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Abstract

Information criteria for model choice are extended to the detection of outliers
in regression models. For deletion of observations (hard trimming) the family of
models is generated by monitoring properties of the fitted models as the trim-
ming level is varied. For soft trimming (downweighting of observations), some
properties are monitored as the efficiency or breakdown point of the robust re-
gression is varied. Least Trimmed Squares and the Forward Search are used to
monitor hard trimming, with MM- and S-estimation the methods for soft trim-
ming. Bayesian Information Criteria (BIC) for both scenarios are developed and
results about their asymptotic properties provided. In agreement with the theory,
simulations and data analyses show good performance for thehard trimming
methods for outlier detection. Importantly, this is achieved very simply, with-
out the need to specify either significance levels or decision rules for multiple
outliers.
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1. Introduction

We extend information criteria for model choice to the detection of outliers
in regression models. The resulting procedures are computationally straightfor-
ward and circumvent the construction of the complicated rules required for the
detection of multiple outliers, the properties of which maybe only approximately
known. We develop criteria for adaptive hard trimming in least squares, together
with related criteria for MM- and S-estimation.

Hard trimming in regression requires specification in advance of the propor-
tion of observations to be trimmed. Likewise M-estimation in robust regression
and its extensions, such as S- and MM-estimation, require advance specifica-
tion of the breakdown point or efficiency desired for the estimation procedure.
In Section 2 we describe the idea of monitoring that leads to adata dependent
estimate of the trimming level or breakdown point. As a result, efficient esti-
mates of the regression parameters are obtained that dependon the actual level
of contamination in the data.

In §§3.1 - 3.3 we introduce the three major components of our procedure,
respectively the BIC, customarily used in the choice of models, the mean shift
outlier model and algebraic details of the forward search (FS). We combine these
components in §3.4, using the mean shift outlier model and the ordering of obser-
vations from the forward search, to extend BIC to the choice of trimming level
for outlier removal in least squares. We prove the consistency of the resulting
outlier detection procedure and, in §3.5, provide a procedure for finite samples.

Results in §4.1 use the soft trimming of observations in M-estimation to
apply the mean shift outlier model to the development of a form of BIC indi-
cating the appropriate target asymptotic breakdown point or efficiency for spe-
cific robust regression analyses. Section 4.2 provides a proof of the difference
between the asymptotic properties of BIC from soft and from hard trimming.
Section 5 provides numerical procedure for outlier detection for both MM- and
S-estimation.

Section 6 uses simulation to explore the relationship between the asymp-
totic results of §§3 and 4. Hard trimming with the forward search provides the
clearest indication of the number of outliers, especially for a larger number of
explanatory variables.
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Section 7 applies these methods to three regression examples: one small and
straightforward, one small but with a high proportion of outliers and one with
1,405 observations and several outliers. The soft trimminganalyses use Tukey’s
biweightρ function for both MM- and S-estimation, for which we introduce a
new method of estimation of error variance that is appropriate for outlier detec-
tion. We arbitrarily classify as outliers those observations with a soft trimming
weight below a specified threshold. In the appendix we derivetwo further forms
of BIC for soft trimming. Section 8 summarises the comparative performance of
these various forms of BIC on the three data examples.

In §9 we mention the potential extension of our work to model selection in
the presence of outliers. The role of statistical significance testing in outlier de-
tection is touched upon. Our overall conclusion is that monitored hard trimming
methods provide the sharpest removal of outliers and so the most efficient robust
parameter estimates. Of these, the computationally simplest is this paper’s ver-
sion of the forward search. This successfully detects outliers without requiring
either specification of the expected contamination level inthe data or arbitrary
significance levels in, perhaps, arbitrary outlier identification rules.

2. Hard and Soft Trimming

2.1. Three Classes of Estimators for Robust Regression

It is helpful to divide methods of robust regression into three classes (Hampel
et al., 1986; Atkinson et al., 2004; Farcomeni and Greco, 2015).

1. Hard{0,1} Trimming. In Least Trimmed Squares (LTS: Hampel, 1975;
Rousseeuw, 1984) the amount of trimming ofn observations when the
linear model hasp parameters is determined by the choice of the trimming
parameterh, [n/2] + [(p+ 1)/2] ≤ h ≤ n, which is specified in advance.
The LTS estimate is intended to minimize the sum of squares ofthe resid-
uals ofh observations. For least squares,h = n.

2. Adaptive Hard Trimming. In the Forward Search , the observations are
again hard trimmed, but the value ofh is determined by the data, being
found adaptively by the search (Riani et al., 2014a). Algebraic details are
in §3.3.

3. Soft trimming (downweighting). M-estimation and derived methods, de-
pending upon the way in which the residual varianceσ2 is estimated. The
intention is that observations near the regression plane retain their value,
but theρ function (§4.1) ensures that increasingly remote observations
have a weight that decreases with distance from the plane. The desired
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value of either the asymptotic breakdown point (bdp) or of the efficiency
has to be specified. This efficiency is that of estimation whenthe method
is applied to a sample from the normal distribution.

The FS starts from a small subset ofh0 robustly chosen observations, by
default found using least median of squares (Rousseeuw, 1984). The purpose is
ensure thath0 is outlier free. The search then moves forward incrementingthe
subset size by one until the final least squares fit is reached,whenh = n. In
this way parameter estimates are obtained for a range of values ofh - typically
interest is inn/2 < h ≤ n. We avoid having to prespecify the value ofh for LTS
by monitoring the fit over a similar range of values.

We consider two derivatives of M-estimation. In S-estimation (Rousseeuw
and Yohai, 1984) the estimate ofσ2 is found from a robust estimating equation
with specified bdp. The associated estimate of the vector of regression coeffi-
cients is called an S-estimator because it is derived from a scale statistic, although
in an implicit way.

The asymptotic relationship between the breakdown point and efficiency of
S-estimators is that as one increases, the other decreases.In an attempt to break
out of this relationship, Yohai (1987) introduced MM-estimation, which extends
S-estimation. In the first stage the breakdown point of the scale estimate is set at
0.5, thus providing a high breakdown point. This fixed estimate of residual scale
is then used in the estimation ofβ with a specified high theoretical efficiency.

For both MM- and S-estimation, we again monitor the performance of our
outlier detection procedure over a range of values of the settings of the robust
method. For S-estimation we monitor values of bdp from 0.5 (the value giving
highest trimming) to a value of 0.01, whereas for MM-estimation we monitor
over values of the nominal efficiency of estimation ofβ, for which Maronna
et al. (2006, p. 126) recommend a value of 0.85, from 0.5 to 0.99. We observe
in some data analyses in §7, as did Riani et al. (2014a), that specification of too
high a value for this efficiency can lead to a failure of robustness and to a least
squares fit. For all four methods of robust regression we monitor the values of
information criteria and the values of residuals or the weights of observations as
we move from very robust regression to least squares.

