > 0 into Proposition 3.2, the p.g.fl of the cluster
F (Xn )(z.|i) = F (Xn )(z(.)|i∆) becomes

F (Xn )(z(.)|i∆) = z(i∆)
n−i∏
k=1

E

⎡⎢⎣G(1)
k∏

j=1

E exp

{
n−i∑
t=k

log z((i + t)∆)F (k, j)
t−k

}⎤⎥⎦
= z(i∆)E

[
exp

{
n−i∑
k=1

χiη(k∆)∆
(
F (Xn )(z(.)|(i + k)∆) − 1

)}]

= z(i∆)ĝ

(
−

n−i∑
k=1

(F (Xn )(z(.)|(i + k)∆) − 1)η(k∆)∆

)
.

By substituting α0 = ν∆, the whole p.g.fl of the INAR sequence {X t }t=1,...,n becomes

G(Xn )
(∆) (z(.)) = exp

{
n∑

i=1

α0(F (Xn )(z.|i) − 1)

}

= exp

{
ν

n∑
(F (Xn )(z(.)|i∆) − 1)∆

}
. □
i=1
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3.2. Integer-valued Moving Average model

Definition 3.2. The stationary Poisson thinning INMA(∞) model is defined as

Yn =

∞∑
k=0

βk ◦ ξn−k

= β0 ◦ ξn + β1 ◦ ξn−1 + · · · + βn−1 ◦ ξ1,

(16)

where

• βk ≥ 0 are some non-negative coefficients
• ξk are i.i.d and follow Pois(µ) with µ > 0
• {ξk}k=...,−2,−1,0 ≡ 0 as the process is defined on positive state space R+

• The thinning operator ◦ is defined as

βk ◦ ξn−k =

ξn−k∑
i=1

u(n,k)
i , u(n,k)

i
i.i.d
∼ Pois(βk),

Note that the stationary condition for this model is
∑

∞

k=0 βk < ∞. The parameters βk and µ

have a similar interpretation to those in the INAR model. βk are reproduction coefficients while
µ is the arrival intensity of cluster centre. From this model point of view, we can regard ξn as
the cluster centres. They enter the system starting at time n and trigger other events at each time
period (n →

∑ξn
i=1 u(n,0)

i , n + 1 →
∑ξn

i=1 u(n+1,1)
i , . . . ). Yn is then a counting variable to report

the total number of the triggered events from ξn, ξn−1, . . . , ξ1 over the current time period n.
ere are two assumptions we need before proceeding to its probability generating functional.

ssumption 1. u(n,k)
i are mutually independent of each other for n ∈ N, k ∈ N, i ∈ N.

This assumption is made to simply the calculation of probability generating functional and
that be compared to the point process counterpart much easier. This means that the number of
events u(t,k)

i , triggered by one of the cluster centre in ξt−k and counted by the system Yt , will
ot affect the number of events u(t+ j,k+ j)

i , triggered by the same cluster centre and counted by
he system Yt+ j of any future time j > 0.

roposition 3.4. Let z. = {zi }i=1,...,n be a sequence of constants such that 0 < zi ≤ 1. The
robability generating functional (p.g.fl) of the INMA sequence {Yt }t=1,...,n is given by

G(Yn )(z.) = exp

{
µ

n∑
t=1

(F (Yn )(z.|t) − 1)

}

F (Yn )(z.|t) = exp

{
n−t+1∑

k=1

βk−1(zt+k−1 − 1)

}
.

(17)

roof. The aggregated process Sn =
∑n

t=1 Yt is actually a cluster point process such that

Sn =

n∑
t=1

Yt =

n∑
t=1

t−1∑
k=0

βk ◦ ξt−k

=

n∑ n−t∑
βk ◦ ξt
t=1 k=0
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T
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P

=

n∑
t=1

ξt∑
i=1

(u(t,0)
i + u(t+1,1)

i + · · · + u(n,n−t)
i ), u(t,k)

i ∼ Pois(βk)

d
=

n∑
t=1

ξt∑
i=1

ut
i , ut

i ∼ Pois(
n−t∑
k=0

βk).

(18)

he last equality follows from the independence of the Poisson random variables. It is now
lear that the aggregated process Sn is a cluster process such that

• ξt generates the cluster centres independently.
• ut

i is a cluster generated by one of the cluster centre from ξt , with the size of
cluster (exclude the cluster centre) following Pois(

∑n−t
k=0 βk)

he (discrete) p.g.fl of Yt is defined as

G(z.) = E[
n∏

j=0

z
Y j
j ].

Now we can derive the p.g.fl of this process by following the similar argument in
Proposition 2.1. Conditionally on the arrivals of cluster centres generated by ξt , the p.g.fl of
cluster ut

i is

F (Yn )(z.|t) = E[
n−t∏
k=0

z
u(t+k,k)

i
t+k ] = exp

{
n−t∑
k=0

βk(zt+k − 1)

}
.

The cluster centres generated by ξt are mutually independent. Then the p.g.fl of
∑ξt

i=1 ut
i is

G t (z.) = E[F (Yn )(z.|t)ξt ] = exp
{
µ(F (Yn )(z.|t) − 1)

}
.

Clusters centres generated by {ξt }t=1,...,n are also mutually independent. Finally the p.g.fl of Yt

is

G(Yn )(z.) =

n∏
t=1

G t (z) = exp

{
µ

n∑
t=1

(F (Yn )(z.|t) − 1)

}
. □

Similar to the INAR model, due to the integer-valued nature of the INMA model, if we
fix an bounded area [0, T ] and let Yt count the number of points for the equal-length area
((t − 1)∆, t∆] with ∆ =

T
n , the p.g.fl of the INMA sequence {Yt }t=1,...,n will look like the

iscrete version of the p.g.fl of the Cox process under some specific parametric setting.

roposition 3.5. Consider the following parametric setting.

