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Abstract

Many countries have phased out nuclear power in response to concerns about
nuclear waste and the risk of nuclear accidents. This paper examines the
shutdown of more than half of the nuclear production capacity in Germany
after the Fukushima accident in 2011. We use hourly data on power plant
operations and a machine learning approach to estimate the impacts of the
phase-out policy. We find that reductions in nuclear electricity production
were offset primarily by increases in coal-fired production and net electricity
imports. Our estimates of the social cost of the phase-out range from 3-8 billion
euros per year. The majority of this cost comes from the increased mortality
risk associated with exposure to the local air pollution emitted when burning
fossil fuels. Policymakers would have to significantly over-estimate the risk or
cost of a nuclear accident to conclude that the benefits of the phase-out exceed
its social costs. We discuss the likely role of behavioural biases in this setting,
and highlight the importance of ensuring that policymakers and the public are
informed about the health effects of local air pollution.
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1 Introduction

The Intergovernmental Panel on Climate Change (IPCC, 2018) and the International

Energy Agency (IEA, 2019) both envisage nuclear power continuing to play an im-

portant role in mitigating climate change over the coming decades. This is because

nuclear electricity generation produces minimal carbon emissions under normal oper-

ating conditions (Markandya and Wilkinson, 2007). In contrast, burning fossil fuels

to produce electricity is known to emit both global pollutants that contribute to

climate change and local air pollutants that have negative consequences on human

health (NRC and NAS, 2010; Jaramillo and Muller, 2016; Deschenes, Greenstone

and Shapiro, 2017; Holland et al., 2018).

Despite this, many countries have explicit policies in place to phase-out nuclear

power entirely, including Germany, Belgium, Spain, Switzerland, and South Korea.

These phase-out policies were implemented primarily in response to concerns about

long-term solutions for storing nuclear waste and public fears of catastrophic nuclear

accidents. These fears intensified considerably following the incidents at Three Mile

Island in 1979, Chernobyl in 1986, and Fukushima in 2011.

The decision to phase-out nuclear production in many countries seems to suggest

that the expected costs of nuclear power exceed its benefits. Yet, it has proven

difficult to empirically quantify the full range of economic and environmental impacts

from large-scale shifts away from nuclear power. This paper aims to fill this important

gap by documenting how the phase-out of nuclear power in Germany affected market

and environmental outcomes.

The context of Germany’s nuclear phase-out affords us several advantages over

previous research studying closures of nuclear power plants. First, and most impor-
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tantly, Germany shut down over 12 GW of nuclear production capacity during this

period, with two thirds of this occurring over a few months in 2011. This is far larger

than the reductions in capacity studied by previous research that focused on the shut-

down of a small number of nuclear plants in the United States (Davis and Hausman,

2016; Severnini, 2017; Adler, Jha and Severnini, 2020). Second, Germany plans to

shut down all of its remaining nuclear reactors by 2022. Our study thus provides

timely and policy-relevant information on the consequences of Germany’s nuclear

phase-out moving forward. Third, studying electricity markets in the European con-

text gives us the opportunity to examine how cross-border trade was impacted by a

large shock to production in one country. Finally, Germany’s nuclear phase-out was

the direct result of political actions taken following extensive anti-nuclear campaign-

ing in Germany as well as a sudden increase in the perceived risk of nuclear power

following the Fukushima accident in Japan (Goebel et al., 2015). Importantly, the

phase-out was not caused by changes in the economic or environmental conditions

pertaining to nuclear production in Germany.

This paper adds to the relatively small literature that explores the effects of the

nuclear phase-out on the German electricity sector. For instance, both Traber and

Kemfert (2012) and Knopf et al. (2014) used mixed economic-engineering models of

the power sector to forecast changes to capacity investments, electricity prices, and

carbon emissions. More recently, Grossi, Heim and Waterson (2017) uses an event

study framework to econometrically estimate the impact of the initial nuclear plant

closures in 2011 on electricity prices over a three year window between 2009 and

2012. Another paper by Grossi et al. (2018) focuses on the impacts of the phase-out

on electricity prices in neighboring countries. The broad consensus across this small

existing literature is that nuclear power was replaced primarily by fossil-fuel-fired
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production, resulting in higher electricity prices and more carbon emissions.

We expand on this existing literature by estimating the spatially disaggregated

impacts of the phase-out on production costs, net electricity imports, and local air

pollution. Estimating plant-level changes in output due to the phase-out is especially

important because the majority of the social cost of this policy stems from the

increases in local air pollution caused by replacing some of the lost output from

nuclear sources with coal-fired electricity production. We also do not consider just

the initial nuclear reactor closures in 2011. Since our analysis runs to the end of

2019, we incorporate the subsequent incremental shutdowns of nuclear power plants

over this period.

To proceed, we use a machine learning framework to estimate each plant’s coun-

terfactual output over time under a “no phase-out” scenario. This counterfactual

allows us to identify which power plants increased their output in response to the

nuclear plant closures. Our approach draws upon a growing literature exploring

ways to use machine learning methods to construct counterfactuals (Varian, 2014,

2016; Athey et al., 2017; Carvalho, Masini and Medeiros, 2018). A smaller number

of papers have applied these techniques to evaluate policies in the energy sector.

For instance, Burlig et al. (2020) study an energy efficiency program for schools in

California using regularized regression methods to estimate counterfactual electricity

consumption patterns. Both Souza (2020) and O’Neill and Weeks (2019) also ex-

amine programs aimed at encouraging energy savings, leveraging machine learning

methods to construct counterfactuals that can identify important heterogeneity in

treatment effects. We focus on a policy that affects electricity producers by altering

the dispatch of power plants. Similar in spirit, Abrell, Kosch and Rausch (2019) uses

a machine learning framework to predict the counterfactual dispatch of power plants
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as part of their analysis of the UK’s carbon tax.

To conduct our analysis, we combine hourly data on observed power plant oper-

ations between 2010-2019 with a wide range of related information, including elec-

tricity demand, local weather conditions, wholesale electricity prices, fuel prices and

various plant characteristics. We use these data to train a machine learning algo-

rithm that can predict plant operations based on market conditions. This allows

us to predict the quantity of electricity produced by each power plant in Germany

in each hour-of-sample under two scenarios: one with the nuclear phase-out and

one without it. We interpret the difference in market and environmental outcomes

between these two scenarios as the impact of the phase-out policy. The results of

this estimation procedure indicate that the lost nuclear electricity production due

to the phase-out was replaced primarily by coal-fired production and net electricity

imports. This phase-out induced increase in coal-fired production remains sizable

and persists through 2019 across a variety of specifications, including a wide range of

assumptions regarding the level of investment in renewables caused by the phase-out.

We use the predicted changes in plant-level electricity production due to the

nuclear shutdowns to calculate the private and external costs of the phase-out. Our

estimates of the social cost of the phase-out to German firms and residents range from

3-8 billion euros per year. The majority of this cost is due to the increased mortality

risk from local air pollution exposure as a consequence of the increased use of fossil

fuels for electricity production. We also find that the private costs of electricity

production and wholesale electricity prices in Germany increased as a consequence

of the phase-out, confirming and extending the results from the previous literature

over a longer post phase-out period.1

1Neidell, Uchida and Veronesi (2019) and He and Tanaka (2019) document increases in mortality
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Taken together, our analysis suggests that German citizens faced increased elec-

tricity prices and greater exposure to local air pollution as a result of the phase-out of

nuclear power. The phase-out also made meeting national targets to reduce carbon

emissions more challenging. Despite this, the phase-out continues to receive broad

support, with more than 81% of German residents in favor of the policy in a 2015

survey (Goebel et al., 2015). Concerns about the risks of nuclear accidents and stor-

ing nuclear waste are central to anti-nuclear sentiment, and motivated the decision

to phase-out nuclear power (Ethics Commission, 2011).

The risks of nuclear power are difficult to quantify. Nevertheless, even the largest

estimates of the expected benefits from reducing nuclear risks are much smaller than

our estimates of the social costs of the phase-out (D’haeseleer, 2013). For the ex-

pected benefits of the phase-out to be equal to the lower bound of our estimated

social costs, policymakers would have to either exhibit a very high level of risk aver-

sion or view nuclear accidents as being much more likely than the available evidence

suggests (Wheatley, Sovacool and Sornette, 2017). Consistent with this, previous re-

search has shown that people tend to greatly overestimate both the probability of a

nuclear accident and the expected damages from such an event (Slovic, Fischhoff and

Lichtenstein, 1979; Slovic and Weber, 2002; Slovic, 2010). The decision to phase-out

nuclear power therefore suggests a preference for reducing exposure to low probabil-

ity, highly uncertain, and potentially catastrophic nuclear accidents, even if this leads

to relatively moderate damages from exposure to pollution emitted due to the pro-

longed reliance on fossil-fuel-fired electricity production. Such behavior is consistent

with many components of prospect theory, in particular loss aversion and relying on

“probability weighting” rather than objective probabilities (Kahneman and Tversky,

stemming from policy-induced increases in retail prices and reductions in electricity consumption
following the phase-out of nuclear power in Japan.
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1979; Barberis, 2013).

Nuclear accidents were particularly salient in the immediate aftermath of the

Fukushima crisis (Ethics Commission, 2011; Goebel et al., 2015; Tanaka and Zabel,

2018). By comparison, an incremental increase in mortality risk due to local air

pollution exposure is far less salient. Research on the role of framing effects has

documented a behavioral bias towards placing increased weight on the more salient

aspects of a decision (Kahneman, 2003). Consistent with this, policymakers appear

to have made no mention of the impact of the phase-out on local air pollution when

making their decision (BMWI, 2010; Ethics Commission, 2011). Further, subsequent

studies of the impact of the phase-out have also focused exclusively on electricity

prices and carbon emissions (Knopf et al., 2011; Traber and Kemfert, 2012; Knopf

et al., 2014; Grossi, Heim and Waterson, 2017; Grossi et al., 2018).2 The omission of

local air pollution is especially troubling because the vast majority of the social costs

of the phase-out originate from increases in air pollution due to increased output

from fossil-fuel plants. This highlights the importance of ensuring that the public

are informed about the health costs of local air pollution, and that policymakers

incorporate these health costs into their decisions.

2 Background on Nuclear Power in Germany

The first nuclear power stations were built in Germany in the 1960s. Germany’s

nuclear production capacity expanded rapidly over the next three decades; the last

nuclear reactor was commissioned in 1989. Despite no new reactors coming online

2We note that the absence of academic studies and discussions by policymakers of the potential
impact of the phase-out on local air pollution does not by itself imply that the general public is
unaware of this issue.
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in the 1990s and 2000s, roughly 25% of Germany’s electricity production came from

nuclear plants prior to 2011.

Nuclear power has long been controversial in Germany. There were protests as far

back as the 1970s at a number of sites where nuclear facilities were either proposed

or under construction. However, the Chernobyl disaster in Ukraine in 1986 created

a focal point in the politics of nuclear power in Germany. Specifically, radioactive

fallout affected much of the country and led to growing public concern. In 1998, the

Schröder government took power through a coalition between the Social Democratic

Party (SPD) and the Green Party. Over the next two years, the Schröder government

banned the construction of new reactors and negotiated a policy of phasing out

nuclear power completely. This plan called for all nuclear reactors to be shut down

by 2022.

The center-right Merkel government came to power in 2009. This government

renegotiated the original phase-out policy by committing to extend the lifetimes of

the existing reactors. This revised policy pushed back the shutdown of the last nu-

clear reactor into the 2030s. The extensions would be 8 years for the eight older

reactors built up to and including 1980, and 14 years for the nine newer reactors

built after 1980. However, the specter of nuclear disaster rose again due to the

Fukushima incident on March 11, 2011. In response, public opposition to nuclear

power intensified again, with an estimated 250,000 people taking to the streets na-

tionwide to protest in the days and weeks following March 11, 2011. The resulting

political pressure forced the Merkel government to declare a moratorium on planned

extensions at existing nuclear power plants almost immediately after the Fukushima

incident. In addition, eight older reactors were taken offline for testing.

By May of 2011, German policymakers decided to return to a version of the

8



original plan: phase out all nuclear power by 2022. Specifically, of the seventeen

reactors operating in 2011, the eight reactors already temporarily offline were closed

immediately (8.4 GW of capacity), a ninth reactor was closed in 2015 (1.3 GW), a

tenth in 2017 (1.3 GW), an eleventh in 2019 (1.4 GW), and the final six reactors

(8.1 GW) will close in 2022. Our sample period ends in 2019. Consequently, our

empirical analysis focuses on the closure of the nuclear reactors in 2011, 2015, 2017

and 2019, but does not forecast the impact of the planned closures in 2022.

The phase-out of nuclear power is part of a wide-ranging transformation of Ger-

many’s energy sector known as the Energiewende. The primary goal of this policy

is to reduce Germany’s carbon emissions by at least 80% by 2050 relative to 1990

levels (BMWi, 2018). To achieve this, Germany has undertaken major investments

in renewable electricity production, transmission grid infrastructure, and energy ef-

ficiency measures. The sweeping scope of the Energiewende policy highlights the

importance of accounting for a host of potential time-varying confounders when as-

sessing the impact of the nuclear phase-out. This motivates the development of our

machine learning approach.

3 Data Description and Summary Statistics

This paper brings together a wide range of publicly available data on the German

power sector. First, we obtain data on the hourly operation of the electricity grid in

Germany from the European Network of Transmission System Operators for Elec-

tricity (ENTSOE). This includes hourly data on total electricity demand, aggregate

electricity production by source type, and imports and exports in and out of Germany

at border points. ENTSOE also provide data on unit-level electricity production for
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all power plants with production capacity greater than 100MW.

However, the ENTSOE data are only available from 2015-2019. In order to study

the nuclear phase-out beginning in March 2011, we supplement the ENTSOE data

with data on hourly total production by source (e.g., nuclear, coal, natural gas, oil,

etc.) from the European Energy Exchange (EEX) for 2010-2019. A key advantage

of our machine learning approach is that it allows us to combine hourly source-

level data on electricity production from 2010-2019 with data on hourly plant-level

output from 2015-2019 in order to construct a prediction of each plant’s output in

each hour-of-sample for the entire 2010-2019 sample period.

We also integrate data from Germany’s four different transmission system opera-

tors (TSOs) that are each responsible for a different geographical area on the German

grid: Amprion, TenneT, TransnetBW and 50Hertz. Each TSO reports hourly pro-

duction from wind and solar sources for the period 2010-2019. The TSOs also provide

data at the hourly level on electricity imports and exports in and out of Germany at

border points, as well as the hourly total quantity of electricity demanded for their

portion of the grid.

We utilize data on hourly wholesale electricity prices for both Germany and

neighboring countries. These data are collected by ENTSOE and are accessible

through Thomson Datastream.

We construct each fossil-fuel-fired plant’s marginal cost in each day using data

on input fuel prices and carbon emission prices gathered from the following two

sources. First, Thomson Datastream provides data on daily natural gas prices in

Germany. The Intercontinental Exchange (ICE) lists monthly coal and oil prices as

well as the monthly permit prices for carbon dioxide emissions set by the European
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Union Emissions Trading System (EU-ETS).3 Assumptions on other components of

variable costs and fixed costs for all sources (including nuclear, wind and solar) are

taken from a range of industry reports and are discussed in Section 6.2.

Our analysis of the environmental impacts of the nuclear phase-out also combines

data from multiple sources. The European Environment Agency (EEA) reports an-

nual carbon dioxide emissions for each power plant that participates in the EU-ETS.