3. Information Criteria

3.1. BIC
There is a large literature on the use of a variety of information criteria in

choosing the best model for a set of data. Claeskens and Hjort(2008) provide a
treatment with a nice combination of mathematics and data analysis.
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Let L(θ) be the loglikelihood of then observationsyi, with the parameter
vectorθ of lengthp. With θ̂ the maximum likelihood estimate ofθ, a general
form of information criterion isIC = 2L(θ̂)− k(p, n), wherek(p, n) is a func-
tion that penalizes more complicated models. For the Bayesian Information Cri-
terion (BIC) introduced by Schwarz (1978),k(p, n) = p logn so that the penalty
increases with sample size. That model is selected for whichBIC is largest.

For the linear regression model with univariate response and independent
normal errors of constant varianceσ2, whereβ̂ is the least squares estimate of
thep parametersβ of the linear model andR(β̂) is the residual sum of squares
of theyi,

BIC = −n log{R(β̂)/n} − p logn, (1)

after constants irrelevant to the comparison of models are ignored.
We recall that use of BIC provides consistent selection of the true model, if

that is included in the set of models under consideration. Justifications of the
word ‘Bayesian’ in the name BIC are given, amongst others by Claeskens and
Hjort (2008, p.78) and Bhat and Kumar (2010), expanding the original presenta-
tion of Schwarz (1978).

In the use of BIC in the choice of a regression model, the comparison is
between models with different terms included or removed. Asa preliminary to
the results of §3.4 we consider BIC for nested regression models. Let the true
model be the linear model withp×1 parameterβp andn×pmatrix of explanatory
variablesXp. A model withq × 1 parameterβq, q < p will be calledfalseand
a model withr parameters,r > p is calledcorrect, but is not minimal. For
asymptotic results we require

Condition 1. XT
p Xp/n

n
→MX with det(MX) 6= 0.

We first test a false model. The likelihood ratio test forβq againstβp has an
asymptotic non-centralχ2

p−q distribution with non-centrality parameterλ, which
from Condition 1, increases asn. The BIC penalty for the comparison of these
two models is(p−q) log n, increasing more slowly withn, so that the true model
will be chosen asn increases.

For a correct model the likelihood ratio test forβp againstβr has asymptot-
ically a centralχ2

r−p distribution and the BIC penalty is(r − p) logn. Thus, for
largen the true model will be preferred. Putting these two togetherdemonstrates
the consistency of the BIC.

3.2. Mean Shift Outlier Model
Use of the forward search or least trimmed squares to providerobustness

against outliers leads to the comparison of fitted models with differing numbers
5



of observations. We render outlier detection and deletion compatible with BIC
through use of the mean shift outlier model in which deleted observations are
each fitted with an individual parameter, so having a zero residual.

Let there beh observations remaining in the fitted model. Thenn− h obser-
vations will have been deleted. This can be expressed by writing the regression
model as

y = Xβ +Dφ+ ǫ, (2)

where the errorsǫ have constant varianceσ2. HereD is ann × (n − h) matrix
with a single one in each of its columns and inn − h rows, all other entries
being zero. These entries specify the observations that areto have individual
parameters or, equivalently, are to be deleted (Cook and Weisberg, 1982, p.20;
Insolia et al., 2020).

For deletion of the single observationi, D becomes a vector. The likelihood
ratio test forφi = 0 is the deletion residualr∗i which compares the observed
value ofyi with the prediction̂y(i) = xTi β̂(i), whereβ̂(i) is the least squares esti-
mate ofβ when observationi is deleted. Results from the theory of regression
diagnostics (Cook and Weisberg, 1982, p.21; Atkinson, 1985, p.23) show that
the null distribution ofr∗i is Student’st onn − p − 1 degrees of freedom. This
statistic can then be used to test ifyi, for a specifiedi ∈ {1, . . . , n}, is an outlier.
Sometimes interest is in whether there is an outlier in the data. Since the deletion
residuals are correlated, the distribution of the maximum absolute order statistic
for a sample of sizen from thetn−p−1 distribution does not give the distribution
of the maximumr∗i for a sample. That can be approximated by use of the Bon-
ferroni inequality when max|r∗i | is tested usingtα/n,n−p−1, although the power
of such a test may be poor. Usually interest is in the more general question as
to whether there are some outliers in the data, the number being unspecified.
Buja and Rolke (2003) illustrate the large effect on test size arising from such
simultaneous tests.

3.3. The Forward Search
The FS fits subsets of observations of sizeh to the data, withh0 ≤ h ≤

n. Let S∗(h) be the subset of sizeh found by the FS, for which the matrix of
regressors isX(h). Least squares on this subset of observations yields parameter
estimateŝβ(h). Residuals can be calculated for all observations including those
not inS∗(h). The search moves forward with the augmented subsetS∗(h + 1)
consisting of the observations with theh + 1 smallest absolute values of the
residuals. The outliers, if any, enterS∗(h) towards the end of the search.

Above a threshold value onh, often0.6n, a test is performed for the presence
of outliers before each incrementation ofS∗(h). Because of the multiple testing
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involved, Riani et al. (2009) propose a complicated rule based on quantiles of
order statistics which is intended to have a simultaneous size of 1% for sam-
ples withn up to around 1,000. Examples of the use of this rule in monitoring
regression are in Riani et al. (2014a).

The consistency of the FS estimator when the data contain no outliers is
proved by Cerioli et al. (2014) for multivariate data and by Johansen and Nielsen
(2016) for univariate regression. We now allow outliers in the data generating
distribution.

Let the uncontaminated observations belong to the setH, of cardinalityh∗

and let the outliers belong toHo, with H ∪Ho containing all observations. The
number of outliers is thenn − h∗, neither this number, nor their identity being
known. Asymptotically, we consider a fraction of contaminated observations
γ = 1 − h∗/n, 0 ≤ γ < 0.5. The FS progresses by ordering the squared
residualse2i (h); i ∈ {1, . . . , n}.

Asymptotic distribution of squared residuals. The small-sample distribu-
tion of the residualse2i (h) depends on the leverageli = xTi {X(h)TX(h)}−1xi.
From Condition 1,li

n
→0. Then, in the absence of outliers inS∗(h), e2i (h)

a.s.
→

σ2χ2
1. The individual outliers have asymptotically the noncentral chi-squared

distributionσ2χ̄2
1(λhi). For asymptotic results about robustness we assume

Condition 2. For all i ∈ Ho, λhi = o(n).

Condition 2 is a rather strong, although standard, separation condition which re-
quires outliers to be increasingly far from the clean observations asn grows, in
such a way that the non-centrality parameter of the resulting chi-squared distri-
bution grows faster thann. This condition is nevertheless slightly less stringent
than some similar ones already considered in the literature, e.g., the separation
condition in Cerioli et al. (2014) where it is required that the probability mass
for outliers is asymptotically concentrated exponentially fast in the tails of the
distribution of the clean observations. Here we simply assume that the the non-
centrality parameterλhi grows as the square of the distance between the clean
data centroid and the centroid of the outlier generating distribution.

We call acorrectordering of the observations one in whichS∗(h∗) = H; that
is that at steph∗ there are no outlying observations inS∗(h∗).