• Fix the bounded area [0, T ], T < ∞

• Choose n > 0, the number of all subintervals over [0, T ]
• Set the length of subintervals ∆ =

T
n , µ = ρ∆ and βk = Υt f (k∆)∆, k ≥ 0

• Υt are i.i.d random variables corresponding to the cluster centre ξt∆ arriving at t∆, with
the Laplace transform ĥ(u) = E[e−uΥt ]

• Let z = z(k∆) where z(.) ∈ V (R )
k 0 +
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Then the probability generating functional of the sequence {Yt }t=1,...,n becomes

G(Yn )
(∆) (z(.)) = exp

{
ρ

n∑
t=1

(F (Yn )(z(.)|t∆) − 1)∆

}

F (Yn )(z(.)|t∆) = ĥ

(
−

n−t+1∑
k=1

f (k∆)(z((t + k − 1)∆) − 1)∆

)
.

(19)

Proof. By substituting βk = Υt f (k∆)∆, k ≥ 0 into Proposition 3.4, the p.g.fl of the cluster
part F (Yn )(z.|t) = F (Yn )(z(.)|t∆) becomes

F (Yn )(z(.)|t∆) = E[
n−t∏
k=0

z
u(t+k,k)

i
t+k ]

= E

[
exp

{
n−t∑
k=0

Υt f (k∆)∆(zt+k − 1)

}]

= ĥ

(
−

n−t+1∑
k=1

f (k∆t)(z((t + k − 1)∆) − 1)∆

)
.

Then substituting µ = ρ∆, the p.g.fl of the INMA sequence {Yt }t=1,...,n becomes

G(Yn )
(∆) (z(.)) = exp

{
µ

n∑
t=1

(F (Yn )(z(.)|t∆) − 1)

}

= exp

{
ρ

n∑
t=1

(F (Yn )(z(.)|t∆) − 1)∆

}
. □

3.3. Integer-valued Autoregressive Moving Average model

Definition 3.3. The stationary Poisson thinning INARMA(∞, ∞) model is defined as

Zn =

∞∑
k=1

αk ◦ Zn−k + Yn

=

∞∑
k=1

αk ◦ Zn−k +

∞∑
j=0

β j ◦ ξn− j

= α1 ◦ Zn−1 + · · · + αn−1 ◦ Z1 + β0 ◦ ξn + · · · + βn−1 ◦ ξ1,

(20)

where

• ξ j are i.i.d and follow Pois(µ) with µ > 0
• {ξ j } j=...,−2,−1,0 ≡ 0 and {Zk}k=...,−2,−1,0 ≡ 0 as the process is defined on R+

• αi and βi are positive coefficients
• The thinning operator ◦ is defined as

αk ◦ Zn−k =

Zn−k∑
ϵ

(n,k)
i ϵ

(n,k)
i

i.i.d
∼ Pois(αk)
i=1
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βk ◦ ξn−k =

ξn−k∑
i=1

u(n,k)
i , u(n,k)

i
i.i.d
∼ Pois(βk).

• ϵ
(n,k)
i and u(n,k)

i are mutually independent over n ∈ N, i ∈ N, k ∈ N.

ote that the stationary condition for this process is
∑

∞

i=1 αi < 1,
∑

∞

i=0 βi < ∞. The
NARMA model simply combines the INAR components and the INMA components from
revious sections. It is a generalized INAR model whose immigrants process εn is replaced by
he INMA model Yn .

roposition 3.6. Let z. = {zi }i=1,...,n be a sequence of constants such that 0 < zi ≤ 1. The
robability generating functional (p.g.fl) of the INARMA sequence {Z t }t=1,...,n is given by

G(Zn )(z.) = exp

{
µ

n∑
i=1

(
exp

{
n−i∑
k=0

βk(F (Xn )(z.|i + k) − 1)

}
− 1

)}

F (Xn )(z.|i) = zi exp

{
n−i∑
k=1

αk
(
F (Xn )(z.|i + k) − 1

)}
,

(21)

here F (Xn )(z.|t) is the p.g.fl of the cluster generated by an immigrant (cluster centre) arriving
t time t, and including that immigrant. While F (Xn )(z.|t) = F (Xn )(zt+.) is simply the translation
f z..

roof. The F (Xn )(z.|i) is exactly the same as the one in INAR model, because this is the
luster generated by the autoregressive structure in the INARMA model and it is irrelevant to

Yi . Hence we can apply the result directly from Proposition 3.2

F (Xn )(z.|i) = zi exp

{
n−i∑
k=1

αk
(
F (Xn )(z.|i + k) − 1

)}
.

hen we can apply a similar argument to the INAR model such that

G(Zn )(z.) =

n∏
i=1

E

⎡⎣ Yi∏
j=1

E exp

{
n∑

t=i

log zt F (i, j)
t−i

}⎤⎦
=

n∏
i=1

E
[
F (Xn )(z.|i)Yi

]
.

ow apply the p.g.fl of the INMA model from Proposition 3.4

G(Zn )(z.) =

n∏
i=1

E
[
F (Xn )(z.|i)Yi

]
= exp

{
µ

n∑
i=1

(
exp

{
n−i∑
k=0

βk(F (Xn )(z.|i + k) − 1)

}
− 1

)}
. □

Similar to the INAR model, due to the integer-valued nature of INARMA model, if we
x a bounded area [0, T ] and let Z t count the number of points for the equal-length area
(t − 1)∆, t∆] with ∆ =

T
n , the p.g.fl of the INARMA sequence {Z t }t=1,...,n will look like the

discrete version of the p.g.fl of the generalized dynamic contagion process.
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Theorem 3.1. Consider the following parametric setting.

