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ABSTRACT
Decision making in the face of a disaster requires the consideration of several complex fac-
tors. In such cases, Bayesian multi-criteria decision analysis provides a framework for decision
making. In this paper, we present how to construct a multi-attribute decision support system
for choosing between countermeasure strategies, such as lockdowns, designed to mitigate
the effects of COVID-19. Such an analysis can evaluate both the short term and long term
efficacy of various candidate countermeasures. The expected utility scores of a countermeasure
strategy capture the expected impact of the policies on health outcomes and other measures
of population well-being. The broad methodologies we use here have been established for
some time. However, this application has many novel elements to it: the pervasive uncertainty
of the science; the necessary dynamic shifts between regimes within each candidate suite of
countermeasures; and the fast moving stochastic development of the underlying threat all pre-
sent new challenges to this domain. Our methodology is illustrated by demonstrating in a sim-
plified example how the efficacy of various strategies can be formally compared through
balancing impacts of countermeasures, not only on the short term (e.g. COVID-19 deaths) but
the medium to long term effects on the population (e.g. increased poverty).
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1. Introduction

Major disasters and incidents such as pandemics,
nuclear disasters, volcano eruptions and tsunamis can
impact the short-term and long-term well-being and
health of people, nature and economies (see, e.g. Boyd
et al., 2014; Jord�a et al., 2020; Ohtsuru et al., 2015;
Tamura et al., 2000). Decision-making in such crises
involves balancing several complex factors, where each
factor’s priority may be a subjective judgement (Smith,
2010). Such decision-making is further complicated by
the decision centre (DC) – an individual or a group
of people, such as a government committee, who
must have the authority to enact the decisions made –
receiving information from multiple sources. Such
information is either factual or narrative in nature,
and also may be noisy, uncertain and incomplete
(Bakker et al., 2019). Bayesian decision analysis has
been shown to enable principled decision-making in
such complex, multi-faceted problems (French, 1996;
Kurth et al., 2017; Moffat & Witty, 2002;
Smith, 2010).

This paper focuses on implementing the well-
developed principles of Bayesian multi-criteria

decision analysis on the ongoing COVID-19 pan-
demic which first emerged in Wuhan, China in late
2019 (World Health Organization, 2020). Using the
framework presented in this paper, a DC, such as
the government, can combine streaming uncertain
information they receive about the current and
potential effects of the pandemic on the various
aspects of society in the form of expected utility
scores to decide among a finite set of countermeas-
ure strategies. The study within this paper was
undertaken between June and October 2020.

In March 2020, most countries across Europe,
including the UK, imposed lockdowns on regional
or national levels in an effort to control the spread
of the COVID-19 virus, prevent overburdening their
healthcare systems and to buy more time to enable
researchers to learn more about the disease (Sridhar,
2020). However, lockdowns have been economically
damaging, particularly for hard-hit sectors such as
aviation, tourism and hospitality (Brien & Harari,
2020). The UK was in recession in the first two
quarters of 2020 with early signs of recovery in the
third quarter when lockdown restrictions were
relaxed (PwC UK, 2020). As of 18th October 2020,
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9.6 million jobs have been furloughed under the UK
government’s job retention scheme (HM Revenue &
Customs & UK, 2020). Following the relaxation of
initial national lockdown measures in summer of
2020, there have been several localised outbreaks of
COVID-19 across the UK, resulting in local lock-
downs. The government, keen to avoid another
national lockdown to protect the economy, has been
under scrutiny regarding the efficacy and frequent
changes of the measures introduced under local
lockdowns (BBC: Rachel Schraer & Ben Butcher,
2020). In this “second wave”, the government has
again faced a challenging balancing act: managing
the public health impacts of COVID-19 on one
hand, its economic and social impacts on the other.
The research presented in this paper was completed
against this backdrop; it reached completion in
October 2020, when COVID-19 cases were increas-
ing rapidly and the government was on the brink of
announcing a second lockdown.