The EEA also reports annual plant-level data on fuel inputs and local air pollution

emissions.4 Daily station-level weather data comes from Germany’s national meteo-

rological service (DWD) and daily ambient air pollution monitor data are from the

German Environment Agency (UBA). Finally, we compile other electricity sector

data and power plant level characteristics from a variety of different sources (Open

Power System Data, 2018; BNetzA, 2020; Egerer, 2016a).

Table 1 provides summary statistics for the aggregate electricity sector and by

type of plant in 2010 (the first year in our sample) and 2019 (the last year in our

sample). The top panel documents the drastic shifts in the electricity production

mix over this time period. Nuclear production almost halved while production from

renewable resources more than doubled. Production from coal plants declined while

production from natural gas plants grew, due primarily to relative changes in coal

prices versus natural gas prices as well as increases in carbon permit prices. Since

total electricity demand has remained largely flat over the 2010s, the additional

production from renewables has also served to expand Germany’s position as a net

exporter of power to neighboring countries. Online Appendix Figure A.1 presents a

more detailed breakdown of the quantity of electricity produced by different types

3Specifically, we use the futures price corresponding to the nearest term monthly contract (i.e.,
the front month futures contract).

4These data are collected as part of monitoring for the EU Large Combustion Plant Directive.

11



Table 1: Summary Statistics

2010 2019
Production and Net Imports

Annual Totals (TWh)
Nuclear 134.7 69.5

Hard Coal 93.9 53.4
Lignite 130.9 104.2

Gas 53.6 75.5
Oil 1.9 3.1

Hydro, Solar and Wind 76.4 193.5
Net Electricity Imports -2.4 -33.8

Total Number of Plants
Nuclear 15 7

Hard Coal 67 56
Lignite 31 34

Gas 176 209
Oil 33 30

Total Capacity (GW)
Nuclear 19.2 9.5

Hard Coal 25.8 23.7
Lignite 20.2 21.0

Gas 22.8 26.2
Oil 3.8 3.7

Marginal Cost (2019 e per MWh)
Nuclear 11.2 10.0

Hard Coal 46.2 43.6
Lignite 38.8 44.2

Gas 57.2 46.9
Oil 145.8 141.5

Wholesale Electricity Price (2019 e/MWh) 53.21 37.21

Notes: This table reports summary statistics for Germany’s electricity generation sector in
2010 and 2019. Annual electricity production data is taken from BNetzA (2020). If data for
2019 are not yet available, we extrapolate values based on more up-to-date data from Fraunhofer
ISE. The power plants in our sample are those listed in BNetzA’s Power Plant List, compiled by
Open Power System Data (2018). Electricity prices are from ENTSOE and Thomson Reuters.
Marginal costs are calculated by the authors based on various sources, full details of which can
be found in Section 6.2. All monetary values are in constant 2019 e.
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of sources in Germany over 2010-2019.

Table 1 also documents that wholesale electricity prices fell by 30% from 2010 to

2019. The main driver of this decline in wholesale prices was the large increase in

zero marginal cost production from wind and solar resources. A secondary driver was

the fall in the price of natural gas. Natural gas plants are often the marginal source

of generation in Germany, and the average marginal cost of gas-fired production fell

by 17% between 2010 and 2019.

While wholesale prices decreased from 2010 to 2019, the revenues earned by

plants outside of the wholesale market have increased significantly. Renewables in

particular receive guaranteed payments well in excess of the wholesale price. For

example, wholesale prices were roughly e37 per MWh in 2019 yet renewable resources

received additional subsidy payments averaging e130/MWh in this year.5 Fossil

plants also earn sizeable non-market revenues, in large part due to the subsidies paid

to combined heat and power plants that produce both electricity and useful heat.

Due to this dramatic increase in payments made outside of the wholesale market, the

prices faced by end-use consumers of electricity in Germany have actually risen from

2010 to 2019 despite the reduction in wholesale electricity prices (BNetzA, 2020).

The second and third panels of Table 1 report the total number of plants and the

total amount of production capacity at the beginning of 2010 versus the beginning of

2019 for each of the major conventional sources of power in Germany: nuclear, hard

coal, lignite, natural gas, and oil. The shutdown of nuclear plants is evident from

the decline in both the number of plants and the amount of nuclear capacity.6 The

5These subsidies range from e60/MWh for onshore wind to as much as e270/MWh for solar
panels (BNetzA, 2020).

6One nuclear reactor closed at the end of 2019. We also exclude the two reactors at the Kruemmel
power plant from our analysis because this plant was already in long-term shutdown since 2009.

13



capacity of fossil fuel plants has remained largely flat. As documented in the fourth

panel of Table 1, outside of renewables, nuclear plants have the lowest marginal costs,

followed by lignite, hard coal, natural gas and lastly the small number of peaking oil

plants.

4 Event Study Framework and Results

In response to the Fukishima nuclear accident in Japan, the German government

suddenly and unexpectedly shut down eight nuclear reactors on March 15th 2011.

We can thus analyze the impact of these closures on market outcomes using the

event study framework formulated in Davis and Hausman (2016) and more recently

implemented by Grossi, Heim and Waterson (2017). Specifically, we apply this event

study framework to estimate how total electricity production from each fuel type i in

each hour-of-sample t responds to changes in electricity demand before versus after

March 15th, 2011.

The independent variables of interest are equally-spaced bins of net electricity

demand interacted with an indicator for observations after March 15th 2011. For the

purpose of this event study, “net electricity demand” is defined as electricity demand

net of production from renewable sources. We consider net demand because produc-

tion from renewable sources has near-zero marginal costs and is “non-dispatchable”:

wind and solar resources are only able to produce when the wind is blowing or the

sun is out.7 In order to implement the event study approach, we restrict the sample

to observations less than 12 months before or after March 15th 2011 and estimate

7In making this assumption, we follow Davis and Hausman (2016).
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the following regression:

Gi,t =
∑
b

[1{Lt ∈ Bb}(αi,b + βi,b · 1{t ≥ 3/15/2011})] + γm + εi,t (1)

where Gi,t is the total quantity of electricity produced by fuel type i in hour-of-sample

t. Lt is net demand in hour t, and 1{Lt ∈ Bb} is an indicator that takes on the value

one if Lt is in bin Bb and is zero otherwise. Next, the indicator 1{t ≥ 3/15/2011}

takes on the value one if the observation corresponds to an hour-of-sample on or

after March 15th 2011 and is zero otherwise. Finally, we include month-of-year fixed

effects (i.e.: γm) and cluster standard errors by week-of-sample.

Figure 1 plots the coefficient estimates of interest (i.e.: β̂i,b) along with their 95%

confidence intervals. Panel (a) of this figure shows that hourly electricity production

from nuclear sources dropped by roughly 5 GWh on average across all levels of net

demand. Panels (b)-(d) demonstrate that this lost nuclear production was offset in

large part by increases in electricity production from fossil fuel sources. Specifically,

production from lignite increased by roughly 1 GWh on average at low levels of

net demand. Production from hard coal increased by 2-3 GWh on average across

all levels of net demand. Finally, gas-fired electricity generation also increased by

roughly 2 GWh on average, and by as much as 6 GWh for hours-of-sample with very

high net demand.

There are several limitations to this event study approach. First, hourly plant-

level data on electricity production are not available prior to 2015. Consequently,

the event study framework cannot be used to explore heterogeneity in how different

plants respond to the nuclear phase-out beginning in 2011. This heterogeneity is

especially important because the amount of local air pollution emitted per MWh

15



Figure 1: Event Study Estimates of the Effect of the 2011 Nuclear Plant Closures
on Nuclear and Fossil-Fuel Electricity Production

(a) Nuclear (b) Lignite

(c) Hard Coal (d) Natural Gas

This figure plots the results from an event study analysis of the effects of the nuclear phase-out
in Germany in 2011. Values are plotted to show how the impact varies between source types
and across each bin of net demand (i.e., electricity demand minus production from renewables).
The pre period spans the year prior to March 15, 2011, and the post period spans the year after.
The box plots in green (shifted left) correspond to the pre period electricity production. The
box plots in orange (shifted right) correspond to the post period electricity production. The
points in black correspond to the estimated coefficients of the difference, with 95% confidence
intervals constructed based on standard errors that were clustered by week-of-sample. Panel (a)
presents the estimates for nuclear production, while Panels (b)-(d) present the corresponding
estimates for production from lignite, hard coal, and natural gas, respectively.
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of production can vary significantly across plants burning the same type of fuel.

In addition, the monetary damage from local air pollution emissions is also tied

directly to the number of people exposed to this pollution; the same level of pollution

emissions from two different plants can have very different damages based on the

number of people living near each of these plants.

Second, the event study framework relies on the assumption that changes in

power plant operations around March 15, 2011 are caused by the nuclear reactor

closures rather than changes in other factors that determine production behavior.

To ensure that this assumption holds, we examine the impact of the phase-out in a

fairly narrow window around the initial 2011 shutdowns. Focusing on this narrow

window allows us to argue that electricity suppliers could only respond to the nuclear

shutdowns in the very short-run by adjusting output. However, subsequent nuclear

plant shutdowns occurred incrementally and were pre-announced. As such, firms

may have been able to take actions in anticipation of these later closures.

Finally, other important economic factors changed over our 2010-2019 sample

period. For example, coal and natural gas plants had similar marginal costs in 2011.

However, coal prices decreased precipitously from 2011-2015 while natural gas prices

increased over this period. Coal plants were thus increasingly more likely to produce

in place of natural gas plants from 2011-2015 even absent any changes in nuclear

power production. In addition, many older coal and gas plants were retired between

2010 and 2019, and a number of new fossil-fuel-fired plants came online during this

period as well. Summarizing, it is unlikely that market outcomes before versus after

March 2011 were driven solely by the phase-out, especially as we look further in time

after the 2011 shutdown decision.

Combined, these concerns motivate the development of a machine learning ap-
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proach that can estimate the spatially disaggregated impacts of the nuclear phase-out

over a longer time horizon controlling flexibly for changes over time in other impor-

tant economic factors.

5 Machine Learning Methodology and Validation

We develop a machine learning approach to more credibly estimate the economic and

environmental impacts of the series of nuclear plant closures that occurred between

2011 and 2019. The first subsection discusses the construction of the dependent and

independent variables while the second subsection provides details on the random

forest algorithm used to estimate the relationship between these variables. We next

describe how we use our estimates to calculate hourly output for each plant in each

of two scenarios: with the nuclear phase-out versus without the nuclear phase-out.

The final two subsections discuss robustness to changes in other economic factors

due to the phase-out and performance of the model respectively.

5.1 Constructing the Training Dataset

We train our machine learning algorithm to predict power plant operations using

a data set of roughly 6.5 million observations. The goal is obtain estimates of the

hourly quantity of electricity produced by each “dispatchable” plant in the sample in

scenarios with versus without the nuclear phase-out. “Dispatchable” plants include

all fossil fuel power plants (i.e., lignite, hard coal, natural gas, oil) and each border

point.

All other sources of power production (i.e., nuclear, wind, solar, hydro, biomass,
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waste and pumped storage) are treated as “non-dispatchable”. Other than any ex-

ante adjustments made to explicitly account for the impact of the phase-out on

total production from nuclear and renewables sources, we assume that the levels of

output from nondispatchable sources are determined exogenously and are thus equal

to observed output levels for both the phase-out and no-phase-out scenarios. The

net electricity demand that must be met by “dispatchable” sources is equal to total

electricity demand minus the output from nondispatchable sources.

Strictly speaking, many “non-dispatchable” plants can actually vary their output

in response to market conditions. However, this tends to be the exception rather than

the rule. The bulk of non-dispatchable output comes from wind and solar resources.

These resources have near-zero marginal costs and so will generally produce as much

as possible based on how much the wind is blowing or the sun is shining. Renewable

sources are also generally remunerated through fixed price feed-in-tariffs, reducing

their incentive to respond flexibly to market conditions. The operations of many

other types of nondispatchable sources are driven by important factors outside of the

electricity market, such as seasonal rainfall for hydro and the supply characteristics

of input fuels for waste. As such, it seems reasonable to take the operations of these

plants as largely invariant to the changes in market conditions in our model. Further

details on how we model output from non-dispatchable sources in the phase-out and

no-phase-out scenarios are provided later in this section and in Online Appendix

Section B.

Hourly data on plant-level electricity production are available for all EU member

states since 2015 from ENTSOE.8 We also model electricity imports and exports at

8The data include only plants with capacity greater than 100MW. This covers 100% of produc-
tion from nuclear plants, 95% from lignite plants, 85% from hard coal plants, 50% from gas plants
and 45% from oil plants. We treat the operating behavior of these plants as being representative
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each border interconnection between Germany and its neighboring countries. For

example, consider the hourly net electricity imports from France to Germany. If

France exports 50 MWh of electricity to Germany, this border point would be mod-

eled as “producing” 50 MWh. Conversely, if France imports 50 MWh of electricity

from Germany, this border point would be modeled as “producing” -50 MWh.

Our analysis is primarily based on changes occurring within Germany’s national

borders. This is due both to data availability and our aim of evaluating whether

a national policy decision, the nuclear phase-out, ultimately benefited stakeholders

in Germany. In reality though, the German electricity grid operates in a manner

that is fully integrated with neighboring Luxembourg and Austria. Rather than

extending our analysis to directly model the behavior of plants located outside of

Germany, we capture these interconnections through our modeling of cross-border

flows at border points. For instance, our model is able to capture that net imports

from Austria to Germany are sizable in the winter due to output from seasonal hydro

plants across the border in the Alps. We believe our approach is sufficient to capture

the core dynamics of interest. Moreover, moving to explicitly modeling plants in

Luxembourg and Austria would be unlikely to significantly alter our findings in

large part because border flows with these two countries are small relative to the role

of in-country production in Germany.

The dependent variables considered in the machine learning approach are the

production levels from each of the power plants and border points in the sample. In

all cases, we normalize the relevant dependent variable by dividing output by the

maximum production capacity of each power plant or the maximum transfer capacity

of the remaining plants with capacity less than 100MW, conditional on a range of other plant
characteristics including technology type, combined heat and power functionality, and location.
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of the border point. Our algorithm focuses on dependent variables that are bounded

between 0 and 1; we rescale the flows from border points from their original scale

of -1/1 to 0/1 when applying the algorithm. We refer to this rescaled output as the

operating rate.

The independent variables include net electricity demand, local weather, each

plant’s marginal cost, the availability of other power plants, an indicator for whether

the plant operates as a combined heat and power plant, and a wide range of power

plant characteristics such as fuel type, efficiency, technology, and location. We es-

timate a model that predicts the operating rate for each power plant and border

point in each hour using these independent variables. Importantly, we have data on

all of the independent variables from 2010-2019. This allows us to predict hourly

electricity production for all plants over the 2010-2019 period, despite only observing

hourly plant-level production from 2015 onward.

We also build a predictive model for wholesale electricity prices. However, there

is no cross-sectional variation in these prices; the hourly wholesale electricity price

is the same throughout Germany. In this case, the independent variables for the

time-series model of electricity prices include electricity demand, national average

weather, and the marginal cost of the plant with the largest marginal cost among

plants operating in the hour-of-sample.9

9In order to assuage concerns that the marginal cost of the marginal unit is a function of
the phase-out policy, we calculate this magnitude separately for the phase-out and no-phase-out
scenarios based on the intersection between the supply curve and the net demand implied by the
scenario considered. See Online Appendix Section B.2.2 for further discussion.
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5.2 Random Forest Algorithm

We predict outcomes using a Random Forest regression algorithm (Breiman, 2001).

In particular, we use the Quantile Regression Forest algorithm (Meinshausen, 2006).

Random forests are especially well-suited for our empirical context for several reasons.