• Fixed the terminal time T , T < ∞

• Choose n > 0, the number of all subintervals over [0, T ]
• Set the length of subintervals ∆ =

T
n , the parameters of INAR part αk = χiη(k∆)∆, k > 0

and the parameters of INMA part µ = ρ∆t , β j = Υi f ( j∆)∆, j ≥ 0
• Υi are i.i.d random variables corresponding to each cluster centre ξi∆ arriving at i∆,

with the Laplace transform ĥ(u) = E[e−uΥi ]
• χi are i.i.d random variables corresponding to each INAR cluster centre Z i∆ arriving at

i∆, with the Laplace transform ĝ(u) = E[e−uχi ]
• Let zt = z(t∆) with z(.) ∈ V0(R+).

he probability generating functional of the INARMA sequence {Z t }t=1,...,n becomes

G(Zn )
(∆) (z(.)) = exp

{
ρ

n∑
i=1

(
ĥ

(
−

n−i∑
k=0

(F (Xn )(z(.)|(i + k)∆) − 1) f (k∆)∆

)
− 1

)
∆

}

F (Xn )(z(.)|i∆) = z(i∆)ĝ

(
−

n−i∑
k=1

(
F (Xn )(z(.)|(i + k)∆) − 1

)
η(k∆)∆

)
.

(22)

roof. By substituting αk = χiη(k∆)∆ into Proposition 3.6, the p.g.fl F (Xn )(z.|i) = F(z(.)|i∆)
s exactly the same as the one in Proposition 3.3

F (Xn )(z(.)|i∆) = z(i∆)E

[
exp

{
n−i∑
k=1

χiη(k∆)∆
(
F (Xn )(z(.)|(i + k)∆) − 1

)}]

= z(i∆)ĝ

(
−

n−i∑
k=1

(F (Xn )(z(.)|(i + k)∆) − 1)η(k∆)∆

)
.

y substituting βk = Υi f (k∆)∆, the p.g.fl of the whole INARMA sequence {Z t }t=1,...,n

ecomes the p.g.fl of INMA sequence {Yt }t=1,...,n . Then we can apply Proposition 3.5

G(Zn )
(∆) (z(.)) = G(Yn )

(∆) (F (Xn )(z(.)|i∆))

= exp

{
ρ

n∑
i=1

(
ĥ

(
−

n−i∑
k=0

(F (Xn )(z(.)|(i + k)∆) − 1) f (k∆)∆

)
− 1

)
∆

}
,

here the z(.) is replaced by F (Xn )(z(.)|i∆) in G(Yn )
(∆) . □

. Convergence of probability generating functionals

In this section, we will prove the convergence results of the p.g.fl.s between the INARMA
odels and the cluster point processes.
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4.1. Dynamic contagion process and INARMA model

The p.g.fl of the generalized dynamic contagion process is given by

G(DC P)(z(.)) = exp
{
ρ

∫ T

0

(
ĥ
(

−

∫ T −u

0
(F (H )(z(.)|u + v) − 1) f (v)dv

)
− 1

)
du
}

F (H )(z(.)|u) = z(u)ĝ
(

−

∫ T −u

0
(F (H )(z(.)|u + v) − 1)η(v)dv

)
.

(23)

he p.g.fl of the INARMA model with specific parametric setting in Theorem 3.1 is given by

G(Zn )
(∆) (z(.)) = exp

{
ρ

n∑
i=1

(
ĥ

(
−

n−i∑
k=0

(F (Xn )(z(.)|(i + k)∆) − 1) f (k∆)∆

)
− 1

)
∆

}

F (Xn )(z(.)|i∆) = z(i∆)ĝ

(
−

n−i∑
k=1

(F (Xn )(z(.)|(i + k)∆) − 1)η(k∆)∆

)
.

(24)

emma 4.1. If r (u) is an Riemann integrable function over an interval [a, b] such that r (u)
s bounded and the set D, the discontinuities of r (u), has Lebesgue measure 0, then there exist
ositive constants M and k that satisfy the following inequality⏐⏐⏐⏐∫ b

a
r (u)du − Rn

⏐⏐⏐⏐ ≤ M∆k
∼ O(∆k), n > 0, (25)

here

• n - number of subintervals over [a, b] which has the partition {x0, x1, . . . , xn} such that
a = x0 < x1 < · · · < xn−1 < xn = b

• Rn =
∑n

i=1 r (ti )∆i , where xi ∈ [xi−1, xi ], ∆i = xi − xi−1 and ∆ = maxi=1,...,n ∆i

roof. From the definition of Riemann integral, for every ϵ > 0, there exists δ > 0 such that⏐⏐⏐⏐∫ b

a
r (u)du − Rn

⏐⏐⏐⏐ < ϵ, f or ∆ < δ.

hen conversely, for every choice of δ, there exists ϵ such that the above inequality holds and
t converges to 0 when δ → 0 from which we can infer that the ϵ is the function of ∆ with

positive power. Then we let δ = ∆ and let ϵ = M∆k > 0 for some positive M and k such
hat the above inequality also holds for the case of equality . □

roposition 4.1. Let Θ be the parameter space to specify the generalized dynamic contagion
rocess and the INARMA model and z() ∈ V0(R+). There exists a positive constant k such that
he rate of convergence for the absolute difference of the log p.g.fl.s between the generalized
ynamic contagion process and the INARMA model is given by

D(DC P)(z(.),∆|Θ) =

⏐⏐⏐log G(DC P)(z(.)) − log G(Zn )
(∆) (z(.))