3.4. Extended BIC for Outlier detection

To incorporate deletion of observations in BIC (1), let the residual sum of
squares for a parameter estimatebwhenn−h observations are deleted beRh(b),

7



To allow for the additional parameters in (2), BIC (1) is accordingly replaced by

BICH = −n log{Rh(β̂h)/h} − (p+ n− h) logn. (3)

The rationale in (3) is that under the model all observationsare still included
in the estimation set (hence the use ofn), but onlyh are used for computation of
the residual sum of squares. Finally,(p+ n− h) is the number of parameters.

Theorem 1. Assume Conditions 1 and 2. Leth∗n denote the cardinality of uncon-
taminated observations for a sample of sizen, and assumelimn h

∗
n/n = 1 − γ

for someγ < 0.5. The initial estimation set, of cardinalityh0n, is outlier free;
we assumelimn h0n/n > 0 andh0n/h∗n ≤ 1 for all n. Then, for hard trimming,

lim
n

argmaxh{−n log(Rh(β̂h)/h)− (p+ n− h) logn}

n
≤ 1− γ,

that is, asn grows BICH is a maximum at an estimation set which does not
include outliers.

Proof of Theorem 1 Since the initial set ofh0n observations is outlier free by
assumption, andlimn h0n/n > 0, β̂h0n is a strongly consistent estimate ofβ.
Then,

lim
n

log{Rh0n
(β̂h0n

)/h0n} = log(σ2(h0n)σ
2), (4)

whereσ2(h) is a correction factor discussed in equation (6) of Section 3.5. Let
argmaxh{−n log(Rh(β̂h)/h)− (p+ n− h) logn} = h̃n.

We proceed by contradiction. Suppose that there is at least one outlier in
the estimation set based onh̃n observations. By assumption, this implies that
h̃n > h0n, since the initial set is outlier free. Due to Condition 2,

lim
n

log{Rh̃n

(β̂h̃n

)/(h̃n)} = o(log n). (5)

Now compare the initial estimation set with the optimal set in terms of BICH
difference, divided byn. Let

K =− log

(

Rh̃n

(β̂h̃n

)

h̃n

)

− n−1(p+ n− h̃n) logn + log

(

Rh0n
(β̂h0n

)

h0n

)

+ n−1(p+ n− h0n) logn.
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Simplifying and collecting terms we obtain

K = − log

(

Rh̃n

(β̂h̃n

)h0n

Rh0n
(β̂h0n

)h̃n

)

+ n−1(h̃n − h0n) logn

≤ − log

(

Rh̃n

(β̂h̃n

)h0n

Rh0n
(β̂h0n

)h̃n

)

+ n−1(n− h0n) logn.

Combining (4) and (5) the first summand is seen to diverge (negatively) at a
faster rate than the second one, which, since by assumption0 < limn h0n/n < 1,
diverges (positively) at the rateO(logn). There will then exist̄n such that, for
n ≥ n̄, BICH associated with the initial set will be larger than BICH associated
with h̃n. This contradicts the definition of̃hn as the maximum of BICH. Asymp-
totically, the optimal estimation set in terms of BICH must then be outlier free.
Since there are at mosth∗n uncontaminated observations,

lim
n

argmaxh{−n log(Rh(β̂h)/h)− (p+ n− h) logn}

n
≤ 1− γ,

which completes the proof. �

Let h† be the size of the subset for which the rescaled value of BIC (7) is
maximized. The theorem proves that asymptoticallyS∗(h†) will not include any
outliers. However, the asymptotic conditions may not be satisfied for finite sam-
ple sizes and small separation of the outliers, as in the simulations of Figures 3
and 4. ThenS∗(h†) may contain some outliers and miss some non-outlying ob-
servations.

Least Trimmed Squares.We note that the theorem also applies to monitored
LTS, in which the best subsetS∗(h) is found for a range of values ofh, rather
than for a single specified trimming value as in the original proposal (Rousseeuw,
1984). The difference is then in the algorithms used for calculatingS∗(h), hl ≤
h < n, wherehl is the lower limit of subset size that is of interest. If both
algorithms result in the same value ofS∗(h) over the range ofh, the residual
sums of squares will be identical as will be the values of BICH. To the best of
our knowledge formal conditions under which the two algorithms give the same
S∗(h) have not yet been studied.

3.5. Finite Sample Extended BIC for Outlier Detection

We now consider two further points arising from the application of BICH to
finite samples.
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3.5.1. Estimation ofσ2

In (3)σ2 is estimated by{Rh(β̂h)/h}. To find then−h outlying observations,
the FS or LTS deletes the observations most remote from the fitted model. If
there are no outliers the value ofRn(β̂n) leads to an asymptotically unbiased
estimate ofσ2. Then the deletion of then−hmost remote observations yields the
parameter estimatêβh and the residual sum of squaresRh(β̂h), which provides
a too small estimate ofσ2 since it is calculated from the centralh residuals. The
variance of the truncated normal distribution containing the centralh/n portion
of the full distribution is.

σ2(h) = 1−
2n

h
Φ−1

(

n+ h

2n

)

φ

{

Φ−1

(

n + h

2n

)}

, (6)

whereφ(.) andΦ(.) are respectively the standard normal density and c.d.f. See,
for example, Johnson et al. (1994, pp. 156-162). We scale up the value ofRh(β̂h)
to obtain the corrected BIC

−n log[Rh(β̂h)/{hσ
2(h)}]− (p+ n− h) logn. (7)

This consistency correction is standard in robust regression (Rousseeuw and
Leroy, 1987, p.130). The correctionσ2(h) in (6) is the one-dimensional case
of the general result in Tallis (1963) on elliptical truncation in the multivariate
normal distribution.

For hard trimming (7) can be rewritten with weightswi = 0, i ∈ n − h and
one otherwise as

BICW = −n log

[

Rh(β̂h)/{σ
2(h)

n
∑

i=1

wi}

]

−

{

p+
n
∑

i=1

(1− wi)

}

log n, (8)

where
∑

nwi = h.
In §4.1 we rewrite BICH (3) in a weighted form for soft trimming.

3.5.2. Masking
The proof of Theorem 1 relies on Condition 2 for allyi ∈ Ho, particularly

through the distribution of the residuals. In the analysis of data the outliers may
not be very large and outlying observations will appear lessso as the FS pro-
gresses and the parameter estimates are corrupted once outliers are included in
S∗(h). Although the value ofRh(β̂h) will continue to increase withh it may not
do so sufficiently fast to outweigh the decrease in the penalty of −h logn. As
a consequence, the value of BICW may increase forh > h† + 1. We see an
example in §7.2.
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4. Soft Trimming

4.1. BIC for Soft Trimming
We now extend the idea of downweighting in BICW (8) to includesoft trim-

ming such as S- and MM-estimation. The S-estimator of the regression parame-
ters is defined as

β̂S = min
β

n
∑

i=1

ρ

(

ei
σ̂S

)

, (9)

whereei = yi−β̂
Txi is thei-th unscaled residual and̂σS is the robust estimate of

σ found by minimizing the dispersion of the residuals as defined by Rousseeuw
and Yohai (1984). A consistency factor is applied toσ̂S. S- and MM-estimation
differ in the choice of̂σ.