First, each plant’s production is based on a potentially complex combination of

factors such as the marginal costs and availability of other plants, electricity demand

at different locations, and transmission constraints. Consequently, the relationship

between plant-level production and the independent variables listed above is likely to

be highly non-linear and include multiple interactions. Random forest methods are

well-suited to use variation in the data in order to find these interactions rather than

pre-specifying how independent and dependent variables relate using polynomials or

splines as in a more standard regression framework.10

Second, the Random Forest algorithm ensures that the support of possible predic-

tions of an outcome is bounded by the support of the observed values of this outcome

variable in the training data set. This prevents nonsensical predictions such as plants

producing negative amounts of electricity or producing greater than their capacity

(e.g., operating rates above 100% or below 0%).11

Third, the Quantile Regression Forests algorithm produces predictions for the

full conditional distribution of the outcomes rather than just their expected value.

This property allows us to make corrections to ensure that the total electricity supply

implied by our predictions equals electricity demand. It is typically impossible to im-

pose the constraint in this kind of empirical approach that electricity supply matches

10Capturing these kinds of non-linear effects is not a capability unique to random forests. Other
machine learning algorithms (e.g. kernel-based methods) can also capture non-linearities.

11Random forests are not alone in being able to bound variables in this way. Logistic regression
methods, for example, also have this desirable property through their use of a sigmoid function.

22



demand. However, the quantile random forest algorithm allows us to find, for each

month-of-sample and each scenario considered, the percentile of the distribution of

predicted plant-level output that ensures that total electricity supply equals demand.

Online Appendix Section B.4 provides more details on the determinants of the

percentile chosen (e.g., net demand) as well as sensitivity analyses that show our

main results are not driven by differences in the percentiles chosen across the factual

phase-out versus counterfactual no-phase-out scenarios.

5.3 Implementation for our Application

We use the trained machine learning model to construct two data series. First, we

predict hourly plant-level electricity production at each fossil fuel plant and border

point using the observed values of the independent variables over 2010-2019. This

provides us with electricity production levels at each plant and border point in the

“factual” scenario with the nuclear phase-out. The machine learning model is neces-

sary for estimating plant-level production even in the factual scenario because there

is no hourly plant-level production data prior to 2015.

Second, we use the model to estimate hourly production for the same set of

plants and border points in the counterfactual scenario where there was no nuclear

phase-out. Put another way, we predict plant-level production and point-level flows

assuming that the nuclear reactors that were shut down in 2011, 2015, 2017 and

2019 would have remained operational until the end of 2019. To do this, we first

calculate the amount of electricity these nuclear plants would have produced in each

hour-of-sample if they had remained online. We assume that the nuclear plants that

were shut down would have operated at 80% of their capacity on average over the
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period to the end of 2019.12 We also assume that all of the reactors that were shut

down between 2011 and 2019 would have continued to operate until at least the end

of 2019 in the absence of the phase-out.13,14 The resulting estimate of counterfactual

nuclear output in the absence of the phase-out is also adjusted to account for seasonal

fluctuations in output that primarily reflect the timing of annual maintenance in the

summer months.15 We subtract our estimated counterfactual nuclear output from

net electricity demand, thus reducing the production needed from the remaining

plants and border points.

Our exposition has thus far focused on hourly plant-level production and point-

level net flows. However, we utilize a similar approach to assess the impact of the

phase-out on wholesale electricity prices. Further details on this, and the implemen-

tation of our machine learning algorithm in general, can be found in Online Appendix

Section B.

12Many nuclear plants in Germany consistently achieve operating rates of around 90%. However,
we opt for a lower value to capture the fact that the plants that were first to shut down tended to
be older. In addition, even absent the phase-out, these plants would have needed to be taken offline
for a period of time for reactor extension upgrades.

13The original reactor extension policy envisaged increasing the operating lifetimes of Germany’s
nuclear reactors by between 8-14 years. In addition, the market conditions for nuclear plants have
not been as challenging in Europe as in the United States, largely because natural gas prices in Eu-
rope have been systematically higher than those in the United States until recently. Consequently,
even the oldest plants that were shut down in 2011 would have been likely to remain in operation
until the end of 2019 absent the phase-out.

14The Kruemmel nuclear power plant was placed in long-term shutdown in 2009; this plant is
not assumed to be turned back on in the “no-phase-out” scenario.

15We make this adjustment based on observed fluctuations in monthly total nuclear production
from 2012 to 2014 because there were no nuclear shutdowns during this period.
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5.4 Accounting for Other Impacts of the Phase-Out

Our approach adjusts the level of net demand faced by fossil fuel plants and border

points to reflect the nuclear production lost due to the phase-out. In doing so, we

hold independent variables other than net demand fixed at their historically observed

values for both the phase-out and no-phase-out scenarios. This assumption seems

reasonable for independent variables such as those based on plant characteristics,

temperature, and the seasonality of demand. Our approach also follows previous

literature in assuming that fuel prices are unaffected by the phase-out (e.g., Grossi,

Heim and Waterson (2017)).

However, the phase-out potentially impacted the level of investment in wind and

solar resources. Namely, the incentives to invest in renewables might not have been

as strong in the absence of the phase-out. To account for this, we assume that

annual renewable production in the no-phase-out scenario would have been 30 TWh

lower by 2020. We chose 30 TWh based on changes made to Germany’s renewable

energy targets in response to the phase-out decision.16 A 30 TWh per year reduction

amounts to a 15% decrease in renewable production by the end of our study period.

We decrease the aggregate level of renewable production in the counterfactual

no-phase-out scenario by proportionally adjusting observed total hourly output from

wind and solar resources.17 To demonstrate the sensitivity of our findings to different

16Specifically, in 2010, Germany planned on producing at least 30% of its electricity from renew-
ables by 2020. However, this target was increased to 35% following the 2011 phase-out decision
(Jacobs, 2012). The difference between these two targets requires a change in annual renewable
production of roughly 30 TWh per year by 2020.

17We assume that the decrease in renewable production in the absence of the phase-out grows
linearly from 0 TWh per year in 2010 to the assumed amount of 30 TWh per year in 2020. To
take 2015 as an example, in our baseline scenario, we assume that 15 TWh of the renewable power
produced in that year was due to the nuclear phase-out. Total wind and solar production in
that year was 114 TWh; therefore, in the counterfactual without the nuclear phase-out, the new
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assumptions on how much of the investment in renewables is due to the phase-out, we

also explore a low-case scenario where there is no response from renewable investment

and a high-case scenario where the response from renewables is twice as large.18

It is also plausible that the phase-out altered the incentives to invest in fossil fuel

power plants. Prior studies have demonstrated that, if the phase-out had not oc-

curred, the amount of fossil-fuel generating capacity necessary to ensure that demand

is met during peak hours in Germany would have been 4 GW lower by 2020 (Traber

and Kemfert, 2012) and 8 GW lower by 2030 (Knopf et al., 2014). We account for

this phase-out-induced increase in investment in fossil generating capacity.19 How-

ever, the resulting increases in fossil investment costs are quite small, and do not

affect the conclusions drawn from the analysis.

Finally, phase-out induced increases in wholesale electricity prices may have de-

creased total consumer demand for electricity. However, changes in wholesale prices

are likely to have only a muted impact on customer demand because the commercial

and residential customers that make up around half of Germany’s total demand are

highly price-inelastic.20 Phase-out-induced increases in electricity prices would lead

total renewable production would be 114-15=99 TWh. This new total is 84% of the original; we
multiply the observed values for renewable production in each hour in 2015 by 0.84 to calculate the
counterfactual no-phase-out hourly levels of renewable production.

18Previous research on the phase-out typically assumes that investment in renewables did not
accelerate due to the nuclear plant closures (Traber and Kemfert, 2012; Knopf et al., 2014).

19We assume that 4 GW less fossil generating capacity would be needed in the no phase-out
scenario by the end of 2019. The scale of the proportional adjustment in observed fossil capacity in
each year is based on assuming the decrease in fossil capacity grows linearly from 0 GW in 2010 to
the assumed amount of 4 GW in 2020. For example, we assume that 2 GW of the fossil capacity
online in 2015 was due to the nuclear phase-out. Total fossil capacity in 2015 was 80 GW; in the
counterfactual without the phase-out, the new fossil capacity is 80-2=78 GW. This new total is
97% of the original, and we multiply the observed fossil capacity in 2015 by 0.97.

20Larger industrial customers are more price-elastic, and the rates they pay for electricity are
also more responsive to changes in wholesale electricity prices. This is in part because the prices
paid by larger industrial customers do not incorporate any portion of the renewable subsidies that
smaller customers fund through their bills (BNetzA, 2020). Still, even a conservative assumption
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to decreases in net electricity demand, and thus would have the same directional

impact as the various renewable investment scenarios we explore. Consequently, the

renewables sensitivity analyses should help capture the range of possible phase-out-

induced changes in consumer electricity demand.

5.5 Model Performance

Figure 2(a) compares observed hourly plant-level operating rates (i.e., percentage of

capacity utilized) with the predictions from the machine learning model. Specifically

the predicted electricity production (scaled on the y-axis) is plotted against the

observed production (x-axis) so that observations on the 45 degree line indicate

perfect prediction accuracy. Each pixel in the figure represents the predicted vs.

observed operating rate in increments of 2% and darker areas correspond to a higher

number of plant-hour (or plant-year) observations.

We check the out-of-sample cross-validated performance to avoid overfitting and

to give a fair assessment of how the model may perform when used to make predic-

tions for the counterfactual no-phase-out scenario. For the hourly data in panel (a),

the cross-validated out-of-sample R2 is 0.41.

However, even this small level of prediction error understates the relevant pre-

diction accuracy of the machine learning model. Specifically, we will primarily use

the predictions from our model to compare outcomes under the phase-out and no-

phase-out scenarios at the plant-year level. We therefore also evaluate the predictive

performance of the model at this level of aggregation. Specifically, Figure 2(b) plots

predicted versus observed annual average operating rates. As the figure shows, the

regarding the price-elasticity of these consumers is unlikely to result in a large change in demand
given that we estimate a relatively small increase in wholesale prices due to the phase-out.
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performance is substantially improved, with most of the observations clustered close

to the 45 degree line, and the areas of systematic error largely disappear. The cross-

validated out-of-sample R2 rises to 0.84.

Lastly, we also use the machine learning model to predict counterfactual hourly

wholesale prices. This model performs well, with a cross-validated out-of-sample R2

of 0.88. By far the most important predictor in this model is the marginal cost of the

marginal plant. This is consistent with how prices are determined in the wholesale

market.

6 Results on the Impact of the Phase-Out

This section presents the main results on the full range of impacts of the nuclear

phase-out over the 2010-2019 analysis period. Specifically, we compare the market

and environmental outcomes with versus without the nuclear phase-out using the

predictions from our machine learning model.

6.1 Generation, Net Imports, and Prices

Figure 3(a) reports the monthly average difference in predicted production and net

imports (in TWh) with the phase-out minus without the phase-out policy. We report

monthly average differences in fossil-fuel-fired electricity production (grey diamonds),

net imports (red circles), renewable electricity production (green triangles) and nu-

clear electricity production (purple squares). The start of the nuclear phase-out in

March 2011 is marked by the vertical black dashed line.

Total nuclear production decreases by roughly 4 TWh per month immediately
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Figure 2: Machine Learning Model Performance: Plant-Level Electricity Production

(a) Hourly Data

(b) Annual Data

This figure illustrates the accuracy of the plant-level predictions from the machine learning
model presented in Section 5. The model predicts the operating rate of each power plant in
each hour, where a value of 0% means that a plant is offline and a value of 100% means that the
plant is running at maximum capacity. Values on the 45 degree line indicate perfect accuracy,
and we summarize this both visually with the blue linear fitted line and by computing measures
of R-Squared. We compute these metrics using out-of-sample five-fold cross-validation. Darker
areas indicate higher numbers of plant-hour (or plant-year) observations. Each pixel represents
the predicted vs. actual operating rate in increments of 2%. Panel (a) shows prediction accuracy
at an hourly timescale; the R-squared is 0.41. Panel (b) shows prediction accuracy after taking
annual averages of our hourly predictions; the R-squared is 0.84.
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after the announcement of the policy, with an additional reduction of 2 TWh per

month later in the sample period as more nuclear plants are taken offline. The

observed seasonal fluctuations of this impact are due to the fact that nuclear reactors

typically schedule their maintenance and refuelling outages in the summer months.

In our baseline scenario, we assume that some of this lost nuclear production was

replaced by accelerated investment in renewable sources due to the phase-out policy.

Consistent with this assumption, Figure 3 documents a steady rise in phase-out-

induced increases in renewable electricity production, with an additional 2.5 TWh

per month by 2020.

We use our machine learning model to estimate the remaining contribution of

various dispatchable sources in replacing the lost nuclear production. We find that

the phase-out caused a large increase in fossil-fuel-fired electricity production of 2-3

TWh per month, which persists over our entire sample period. The phase-out also

caused a smaller increase in net imports of electricity of around 1 TWh per month.

The largest contributors to net imports were the Czech Republic and France, which is

consistent with the higher levels of market integration for these countries highlighted

by Grossi et al. (2018).

Figure 3(b) reports the estimated impact of the nuclear phase-out on wholesale

electricity prices in Euros per MWh. The estimates show that the phase-out resulted

in an increase in wholesale prices of around 1 euro per MWh, although this difference

diminished in recent years, and was in fact negative for part of 2018. The estimates

also suggest that the phase-out may have exacerbated episodic increases in prices.

Table 2 presents the annual averages of electricity production and prices over the

2012-2019 sample period with versus without the phase-out. The estimates reveal
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Figure 3: Estimated Impact of the Nuclear Phase-Out on Electricity Production
and Prices

(a) Electricity Production

(b) Wholesale Electricity Prices

This figure plots the monthly difference between the predictions from our machine learning
model with the phase-out minus without the phase-out. The start of the phase-out in March
2011 is marked by the vertical black dashed line. Panel (a) reports the estimates for all fossil-
fuel-fired electricity production (grey diamonds), net imports (red circles), renewable electricity
production (green triangles), and nuclear production (purple squares). Panel (b) presents the
change in wholesale electricity prices.
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Table 2: Estimated Impact of the Nuclear Phase-Out on Wholesale Electricity
Prices, Electricity Production by Source, and Net Imports

Average Average Change Change (%)
with without

Phase-Out Phase-Out
(1) (2) (3) (4)

Production (TWh/Year) 433.1 433.4 -0.3 -0.1
Nuclear 81.5 139.1 -57.6 -41.4
Lignite 147.2 139.6 7.6 5.4

Hard Coal 86.1 69.4 16.7 24.1
Gas 31.6 26.7 4.9 18.4
Oil 7.7 6.5 1.2 18.5

Net Electricity Imports -36.8 -47.4 10.6 22.4
Wind + Solar 116.0 99.5 16.5 16.6

Wholesale Prices (Euros/MWh) 37.9 37.3 0.6 1.6

Notes: This table reports annual average electricity production by source and wholesale elec-
tricity prices with versus without the nuclear phase-out, as estimated using our machine learning
approach. These annual averages are calculated using data spanning from 2012 to 2019.

that the phase-out caused wholesale electricity prices to increase by e0.6 per MWh on

average, a 1.6% increase relative to the prices that would have prevailed on average if

the phase-out had not occurred. Nuclear production fell by an average of 57.6 TWh

per year during the phase-out period, corresponding to a 41.4% decline. Average

annual generation from fossil-fuel plants increased by 16.7 TWh for hard coal, 7.6

TWh for lignite, and 4.9 TWh for gas. The phase-out also caused net imports to

increase by 10.6 TWh per year on average. Under our base-case assumption for

renewables investments, we see an increase in average annual renewable production

of 16.5 TWh due to the phase-out.