⏐⏐⏐ ∼ O(∆k)

lim
n→∞

D(DC P)(z(.),∆|Θ) = 0.
(26)
roof. See Appendix A.3. □
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Corollary 4.1. Let Θ be the parameter space to specify the Cox process and the INMA model
nd z(.) ∈ V0(R+). There exists a positive constant k such that the rate of convergence for the
bsolute difference of the log p.g.fl.s between the Cox process and the INMA model is given
y

D(C)(z(.),∆|Θ) =

⏐⏐⏐log G(C)(z(.)) − log G(Yn )
(∆) (z(.))

⏐⏐⏐ ∼ O(∆k)

lim
n→∞

D(C)(z(.),∆|Θ) = 0.
(27)

Proof. See Appendix A.4. □

Corollary 4.2. Let Θ be the parameter space to specify the Hawkes process and the INAR
model and z() ∈ V0(R+). There exists a positive constant k such that the rate of convergence
for the absolute difference of the log p.g.fl.s between the Hawkes process and the INAR model
is given by

D(H )(z(.),∆|Θ) =

⏐⏐⏐log G(H )(z(.)) − log G(Xn )
(∆) (z(.))

⏐⏐⏐ ∼ O(∆k)

lim
n→∞

D(H )(z(.),∆|Θ) = 0.
(28)

Proof. See Appendix A.5. □

5. Links between the INARMA models and the cluster point processes

In this section, we will construct a family of random measures {Nn}n=1,2,... on B(N #
R+

)
by aggregating the integer-valued time series and explain how the discrete time models can
mimic the behaviour of those continuous time cluster point processes N . We prove that, under
the weak convergence theorem, Nn will converge weakly to N as n → ∞.

5.1. Preliminaries and definition

As discussed in the previous section, we can always fix a bounded area [0, T ] and choose
a number n > 0, large enough. Then a continuous point process N ((0, T ]) can be treated
as the sum of the bin-size count {N ((t − 1)∆, t∆)}t=1,...,n with ∆ =

T
n . Conversely, for

xample the INAR model, we let the sequence {X t }t=1,...,n be the measures for the bin-size
ount {N ((t−1)∆, t∆)}t=1,...,n . Hence if we specify the parameters in integer-valued time series
odels carefully and if n is large enough, we would expect the aggregation of the integer-valued

ime series can approximate the continuous cluster point process.

efinition 5.1. For n > 0, let {X t }t=1,...,n , {Yt }t=1,...,n and {Z t }t=1,...,n be the INAR sequence,
he INMA sequence and the INARMA sequence defined in Section 3 with the parametric setting

=
T
n , α0 = ν∆, αk = χiη(k∆)∆ for k > 0, β j = Υi f ( j∆)∆ for j ≥ 0 and µ = ρ∆. Define

the following three families of point processes,

N (H )
n (A) =

∑
t :t∆∈A

X t

N (C)
n (A) =

∑
t :t∆∈A

Yt

N (DC P)
n (A) =

∑
Z t

(29)
t :t∆∈A
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where A is a bounded set in B(R+) and T is a constant such that T ≥ sup A. The joint
istribution of these point processes is uniquely determined by their p.g.fl.s derived in Section 3.

The idea here is basically followed from Kirchner [27]. To prove the weak convergence,
e defined the INAR model and constructed a family of point processes N (∆) by aggregating
he INAR sequence over A ∈ B(R), the Borel σ -algebra on R. Then he proved the weak
onvergence of N (∆) to the Hawkes process N from the definition point of view, see definition

5 and Theorem 2 in Kirchner [27]. He also mentioned this can be proved in a different way by
showing the convergence of the Laplace functional of N (∆). In our case, we will use probability

enerating functionals.

.2. Weak convergence

From Definition 2.1 in section 2 and Proposition 9.2.II in Daley and Vere-Jones [12], we can
ay that the distribution of a random measure (point process) ζ on (N #

R+
,B(N #

R+
)) is completely

etermined by its finite-dimensional distributions. Then for the weak convergence of random
easure on N #

R+
, it is sufficient to prove the convergence of finite dimensional distributions,

hich is established by Theorem 11.1. VII in [12].

roposition 5.1. Let X be a complete separable metric space and let P , {Pn} be distributions
n (M#

X ,B(M#
X )). Then Pn → P weakly if and only if the finite-dimensional distributions of

n converge weakly to those of P .

In our case, the state space is X = R+. Also, there is one-to-one mapping from finite
imensional distributions to its probability generating functional. Hence it is sufficient to
rove the convergence of the p.g.fl.s between point processes. This is confirmed by another
roposition 11.1.VIII in [12]. We only write down part of it here.

roposition 5.2. Each of the following conditions is equivalent to the weak convergence
n → P , assuming the function f ranges over the space of continuous functions vanishing
utside a bounded set.