Let ψ(u) = dρ(u)/du. Then, in the iterative least squares algorithm for M-
estimation, the weights are taken asw̃(u) = ψ(u)/u, that is w̃i = w̃(ui) =
w̃(ei/σ̂). It is required thatwi = 1 for observations that are not to be down-
weighted. Since for least squares the bdp is zero, no observations are down-
weighted and all have the same weightw(0). We can then simply rescale and
set

wi = w̃i/w(0). (10)

We can now adapt the BICH (3) for hard trimming to soft trimming. Each ob-
servation will have a weightwi ∈ [0, 1], smoothly varying from 1 to 0 as the
observation becomes more outlying. We obtain

BICWρ = −n log
{

R(β̂ρ)/
∑

wi

}

−

{

p+

n
∑

i=1

(1− wi)

}

log n, (11)

whereR(β̂ρ) is the weighted sum of squared residualsei. The expression for
BICW (8) specifically shows the consistency correctionσ2(h), whereas, in (11),
R(β̂ρ) has already been corrected to provide a consistent estimate.

4.2. BIC for Soft Trimming versus Hard Trimming
For hard trimming the bdpd = 1 − h/n. Theorem 1 shows that, eventually,

use of BIC for the FS produced a value ofd∗HT ≥ 1−h∗/n. This section provides
a proof that the bdp from use of the functionρ(u) (9) to remove outliers leads to
the same result under the separation condition. We also argue why we expect in
general downweighting to lead to a value of bdp greater than1 − h∗/n, and so
to parameter estimates of reduced efficiency.

Condition 3. Letw(u) be such that
11



1. For any|u| > 0, w(u) ≤ w(0);
2. For|u| > c, w(u) = 0.

Tukey’s biweight (Beaton and Tukey, 1974), which we use in our numerical
examples, satisfies these conditions.

Theorem 2. Let the estimate ofd maximizing BICWρ for soft downweighting be
d∗nS. Then, under Conditions 1 - 3,limn d

∗
nS = limn d

∗
nHT .

Proof of Theorem 2 For least squaresd = 0 and, in Condition 3,c = ∞. As
d is increased,c decreases. Combining Condition 2 with Condition 3 it can be
seen that there existsn∗ such that forn > n∗ wi = 0 for i ∈ Ho. Hence, for
n > n∗, FS and downweighting are equivalent. The proof is then equivalent to
that of Theorem 1. �

When we relax Condition 2 we often can expectlimn d
∗
nS > γ. Indeed,

when the outliers are less extreme, the weights (10) of the outliers may not all be
zero, even though they may be the most appreciably downweighted observations.
The monitoring plots of weights in §7 illustrate this point.Selection of an M-
estimator with unnecessarily high bdp, leads to a loss of efficiency in estimation.
Figure 5 and 6 of Riani et al. (2020) plot the relationship between breakdown
point and efficiency for several well-known forms forρ(u).

5. Implementation of MM- and S-estimation

In our numerical examples we use Tukey’s biweight (Beaton and Tukey,
1974) in which the boundary of the central region of theρ function is defined
by the parameterc. As c → ∞, ρ(.) approaches a quadratic and the fitted model
becomes that from least squares: the bdpd → 0 and the efficiencyeff→ 1. We
monitor the behaviour of BICWρ as the values of these parameters change. Riani
et al. (2014b) give computationally fast procedures for determining the value of
c for Tukey’s biweight which yields specified values ofd or of eff. Use of MM-
estimation provides estimates ofβ for a fixed, although data dependent, value of
σ aseff varies. On the other hand, S-estimation (Rousseeuw and Yohai, 1984)
provides simultaneous robust estimates ofβ andσ2 asd varies.

In our robust calculations for MM we typically take 50 valuesof eff over
the range 0.5 to 0.99. The value maximizing BICWρ is denotedeff †. For S-
estimation we varyd over a setD such that bdp varies from 0.5 to 0.01, giving
the maximizing valued†. In both cases we also include LS (d = 0 or eff = 1.) to
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cover the absence of any outliers. The procedure for MM-estimation is straight-
forward because, throughout we use a very robust estimate ofσ2. However, for
S-estimation, eachd ∈ D yields parameter estimateŝβd andσ̂2

d, leading to raw
residualsedi = yi − xTi β̂d. But, if d is too small, the estimate ofσ2 may be
inflated due to contamination by outliers, even ifwi < 1 for i ∈ H0. To obtain a
consistent estimate ofσ2 in the presence of contamination we use the very robust
estimatêσ2

0 , which is the value of̂σ2
d for d = 0.5. We then rescale the residuals

used in calculating BICWρ to obtainr0di = edi/σ̂0, so avoiding the effect of too
large an estimate ofσ on the scaled residuals. Monitoring the value of BIC over
D leads to the maximizing valued†. However, because of the use ofσ̂2

0 , this
procedure does not completely reflect the downweighting of outliers.

We follow the reasoning of Rousseeuw and Yohai (1984) in their derivation
of S-estimation, but allow the data to determine the estimate ofσ2. At the value
d† let the residuals scaled bŷσ0 be r†0i. To model the effect of downweighting
outliers we find the residualŝrdi from S-estimation, that is usinĝσd as an es-
timate ofσ and calculate their distance fromr†0i. The minimum value of this
distance overD gives us a new estimated maximizing bdpd∗, depending on the
S-estimates ofβ andσ calculated with the same value ofd. We found a useful
measure of distance to be the weighted sum of squares

SSD(d) =
n
∑

i=1

w†
0i(r̂di − r†0i)

2, (12)

where thew†
0i are the weightswi (10) associated with the residualsr†0i. Then

d∗ = argmax
d∈D

SSD(d). (13)

6. Simulations

We now use numerical simulation to illustrate some of the properties of our
procedure for small samples. We are interested in behaviouras efficiency in-
creases. For the FS we monitor performance as the value ofh increases, one
observation at a time. The other three methods were originally defined either by
specifying efficiency or bdp, and we monitor them for 50 values of these. Table 1
presents expressions for the two weighted forms of the BIC, namely BICW and
BICWρ that are important in our simulations.

We begin in Figure 1 with the distribution of trajectories ofthe values of BIC
for four forms of outlier detection. The simulations are forn = 200, with four
explanatory variables (p = 5) simulated from standard normal distributions (the
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Table 1: Two different forms of BIC

Criterion Equation Estimation Formula
BICW (8) LS −n[logRh(β̂h)/{σ

2(h)
∑n

i=1wi}]
−{p+

∑n
i=1(1− wi)} log n

BICWρ (11) MM & S −n log
{

R(β̂ρ)/
∑

wi

}

−{p+
∑n

i=1(1− wi)} log n

procedures are invariant to the values of the regression parameters, so these are
set to zero). The observational errors are independent standard normal with a
shift of δ = 5 added to 20 observations, so that there is 10% contamination, that
is γ = 0.1. There are 200 simulations; we plot the 1, 50 and 99% quantilesof
the estimated values of BICW. The top row of the figure shows the trajectories
of BICW for the two hard trimming methods, monitored LTS and the FS, with
BICWρ for the two soft trimming procedures, S and MM, in the lower row. All
curves have a similar shape, at first increasing almost linearly to a maximum
before decreasing more or less sharply.