A caveat with our approach is that, following prior research that has modeled the

German electricity sector (Egerer, 2016b), we do not adjust wholesale prices when

calculating the predictions of net imports with versus without the nuclear phase-out.
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However, Grossi et al. (2018) demonstrates that prices in neighboring countries rose

due to the phase-out in the short-run. Consequently, since we do not adjust wholesale

prices in neighboring countries when calculating predictions, the phase-out-induced

increase in the quantity of net imports reported in Table 2 is likely an upper bound.

Our estimate of the overall social cost of the phase-out to German producers and

residents is thus likely to be conservative because the bulk of our estimated cost

comes from increases in local air pollution due to increases in coal-fired production

in Germany rather than increases in net imports.

6.2 Private Costs and Benefits

Table 2 showed that the phase-out caused fossil-fuel and renewable generation to

increase, and nuclear production to decrease. Table 3 reports the changes in average

annual total variable costs, fixed costs, and revenues implied by this change in gen-

eration mix. The central component of variable costs is calculated by multiplying

each plant’s hourly production with our estimate of its marginal cost in the hour.

For fossil fuel plants, marginal costs are calculated as the sum of the plant’s fuel cost

per MWh and an assumed amount of variable operating and maintenance costs that

differs by fuel type. Fuel costs are calculated by converting the price of the relevant

input fuel to euros per MWh based on the calorific content of the fuel and the plant’s

thermal efficiency (i.e., how well the plant converts units of input heat to units of

electricity output).

Other variable operating and maintenance costs, as well as any fixed investment

and maintenance costs, vary by source type. These magnitudes are taken from a

recent study on generation costs (EIA, 2019). The key benefit of this study is that
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it draws on a wide range of reported cost data from actual plants. It is thus better

suited for our retrospective analysis of the phase-out policy.21

We assume that nuclear plants have a marginal cost of approximately e10/MWh

based on prior research on Germany’s power sector (Egerer, 2016a). This is con-

firmed by company reports from two European nuclear plant operators, EON and

EDF, which also have marginal fuel costs of approximately e10/MWh over our anal-

ysis period. The same industry reports indicate that the other fixed operating, main-

tenance and investment costs at these plants likely amount to a further e20/MWh,

resulting in overall costs for the continued operation of existing nuclear plants of

roughly e30/MWh. Beyond this, we also account for the costs of the nuclear power

plant lifetime extensions that were explicitly affected by the phase-out policy. Kep-

pler (2012) argues that extending the lifetime of the nuclear reactors in Germany

would have required investments of roughly e500 million per reactor, or e8.5 billion

in total. These investment costs were avoided due to the nuclear phase-out.

Wind and solar power are assumed to have zero marginal operating costs. To ac-

count for the fixed operating and capital costs of renewables, we rely on levelized cost

values for wind and solar plants from the International Renewable Energy Agency

(IRENA, 2020). These values are specific to Germany and capture annual average

costs for plants built in each year. Lastly, for net imports, we quantify the costs as

being the net quantity of imported electricity multiplied by the wholesale price in

the relevant neighboring country.

Revenues are calculated as the product of plant-level production and wholesale

electricity prices. Due to a lack of data, we do not include any additional revenues

21The EIA values are similar to corresponding estimates from other studies which are commonly
used in the literature (e.g., Lazard (2019)).
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plants may receive outside of the wholesale market, such as capacity payments, ancil-

lary services payments, and subsidies. As such, our measure of revenues understates

the actual revenues accrued by power producers. This is particularly relevant for

renewable sources which derive a large portion of their revenues from subsidies.

Table 3 reports estimates of the impact of the nuclear phase-out on revenues and

private costs for power plants. The table is structured like Table 2. The first result,

not surprisingly, is that the nuclear phase-out had a large effect on the revenues of the

nuclear plants that were shut down. Specifically, total wholesale revenues across all

nuclear plants declined by e2.05 billion per year on average as a result of the phase-

out. Despite this, wholesale revenues are still larger than nuclear plants’ variable

and annualized fixed costs in both scenarios, indicating the continued profitability of

nuclear power over our analysis period.

The revenues previously earned by the shut-down nuclear plants were primarily

redistributed to both fossil plants (hard coal, lignite, and natural gas plants) and to

renewables. The increased use of these other sources led to a net increase in variable

costs. This was largely driven by fossil fuel plants, with e0.20, e0.51 and e0.20

billion per year in additional variable costs for lignite, hard coal and natural gas power

plants. There was also an increase in fixed costs. This was largely driven by new

renewable plants, with e1.35 billion per year in additional fixed costs outweighing

the savings from cancelling the nuclear reactor lifetime extensions.

The redistribution of profits among electricity producers has interesting implica-

tions for the political economy surrounding the nuclear phase-out. In particular, the

four large firms that owned nuclear plants in Germany - E.ON, RWE, EnBW and

Vattenfall - all publicly opposed the policy. These firms have since been awarded

e2.4 billion in compensation from the German government to cover losses they in-
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Table 3: Estimated Impact of the Nuclear Phase-Out on Wholesale Revenues and
Private Costs

Average Average Change Change (%)
with without

Phase-Out Phase-Out
(1) (2) (3) (4)

Wholesale Revenues (Bn. Euros
Year ) 17.30 17.43 -0.13 -0.7

Nuclear 2.99 5.04 -2.05 -40.6
Lignite 5.43 5.06 0.37 7.3

Hard Coal 3.19 2.54 0.65 25.6
Gas 1.18 0.98 0.20 20.4
Oil 0.28 0.23 0.05 21.5

Wind + Solar 4.22 3.57 0.65 18.2

Variable Costs (Bn. Euros
Year ) 7.82 6.92 0.90 13.0

Nuclear 0.78 1.34 -0.56 -41.8
Lignite 3.70 3.50 0.20 5.7

Hard Coal 2.63 2.12 0.51 24.1
Gas 1.38 1.18 0.20 17.0
Oil 0.94 0.77 0.16 20.6

Net Electricity Imports -1.61 -2.00 0.39 19.5
Wind + Solar 0.00 0.00 0.00 .

Fixed Costs (Bn. Euros
Year ) 21.98 21.71 0.28 1.3

Nuclear 1.57 2.73 -1.16 -42.5
Lignite 1.03 1.00 0.03 3.0

Hard Coal 1.29 1.26 0.04 3.2
Gas 0.63 0.62 0.02 3.2
Oil 0.10 0.10 0.00 0.0

Net Electricity Imports 0.00 0.00 0.00 .
Wind + Solar 17.35 16.00 1.35 8.4

Notes: This table reports average annual total wholesale revenues and private costs under the
phase-out and no phase-out scenarios. All entries are annual averages over 2012-2019 based on
predictions from our machine learning model. Wholesale revenues are defined as the product
of each plant’s hourly production with the hourly wholesale electricity price. Variable costs are
the product of each plant’s hourly production with its marginal cost in the hour. Marginal costs
include fuel costs per MWh as well as variable operating and maintenance costs (in e/MWh).
Fixed costs are the product of each plant’s capacity with its annual fixed capital expenditure
as well as fixed operating and maintenance costs (in e/MW/yr).
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curred as a result of the phase-out. However, it is possible that their opposition was

tempered somewhat by the fact that, in addition to their nuclear plants, all four

companies had large fossil plant portfolios both in Germany and across Europe. Our

finding that fossil plants played a large role in replacing the lost nuclear production

indicates that any reduction in their profits due to the nuclear closures may have

been cushioned by the increased profitability of their fossil plants. Moreover, if these

firms’ nuclear plants had remained open, they would have been subject to a new

nuclear fuel tax. This tax would have greatly reduced the inframarginal rents earned

by nuclear plants. So, while public concern about nuclear risks was likely the key

determinant of the phase-out decision in 2011, the policy might also have been more

aligned with the interests of firms than it first seemed.

Lastly, Germany remains a net exporter throughout our sample period, both with

and without the phase-out. The phase-out did reduce net exports, and valuing the

change at the electricity prices of the relevant neighboring countries resulted in a

net increase in variable costs (i.e., lost export revenues) of e0.39 billion per year.

This calculation holds fixed the prices of neighboring countries at observed levels

across the phase-out and no-phase-out scenarios. However, even if we assume that

the increases in prices in neighboring countries due to the phase-out estimated in

Grossi et al. (2018) persisted to the end of 2019, this would only increase the total

private costs to Germany by about 3.3%.22 Even this 3.3% increase in private costs is

likely to be an upper bound because: (1) as mentioned above, the phase-out-induced

increase in the quantity of net imports we estimate is likely to be an upper bound

22Grossi et al. (2018) uses an approach similar to the event study analysis in Section 4, finding
that the phase-out led to increases in wholesale prices in neighboring countries in 2011 and 2012.
This would increase the price of additional imports to Germany by just under 10%. If we assume
those price increases persist to the end of 2019, and apply them to the 10.6 TWh per year of
additional net imports in Table 2, this would still only increase total private costs by 3.3%.
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and (2) the increases in prices found by Grossi et al. (2018) for 2011 and 2012 may

have dissipated from 2013-2019.

6.3 External Costs

This subsection presents an analysis of the environmental costs associated with the

increase in fossil-fuel-fired production caused by the nuclear phase-out. Specifically,

burning fossil fuels emits both global pollutants such as carbon dioxide that con-

tribute to climate change and local air pollutants that adversely impact the health

of exposed populations.

We begin by describing how we estimate the change in carbon emissions due to

the phase-out. We first calculate the change in the amount of fuel burned by each

fossil fuel plant due to the phase-out using our predictions of each plant’s hourly

production and thermal efficiency. We then use the carbon intensity of different

fuels documented in industry reports to convert changes in fuel burned to changes

in plant-level CO2 emissions.23

We also estimate the change in emissions of air pollutants due to changes in each

plant’s production levels caused by the phase-out. Similar to the approach for CO2

emissions, we translate changes in fuel use into changes in emissions using plant-level

emissions rates for each local air pollutant from the EU Large Combustion Plant

Directive (LCPD). The LCPD database provides annual plant-level data on fuel

inputs and emissions of sulfur dioxide (SO2), nitrogen oxides (NOx) and particulate

matter (PM). The LCPD data covers the vast majority of large fossil plants in

23The carbon intensities we use are 93.6 tCO2/TJ for hard coal, 55.9 tCO2/TJ for gas and
74.0 tCO2/TJ for oil. We consider three different intensities for lignite depending on the mining
region that the plant sources its coal from. These are 113.3 tCO2/TJ (Rhineland), 111.2 tCO2/TJ
(Lusatian) and 102.8 tCO2/TJ (Central).

38



Germany.24 We assign the small number of plants not in the LCPD database an

emissions factor based on the average emissions factor of plants with the same fuel

type.

We next monetize the damages caused by local air pollution emissions. For this,

we rely on two studies that estimate the health impacts of ambient air pollution in

Europe (EEA, 2014; Jones et al., 2018). In particular, Jones et al. (2018) provide

estimates of the annual health damages from the ambient air pollution emitted by

roughly four hundred of the largest coal-fired power plants in Europe. We use these

data to convert our predicted increases in plant-level kilotons of SO2, NOx and PM

emissions into monetized health damages.25

Table 4 presents the results of this analysis. Specifically, this table reports the

fuel-specific average annual total emissions of CO2 (in Megatonnes, Mt) and three

local air pollutants: SO2, NOx, and PM (in Kilotonnes, Kt). Lignite and hard

coal plants are by far the two largest polluters, contributing more than 90% of the

emissions of each of the pollutants listed. Emissions from lignite and hard coal plants

also contribute the most in terms of mortality and monetized pollution damages.

In aggregate, the phase-out led to an increase in CO2 emissions of 26.2 Mt per

year among lignite, hard coal, gas, and oil plants. This corresponds to a 11% increase

relative to the scenario without the nuclear phase-out. This increase in CO2 emissions

24The data covers 99% of lignite capacity, 98% of hard coal capacity, 90% of gas capacity and
91% of oil capacity.

25We assume that increased emissions at a given fossil fuel plant in Germany would have the
same health damages per unit of emissions as if they were emitted at the nearest location for which
we have health damages estimates. The capacity weighted average distance between each of the
power plants in our data set and the closest of the 400 locations with damage estimates from Jones
et al. (2018) is: 0.9km for lignite plants, 0.2km for hard coal plants, 12km for gas plants, and 20km
for oil plants. Consistent with Jones et al. (2018) and many other studies, our approach assumes
that the marginal damage per unit of pollutant emissions is linear and additive.
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Table 4: Estimated Impact of the Nuclear Phase-Out on Annual CO2 Emissions
and Local Air Pollution Mortality Damages

Average Average Change Change (%)
with without

Phase-Out Phase-Out
(1) (2) (3) (4)

CO2 Emissions ( Mt
Year) 264.5 238.3 26.2 10.99

Lignite 167.5 159.1 8.5 5.34
Hard Coal 77.6 62.8 14.8 23.56

Gas 13.2 11.2 2.0 17.79
Oil 6.1 5.2 1.0 19.40

SO2 Emissions ( Kt
Year) 127.2 115.7 11.4 9.85

Lignite 86.2 82.3 3.9 4.74
Hard Coal 35.0 28.2 6.8 24.15

Gas 0.9 0.8 0.1 12.35
Oil 5.0 4.4 0.6 13.51

NOx Emissions ( Kt
Year) 175.8 158.8 17.1 10.77

Lignite 111.5 105.8 5.6 5.29
Hard Coal 48.7 39.5 9.2 23.30

Gas 9.0 7.8 1.3 16.71
Oil 6.7 5.6 1.0 17.73

PM Emissions ( Kt
Year) 4.61 4.18 0.42 10.04

Lignite 3.02 2.88 0.14 4.86
Hard Coal 1.41 1.15 0.26 22.60

Gas 0.06 0.05 0.01 21.37
Oil 0.12 0.11 0.02 18.70

Mortality (Excess Deaths
Year ) 6,852.8 6,053.0 799.8 13.21

Lignite 3,779.1 3,590.6 188.5 5.25
Hard Coal 2,616.7 2,074.0 542.7 26.17

Gas 267.2 228.6 38.6 16.88
Oil 189.8 159.7 30.1 18.85

Monetized Excess Mortality (Bn. Euros
Year ) 17.24 15.22 2.01 13.20

Lignite 9.51 9.03 0.47 5.20
Hard Coal 6.58 5.22 1.36 26.07

Gas 0.67 0.58 0.10 17.39
Oil 0.48 0.40 0.08 19.91

Notes: This table reports estimates for emissions of CO2 as well as three local air pollutants:
SO2, NOx, and PM, and estimates of the mortality damages from all three of these local air
pollutants. All values are average annual totals based on predicted plant-level generation from
2012 to 2019 for fossil-fuel-fired plants in Germany. Emissions are the product of each plant’s
hourly generation with our estimate of their emissions rate. We ignore other small sources of
emissions from biomass, landfill gas or waste plants. The estimates in the table are emissions
and damages in Germany and do not consider changes in emissions in neighboring countries due
to changes in net imports. The air pollution damages reported in the last row of the table only
include the monetized costs associated with premature mortality due to air pollution exposure.
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was primarily attributable to an increase in emissions from hard coal plants, with

lignite, gas, and oil making up the remainder. Valuing these carbon emissions at

a social cost of carbon of $125/tCO2 would imply that the phase-out resulted in

climate damages of e3.0 billion per year (Carleton and Greenstone, 2021). However,

increases in carbon emissions in Germany might be offset by decreases in carbon

emissions elsewhere since German power plants are covered by the EUETS (a carbon

cap-and-trade market spanning the European Union). For this reason, we exclude

climate damages from our preferred estimates of the social cost of the phase-out.