• The distribution of
∫
X f dζ under Pn converges weakly to its distribution under P

• For point process, the p.g.fl.s Gn[z] converge to G[z] for each continuous z ∈ V0(X )

Before establishing the convergence theorem, we need to first show the probability measures
f those point processes defined in 5.1 are uniformly tight. Here we refer and combine the
esults of Lemma 1 and 2 in Kirchner [27]. We also derive a similar one for N (C)

n and N (DC P)
n .

emma 5.1. For any bounded interval [a, b] on R+, we can always find a constant T > b
nd define ∆ =

T
n ∈ (0, δ) for some constant δ > 0 as long as n >

[ T
δ

]
. Let N (H )

n be the point
rocess defined in 5.1 Then there exists a constant B(H ) such that

E[N (H )
n ([a, b])] < (b − a + 2δ)νB(H )

B(H )
=

{
(1 − K )−1 , if K < 1
(1 + K + K 2

+ · · · + K m), otherwise

K = µχ

∞∑
η(k∆)∆

(30)
k=1

471



Z. Chen and A. Dassios Stochastic Processes and their Applications 147 (2022) 456–480

c
b

b

w

P

T

c

Proof. The coefficients (b − a + 2δ)ν denote the upper bound of the expected number of
immigrants over the fixed time interval [a, b], whose derivation is given in Kirchner [27]. In the
stationary case where the branching ratio K < 1. The expected size of a cluster for INAR(∞)
over a long time horizon is evaluated as (1+ K + K 2

+· · · ) = (1− K )−1. In the non-stationary
ase, since the offspring is produced by Poisson distribution, there is a positive waiting time
efore a new generation is produced. So over the bounded interval [a, b], there exists a constant

m > 0 and the size of a cluster is the sum of m generations (1 + K + K 2
+ · · · + K m) □

Lemma 5.2. For any bounded interval [a, b] on R+, we can always find a constant T > b
and define ∆ =

T
n ∈ (0, δ) for some constant δ > 0 as long as n >

[ T
δ

]
. Let N (C)

n and N (DC P)
n

e the point processes defined in 5.1. Then there exist constants B(H ) and L(T ) such that

E[N (C)
n ([a, b])] < (b − a + 2δ)ρL(T )

E[N (DC P)
n ([a, b])] < (b − a + 2δ)ρL(T )B(H ),

(31)

here L(T ) = µΥ (
∫ T

0 f (t)dt + c). The constant c is defined as c =

⏐⏐⏐∫ T
0 f (t)dt

−
∑n−1

k=0 f (k∆)∆
⏐⏐⏐

roof. From the definition of INMA model, the expectation is

E[Yt ] = E[β0 ◦ ξt + · · · + βt−1 ◦ ξ1]

= E[ξi ]
n−1∑
k=0

E[βk]

= ρ∆

n−1∑
k=0

µΥ f (k∆)∆

≤ ρ∆µΥ

(∫ T

0
f (t)dt + c

)
≤ ρL(T )∆.

he number of subintervals over [a, b] is [ b−a
∆

] + 1 < b−a
∆

+ 2. Finally we have

E[N (C)
n ([a, b])] =

∑
t,t∆∈[a,b]

E[Yt ]

≤

([
b − a
∆

]
+ 1

)
ρL(T )∆

<

(
b − a
∆

+ 2
)

ρL(T )∆

< (b − a + 2δ)ρL(T ).

The upper bound for E[N (DC P)
n ([a, b])] can be derived similarly as that of E[N (H )

n ([a, b])]. We
need to replace ν by ρL(T ) □

Lemma 5.3. The families of the probability measures P (C)
n ,P (H )

n ,P (DC P)
n on

(
N #

R+
,B(N #

R+
)
)

orresponding to the point processes N (C), N (H ), N (DC P) respectively are uniformly tight.
n n n

472



Z. Chen and A. Dassios Stochastic Processes and their Applications 147 (2022) 456–480

d
t
a

r

P
F
c
i
t
d
C
d
C
i
0

w

6

T

Proof. For any bounded interval [a, b] on R+, we can always find a constant T > b and
efine ∆ =

T
n , such that ∆ ∈ (0, δ) for some constant δ > 0 as long as n >

[ T
δ

]
. To show the

ightness, for every ϵ > 0, we can let M (H )
ϵ = (b − a + 2δ) νB(H )

ϵ
, M (C)

ϵ = (b − a + 2δ)ρL(T ) 1
ϵ

nd M (DC P)
ϵ = (b − a + 2δ) ρL(T )B(H )

ϵ
such that

P(N (H )
n ([a, b]) > M (H )

ϵ ) ≤
E[N (H )

n ([a, b])]

M (H )
ϵ

< (b − a + 2δ)
νB(H )

M (H )
ϵ

= ϵ

P(N (C)
n ([a, b]) > M (C)

ϵ ) ≤
E[N (C)

n ([a, b])]

M (H )
ϵ

<
(b − a + 2δ)ρL(T )

M (H )
ϵ

= ϵ

P(N (DC P)
n ([a, b]) > M (DC P)

ϵ ) ≤
E[N (DC P)

n ([a, b])]

M (H )
ϵ

< (b − a + 2δ)
ρL(T )B(H )

M (DC P)
ϵ

= ϵ

Here we apply the Markov inequality. □

Theorem 5.1. Let N (H ), N (C), N (DC P) be the Hawkes process, the Cox process and the
generalized dynamic contagion process defined in Section 2. For n > 0, let N (H )

n , N (C)
n and

N (DC P)
n be the point processes defined in 5.1. Then we have the following weak convergence

esults

N (H )
n

w
→ N (H )

N (C)
n

w
→ N (C)

N (DC P)
n

w
→ N (DC P) as n → ∞.