Since we monitor fromn/2 to n, whenn > 100 we evaluate at fewer values
of h for LTS than we do for the FS. We also start LTS estimation anewfor
eachh. We could modify monitored LTS by evaluating at each value ofh ≥
n/2 and using the parameter estimates fromS∗(h) to provide starting values
for estimation forS∗(h + 1). These modifications would reduce some of the
differences our simulations show between LTS and the FS. We choose not to
do this, as we are not intending to develop new hybrid algorithms, but rather to
compare those already in the literature.

The curves for hard trimming have a wider range of trajectoryvalues than
those for soft trimming, but the feature of main interest is the position of the
maximum of the curves and so the indicated degree of trimming. For the hard
trimming methods the maxima are close to 0.1, correctly indicating 10% con-
tamination. For S-estimation the maximum is near a bdp of 0.2, whereas for
MM-estimation the maximum is close to a high efficiency of 0.93. In all cases
the presence of some outliers is indicated. In results not shown here we ran
simulations for a smaller proportion of outliers and when there were none. In
this latter case the trajectories for all four procedures increase linearly with the
maximum at non-robust least squares estimation.

Figure 2 shows boxplots of the position of the maxima for the trajectories of
the four versions of BIC plotted in Figure 1. We see that the boxplots for the
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Figure 1: Distribution of trajectories of BIC for outlier detection whenp = 5; 10% contamina-
tion. Upper row, BICW for hard trimming; lower row BICWρ for soft trimming. 200 simulations,
n = 200, 1, 50 and 99% points of the distribution

two hard trimming methods in the upper row are both centered around detecting
10% of outliers, but that the variability for LTS is greater than that for the FS.
The scatter for both soft trimming methods is greater than that for the FS. As
noted by a referee, the S-estimator is always computed with abdp greater than
the actual contamination level, which makes it more resistant to contamination.
For the remainder of this simulation section we focus on hardtrimming methods.

The outlier detection properties of the two hard trimming methods depend
on the numerical details of the algorithms we have used. For each simulated set
of 200 observations when using LTS we calculated BICW for 50 values ofh
from 0.5n to 0.99n. The calculations for the different values ofh are indepen-
dent, using 1,000 elemental subsets with concentration steps (Rousseeuw and
Van Driessen, 1999) to find the estimates of the regression parameters for each
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Figure 2: Boxplots of position of maxima of BIC outlier detection trajectories plotted in Figure 1;
p = 5, 10% contamination. Upper row, BICW for hard trimming; lower row BICWρ for soft
trimming. 200 simulations,n = 200
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value ofh. Whenn = 200 the number of observations inh changes in steps of
two, so that the proportion of outliers found can only changein steps of 0.01.
For the FS we take 1,000 elemental subsets of alln observations, calculate the
value of the LTS criterion with bdp 50% for each subset and take as the initial
subset for the FS that yielding the minimum of the LTS criterion. Use of LTS,
rather than the default LMS, at this point has no effect on thenumerical results.
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Figure 3: Boxplots of the proportion of observations declared as outliers as the outlier shiftδ
increases;p = 5, 10% contamination. Left-hand panel: LTS, right-hand panel FS;n = 200

We now look at the proportion of observations declared as outliers as the
shift δ in the twenty outliers increases. Boxplots for these results are in Figure 3.
The median number of outliers for each shift is shown, in the online version,
as a red horizontal line. This shows that whenδ = 4.5, the median number
of outliers declared by LTS is around 0.01, whereas it is a little less than 0.1
for the FS. In general, asδ increases from 4.5 to 8.0, the proportion of outliers
detected for both LTS and the FS is around 0.1. The figure illustrates in three
ways the improvement in using the FS compared to monitored LTS: the detection
of outliers occurs for a lower value ofδ, the mean results are more stable for
largerδ as indicated by the width of the boxplots and there are fewer simulations
leading to false declarations of extra outliers. The plots also show the effect
for LTS of increments in the proportion of outliers detectedin steps of 0.01, as
opposed to 0.005 for the FS.

We now finally, for these simulations withn = 200, look at the number of
good observations declared as outliers and the number of outliers correctly de-
tected, again as the shift in the outliers increases. The average results over 200
simulations for bothn = 200 and 500 are in Table 2. As the outlier shiftδ
increases from 4.5 to 8.0 both LTS and the FS detect all outliers, with the FS
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detecting more for lower values, especially 4.5 and 5 whenn = 500. As δ in-
creases, the number of false declarations also increases, although the average
number is smaller for the FS. Whenn = 500 the value ofh for LTS is incre-
mented by 5 observations. It is interesting that whenδ = 8 the average number
of false declarations for the FS is 0.9, whereas it is 3.4 = 0.9+ 5/2 for LTS, 5/2
being half of the increment size for the values ofh in this simulation.

Table 2: Average number of correct and incorrect declarations of outliers for LTS and the FS as
a function of outlier shiftδ and sample size;p = 5, 10% contamination

n = 200 n = 500
δ LTS FS LTS FS

Outliers Good Outliers Good Outliers Good Outliers Good

4.5 8.84 0.58 13.31 0.42 3.10 0.10 13.60 0.14
5 16.38 1.25 18.50 0.63 32.6 1.3 45.50 0.73

5.5 19.42 1.50 19.84 0.63 47.57 2.80 49.40 0.85
6 19.85 1.63 19.96 0.62 49.54 3.16 49.84 0.89

6.5 19.94 1.66 19.99 1.46 49.81 3.24 49.96 0.90
7 19.99 1.95 20 0.66 49.94 3.34 50.00 0.90

7.5 20 1.99 20 0.72 49.98 3.32 50 0.90
8 20 1.84 20 0.72 50 3.4 50 0.90

Figure 3 and the related Table 2 provide a nice illustration of the result of
Theorem 1. As bothδ andn increase all the outliers are identified, both by LTS
and the FS. However, there is always a small number of good observations that
are mistakenly declared to be outliers. The results so far doshow that the FS
performs better on all measures than LTS, although the difference is not large
providedδ > 5. We also considered the performance of the two methods when
the number of explanatory variables increases, both forn = 200 and 500, withp
increased to 15. In summary, for this increased number of explanatory variables,
LTS detected a maximum of four outliers untilδ = 7.5. Forδ = 8 too many were
detected. The unsatisfactory behaviour of LTS whenp = 15was unexpected. We
accordingly repeated the simulation with initial LTS subsets of 10,000, rather
than 1,000, observations. There was little improvement.