However, previous work suggests that political considerations play a role in the

total number of credits allocated as part of the EUETS (Koch et al., 2016). The

phase-out may have led to more credits being put into circulation through this po-

litical channel. Consequently, our core estimate of the social cost of the phase-out,

which does not include climate damages, represents a lower bound; the social cost

may be larger than our estimate if regulators increased the EUETS cap due to po-

litical pressure from German policymakers following the phase-out.

The phase-out also led to a roughly 10-11% increase in the emissions of each of

the three ambient air pollutants considered. Again, this increase is due primarily to

increased emissions from hard coal plants. However, the phase-out also led to large

proportional increases in emissions from gas and oil plants, as shown in column (4).

The bottom two rows of Table 4 report the estimated impacts of the phase-out on

annual mortality and on annual monetized mortality damages associated with excess

emissions of SO2, NOx, and PM. From 2012 to 2019, emissions from fossil plants in

the phase-out scenario account for almost 6,900 excess deaths per year, corresponding

to a monetized damage of e17.2 billion in mortality costs each year. By comparing

these estimates to the estimates from the no-phase-out scenario, we can attribute 800
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excess deaths per year on average to the phase-out. This corresponds to e2.0 billion

per year in monetized damages, and represents a 13% increase in damages relative

to the scenario without the nuclear phase-out.26 91% of the monetized mortality

damages from the phase-out are driven by emissions from lignite (23% of damages)

and hard coal plants (68% of damages).

Our focus thus far has been on external costs incurred as a consequence of phase-

out-induced changes in output from plants in Germany.27 However, the phase-out

also resulted in an increase in net imports. This will have changed external costs in

neighboring countries. To get a sense of the potential external costs associated with

the increase in net imports, we calculate the emissions intensity of imports for each

neighboring country and then follow the same valuation approach set out above. We

find that increased net imports resulted in additional monetized damages of e0.25

billion per year. The vast majority of this is due to increased emissions in the Czech

Republic, and to a lesser extent Denmark and the Netherlands. Despite being the

largest source of additional imports, France has a relatively clean electricity supply

mix and so does not see a significant increase in external costs. Overall, the external

costs of imports are small relative to the impacts from changes in production in

Germany.

26We use an estimate of the value of statistical life (VSL) of e2.56 millions for Germany which
follows from Jones et al. (2018) and convert to 2019 values by adjusting for inflation. In the
robustness analysis below, we also consider a larger VSL of e6.7 millions taken from Viscusi and
Masterman (2017) which is more in line with valuations undertaken by the US EPA.

27The pollution transport model used by Jones et al. (2018) captures the fact that emissions at
power plants in Germany can cause health impacts in neighboring countries. We are unable to fully
disentangle these cross-border dependencies with the available information, so a small portion of
damages from emissions from German plants is incurred by people in neighboring countries.

42



6.4 Alternative Estimates of Local Air Pollution Costs

The health damages in Table 4 are calculated by linking data on plant-level emissions

rates to pollution exposure using atmospheric chemistry modeling. As a complement

to these estimates, Online Appendix Section C presents a secondary approach to

estimate the external costs imposed by increased ambient air pollution caused by

the phase-out. In this approach, we use granular air pollution monitor data to

examine how changes in output from hard coal and lignite plants affect ambient

PM2.5 concentration levels. The estimates from this approach indicate that the

phase-out resulted in 334 additional excess deaths per year.

Taken together, the results in Table 4 and Online Appendix Table C.2 paint a

consistent picture of the impact of the nuclear phase-out on pollution-caused excess

death. Our estimates attribute 330 to 800 excess deaths per year to the increase in

air pollution caused by the nuclear phase-out. This amounts to monetized health

damages of e0.9 to e2.0 billion per year during the 2012-2019 period. Our preferred

estimate is the e2.0 billion per year in damages calculated based on reported emis-

sions (Table 4). This is because the analysis using reported emissions considers a

more complete set of pollutants and draws on a more sophisticated analysis of pol-

lution transport and exposure. The results presented in Online Appendix Table C.2

based on our estimated relationship between PM2.5 levels and electricity production

serve as a valuable complementary validation exercise based on an entirely distinct

approach.
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6.5 Social Costs

This subsection brings the analysis together by summarizing the benefits and the full

range of private and external costs of the nuclear phase-out. The private costs of the

phase-out consist of the aggregate changes in the variable and fixed costs incurred

by power plants in Germany as well as any costs from changes to net imports. The

external costs of the phase-out are measured by the damages from mortality and

morbidity caused by the additional air pollution attributable to phase-out-induced

changes in the electricity production mix.28 The sum of measured private and exter-

nal costs is our estimate of the social cost of the nuclear phase-out.

Table 5 reports the estimates of the aggregate annual private and external costs of

the phase-out. The top panel reports social costs as well as each private and external

cost component for the base-case assumptions on the growth of renewables driven

by the phase-out and the value of statistical life (VSL) used to monetize pollution-

caused premature mortality. The phase-out led to a replacement of low cost nuclear

production with higher cost sources such as fossil fuels and net imports. This resulted

in private costs increasing by e1.2 billion (or 4.1%) on average per year in Germany,

mostly due to an increase in variable costs. This increase in private costs, however,

is smaller than the e2.1 billion annual increase in external costs associated with the

phase-out. Specifically, burning fossil fuels to produce electricity rather than using

nuclear plants led to an increase in local air pollution emissions, which in turn led to

increases in premature mortality and adverse morbidity events. Overall, we estimate

that the annual social cost of the nuclear phase-out is e3.3 billion per year.

28Morbidity costs per MWh of output are reported in Jones et al. (2018); we apply the same
methodology as for mortality in Table 4 to calculate aggregate morbidity costs.
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Table 5: Impact of the Phase-Out on Annual Average Private and External Costs

Average Average Change Change (%)
with without

Phase-Out Phase-Out
(1) (2) (3) (4)

Social Costs (Bn. Euros
Year ) 48.27 44.95 3.32 7.4

Private

Variable 7.82 6.92 0.90 13.01
Fixed 21.98 21.71 0.28 1.29

External

Mortality 17.24 15.22 2.01 13.20
Morbidity 1.23 1.10 0.13 11.82

Average Average Change Change (%)
with without

Phase-Out Phase-Out
(1) (2) (3) (4)

Base VSL, Low Renewables 48.27 44.82 3.45 7.7
Base VSL, Base Renewables 48.27 44.95 3.32 7.4

Base VSL, High Renewables 48.27 45.05 3.21 7.1
High VSL, Low Renewables 76.14 68.04 8.10 11.9
High VSL, Base Renewables 76.14 69.57 6.57 9.4
High VSL, High Renewables 76.14 71.01 5.13 7.2

Notes: This table reports annual averages over 2012-2019 of the private and external costs
incurred with versus without the phase-out. Private costs are the variable and fixed costs
associated with power plants in Germany plus any changes in net imports (valued at the whole-
sale electricity price). External costs consist of excess mortality and morbidity costs from air
pollution emissions. The “Social Costs” row reports the sum of private and external costs.
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The bottom panel reports the estimates of annual social costs with and without

the phase-out for six scenarios based on assumptions on the growth of renewables

induced by the phase-out (the low-case, base-case, and high-case scenarios described

in Section 5.4) and the Value of Statistical Life (VSL) used to monetize the excess

deaths (base and high). Following Jones et al. (2018), the base-case VSL we use

is e2.56 million. We also consider an alternative VSL of e6.7 million, taken from

Viscusi and Masterman (2017), which is in line with the approach taken by the

United States Environmental Protection Agency.29

We also examine the implications of 3 scenarios for renewables investment in re-

sponse to the phase-out. Our base-case scenario assumes that the phase-out induced

investments in renewables to produce an additional 30 TWh per year by 2020. In the

low-case renewables scenario we assume no additional renewables investment due to

the phase-out, and in the high-case scenario, we assume that the phase-out caused

investments in renewables sufficient to increase production by an additional 60 TWh

per year by 2020.30

Column (3) of the bottom panel of Table 5 reports the estimated change in

annualized social costs (sum of private and external costs) attributable to phase-out.

Across the six scenarios, the social costs range from e3.21 to e8.10 billion per year.

The e3.32 billion estimate reported in the top panel of the table can be seen under

the “Base VSL, Base Renewables” row. A higher assumed VSL necessarily leads to

higher external costs and hence total costs. This is evident by comparing the rows

29The lower VSL we consider is derived from studies based on stated preference methods and
may thus suffer from hypothetical bias. In contrast, the high-case estimate of the VSL is derived
from studies using revealed preference methods (Viscusi and Masterman, 2017).

30It is possible that changing the pace and scale of investment in renewable sources could have
additional dynamic impacts on costs, such as promoting learning-by-doing or spurring new grid
infrastructure investments. These dynamic impacts are not incorporated into our analysis, and are
likely second order relative to the capital and operating costs associated with renewable investments.
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with “base VSL” versus “high VSL” in the bottom panel.

Looking across the “base VSL” rows, we observe that social costs fall as the as-

sumed growth of renewables attributable to the phase-out increases. Higher renew-

able growth leads to increased private costs. This is because investment in renewables

is expensive relative to increased production from fossil fuel plants. However, higher

renewable growth also decreases external costs. This is because the additional re-

newables displace fossil fuel production, decreasing the monetized health impacts

from local air pollution. We find that the increase in private costs across the “low”,

“base”, and “high” renewables scenarios is smaller than than the reduction in mon-

etized health impacts as renewables grow from the low-case to the high-case. This

effect is even more pronounced in the “high VSL” rows where we assume that the

premature mortality due to air pollution exposure is more costly.

There are some noteworthy limitations to the analysis in Table 5. While nuclear

power plants emit virtually no global or local air pollution, nuclear energy does

come with catastrophic accident risk and requires storing the waste that results

from nuclear production. Estimates from the literature suggest that the external

costs of nuclear power due to waste storage and accident risk fall between e1-4 per

MWh (D’haeseleer, 2013). This wide range is due to differing estimates of accident

probabilities and severity, as well as varying assumptions on discount rates. If we

value the external costs of nuclear power at e4 per MWh, the expected benefits from

the nuclear phase-out are very small at just e0.2 billion per year. This is clearly far

smaller than the e3-8 billion per year in annual social costs estimated above. Even if

we assume that the external costs of nuclear power are an order of magnitude larger

than those from existing literature, the expected benefits of the nuclear phase-out

are still smaller than our central estimate of the social cost of the phase-out policy.
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7 Conclusions and Policy Discussion

Following the Fukushima disaster in 2011, German authorities made the unprece-

dented decision to immediately shut down almost half of the country’s nuclear power

plants, and to shut down all of the remaining nuclear power plants by 2022. We

quantify the economic and environmental costs of this decision. Our analysis indi-

cates that the phase-out of nuclear power has come with an annual social cost to

Germany of roughly e3-8 billion per year. The majority of this cost is due to the

800 excess deaths per year resulting from the local air pollution emitted by coal-

fired power plants operating in place of the shutdown nuclear plants. The scale of

the social costs from the nuclear phase-out exceeds even the largest estimates of the

expected benefits from the phase-out.

In light of the scale of the costs we identify, it is striking that the nuclear phase-

out continues to receive widespread support, with more than 81% in favor in a 2015

survey (Goebel et al., 2015). Concerns about the risks of nuclear accidents and

storing nuclear waste are at the core of the anti-nuclear sentiment, and motivated

the decision to phase-out nuclear power (Ethics Commission, 2011). Thus far we have

compared the social costs of the phase-out against its expected benefits. However,

nuclear accident risks are highly uncertain and the costs associated with nuclear

waste disposal are also arguably uncertain. It is therefore possible that a sufficiently

risk-averse policymaker could phase-out nuclear to avoid the tail risks associated

with nuclear accidents and waste disposal, even though the costs of the phase-out

are higher than its benefits in expectation.

To get a sense of the level of risk aversion implied by the decision to proceed

with the nuclear phase-out, we calculate the probability of a major nuclear accident
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that would result in the expected benefits from the phase-out being equal to its costs.

For this back-of-the-envelope calculation, assume that, absent the phase-out, nuclear

plants would have been shut down in the same order but approximately ten years

later, with the last plants closing in 2032 instead of 2022. With the phase-out starting

part way through 2011, this gives roughly two decades over which the policy would

reduce nuclear production. Our estimate for the cost of the phase-out is e3-8 billion

per year; this implies a cumulative cost of the phase-out of around e60-160 billion

over this twenty year period. The estimated cost of the Fukushima accident is 35-80

trillion yen, or e280-640 billion (JECR, 2019). Assume for simplicity that there can

either be no accidents or there can be one Fukushima magnitude accident during

this twenty year period. The probability of this Fukushima-scale accident occurring

would have to be anywhere from around 1 in 10 to as high as 1 in 2 for the expected

benefits of the phase-out to be equal to the expected costs.31 A 1 in 10 chance, let

alone a 1 in 2 chance, is far greater than even the most conservative estimates of the

probability of an accident of this magnitude occurring in Germany. For instance,

Wheatley, Sovacool and Sornette (2017) estimates that there is a 50% chance that a

Fukushima event (or larger) occurs every 60-150 years across the entire global fleet of

nuclear reactors. Germany had less than 4% of the world’s nuclear reactors in 2011.

We can also examine how costly a single nuclear accident would have to be in

order to rationalize the phase-out decision based on expected costs and benefits.

Using the estimates from Wheatley, Sovacool and Sornette (2017), a Fukushima

event (or larger) might plausibly occur in Germany over a twenty year period with

a probability between 1 in 150 and 1 in 375.32 This nuclear accident would have

31 e160 billion
e280 billion = 0.57, which we approximate as 1 in 2, and e60 billion

e640 billion = 0.094, which we approxi-
mate as 1 in 10

32(50%×4%× 20 years
60 years ) = 0.0067 = 1 in 150, and (50%×4%× 20 years

150 years ) = 0.0027 = 1 in 375. This
assumes reactors in Germany are just as prone to accidents as the average reactor in the world.
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impose social costs between e9 trillion and e60 trillion for the expected benefits of

the phase-out to be equal to its costs.33 This is orders of magnitude greater than

current estimates of the cost of the Fukushima accident. Both of these calculations,

while simple in their approach, indicate that policymakers would have to exhibit an

extremely high level of risk aversion in order the rationalize the phase-out decision.

However, key behavioural factors may affect decision-making in this setting.

Prospect theory predicts that people will over-weight the risk associated with low-

probability events, and tend to be risk averse when they face even a small chance of

incurring a large loss (Kahneman and Tversky, 1979; Barberis, 2013). In our case,

the choice is between a high probability of incurring a moderate loss due to increased

electricity prices and worse air pollution versus a low probability of incurring a very

large loss due to a nuclear accident. Here, loss aversion rationalizes a preference

for avoiding the “low probability, high damage” option. Indeed, existing evidence

suggests that people tend to greatly overestimate both the probability of a nuclear

accident and the expected damages from such an event, including a number of stud-

ies focused on Germany (Slovic, Fischhoff and Lichtenstein, 1979; Slovic and Weber,

2002; Slovic, 2010).

The extreme level of risk aversion required to justify the phase-out decision also

points to another behavioral explanation: salience. While the scientific literature

on the harmful effects of air pollution is now definitive, there is still relatively lim-

ited public understanding of the scale of the adverse health consequences of local

air pollution exposure. This might be due to the difficulty in attributing any single

death entirely to air pollution exposure from a given power plant. Instead, air pol-

lution concentration levels are the result of a wide range of different emitters and air

33 e60 billion
0.0067 = e9 trillion, and e160 billion

0.0027 = e60 trillion.
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pollution has a small but persistent effect on mortality risk. Similarly, the costs of

climate change will primarily be borne by future generations, and linking a future

climate event to the carbon emissions from a power plant smokestack today is even

less straightforward. In contrast, a nuclear accident is a highly visible event that can

be clearly linked back to a nuclear reactor.