(32)

roof. Uniform tightness of the three families of point processes is followed by Lemma 5.3.
rom the preliminaries in Section 2, the distribution of a random measure N on N #

R+
is

ompletely determined by the finite dimensional distributions see Proposition 9.2.III in [12],
.e. the joint distribution for all finite families of bounded Borel sets A1, . . . , Ak on R+ of
he random variable N (A1), . . . , N (Ak). From the tightness lemma, it is clear that all finite
imensional distribution for the point processes N (.)

n restricted to [a, b] are uniformly tight.
onsequently, there always exists a constant T > b such that we can uniquely describe the finite
imensional distributions by its probability generating functional on the bounded area [0, T ].
ombining the convergence results in Proposition 4.1, Corollaries 4.1 and 4.2 in Section 4,

.e. the absolute difference of the log p.g.fl.s between the point processes N (.)
n and N (.) goes to

as ∆ → 0, equivalently n → ∞

lim
n→∞

⏐⏐⏐log G(H )(z(.)) − log G(Xn )
(∆) (z(.))

⏐⏐⏐ = 0

lim
n→∞

⏐⏐⏐log G(C)(z(.)) − log G(Yn )
(∆) (z(.))

⏐⏐⏐ = 0

lim
n→∞

⏐⏐⏐log G(DC P)(z(.)) − log G(Zn )
(∆) (z(.))

⏐⏐⏐ = 0,

e can now apply Proposition 5.2 and state that the families of point processes N (H )
n , N (C)

n and
N (DC P)

n converge weakly to N (H ), N (C) and N (DC P) respectively as n → ∞. □

. Concluding remarks

In this paper, we review the continuous cluster point process in a general parametric setting.
hen we review the Poisson thinning INAR model and introduce the Poisson thinning INMA
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and the INARMA models. We prove that these integer-valued time series models, under some
specific parametric setting, are actually the discrete versions of the cluster point processes
N (.)

t with continuous stochastic intensity λ
(.)
t . We confirm Kirchner’s thought in [27] on the

relationship between the INARMA model and the dynamic contagion process. If there is
a simple and effective estimation procedure for the INARMA model, for example the one
Kirchner did in [28] for the INAR model, then the dynamic contagion process can be applied
to those Hawkes-based processes. However, there are some potential issues left to be addressed.
For example, can we make use of the structure standard ARMA model to perform estimation
for the integer-valued version? How can we deal with random variables in the coefficients of
time series models (random coefficients)? These are all proposed as topics for future research.
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Appendix. Proofs

A.1. Proof of Proposition 2.1

The Cox process is basically a cluster point process such that,

• The arrivals of cluster centres ci follow N ∗
∼ Pois(ρ) a homogeneous Poisson process

• Conditionally on ci , each cluster centre will generate a cluster, the size of which follows
N 1

T ∼ Pois(Υi f (T − ci )).

Vere-Jones [34] gives the p.g.fl of a cluster process as

G(z(.)) = G0(F(z(.)|t)), (33)

where G0() is the p.g.fl of the process of cluster centres and F(z(.)|t) is the p.g.fl for a cluster
given that the cluster centre occurs at time t. Combining the second bullet point, we have

F (C)(z(.)|c) = E[exp
∫
R+

log z(s)N 1
T (ds)]

= E exp
{
Υi

∫ T

c
f (s − c)(z(s) − 1)ds

}
= E exp

{
Υi

∫ T −c

0
f (u)(z(c + u) − 1)du

}
= ĥ

(
−

∫ T −c

f (u)(z(c + u) − 1)du
)

.

0
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A

d
b

T
w

Hence the p.g.fl of the Cox process is

G(C)(z(.)) = E
[

exp
∫
R+

log F (C)(z(.)|c)N ∗(dc)
]

= exp
{
ρ

∫ T

0
(F (C)(z(.)|c) − 1)dc

}
. □

.2. Proof of Proposition 2.2

The generalized dynamic contagion process is a cluster process,

• The arrivals of immigrants follow the Cox process with intensity λ
(C)
t .

• Each immigrant generates a Galton–Watson type branching process with expected branch-
ing ratio µχ

∫
∞

0 η(u)du < 1. The cluster is formed by including all generations from the
branching process.

Let F (C)
t be the filtration generated by λ

(C)
t . Conditionally on F (C)

t , the p.g.fl of the generalized
ynamic contagion process is just the p.g.fl of the Hawkes process with its immigration process
eing an inhomogeneous Poisson process. Then we can apply Theorem 2 in [20]

G(z(.)|F (C)
t ) = exp

{∫ T

0

(
F (H )(z(.)|u) − 1

)
λ(c)

u du
}

F (H )(z(.)|u) = z(u)ĝ
(

−

∫ T −u

0
(F (H )(z(.)|u + v) − 1)η(v)dv

)
.

he underlying intensity function is λt = ν +
∑

i :τi <t γ (t − τi ) in [20]. In our case, we are
orking on the bounded area [0, T ] and 1 − h(u) = 0 when u lies outside [0, T ]. By the

definition of p.g.fl, F(z(.)|u) = 1 when u lies outside [0, T ]. The ranges of integrals for
G(z(.)|F (C)

t ) and F (H )(z(.)|u), therefore, reduce to [0, T ] and [0, T − u] respectively. Then
we substitute γ (t − τi ) with χi f (t − τi ) and take expectation with respect to χi . Finally, the
unconditional p.g.fl of the generalized dynamic contagion process is E[G(z(.)|F (C)

t )], which
turns out to be the p.g.fl of the Cox process. Then we can apply the results from Proposition 2.1

G(DC P)(z(.)) = E
[

exp
{∫ T

0

(
F (H )(z(.)|u) − 1

)
λ(C)

u du
}]