In all these simulations the outlying responses have been within the range
of the explanatory variables. As a final extension of our investigation, we con-
sider outliers at leverage points. The 14 explanatory variables were simulated
independently but were generated to have an average value ofR2 = 0.8 before
contamination. We keptn at 500, including 50 outliers so thatγ remained at 0.1.
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Figure 4: The effect of outliers at leverage points, combined with a larger number of explanatory
variables. Boxplots of the proportion of observations declared as outliers as the outlier shift and
explanatory variable remotenessδ increases whenn = 500 andp = 15; 10% contamination.
Left-hand panel: LTS, initial subsets of 1,000 observations; right-hand panel FS

For each value ofδ not only was this value added to the 50 outlying responses
but also to all explanatory variables. We thus generated outliers at extreme lever-
age points. Boxplots for the results are in Figure 4. The left-hand panel of the
figure shows that LTS completely fails to detect the many outliers; the medians
of the boxplots are all at zero, as shown in the online versionof the plot by the
red lines at this value. On the other hand, the FS reveals all the outliers, with a
few extra, for all values ofδ. This figure leads to the same conclusions as those
for the two simulations withp = 15 mentioned above, in which the outliers were
not at leverage points and the initial subsets for LTS were ofsize either 1,000 or
10,000.

We have no explanation for the surprisingly poor behaviour of LTS whenp =
15. As Olive (2020) stresses, a complex estimator, such as manyof those used
in robustness, depends not only on the mathematical formulation and theoretical
properties of the estimator, but also on the details of the algorithm used to provide
numerical values of estimators. The good performance of theFS whenp = 15
suggests one approach to an improved LTS algorithm.

7. Examples

We now illustrate the finite-sample properties of the procedure through the
analysis of three distinct examples. We compare LTS and the FS with MM- and
S-estimation. Since the purpose of our paper is to provide a method of outlier
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Figure 5: Mental illness data. Monitoring plots of BICW. Left-hand panel, Least trimmed squares
(LTS); right-hand panel, Forward Search (FS). The steppingfor LTS arise from a search over 50
values ofh

detection we need to define an outlier in soft trimming, whichwe arbitrarily take
as an observation for whichwi < 0.01.We then count the number of outliers at
the BIC maximizing valuesh†, eff †, d† andd∗. In our examples we use monitor-
ing plots of residuals and weights to illuminate the procedure. But, for automatic
outlier detection, we are not initially interested in monitoring over a series of
grids, but in selecting a single value for further investigation.

In the first example there are data on 53 patients, the response of three of
which are contaminated. The remaining data follow a normal distribution. In the
second example, the ‘Stars’ data, there are only 47 observations, but the structure
of outliers is more complicated; monitoring plots of residuals show a clear switch
from a robust to a non-robust fit when the target bdp is too low.The third data set
has 1,405 observations. The responses in two of these examples require trans-
formation; in all cases we work with a suitable response transformation found
outside this paper. The two forms of BIC are listed in Table 1,with a summary
of the outliers detected for the three examples in Table 3.

7.1. Example 1: Mental Illness Data

Kleinbaum and Kupper (1978, p.148) describe observationaldata on the as-
sessment of mental illness of 53 patients. The data come froma psychiatrist’s
assessment of mental retardation and degree of distrust of doctors in newly hos-
pitalized patients. After six months of treatment, a value is assigned for the
degree of illness of each patient. Atkinson et al. (2021) showed that when degree
of illness is regressed on the two initial assessments, there is strong evidence for
transformation of the response. The Box-Cox transformation indicates the log
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transformation. After transformation the data are well behaved. We study the ef-
fect of outliers by modifying three of the smallest observations (17, 30 and 53),
setting them equal to one. This contamination causes the logtransformation to
be rejected.

We start with least squares analysis of the logged contaminated data. The
left-hand panel of Figure 5 shows the plot of BICW for LTS estimation and
the right-hand panel that for FS. Both show the almost linearincrease as more
observations are included in the fit, as indicated by Theorem1, until a peak forh
nearn, after which there is a sharp decline. For the FS the peak is ath = 50. For
LTS the bdp at the maximum is 0.07, which corresponds toh = 50. Here both
LTS and the FS have correctly identified the 3 outliers without the need for a
complicated outlier detection rule such as that of Riani et al. (2009) and without
the need of specifying subjective confidence bands. The stepping of LTS arises
because, for breakdown pointd, h is found as⌈n(1 − d)⌉.
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Figure 6: Logged mental illness data. Upper panel: Monitoring plot of BICρ for S-estimation
using σ̂0; d† = 0.14; lower panel: weighted sum of squares SSD(d) of the differences of the
residualŝrdi andr0di; d∗ = 0.23.

The monitoring plots of BIC from MM- and S-estimation are similar in shape
to that for the FS in Figure 5. The maximum for MM iseff† = 0.96. For S-
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Figure 7: Logged mental illness data. Monitoring plot of weights ŵi. Left-hand panel MM-
estimation;eff † = 0.96. Right-hand panel S-estimation with scale estimateσ̂d; d∗ = 0.23, d† =
0.14

estimation the maximizing value whenσ is estimated byσ0 is d† = 0.14. The
trajectory for BICρ using this estimate is plotted in the upper panel of Figure 6.
The lower panel of the figure shows the trajectory of the weighted sum of squared
residuals SSD(d) (12), the minimum of which gives the estimated optimum bdp
d∗ = 0.23, greater than the value ofd†. For LTS and the FS the efficiency when
the three outliers are deleted is 0.943, so that the bdp is 0.057. These results
for S-estimation are in line with the comment following Theorem 2 that often
d† > γ = 0.057. For small outlier displacementsδ and small sample sizes,
some soft trimming methods may, as in the other examples of this section, fail to
detect all the outliers. Then the inequality may not hold. Similar remarks, with
sign reversed, hold for comparisons of the values ofeff .

To determine the outliers from soft trimming and to interpret the results we
look at monitoring plots of the weightswi over the range of values ofeff or d.
The left-hand panel of Figure 7, for MM-estimation shows thesmall weights for
the three outliers. Foreff = 0.95, three outliers are detected but ateff † (= 0.96)
only two are found. The right-hand panel of the figure shows the weights for
S-estimation. The weights of the three outliers are smallerthan 0.01 by a bdp of
0.14, which is the valued†. The three outliers, only, are also detected atd∗.