Local air pollution emissions are almost certainly less salient than carbon emis-

sions, particularly at the time when the phase-out decision was made. Germany has

long had an ambitious set of policies to reduce carbon emissions as part of its En-

ergiewende program. There is widespread support for these policies to tackle climate

change, even when the upfront costs have been substantial. For example, renewable

subsidies in Germany exceeded e25 billion per year in 2017, and the charges to fund

these payments now make up about a quarter of the electricity price paid by residen-

tial households (BNetzA, 2020). The issue of local air pollution, on the other hand,

has not received the same level of national attention. In fact, policymakers appear

to have made no mention of air pollution at the time of the decision (BMWI, 2010;

Ethics Commission, 2011). Subsequent studies of the impact of the phase-out have

also focused exclusively on electricity prices and carbon emissions (Knopf et al.,

2011; Traber and Kemfert, 2012; Knopf et al., 2014; Grossi, Heim and Waterson,

2017; Grossi et al., 2018).

The relative salience of the different impacts of the nuclear phase-out was further

exacerbated in our setting by the Fukushima crisis in 2011. The German government

clearly acknowledged this when making their decision, stating that “the risks of nu-

clear energy have not changed since Fukushima, but the perception of the risks has”

(Ethics Commission, 2011). For example, Tanaka and Zabel (2018) demonstrated

how the increased salience of nuclear accident risks due to the Fukushima incident

51



affected house prices in the U.S. Interestingly, the study finds that the effects largely

dissipated by two years after the Fukushima accident. This highlights an important

challenge for policymakers - highly salient events can galvanize the public into sup-

porting large-scale policy changes, but they can also make it harder to weigh the

merits of those policy changes in the moment.

Regardless of the underlying causes, it is clear that Germans care deeply about

climate change, yet they are distinctly anti-nuclear. Policymakers in Germany and

around the world thus face a difficult tradeoff. On the one hand, there is a strong

case to be made that nuclear power still has an important role to play in the shift

away from carbon-intensive fossil fuels (IPCC, 2018; IEA, 2019). Many citizens are

also willing to incur substantial costs upfront to reduce the risk of climate change.

However, many of those same citizens have historically been more concerned about

the risks of nuclear energy than about the health impacts of local air pollution from

using fossil fuels. Clearly, it is vital that economists are able to credibly estimate

and convey the costs and benefits of large policy changes. Beyond that, our findings

underscore the importance of understanding the behavioral factors that can influence

the way those costs and benefits are evaluated by policymakers and the public.
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A Appendix Tables and Figures

Appendix Figure A.1 presents annual total electricity production in Germany by

source as well as total imports and exports. This figure documents the precipitous

drop in nuclear production following the 2011 closure of nine reactors as well as the

rapid growth in production from wind and solar resources over our 2010-2019 sample

period.

Appendix Figure A.2 presents a snapshot of the electricity supply curve based on

our estimates of plants’ short-run marginal costs in 2011. We assume that biomass,

waste, hydroelectric, wind and solar resources have zero marginal operating cost.

Marginal costs for fossil fuel plants are calculated as the sum of fuel costs and an

assumed amount of variable operating and maintenance costs that differs by fuel

type. Lastly, we assume that nuclear plants have a marginal operating cost of ap-

proximately e10/MWh based on prior research on Germany’s power sector (Egerer,

2016a). This is confirmed by company reports from two European nuclear plant

operators, EON and EDF, which also have marginal fuel costs of approximately

e10/MWh.
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Figure A.1: Electricity Supply by Source: 2010-2019

Notes: This figure plots the annual total quantity of electricity produced by different sources
in Germany from 2010-2019. This includes the annual total quantity of electricity imports
and exports for this same sample period. The data underlying this figure are from BNetzA
Monitoring Reports (BNetzA, 2020).
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Figure A.2: Marginal Cost Curve in 2011

Notes: This figure plots the estimated marginal costs for power plants in Germany in 2011.
Specifically, plants are ordered in terms of marginal cost to create an aggregate supply curve.
For a given marginal cost c (plotted on the y-axis), the x-axis provides the sum of the production
capacity (in GW) over all plants with marginal cost less than or equal to c. For coal, gas and oil
plants, marginal costs are calculated as the sum of fuel costs and an assumed variable operating
and maintenance cost that differs by fuel type. Fuel costs are converted to euros per MWh
using the plant’s thermal efficiency (a measure of how well a plant converts units of input
heat to units of electricity output). For this figure, we consider the fuel costs on February 1st,
2011. Nuclear plants are assigned a marginal cost of e10 per MWh. Hydro, wind and solar are
assumed to have zero marginal costs. For simplicity, the small amount of remaining sources are
also assigned a marginal cost of zero (i.e., biomass, waste and other). For ease of presentation,
this figure does not show how electricity imports and exports factor into the aggregate supply
curve; importantly, we account for imports and exports in our analysis.
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B Further Details on the Predictive Model

B.1 Context

Studies of the electricity sector traditionally utilize an electricity dispatch model that

combines engineering and economic modeling tools to simulate the operation of the

power grid. These models must explicitly specify firm incentives (ex: whether/how

firms exercise market power) as well as operational constraints such as transmission

congestion and plants’ start-up/ramping costs.

We opt to employ an empirical approach instead. Specifically, our approach seeks

to recover how plants are dispatched based on a host of different variables pertaining

to plant operations, demand, and electricity transmission. The primary benefit of

this empirical approach is that it requires fewer assumptions regarding firm incentives

or operational constraints. We allow the data to tell us how these factors impact

plant operations.

That being said, this empirical approach has limitations as well. First, we can

only examine scenarios that are sufficiently similar to observed outcomes. This is

why other empirical models of wholesale electricity markets tend to focus either on

ex-post policy assessments or identifying how marginal changes in electricity demand

impact plant operations. Indeed, our paper focuses on an ex-post evaluation of the

nuclear phase-out in Germany on aggregate market outcomes.

We want to highlight that empirical approaches such as ours can struggle with

counterfactual scenarios far out of the span of the data used to estimate the model.

As such, our empirical modeling should be seen as a complement rather than a

substitute for more explicit simulation modeling of electricity markets.
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B.2 Construction of Key Variables

The most important independent variables for our analysis are net load, marginal

cost and available capacity.

B.2.1 Net Electricity Demand (or Net Load)

Net electricity demand, or net load, is defined as total electricity demand minus pro-

duction from low marginal cost or non-dispatchable sources. Specifically, we subtract

production from renewables (wind, solar, hydro, biomass, waste) and nuclear. This

net load variable thus measures the amount of production required by “dispatchable”

(typically fossil-fuel-fired) sources.34

Key to setting up the net demand variable in this manner is the assumption that

flexible production sources will respond to marginal changes in net load in much the

same way as they would to marginal changes in the component parts of net load. To

provide evidence in favor of this assumption, we conduct a straightforward regression

analysis based on the hourly data used to construct the net load variable. The results

are shown in Appendix Table B.1.

Specifically, Appendix Table B.1 shows how “dispatchable” output responds to

a 1 MWh change in net electricity demand, or its constituent parts. The dependent

variable is hourly total “dispatchable” generation. This is the sum of hourly produc-

tion from all fossil plants and border points. The independent variable in columns

(1) and (3) is net electricity demand as defined and used in our analysis. The in-

34We also considered specifications that included lags and leads of net load to capture the fact
that many power plants have dynamic production constraints (e.g. the speed at which they can
“ramp up” their output, or the minimum amount of time they have to be offline before they can
restart).
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Table B.1: Response of Dispatchable Generation to Electricity Demand

(1) (2) (3) (4)

Net Demand 0.893∗∗∗ 0.893∗∗∗

(0.017) (0.020)

Demand 0.871∗∗∗ 0.876∗∗∗

(0.010) (0.016)

Nuclear Output -0.650∗∗ -0.805∗∗∗

(0.217) (0.192)

Wind Output -0.908∗∗∗ -0.940∗∗∗

(0.039) (0.023)

Solar Output -0.859∗∗∗ -0.787∗∗∗

(0.051) (0.052)

Year FE Y Y
Month of Year FE Y Y

Hour of the Day FE Y Y
R2 0.869 0.872 0.896 0.898

Mean of Dep. Var. 31,222.3 31,222.3 31,222.3 31,222.3
Number of Obs. 87,648 87,648 87,648 87,648

Notes: This table shows the results of regressing hourly total “dispatchable” generation on
hourly net electricity demand (columns (1) and (3)), or its constituent parts (columns (2) and
(4)). Columns (1) and (2) do not include any fixed effects while columns (3) and (4) include
year, month of year, and hour of the day fixed effects. Standard errors are clustered by year.
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dependent variables in columns (2) and (4) are the constituent parts that make up

net electricity demand - namely total demand, nuclear production, wind production

and solar production. Columns (1) and (2) do not include any fixed effects while

columns (3) and (4) include fixed effects for year, month of year, and hour of the

day. Standard errors are clustered by year for all specifications.

The coefficients of this regression tell us how “dispatchable” output responds

to a 1 MWh change in net electricity demand, or to a 1 MWh change in the con-

stituent parts of net electricity demand. The coefficients for net demand and demand

are similar and are both close to one. The coefficients for nondispatchable output

(nuclear, wind, and solar) are close to -1, suggesting that increases in nondispatch-

able output replace production from dispatchable sources roughly one for one. This

demonstrates that, on average, dispatchable sources will respond to variation in net

demand in much the same way as they would to variation in the constituent parts

of net demand. We view this as a validation of our decision to focus on net demand

rather than include each of its constituent parts in the model.

Appendix Table B.2 presents results from regressing hourly total output by source

type on hourly total electricity demand, including year, month of year, and hour of

the day fixed effects. The first, second, and third columns of this panel consider

hourly total output from dispatchable sources (coal + oil + gas + net exports), wind

sources, and solar sources respectively. Standard errors are clustered by year.

After controlling for year fixed effects, month of year fixed effects, and hour of the

day fixed effects, neither the correlation between total demand and wind generation

nor the correlation between total demand and solar generation are statistically signif-

icant. This suggests that generation from wind and solar resources is not responsive

to the level of demand. In contrast, we cannot reject that a 1 MWh increase in total
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Table B.2: Response of Dispatchable and Renewable Generation to Electricity
Demand

(1) (2) (3)

Demand 0.889∗∗∗ -0.034 0.000
(0.025) (0.025) (0.013)

Year FE Y Y Y
Month of Year FE Y Y Y

Hour of the Day FE Y Y Y
R2 0.606 0.267 0.647

Mean of Dep. Var. 31,222.3 8428.0 3.504.9
Number of Obs. 87,648 87,648 87,648

Notes: This table presents results from regressing hourly total output by source type on hourly
total electricity demand, including year, month of year, and hour of the day fixed effects. The
first, second, and third columns of this panel consider hourly total output from dispatchable
sources (coal + oil + gas + net exports), wind sources, and solar sources respectively. Standard
errors are clustered by year.

demand corresponds to a 1 MWh increase in generation from dispatchable sources,

suggesting that the lack of correlation for wind and solar resources is not an artifact

of the specification considered.

B.2.2 Marginal Cost

A plant decides whether to produce primarily based on whether its marginal cost is

less than the electricity price it will be paid for its output. In electricity markets

such as Germany’s, the electricity price is typically set by the highest marginal cost

plant necessary to meet demand. Consequently, we first construct estimates of each

plant’s marginal cost over time. We then estimate the marginal cost of the clearing

plant: the last fossil plant (or border point) necessary to meet net load in a given
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hour. Finally, we construct a “standardized” marginal cost for each plant as the

plant’s marginal cost minus the marginal cost of the clearing plant for that hour.

Plants typically produce if this standardized marginal cost is negative, and don’t

produce if this standardized marginal cost is positive.

In standardizing each plant’s marginal cost, one may be concerned that the

marginal cost of the marginal unit is endogenous to the policy. Namely, in the

absence of the phase-out, net electricity demand will shift to the left, lowering the

marginal cost of the marginal unit. Thus the phase-out impacts the marginal cost

of the marginal unit.

However, as illustrated in Appendix Figure B.1, it is important to emphasize that

we calculate the marginal cost of the marginal unit in each hour-of-sample separately

for the scenarios with versus without the phase-out. Namely, we decrease the net

demand to be served by dispatchable units in the scenario without the phase-out,

stack units from lowest marginal cost to highest marginal cost, and then find the

marginal unit. In doing so, our measure of the marginal cost of the marginal unit for

both the scenarios with versus without the phase-out are based on exogenous factors

such as total demand, production from nondispatchable units such as renewables,

etc.

Standardizing each plant’s marginal cost by the marginal cost of the marginal

unit, adjusting this standardization depending on whether we’re considering the

scenario with versus without the phase-out, has the added benefit of preventing

the predictions from being adversely affected by secular trends in fuel prices from

before the 2015-2019 sample period used to train the model.
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B.2.3 Available Capacity

Where the “marginal cost” variable captures the position of a plant in the supply

curve in terms of price, the “available capacity” variable captures the position of

a plant in the supply curve in terms of quantity. For each plant, we calculate the

total amount of capacity from other fossil plants (or border points) with a lower

marginal cost. Our “available capacity” variable is then calculated as the total

amount of capacity with a lower marginal cost than the plant minus net load for

that hour. Once again, plants with negative available capacity are likely to produce,

while plants with positive available capacity are unlikely to produce.

B.2.4 Role in Simulating the Phase-Out Policy

The machine learning application we use is designed to predict how dispatchable

flexible sources such as fossil-fuel plants and border flows increase or decrease their

output in order to meet the residual demand left after accounting for output from

renewables and nuclear sources. Net load, the relative marginal cost of each plant,

and the amount of available capacity are key predictors in the analysis not only

because they play a significant role in explaining plant operating decisions, but also

because they are the variables we modify in order to construct the counterfactual

scenario.

For the scenario with the phase-out, the net load variable is the observed net load

given the phase-out decision as shown in Appendix Figure B.1a. For the counter-

factual scenario without the phase-out, nuclear production would have been higher

and so net load would have been lower, as shown in Appendix Figure B.1b. This

reduction in net load also changes the marginal cost and available capacity variables.
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Specifically, if net load is lower, the marginal cost of the clearing plant would also

be lower. Moreover, the amount of capacity below net load is also lower for lower

values of net load. This is illustrated in Appendix Figures B.1c and B.1d.

B.2.5 Variable Scaling and Importance

Appendix Figure B.2a illustrates the relative importance of each of our covariates.

As expected, net demand, marginal cost and available capacity are all particularly

important covariates. However, it is noteworthy that the two most important co-

variates are the type of source (i.e., lignite, hard coal, gas, oil or border point) and

whether the fossil-fuel-fired plant is combined-heat-and-power. This reflects the fact

that different types of electricity generators face different operational constraints.

For example, many natural gas plants in Germany are combined-heat-and-power.

As such, whilst they may have higher marginal costs than coal plants, they receive

revenues both for their electricity output and from providing heating services. Con-

sequently, combined-heat-and-power plants operate more frequently than would be

suggested by simply comparing their marginal cost to electricity prices.