= exp
{
ρ

∫ T

0

(
ĥ
(

−

∫ T −c

0
(F (H )(z(.)|u + c) − 1) f (u)du

)
− 1

)
dc
}

. □

(34)

A.3. Proof of Proposition 4.1

Let us define the following quantities

I1 =

∫ T

0

(
ĥ(I2(u)) − 1

)
du

I2(u) =

∫ T −u

0
(1 − F (H )(z(.)|u + v)) f (v)dv

R1 =

n∑
(ĥ(I2((i − 1)∆)) − 1)∆
i=1
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T

H

T

F

R2(i) =

n−i+1∑
k=1

(1 − F (H )(z(.)|(k + i − 1)∆)) f ((k − 1)∆)∆

R3(i) =

n−i+1∑
k=1

(1 − F (Xn )(z(.)|(k + i − 1)∆)) f ((k − 1)∆)∆

Ji = µχ

⏐⏐⏐⏐⏐
∫ T −i∆t

0
(F (H )(z(.)|u + v) − 1)η(v)dv −

n−i∑
k=1

(F (H )(z(.)|u + v)η(k∆)∆

⏐⏐⏐⏐⏐ .
hen D(DC P)(z(.),∆|Θ) can be decomposed as

D(DC P)(z(.),∆|Θ) =

⏐⏐⏐log G(DC P)(z(.)) − log G(Zn )
(∆) (z(.))

⏐⏐⏐
= ρ

⏐⏐⏐⏐⏐
∫ T

0
(ĥ(I2(u)) − 1)du −

n∑
i=1

(ĥ(R3(i)) − 1)∆

⏐⏐⏐⏐⏐
≤ ρ

⏐⏐⏐⏐∫ T

0
(ĥ(I2(u)) − 1)du − R1

⏐⏐⏐⏐+ ρ

⏐⏐⏐⏐⏐R1 −

n∑
i=1

(ĥ(R3(i)) − 1)∆

⏐⏐⏐⏐⏐ .
(35)

ere we add the inter-median term R1 which is the Riemann sum of its corresponding integral.

hen apply Lemma 4.1 to the first part⏐⏐⏐⏐∫ T

0
(ĥ(I2(u)) − 1)du − R1

⏐⏐⏐⏐ ∼ O(∆k1 ).

or the second part, we make use of the property of the convex function ĥ(u) such that⏐⏐⏐⏐⏐R1 −

n∑
i=1

(ĥ(RS3(i)) − 1)∆

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
n∑

i=1

(ĥ(I2((i − 1)∆)) − 1)∆ −

n∑
i=1

(ĥ(R3(i)) − 1)∆

⏐⏐⏐⏐⏐
≤

n∑
i=1

|I2((i − 1)∆) − R3(i)| µΥ∆

<

n∑
i=1

|I2((i − 1)∆) − R2(i)| µΥ∆

+

n∑
i=1

|R2(i) − R3(i)| µΥ∆,

(36)

which again separates into two parts. For the first part, apply Lemma 4.1

n∑
|I2((i − 1)∆t) − R2(i)| µΥ∆t ∼ O(∆k2 ).
i=1
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F
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w
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c
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For the second part,

|R2(i) − R3(i)| =

n−i∑
k=0

⏐⏐F (H )(z(.)|(k + i)∆) − F (Xn )(z(.)|(k + i)∆)
⏐⏐ f (k∆)∆

≤ fm∆

n−i∑
k=0

⏐⏐F (H )(z(.)|(k + i)∆) − F (Xn )(z(.)|(k + i)∆)
⏐⏐

≤ fm∆

n∑
k=0

⏐⏐F (H )(z(.)|k∆) − F (Xn )(z(.)|k∆)
⏐⏐

fm = max
k=1,...,n

f (k∆).

or the absolute difference
⏐⏐F (H )(z(.)|k∆) − F (Xn )(z(.)|k∆)

⏐⏐, we can solve it backwardly. When
= n,

|F (H )(z(.)|n∆) − F (Xn )(z(.)|n∆)| = 0.

hen i = n − 1,

|F (H )(z(.)|(n − 1)∆) − F (Xn )(z(.)|(n − 1)∆)|,

≤ z((n − 1)∆)
(
|ĝ(−In−1) − ĝ(−Rn−1)| + |ĝ(−Rn−1) − ĝ(−Rb

n−1)|
)

≤ Jn−1 +

1∑
k=1

µχη(k∆)|F (H )(z(.)|(n − 1 + k)∆) − F (Xn )(z(.)|(n − 1 + k)∆)|∆

= Jn−1,

here we use the condition z(.) ∈ V0(R+) and z(u) ≤ 1, u ∈ (0, T ). Then when i = n − 2,

|F (H )(z(.)|(n − 2)∆) − F (Xn )(z(.)|(n − 2)∆)|,

≤ z((n − 2)∆)
(
|ĝ(−In−2) − ĝ(−Rn−2)| + |ĝ(−Rn−2) − ĝ(−Rb

n−2)|
)

≤ Jn−2 +

2∑
k=1

µχη(k∆)|F (H )(z(.)|(n − 2 + k)∆) − F (Xn )(z(.)|(n − 2 + k)∆)|∆

≤ Jn−2 + Jn−1µχη(∆)∆

= Jn−2 + O(∆k3+1) ∼ O(∆k3 ).

ote that Ji is the absolute difference between the Integral and its Riemann sum, hence we
an apply Lemma 4.1

Ji ≤ Mi∆
k3 ≤ M ′∆k3 ∼ O(∆k3 )