7.2. Example 2: Stars Data
We continue with a small example with a more complicated structure than

that of §7.1. The data are taken from Rousseeuw and Leroy (1987, p.27) and
have been much used to illustrate the properties of various forms of robust re-
gression. They form part of a Hertzsprung-Russell diagram of stars. This log-log
plot has the effective surface temperature of the star as theexplanatory variable
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and (logged) light intensity as the response. A typical plothas around 30,000
stars which fall into groups including “the main sequence”,“white dwarves” and
“giants” of several kinds. However, in our example, there are only 47 observa-
tions.
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Figure 8: Monitoring plots of BICW using the FS. Left-hand panel, stars data; right-hand panel,
transformed balance sheet data
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Figure 9: Stars data. Left-hand panel; least squares regression lines: dashed line, all observa-
tions; continuous line, four extreme outliers deleted; fine-dashed line, six observations deleted.
Right-hand panel, monitoring plot of scaled FS residuals;h† = 41

The left-hand panel of Figure 8 shows that the monitoring plot of BICW for
the FS again increases almost linearly withh, with a peak ath = 41. When LTS
is monitored in steps ofh corresponding to the addition of a single observation,
the peak is at a bdp of 0.14, when the same six observations aredeleted. In
both plots the peak is well defined but is followed, as bdp decreases, by a small
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decline and then an increase, a more complicated shape than we have seen before,
which is caused by masking. The structure of the data and the nature of the
outliers is clarified by the FS analysis. The left-hand panelof Figure 9 shows
a scatterplot of the data and three different least squares regression line. There
are four obvious outliers atx values remote from the rest of the data. These four
observations cause the regression line to have a slight positive gradient. When
they are deleted the slope of the regression line is negative, becoming more so
when two further outliers are deleted. This is the regression line produced by
LTS and the FS combined with monitoring BICW. The right-handpanel of the
figure is a forward plot of the scaled FS residuals. The deletion of 6 outliers
follows from the value of 41 forh†, at which point the groups of extreme and
intermediate outliers are well separated. The transition between the regions of
robust and non-robust estimation is clear.

We now turn to MM-estimation. The monitoring plot of BICWρ gives a value
of 0.82 foreff† (it is 0.86 for the two hard-trimming methods). For S-estimation
the value ofd† is 0.25, appreciably greater than that from hard trimming. The
monitoring plots of BICWρ for both MM and S-estimation show a similar shape
to that for the FS; a peak followed by a decline and then an increase. To interpret
these maximum values we look at monitoring plots of the weights. Those for
MM-estimation are in the left-hand panel of Figure 10. This shows that the four
extreme outliers are detected at an efficiency of 0.98. However, the weights for
the two intermediate outliers decrease very slowly as the efficiency decreases, all
six outliers receiving sufficiently small weights to be detected only wheneff =
0.64. Just four outliers are detected ateff†.
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Figure 10: Stars data. Monitoring plot of weightsŵi. Left-hand panel MM-estimation;eff † =
0.82. Right-hand panel S-estimation with scale estimateσ̂d; d∗ = 0.33, d† = 0.25

For S-estimationd† = 0.25 andd∗ = 0.33. The monitoring plot of the weights
24



for S-estimation in the right-hand panel of Figure 10 shows that the four extreme
outliers have a weight≤ 0.01 from a bdp of 0.17. At 0.25 (d†) five observations
have small weights and ford ≤ 0.32 six observations are detected as outlying.
Sod∗ finds the same outliers as the hard trimming methods.

7.3. Example 3: Balance Sheet Data

Our final example has more observations and several explanatory variables.
The data are taken from a larger set giving balance sheet information on lim-
ited liability companies. The response is profitability of individual firms in Italy.
There are 998 observations with positive response and 407 with negative re-
sponse, making 1,405 observations in all. There are five explanatory variables
which are measures of financial properties of the firms, the two most important
being the ratio of labour cost to value added and the ratio of tangible fixed assets
to value added. The aim is to explain the profitability by regression on the five
explanatory variables.

The data were introduced by Atkinson et al. (2021) who give further details.
They show that the data need to be transformed to achieve approximate normal-
ity. Since 407 of the observations are negative, they used anextension of the
transformation of Yeo and Johnson (2000). Atkinson et al. (2021) found that the
positive observations should have a power transformation with parameter value
0.5, whereas the negative observations required a value of 1.5. We work through-
out with this transformation.

The right-hand panel of Figure 8 shows the monitoring plot ofBICW from
the FS. This is similar in shape to those in Figure 5 for the twosmaller sets of
data. In this case there is slight curvature as the value of BICW increases with
h, with a sharp peak. The maximum occurs whenh = 1396. For LTS, again not
shown, the maximum is atd = 0.007 when againh = 1396 (aboved = 0.01 a
finer grid of values in steps of 0.001 was used for monitoring). The indication
is that there are only nine outliers, that is less than 1%. Figure 14 of Atkinson
et al. (2021) has scatter plots of the residuals and shows theeffect of outliers on
the estimated parameters of the linear model.

For MM-estimation monitored over efficiency steps of 0.01,eff† = 0.99.
Monitoring over a finer grid shows that the value of BICρ continues to increase
to eff = 0.999 before decreasing sharply wheneff = 1. The left-hand panel of
Figure 11 shows that only three observations have zero weight at eff† = 0.99.
Although the figure suggests a group of nine residuals with small weights that
seems separate from the other residuals, all nine do not havezero weight untileff
has decreased to 0.95.
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Figure 11: Balance sheet data. Zooms of monitoring plot of weightsŵi. Left-hand panel MM-
estimation;eff † = 0.99. Right-hand panel S-estimation with scale estimateσ̂d; d∗ = 0.13, d† =
0.02

The results for S-estimation are in the right-hand panel of the figure. For
these datad† = 0.02. The figure shows that at this value of bdp only one ob-
servations has weight≤ 0.01. The value ofd∗ is a much larger 0.13. At this
value all the nine outliers are the only observations with small weights, so, for
this example, S-estimation of this form agrees with hard trimming.

7.4. Summary of Analysis of Examples

Table 3: Number of outliers detected by five methods for the three examples of §7
Example Illness Stars Balance Sheet

Method Estimate
LTS/FS n− h† 3 6 9
MM eff † 2 4 3
S d† 3 4 1
S d∗ 3 6 9

Table 3 shows the number of outliers detected by the hard and soft trimming
procedures of our paper when applied to the examples in this section. All, apart
from MM, find the three introduced outliers in the contaminated illness data.
S-estimation using the valued∗ (13) agrees with the two hard trimming meth-
ods, although the parameter estimates are found with more trimming, that is a
higher bdp, than those of the hard trimming methods. Both MM-estimation with
eff † and S-estimation usingd† appear, on this evidence, less reliable than hard
trimming.
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8. Comparisons and Extensions

In the appendix we describe two further forms of BIC for outlier detection
using soft trimming. The starting point is the robust criterion for regression
model selection of Maronna et al. (2019). This uses the quantity 2p of Akaike’s
AIC (Akaike, 1974) to penalize increasingly complex models. To form a sim-
ilar BIC for outlier detection we replace this penalty with that of §3.1, that is
k(p, n) = p logn. We call the resulting robust criterion BICR and define it in
equation (A.4). An expression for this criterion that is closer in form to BICWρ

is found by Taylor series linearisation of BICR. In (A.6) this is called BICL.
Table 4 provides a comparison of the performance of these twofurther forms

of BIC when they are used with S-estimation in the analysis ofthe three examples
of §7. The table gives the maximizing values of bothd† andd∗, together with,
for reference, the corresponding results from hard trimming.