When making out-of-sample predictions using a predictive model such as this, it

is important to ensure that the training data-set provides sufficient support across

the predictor variables. This is because our algorithm is ill-suited to extrapolate

beyond the economic conditions seen in the training data. Appendix Figure B.2

documents that there is substantial overlap in support of the key variables across

the training, counterfactual, and post-2015 “missing” data. This provides evidence

that assessing the impacts of the nuclear phase-out is, for most hours-of-sample, an

interpolation exercise rather than an extrapolation exercise.
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Figure B.1: Net Demand and Scenario Implementation

(a) Net Demand (With Phase-Out) (b) Net Demand (Without Phase-Out)

(c) Clearing Example (With Phase-Out) (d) Clearing Example (Without Phase-Out)

Notes: This figure illustrates the role of the net electricity demand variable in the analysis. Net
demand is defined as total electricity demand minus production from low marginal cost or non-
dispatchable sources. Specifically, we subtract production from renewables (wind, solar, hydro
etc.) and nuclear. Panels (a) and (b) show the level of net demand both with and without the
phase-out respectively. Comparing panel (a) to panel (b) shows that more nuclear production
leads to less net demand to be satisfied in the scenario without the nuclear phase-out. Panels
(c) and (d) provide an illustration of how changing net demand impacts the estimation process.
This happens because altering net demand alters the position where net demand intersects
with the supply curve of dispatchable capacity. The point where net demand intersects with
the supply curve of dispatchable capacity indicates the plant that is “on-the-margin” (purple).
Altering the clearing plant affects the relative marginal cost (∆P ) and available capacity (∆Q)
values for all dispatchable supply. These two variables are illustrated for a high marginal cost
plant (red) and a low marginal cost plant (blue).
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Figure B.2: Machine Learning Model Diagnostics

(a) Variable importance scores (b) Support of Net Demand

(c) Support of Marginal Cost (d) Support of Available Capacity

Notes: This figure illustrates a range of key model diagnostics. Panel (a) shows the importance
scores for each of the variables included in the estimation. Importance scores indicate the
relative importance of each variable in predicting the outcome of interest. The abbreviated
names in the figure are as follows: source = source type (e.g., lignite, hard coal, gas, oil or
border); mc = marginal cost; mcB = marginal cost including border capacity; lowercap =
available capacity; lowercapB = available capacity including border capacity; chp = combined-
heat-and-power capability; technology = technology type (e.g., steam turbine, combined cycle);
temp = local temperature; south = indicator for located in the south; moy = month-of-year;
dow = day-of-week; hod = hour-of-day; netload = electricity load minus production from wind,
solar, hydro and nuclear sources; netloadX = lag of net demand by X; netload X = lead of
net demand by X hours. Panels (b-d) show the support of three key variables: net demand,
marginal cost and available capacity. The grey area shows the distribution of observations in the
2015-2019 training data-set (i.e., where we have hourly, plant-level production data). The blue
area is for the missing 2010-2014 data (i.e.: where we only have hourly data on production by
fuel type). The red area is for the counterfactual scenario (i.e., without the nuclear phase-out)
across the full 2010-2019 analysis period.
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Rescaling certain variables can also help to ensure that our out-of-sample pre-

dictions are not extrapolating too far outside the support of the training data.35

The three main variables we use to approximate the interaction between supply and

demand are net load, marginal costs, and the amount of available capacity. The

counterfactual no-phase-out scenario contains some periods where these variables

fall outside the range in the training dataset. This is potentially a concern because

random forests are susceptible to bias at the edges of the feature space. For example,

we might be concerned that, during periods of peak net demand, our model would

artificially understate the predicted output from fossil plants. A similar problem

applies during periods of extremely low net demand.

Fortunately, this problem largely affects only the subset of plants that are close

to the margin during periods of extremely high or low net demand. Inframarginal

plants will already be operating at their maximum and so will not be subject to this

censoring effect. More importantly, these kinds of periods where we move outside

of the support of the feature space in our training set are very limited. There is

such substantial variation in electricity demand, production from renewables and

marginal costs that there is considerable overlap in the support of these variables in

our training dataset and any other periods or scenarios we are applying our model to.

This includes the counterfactual no-phase-out scenario over the full 2010-2019 period,

as well as the earlier 2010-2014 period where we do not have hourly plant-level data

on output.

Appendix Figures B.2b, B.2c and B.2d provide a clear visual illustration of this

35For example, we rescale the marginal cost of each plant by the marginal cost of the marginal
plant needed to clear the market. Even if fuel costs doubled from 2010-2019, for example, the rescal-
ing would ensure that the rescaled marginal costs fed into our algorithm stay within a reasonable
range over our sample period.
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Table B.3: Common Support of Key Variables

Variable Scenario Training
Range

Training
95%

Training
80%

Overlap
Coef

Net Demand Missing data (2010-2014) 1.00 0.99 0.78 0.79
Net Demand Counterfactual (2010-2019) 1.00 0.97 0.81 0.90
Marginal Cost Missing data (2010-2014) 1.00 0.87 0.72 0.79
Marginal Cost Counterfactual (2010-2019) 1.00 0.92 0.78 0.90
Available Capacity Missing data (2010-2014) 1.00 0.96 0.84 0.82
Available Capacity Counterfactual (2010-2019) 1.00 0.96 0.81 0.97

Notes: This table shows a range of summary statistics to illustrate the shared support between
the periods we make predictions for and the underlying training dataset we use to estimate our
model. We apply our model to predict the missing 2010-2014 data (i.e., where we don’t have
hourly plant-level data) and the full 2010-2019 counterfactual scenario (i.e., without the nuclear
phase-out). Column 3 shows the extent to which the range of the feature of interest is contained
by the range of the same feature in the training set. Columns 4 and 5 are the same but use
the central 95% and 80% of the training set. Lastly column 6 provides the overlap coefficient
between the distribution of the feature of interest and the same feature in the training set.

overlap. Appendix Table B.3 provides summary statistics that make clear the extent

to which the periods and scenarios we make predictions for lie within the feature

space in our training set.

B.3 Additional Model Performance Details

This subsection presents a number of further details on the model performance.

We estimate a quantile random forest model. We tuned the main hyperparameters

to ascertain the sensitivity of our results to these assumptions. The range of hy-

perparameters examined were combined into a grid and then fitted using five-fold

cross-validation. For the number of trees, we examined 25, 50, 100, and 500, with 100

being our final choice. For the number of variables available for splitting at each tree

node, we found the default value was sufficient (i.e., the (rounded down) square root

of the number of variables). Using parameters at half this and twice this level had

74



minimal impacts on accuracy. Lastly, for the minimum node size, again we found

the default value of 5 was sufficient, although we did explore larger values (i.e., 10

and 50).

The results shown earlier in Figure 2 provided some insight into the performance

of the random forest model. This was calculated using five-fold cross-validation to get

reliable measures of out-of-sample performance. The folds were created randomly.

A more stringent test of model performance would be to stratify the data along

important dimensions and then construct the folds from these blocks. This better

captures the challenge the model must overcome in predicting out-of-sample.

To illustrate this, we conduct an additional piece of analysis to measure model

performance, where the folds are constructed based on distinct blocks of plant source

types and years. The training dataset is divided up into blocks based on the five

years (2015-2019) and the five source types (lignite, hard coal, natural gas, oil and

border) in the training data-set. The resulting 25 blocks of the training dataset are

randomly split across the five folds. The same analysis as before is then conducted

whereby the model is fit on four of the folds and used to predict the fifth, before

repeating the process until all folds have each been predicted for out-of-sample.

The results of this can be seen in Appendix Figure B.3. Using this alternative

approach for out-of-sample cross-validation, the predictive performance of the model

is largely unchanged from the values seen earlier in Figure 2.

B.4 Matching Supply and Demand

A key reason for our use of quantile random forests is the fact that an empirical

approach such as the one used in this paper does not incorporate the constraint
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Figure B.3: Machine Learning Model Performance: Plant-Level Electricity
Production

(a) Hourly Data (b) Annual Data

Notes: This figure illustrates the accuracy of the plant-level predictions from the machine
learning model presented in Section 5. The model predicts the operating rate of each power
plant in each hour, where a value of 0% means that the plant is offline and a value of 100%
means that the plant is running at maximum capacity. Values on the 45 degree line indicate
perfect accuracy, and we summarize this both visually and by computing measures of Mean
Squared Error and R2. We compute these metrics using out-of-sample five-fold cross-validation.
Darker areas indicate higher numbers of plant-hour (or plant-year) observations. Each pixel
represents the predicted versus actual operating rate in increments of 2%. Panel (a) shows
prediction accuracy at an hourly timescale. The MSE and R2 are 0.10 and 0.48, respectively.
Panel (b) shows prediction accuracy after taking annual averages of our hourly predictions.
The number of observations is 846, and the MSE and R2 are 0.02 and 0.85, respectively.
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that total supply of electricity should be equal to the total demand for electricity.

Ideally, we would expect the median or mean predictions from our machine learning

approach to predict aggregate generation that is fairly close to the total demand that

must be served.

In our case, the median predictions across all plants and hours in our analysis

predicts total generation that is 9% higher than the total net electricity demand

that needs to be met. In the no-phase-out scenario, our predictions are 27% above

the expected level of total net electricity demand that needs to be met. To remedy

this, we utilize the information our quantile regression model provides us on the full

conditional distribution of potential changes to output. Our approach involves the

following steps.

First, when making predictions of operating rates for each plant in each hour,

we don’t just make these predictions for the median. Instead, we generate predicted

hourly plant operating rates for the 25th, 40th, 50th, 60th and 75th percentiles. In

principle, we could generate predictions for many more percentiles. However, this

becomes prohibitively time consuming, and so we focus on these five percentiles.

Second, we assign a set of weights to these five percentiles in order to recover

the desired level of predicted total electricity production. To do this, we take the

predictions for each of the five percentiles and sum the resulting values over all plants

and hours in each month-of-sample to get monthly totals for predicted electricity

production. We then compare the total monthly predicted electricity production for

each percentile with the true monthly totals for net electricity demand that need to

be met. Our goal is to find the percentile totals that lie on either side of the true

total. So, if the 50th percentile predictions are 9% above the observed net demand

that needs to be served and the 40th percentile predictions are 5% below, then our
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desired percentile would lie somewhere between these two.

Fourth, when we have identified the two relevant percentiles for a given month,

we calculate the weight to assign to each of the two percentiles to produce a weighted

average prediction that best matches supply and demand on a monthly level. In the

above example, we would want to assign weights to the 40th and 50th percentiles of

0.64 and 0.36 respectively. As noted above, a more precise way to achieve the same

result would be to make predictions for a larger number of percentiles such that we

can simply go directly to the one that is closest to the true value. Again though, the

main barrier to doing this is that making predictions for each plant-hour for each

percentile is ultimately very time-consuming.

Appendix Figure B.4 shows the average weights assigned to each of the percentiles

during our analysis. The panel columns capture the weights assigned in the scenario

with the phase-out (“Actual”) and without the phase-out (“Counterfactual”). The

panel rows refer to our three renewables investment scenarios. In general, it is clear

that the median predictions already perform relatively well. The tendency for our

estimation to systematically overestimate the required level of supply is reflected

in the largest weights being assigned to the predictions from the 40th and 50th

percentiles.

A potential concern is that the percentile chosen for our analysis may depend

on the scenario and time period under consideration, and that this could play an

important role in driving our final results. For instance, the average percentile of the

predicted output used in the no-phase-out case for the low, base, and high renewables

scenarios (41.3, 42.5, and 43.7) is lower than the one used in the phase-out case (46).

To see if this presents a problem for our results, we first checked how the per-
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Figure B.4: Quantile Weights for Supply/Demand Matching

Notes: This figure plots the average weights applied to the five quantiles for which predictions
are generated from the random forest model. The panel columns capture the weights assigned
in the scenario with the phase-out (“Actual”) and without the phase-out (“Counterfactual”).
The panel rows refer to our three renewables investment scenarios.
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centile chosen to match supply and demand varied with important covariates in the

model. Here, we find that our model predictions do appear to perform worse (i.e.

overprediction is largest) in the later years when net demand is very low. This is

particularly the case in the “low” renewables scenario. A key driver of this is that

there are not many observations in the training dataset with net demand as low as

the net demand in later years in the low renewables counterfactual.

To explore the sensitivity of our results to this overprediction problem, we con-

sidered specifications in which we weight observations when estimating the model.

The aim is to apply larger weights to the observations in our training dataset where

our model currently struggles (e.g., where net demand is particularly low). We con-

struct these weights focusing on the three key variables in our analysis: net demand,

marginal cost, and available capacity. Our approach upweights observations in the

training dataset that are more like those in the full prediction sample, and down-

weights observations that are less like those in the full prediction sample.36

The weighted estimation approach did slightly reduce the observed tendency for

over-prediction, but did not radically alter it. The lack of any substantial change

likely reflects the fact that, as documented in Appendix Section B.2.5, our training

dataset is already fairly representative of the full range of time periods and renew-

able scenarios we are making predictions for. Panels A and B in Appendix Table B.4

below present estimates of the social cost of the phase-out based on the unweighted

36To do this, we calculate the deciles of each of the three variables using the training dataset.
Interacting these three sets of deciles allows us to segment the support of the dataset into 1,000 cells.
We then calculate the fraction of the overall 2010-2019 sample that falls into each of these cells as
well as the corresponding fractions for the sample implied by each of our three counterfactual no-
phase-out scenarios (i.e., all hours and all plants for all three renewable scenarios over 2010-2019).
Then, the weight for each cell is constructed by dividing the fraction of observations in the training
dataset that falls into the cell by the fraction of observations in the relevant prediction sample that
falls into the cell. We also tried a weighting approach based on estimating propensity scores using
the full set of covariates. This produced qualitatively similar results.
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model (i.e., the baseline estimates from Table 5) and the weighted model respec-

tively. For each model, we present estimates for the six different scenarios defined by

assumptions on the value of statistical life and the percentage of phase-out-induced

deployment of renewables. Comparing Panels A and B in Appendix Table B.4 for all

six scenarios, the estimates of the social cost of the phase-out calculated using the

predictions of output from the weighted machine learning model are very similar to

those in our main specification.

As a second approach to tackling this issue, we demonstrate that our estimates of

the social cost of the phase-out remain largely unchanged if we focus on the subset of

months-of-sample where the percentile of predictions used in the factual scenario are

very similar to the percentile of predictions used in the counterfactual no-phase-out

scenario. As noted earlier, the average percentile of the predicted output used in

the no-phase-out case for the low, base, and high renewables scenarios (41.3, 42.5,

and 43.7) is lower than the one used in the phase-out case (46). The difference here

is a gap of between 2.5 and 4.7 percentile points. If we focus on the 25% most

similar months-of-sample where this difference is smallest, the average percentile of

the predicted output used is close to 44 in both the phase-out and no-phase out cases

across all three renewable scenarios. The difference between the percentiles used in

the phase-out versus no-phase-out cases is just 0.1 to 0.4 percentile points. During

these months, the level of overprediction is very similar in the phase-out and no

phase-out scenarios, and so any adjustments needed to match supply and demand

are also very similar.