M ′
= max

i=0,...,n
Mi .

hen i = n − j , j = 1, 2, . . . , n,

|F (H )(z(.)|(n − j)∆) − F (Xn )(z(.)|(n − j)∆)|,

≤ z((n − j)∆)
(
|ĝ(−In− j ) − ĝ(−Rn− j )| + |ĝ(−Rn− j ) − ĝ(−Rb

n− j )|
)

≤ Jn− j +

j∑
k=1

µχη(k∆)|F (H )(z(.)|(n − j + k)∆) − F (Xn )(z(.)|(n − j + k)∆)|∆

k3+1 k3
= Jn− j + j O(∆ ) ∼ O(∆ ).
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T

∆

w
k

A

c

Then the whole sum becomes
n∑

i=0

|F (H )(z(.)|i∆) − F (Xn )(z(.)|i∆)|∆

≤ ∆

n−1∑
i=0

(
Ji + i O(∆k3+1)

)
∼ O(∆k3 ).

(37)

hen the second part in Eq. (36) becomes
n∑

i=0

|R2(i) − R3(i)| µΥ∆ ≤

n∑
i=1

(
fm∆

n∑
k=0

⏐⏐F (H )(z(.)|k∆) − F (Xn )(z(.)|k∆)
⏐⏐)

× µΥ∆ ∼ O(∆k3 ).

Finally, let k = min{k1, k2, k3}. □

A.4. Proof of Corollary 4.1

The results follow from Proposition 4.1. The p.g.fl of the Cox process G(C) can be derived
from the p.g.fl of the generalized dynamic contagion process G(DC P) by letting η(u) = 0 such
that F (H )(z(.)) becomes

F (H )(z(.)|u) = z(u)ĝ(0) = z(u).

Similarly, G(Yn )
(∆) can be derived from G(Zn )

(∆) by letting F (Xn )(z(.)|i∆) = z(i∆). Then D(C)(z(.),
|Θ) will have the same form as Eqs. (35) and (36) such that

D(C)(z(.),∆|Θ) =

⏐⏐⏐ log G(C)(z(.)) − log G(Yn )
(∆))(z(.))

⏐⏐⏐
= ρ

⏐⏐⏐⏐⏐
∫ T

0
(ĥ(I2(u)) − 1)du −

n∑
i=1

(ĥ(R3(i)) − 1)∆

⏐⏐⏐⏐⏐
≤ ρ

⏐⏐⏐⏐∫ T

0
(ĥ(I2(u)) − 1)du − R1

⏐⏐⏐⏐+ ρ

⏐⏐⏐⏐⏐R1 −

n∑
i=1

(ĥ(R3(i)) − 1)∆

⏐⏐⏐⏐⏐
≤ ρ

⏐⏐⏐⏐∫ T

0
(ĥ(I2(u)) − 1)du − R1

⏐⏐⏐⏐+ ρ

n∑
i=1

|I2((i − 1)∆t) − R2(i)| µΥ∆

+ ρ

n∑
i=1

|R2(i) − R3(i)| µΥ∆

∼ O(∆k1 ) + O(∆k2 ),

here R2(i) − R3(i) = 0 since F (H )(z(.)|i∆) = z(i∆) = F (Xn )(z(.)|i∆). Finally, we can take
= min{k1, k2}. □

.5. Proof of corollary Corollary 4.2

Similarly, this result follows from Proposition 4.1. From the p.g.fl.s point of view, G(H )

an be recovered by replacing ρ and ĥ
(
−
∫ T −u(F (H )(z(.)|u + v) − 1) f (v)dv

)
by ν and
0
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A
w

T

T

R

F (H )(z(.)|u) in G(DC P) respectively. G(Xn )
(∆) can be derived from G(Zn )

(∆) in a similar way. Then
D(H ) becomes

D(H )(z(.),∆|Θ) = ν

⏐⏐⏐⏐⏐
∫ T

0
(F (H )(z(.)|u) − 1)du −

n∑
i=1

(F (Xn )(z(.)|i∆) − 1)∆

⏐⏐⏐⏐⏐
≤ ν

⏐⏐⏐⏐⏐
∫ T

0
(F (H )(z(.)|u) − 1)du −

n∑
i=1

(F (H )(z(.)|i∆) − 1)∆

⏐⏐⏐⏐⏐
+ ν

⏐⏐⏐⏐⏐
n∑

i=1

(F (H )(z(.)|i∆) − 1)∆ −

n∑
i=1

(F (Xn )(z(.)|i∆) − 1)∆

⏐⏐⏐⏐⏐ .
dopting the similar technique as in Proposition 4.1, we add the term

∑n
i=1(F (H )(z(.)|i∆)−1)∆

hich is the right Riemann sum of the integral. Then we can apply Lemma 4.1⏐⏐⏐⏐⏐
∫ T

0
(F (H )(z(.)|u) − 1)du −

n∑
i=1

(F (H )(z(.)|i∆) − 1)∆

⏐⏐⏐⏐⏐ ∼ O(∆k1 ), k1 > 0.

he second part is⏐⏐⏐⏐⏐
n∑

i=1

(F (H )(z(.)|i∆) − 1)∆ −

n∑
i=1

(F (Xn )(z(.)|i∆) − 1)∆

⏐⏐⏐⏐⏐
≤

n∑
i=1

|F (H )(z(.)|i∆) − F (Xn )(z(.)|i∆)|∆ ∼ O(∆k2 ).

his result follows from the inequality (37). Finally, we can take k = min{k1, k2}. □
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