Table 4: Comparison of values of the bdpd maximizing three forms of BIC for analysis of the
examples of §7 using S-estimation

Estimated Contaminated Stars Balance
Measure Maximum Illness Data Data Sheet Data
BICW LTS 0.07 (h = 50) 0.14 (h = 41) 0.007 (h = 1396)
BICW FS h = 50 h = 41 h = 1396
BICWρ d† 0.14 0.25 0.02
BICL d† 0.15 0.24 0.02
BICR d† 0.24 0.33 0.03
BICWρ d∗ 0.23 0.33 0.128
BICL d∗ 0.23 0.33 0.128
BICR d∗ 0.23 0.35 0.133

The purpose of the data analyses in this paper is to identify outliers and to
provide efficient parameter estimates for the non-outlyingdata. In the case of
LTS and S-estimation this leads directly to finding the smallest bdp value at
which the outliers are excluded from the analysis. The first two lines of Table 4
show that LTS and the FS find values of bdp smaller than those from the soft
trimming procedures based on S-estimation. Within the softtrimming methods,
the three forms of BIC provide similar values ofd† andd∗, except for the higher
value ofd† from BICR for the contaminated illness data. We therefore, if soft
trimming is required, suggest the use of BICWρ, the properties of which have
been more thoroughly explored in this paper.

27



We also tested robustness to the choice ofρ function. As an alternative
to the Tukey biweight we used the power divergenceρ function ρ(u) = 1 −
exp(−αu2/2), whereα is the parameter controlling breakdown point and effi-
ciency. Plots such as Figure 5 of Riani et al. (2020) indicatethat there is little
difference in asymptotic efficiency and breakdown point between thisρ function
and the Tukey biweight. The simulation results showed that BICWρ continued
to perform best although the results gave slightly larger values ofd† andd∗ than
those of Table 4. Tukey’s biweight is to be preferred for softtrimming, but flex-
ible hard trimming, either from the FS or monitoring LTS, is to be preferred.

9. Discussion

Flexible hard trimming combined with the information criterion BICW pro-
vides clear identification of outliers. For soft trimming our results indicate that
BICWρ is the preferred form of information criterion when S-estimation is used,
which is to be preferred to MM-estimation.

The outliers identified by applying BICW to the results of LTSor the FS
agree with those in our previous analyses using significancelevels and the prop-
erties of order statistics. For the three examples the FS analyses are respectively
given by Atkinson et al. (2021), Riani et al. (2014b) and Atkinson et al. (2020).
Here, in contrast, we run a single search through the data andmonitor the value
of the appropriate BIC, the maximum indicating which observations are outliers.
The complicated rule for determining significance of potential outliers is circum-
vented.

The calculations for the forward search only require updating a regression
that starts from a small number of observations. This is computationally much
simpler than the implementation of LTS we have used (see §6) in which an op-
timum solution has to be found for eachh, as it also is than monitoring MM- or
S-estimation, where numerical optimizations are requiredfor each value ofeff
or d. For large data sets we can use the results of Torti et al. (2021) which extend
the FS to moving forward by adding batches ofk > 1 observations.

We have restricted our attention to the classical case of theTukey-Huber
contamination model with fewer than 50% contaminated observations. It is im-
portant that the FS can be adapted also to the case of more than50% contamina-
tion, when this is physically meaningful, for example in clustering (Cerioli et al.,
2019).

The forms of BIC we have developed for the automatic detection of outliers
do not include significance tests. However, significance testing may be important
once the outliers, if any, have been detected (Cerioli and Farcomeni, 2011). The
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inclusion of least squares withh = n in the monitoring ensures that the models
we consider include one in which outliers are not deleted. Both diagnostic plots,
such as those of §7, and significance testing will be part of the determination
of the importance of any outliers; they may be random, their effect being to re-
duce the accuracy of conclusions drawn from the data or they might indicate,
in a medical context, a group of patients that responds differently to treatment.
Cox (2020) dissects forms of statistical significance appropriate to a variety of
data analytical tasks. Finally, we see a place for our results in automatic model
selection as an extension to the use of conventional BIC to cover the presence of
outliers.
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Appendix A. Appendix: Other Forms of Robust BIC for Soft Trimming

Maronna et al. (2019, p.137) derive a robust form ofCp for model selection.
We now extend their approach to provide two further versionsof BIC for soft
downweighting.

Akaike’s non-robust Final Prediction Error, FPE, for leastsquares regression
is written in (5.37) of Maronna et al. (2019) as

FPE=
1

n

n
∑

i=1

e2i

(

1 +
2p

n

)

, (A.1)

whereei = yi − xTi β̂. ThenR(β̂) =
∑

e2i and FPE= {R(β̂)/n}(1 + 2p/n).
Maronna et al. (2019) obtain a robust criterion for regression model selec-

tion starting from (A.1) in which least squares is replaced,in our case, by S-
estimation. The corresponding robust version of FPE (A.1) is

RFPE=
1

n

∑

ρ
(ei
σ̂

)

+
p

n

Â

B̂
, (A.2)

where

Â =
1

n

n
∑
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{

ψ
(ei
σ̂

)}2

and B̂ =
1

n

n
∑

i=1

ψ′
(ei
σ̂

)

,

with ψ(u) = ρ′(u).
The RFPE criterion (A.2) is for the comparison of regressionmodels. We

take the form of the linear model as given and are interested in monitoring the
behaviour of BIC as the valued of the breakdown point of the robust method
varies. To develop this novel form of BIC we rewrite (A.2) with the BIC penalty
and obtain

1

n

∑

ρ
(ei
σ̂

)

+
Â

2B̂

p logn

n
. (A.3)

Multiplication by−n yields the robust BIC

BICR = −
∑

ρ
(ei
σ̂

)

−
Â

2B̂
{p+

n
∑

i=1

(1− wi)} logn. (A.4)

To see the relationship between BICR and the BIC for hard trimming in (7)
we rewrite (A.3) as

ρ

{

1 +
Â

B̂

1

2ρ

p logn

n

}

, (A.5)
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whereρ =
∑

ρ(ei/σ̂)/n. Taylor expansion of the logarithm of (A.5) yields

log ρ+
Â

B̂

1

2ρ

p logn

n
.

Multiplication by −n and inclusion of the penalty for downweighting used in
(A.4) gives the approximate BIC

BICL = −n log ρ−
0.5

ρ

Â

B̂

{

p+

n
∑

i=1

(1− wi)

}

log n. (A.6)

The relationship between BICL and BICR depends on the Taylorexpansion.
For asymptotic equivalence we require that the quantity(Â/B̂){(p logn)/n} de-
crease withn. Since the asymptotic value of̂A/B̂ is finite (Maronna et al., 2019,
Chapter 10), we only require that the limit of(p logn)/n → 0 with n, which it
does for models in which the number of parameters is not a function of n. Ob-
servations which come in blocks of fixed sizes, each of which introduces a new
parameter, such as mixed pairs (Cox and Hinkley, 1974, p.17), require special
treatment. A model with random effects for blocks is one possibility.
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