The results in Panel C of Appendix Table B.4 demonstrate that our estimates of

the social cost of the phase-out for the low, middle, and high renewables scenarios

remains broadly unchanged when focusing on months where the level of adjustment
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Table B.4: Estimated Annual Impact of the Nuclear Phase-Out on Private and
External Costs: Sensitivity Analyses

Panel A: Baseline Estimates

Average Average Change Change (%)
with without

Phase-Out Phase-Out
(1) (2) (3) (4)

Base VSL, Low Renewables 48.27 44.82 3.45 7.7
Base VSL, Base Renewables 48.27 44.95 3.32 7.4

Base VSL, High Renewables 48.27 45.05 3.21 7.1
High VSL, Low Renewables 76.14 68.04 8.10 11.9
High VSL, Base Renewables 76.14 69.57 6.57 9.4
High VSL, High Renewables 76.14 71.01 5.13 7.2

Panel B: Estimates from Weighted Machine Learning Model

Average Average Change Change (%)
with without

Phase-Out Phase-Out
(1) (2) (3) (4)

Base VSL, Low Renewables 48.71 45.08 3.62 8.03
Base VSL, Base Renewables 48.65 45.24 3.40 7.52

Base VSL, High Renewables 48.59 45.40 3.18 7.0
High VSL, Low Renewables 77.44 68.94 8.49 12.31
High VSL, Base Renewables 77.29 70.46 6.83 9.69
High VSL, High Renewables 77.13 71.96 5.17 7.18

Panel C: Estimates from “25% Most Similar Months”

Average Average Change Change (%)
with without

Phase-Out Phase-Out
(1) (2) (3) (4)

Base VSL, Low Renewables 46.99 43.89 3.10 7.1
Base VSL, Base Renewables 45.13 42.34 2.79 6.6

Base VSL, High Renewables 44.89 42.44 2.45 5.8
High VSL, Low Renewables 75.79 67.81 7.98 11.8
High VSL, Base Renewables 72.59 66.71 5.88 8.8
High VSL, High Renewables 68.63 65.00 3.63 5.6

Notes: This table reports estimates of the social cost of the nuclear phase-out for the six
scenarios defined by low versus base assumptions on the value of statistical life (i.e, e2.56 million
versus e6.7 million) and low, base, and high assumptions on phase-out-induced investment in
renewables (see Section 5.4 for more details). In Panel A, we reproduce the baseline estimates
from the bottom panel of Table 5 in the main text. In Panel B, we present results based on
the weighted quantile random forest model. These weights are designed to make the training
dataset more representative of the wider set of scenarios and time periods we make predictions
for. In Panel C, we focus on months-of-sample where the predictions from our model require
similar adjustments to match supply and demand in both the actual and counterfactual cases
(the months-of-sample in bottom 25% of the absolute difference between the percentiles of
predicted output used in the factual scenario with the phase-out versus the counterfactual
scenario without the phase-out).
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needed to match supply and demand is highly similar across both the actual and

counterfactual cases (i.e., the “25% Most Similar Months” estimates). Our main es-

timates of the annual average increase in social costs due to the phase-out range from

3.21-8.10 billion euros, with a central estimate of 3.32 billion euros. The correspond-

ing range of social costs when focusing on the subsample with highly comparable

levels of prediction adjustment is 2.45-7.98 billion euros, with a central estimate of

2.79 billion euros. We view this evidence as indicative that the qualitative and quan-

titative conclusions drawn from our analysis of the nuclear phase-out are not driven

by differences in the extent of overprediction for our model in the phase-out versus

no-phase-out scenarios.

B.5 Additional Model Results

Appendix Figure B.5 shows the median model predictions for how the nuclear phase-

out impacted aggregate plant-level electricity production in Germany. As expected,

points on this figure tend to lie above the horizontal axis; the nuclear phase-out

reduced nuclear generation, with fossil-fuel-fired production filling the gap. The

largest response to the phase-out comes from the hard coal plants.

Appendix Figure B.6 illustrates which plants and border points increased pro-

duction to meet the reductions in nuclear output due to the phase-out. Most of the

fossil-fuel generation comes from the industrial regions in the west and south of the

country. Changes to net imports come primarily at the borders between Germany

and Denmark, France and the Czech Republic.
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Figure B.5: Plant-level Changes in Production due to the Phase-Out

(a) Lignite (b) Hard Coal

(c) Natural Gas (d) Border

Notes: This figure illustrates the plant-level disaggregation of the machine learning prediction
model results. The model predicts the operating rate of each power plant in each hour, where a
value of 0% means the plant is offline and a value of 100% means it is running at maximum ca-
pacity. These figures plot plant-level annual average operating rates. The x-axis corresponds to
each plant’s operating rate in the baseline scenario with the phase-out. The y-axis corresponds
to the impact of the phase-out on plant-level operations. This is determined by the difference
between the predictions in the scenario with the phase-out versus the scenario without the
phase-out. Darker areas indicate higher numbers of plant-year observations. Each panel refers
to a different type of dispatchable electricity source. Panel (a) covers lignite plants, panel (b)
covers hard coal plants, panel (c) covers gas plants and panel (d) covers border points. Oil
plants are not shown because they are a very small portion of total capacity and are largely
unaffected by the phase-out.
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Figure B.6: Map of Plant-Level Changes in Production due to the Phase-Out

Notes: This map illustrates the location of the fossil-fuel-fired plants or border points that
increased their electricity production as a result of the nuclear phase-out policy. The size of the
circle reflects the amount of additional production provided by the fossil-fuel plant or border
point. Points in red are border points and points in grey are fossil-fuel plants. Lignite plants
are depicted in the darkest grey, followed by hard coal, then natural gas, and finally oil plants
are depicted in the lightest grey.
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C Alternative Estimates of Local Air Pollution

Costs

The health damages in Table 4 are calculated by linking data on plant-level emissions

rates to pollution exposure using atmospheric chemistry modeling. As a complement

to these estimates, we present a secondary approach to estimate the external costs

imposed by increased ambient air pollution caused by the phase-out. To this end,

we use granular air pollution monitor data to estimate how changes in output from

hard coal and lignite plants affect ambient PM2.5 concentrations. We then calculate

the resulting excess mortality associated with the phase-out using similar methods

to the ones underlying Table 4.

To proceed, we consider all air pollution monitors with daily PM2.5 records in

our sample period. We focus on the impacts on pollution of changes in output from

hard coal and lignite plants because the evidence in Table 4 demonstrates that those

2 sources were by far the largest emitters. We construct a panel with daily ambient

PM2.5, generation, and wind direction for all generating unit/monitoring station pairs

within a distance bandwidth of 250km and estimate the following regression:37

Yi,y,m,d = α + βGp,y,m,d + γi,p + θm + ψy + ui,p,y,m,d (C.1)

where Yi,y,m,d represents ambient concentrations of PM2.5 at monitor i on day d

of month m of year y. Gp,y,m,d represents daily generation at plant p linked to

monitor i. The parameter of interest β captures the impact of an additional GWh of

generation on ambient concentrations of PM2.5 in micrograms per cubic meter. The

37There are 50 hard coal and lignite plants in our sample and 212 air pollution monitors with
daily PM2.5 measurements.
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model includes fixed effects for each unit/monitor pair (e.g., to control for attributes

specific to each pair such as generating unit efficiency, distance between unit and

monitor, and the presence of other stationary sources of air pollution), as well as

month-of-year and year-of-sample fixed effects (which control for seasonality and

trends in air pollution and generation constant across all unit/monitor pairs).

In some specifications, we augment the model in Appendix Equation (C.1) by

controlling for generation from all other units in the distance bandwidth. We also

consider specifications interacting generation with indicators for the unit being up-

wind, downwind, or neither upwind or downwind from a given air quality monitor

on a given day.38 Based on previous literature (e.g., Deryugina et al. (2019)), we

expect the impact of generation from units upwind from a pollution monitor to have

a larger impact in driving ambient PM2.5 concentrations than units downwind from

the monitor.

Appendix Table C.1 presents the results from the estimation of Appendix Equa-

tion (C.1). Column (1) shows that across all unit/monitor pairs, an increase in daily

generation of 1 GWh leads to a 0.178 µg/m3 increase in daily average PM2.5 concen-

trations. Evaluated at the sample means, this corresponds to an elasticity of about

0.1. Air pollution recorded at one given monitoring station is likely to reflect emis-

sions from a host of mobile and stationary sources, including other power plants. To

this end, in column (2) we add a control for generation from all other units within

the 250km distance bandwidth. Thus, the regression isolates the link between ambi-

38Specifically, we merge daily station-level data on wind direction to pollution monitors. Then,
we calculate the bearing of each unit relative to each monitor for unit/monitor pairs within 250km
of each other. Finally, a unit is classified as being upwind from a monitor if the absolute difference
between the wind direction from the monitor and the relative bearing between monitor and unit
is less than 45 degrees. Similarly, a unit is “downwind” from a monitor (i.e., the wind blows from
monitor to unit) if the absolute difference between wind direction and relative bearing is between
135 degrees and 225 degrees.
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ent PM2.5 and generation from a given unit, holding constant generation at all other

units. The estimated coefficient drops to 0.057 (so about one-third in comparison to

column (1)), but remains statistically significant.

The model in column (3) estimates a separate coefficient on electricity production

interacted with the upwind, downwind, or neither upwind or downwind indicators

described above. The evidence indicates, as expected, that generation at units up-

wind from a monitor is the primary driver of the observed relationship between PM2.5

and generation shown in column (2). Column (4) further shows that increasing the

maximum distance bandwidth between generating units and air pollution monitors

to 300 km does not alter this conclusion.

Using the estimates from Appendix Table C.1, we can derive estimates of the

increase in premature mortality due to changes in ambient PM2.5 concentrations

induced by the phase-out. To do so, we utilize the dose-response function from the

ESCAPE project (Beelen et al., 2014).39 Based on the hazard ratio estimated as part

of this project, we can calculate the increase in mortality caused by the additional

air pollution due to the phase-out using the following formula:

V SL×
85∑

a=25

(POPa,r,y ×MRa,y ×
(

1− 1

exp(ρ∆PM2.5r,s,y)

)
) (C.2)

where POPa,r,y is the population of people aged a in state r in year y and MRa,y

is the mortality rate for age a in year y; note that ages 85+ are binned into one

39The European Study of Cohorts for Air Pollution Effects (ESCAPE) is one of the few large-
scale studies on the health impact of air pollution exposure in Europe. It is based on 22 European
cohort studies with a total study population of more than 350,000 participants. Specifically, the
ESCAPE project reports that the mortality rate when PM2.5 exposure is X + 5 micrograms per
cubic meter divided by the mortality rate when PM2.5 exposure is X micrograms per cubic meter
is 1.07.
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Table C.1: Estimated Effect of Coal-Fired Electricity Generation on Ambient
PM2.5 Concentration Levels

Dep. Var.: PM2.5 Concentration Levels (micrograms per cubic meter)

(1) (2) (3) (4)

Electricity Production (GWh) 0.178∗∗∗ 0.057∗∗∗

(0.026) (0.010)

Upwind × Production (GWh) 0.115∗∗∗ 0.123∗∗∗

(0.016) (0.016)

Downwind × Production (GWh) 0.013 -0.010
(0.011) (0.011)

Neither DW nor UW × GWh 0.051∗∗∗ 0.046∗∗∗

(0.010) (0.009)

GWh from Other Plants 0.033∗∗∗ 0.030∗∗∗ 0.026∗∗∗

(0.004) (0.003) (0.003)

GWh from Other Upwind Plants 0.009∗∗∗ 0.009∗∗∗

(0.002) (0.001)

GWh from Other Downwind Plants -0.003∗ -0.002∗∗

(0.001) (0.001)

Distance Bandwidth 250 250 250 300
Unit/Monitor Pair FE Yes Yes Yes Yes

Month-of-Year FE and Year FE Yes Yes Yes Yes
Number of Obs. 2,341,993 2,341,993 2,341,993 3,108,471

Notes: This table presents the results from regressions of daily average PM2.5 concentration
levels on daily unit-level electricity production. We focus on non-CHP lignite and hard coal
fired electricity generating units in Germany over the sample period 1/1/2015-12/31/2019.
The unit of observation is a fossil fuel unit matched to an air quality monitor in a day-of-
sample. Standard errors, reported in parentheses, are two-way clustered by unit/monitor pair
and month-of-sample. For columns (1) to (3), the estimation sample includes all units and air
quality monitors within 250km of each other; column (4) includes all pairs within 300km of each
other. All specifications include fixed effects for each unit/monitor pair as well as month-of-year
and year-of-sample fixed effects. In column (1), we regress daily average PM2.5 on electricity
generation (in GWh) for each unit/monitor pair with no additional controls. Column (2) adds
the total production from all units within the relevant distance bandwidth other than the one
in the unit/monitor pair. The specifications in columns (3) and (4) break down the impact of
generation on PM2.5 by whether the unit is upwind, downwind, or neither upwind nor downwind
from the monitor.
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category. The parameter ρ corresponds to the hazard ratio estimated in Beelen et al.

(2014) and ∆PM2.5 is the change in ambient PM2.5 concentration levels attributed

to the phase-out.

The change in ambient PM2.5 attributed to the phase-out is calculated in three

steps. First, we calculate ∆Geni,t, the change in electricity generated from unit i in

hour t due to the phase-out. We multiply this difference by 0.057, the estimated im-

pact of fossil-fuel-fired generation on fine particulates from Column (2) in Appendix

Table C.1. Finally, we take the average of the resulting changes in PM2.5 over units

of each source (either hard coal or lignite) in each state in each year of sample from

2012 to 2019.

The resulting estimates of monetized mortality damages are presented in Ap-

pendix Table C.2. Specifically, we report the average daily concentrations of PM2.5

under the phase-out (column 1) and no phase-out (column 2) scenarios, as well as the

difference between the two (column 3). The entries are annual averages over 2012-

2019. The middle and bottom rows report estimates of premature mortality driven

by exposure to PM2.5 and the monetized damages from this premature mortality

using the formula discussed above. The key result is that the phase-out resulted

in an increase in ambient PM2.5 concentration levels of 1.4% (0.19 µg/m3), which

translates into 334 additional excess deaths per year. This amounts to e0.9 billion

in annual damages.

Taken together, the results in Table 4 and Appendix Table C.2 paint a consistent

picture of the impact of the nuclear phase-out on pollution-caused excess death. Our

estimates attribute 330 to 800 excess deaths per year to the increase in air pollu-

tion caused by the nuclear phase-out. This amounts to monetized health damages

of e0.9 to e2.0 billion per year during the 2012-2019 period. Our preferred esti-
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Table C.2: Estimated Impact of the Phase-Out on Air Pollution Mortality Damages

Average Average Change Change (%)
with without

Phase-Out Phase-Out
(1) (2) (3) (4)

PM2.5 Concentrations (micrograms
cubic meter) 14.01 13.83 0.19 1.37

Lignite 15.38 15.11 0.26 1.72
Hard Coal 12.65 12.54 0.11 0.88

Mortality (Excess Deaths
Year ) 333.8

Lignite 78.0
Hard Coal 255.7

Pollution Damages (Bn. Euros
Year ) 0.90

Lignite 0.21
Hard Coal 0.69

Notes: This table reports alternatives estimates of the monetary damages associated with the
premature mortality resulting from the additional exposure to ambient PM2.5 attributable to
the nuclear phase-out. We use the estimated relationship between daily ambient PM2.5 and daily
generation from lignite and hard coal fired power plants reported in column (2) of Appendix
Table C.1. We multiply this estimated relationship by the predicted changes in production
from each plant due to the phase-out. The resulting changes in ambient PM2.5 concentration
levels are converted to a change in premature mortality using dose-response estimates from
the ESCAPE project (Beelen et al., 2014). We monetize this additional premature mortality
using the base-case VSL of e2.56 million for Germany. We do not report the absolute levels
of mortality or damages because the baseline levels of pollution recorded at monitors are not
attributable entirely to power plant activity; for example, industrial facilities and mobile sources
also emit these pollutants.
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mate is the e2.0 billion per year in damages calculated based on reported emissions

(Table 4). This is because the analysis using reported emissions considers a more

complete set of pollutants and draws on a more sophisticated analysis of pollution

transport and exposure. The results presented in Appendix Table C.2 based on our

estimated relationship between PM2.5 levels and electricity production serve as a

valuable complementary validation exercise based on an entirely distinct approach.
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