To compare the health, social and economic
impacts of the candidate countermeasure strategies,
it is necessary to evaluate them on a comparable
scale. Typically, health and social impacts are meas-
ured in terms of health-adjusted life-years (QALYs)
(Miles et al., 2020; Zala et al., 2020) or wellbeing-
adjusted life-years (WELLBYs) (De Neve et al.,
2020; Layard et al., 2020) as caused directly by the
virus itself or indirectly by the countermeasures
implemented to tackle it; the economic impacts are
measured in terms of difference in realised GDP
and empirical or projected GDP, or sometimes as
number of jobs in various sectors, consumer spend-
ing growth or business investment growth (PwC
UK, 2020). Further, these impacts often move in
opposite directions in response to any given coun-
termeasure. Hence, a common metric is essential for
their comparison (Layard et al., 2020).

Within a Bayesian decision analysis, this common
metric is defined through an expected utility score
given to each of the health, social and economic
attributes. For each attribute, we define a function
to convert the actual recorded or estimated meas-
urements (e.g. number of deaths or first order dif-
ference in the GDP) into a common metric (here,
utilities). Next, by combining these expected utility
scores using a specified utility function, we arrive at
an expected utility score for each countermeasure
strategy. However, the exercise of arriving at an
expected utility score for each strategy is compli-
cated by two factors: (1) the specification of the
DC’s utility function may involve uncertain esti-
mates of future events (e.g. predicted number of
COVID-19 deaths under a complete lockdown), and
(2) individuals within a DC may be inclined to pri-
oritise the importance of the various impacts in

different ways (e.g. some individuals may view the
impact on GDP as more important than others).
Consequently, there may be no consensus within a
DC as to how efficacious each policy may be.

In this paper, we argue that, in light of the afore-
mentioned challenges, it is essential that any deci-
sions made by policymakers are done after due
consideration and analysis within a systematic deci-
sion support framework with proper treatment of
the associated uncertainties (French, 1995). Such a
framework is a defensible and powerful continuous
assessment tool and allows policymakers to feed
information (for example, the statistics and esti-
mates the UK government obtains from various
sources, including its Scientific Advisory Group for
Emergencies (SAGE)), and their priorities into the
model when it comes to decision making. At the
time of writing, the COVID-19 decision support
tools in the literature (discussed in Section 2) fall short
on providing such a systematic and statistically sound
framework that any DC could utilise to compare their
options under their self-determined constraints.
However, established Bayesian methodologies have
been developed over a number of decades to support
DCs, capable of respecting both the preferences of the
centre and the uncertainties around predictions that
inform such decisions, including methods that help
compare a variety of different priority weightings. This
paper outlines how such a Bayesian decision analysis
can help evaluate the efficacy of different COVID-19
countermeasure strategies.

2. Related research

Bayesian decision analyses have been successfully
adapted and implemented for various applications,
including nuclear disaster support (Geldermann et al.,
2009), food security management (Barons et al., 2020),
industrial risk management (Rikalovic et al., 2014) and
environmental planning (Mattiussi et al., 2014). For
more Bayesian and frequentist applications of decision
support systems, see Eom and Kim (2006). The
COVID-19 threat is fast moving, driven not only by
the stochastic spread of the virus but also the dynamic
control exerted by a government on the activities of
its agents and the general population to the unfolding
crisis. Any support tool for managing this crisis needs
to acknowledge that, while governments may need to
switch between lockdown regimes to increase or
decrease the severity of social restrictions in response
to the virus prevalence, the general population may
tire of the uncertainty in their lives attributable to
constantly changing restrictions. In this paper, we
draw from previous work (Leonelli & Smith, 2015) to
demonstrate how to create a multi-attribute decision
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support system (DSS) under a Bayesian approach to
address COVID-19 decision making challenges.

We note here that a Bayesian approach has been
used for other COVID-19 studies (Dehning et al.,
2020; Mbuvha & Marwala, 2020; Neil et al., 2020;
Verma et al., 2020), although not for the purpose of
providing a decision support framework. Finally,
note that in many situations, historical data alone
may be inadequate for estimating aggregate utilities
from the various attributes. Continuously generated
data for our recent and evolving COVID-19 situ-
ation, along with empirical data from past epidemics
and pandemics are useful to a certain extent but are
not sufficient. In this case, it is useful to elicit the
required estimates and their associated uncertainties
through discussions among a panel of domain
experts. The iterative nature of such discussions and
the development of the corresponding DSS are
detailed in Barons et al. (2018). The structure and
estimates of such a DSS would need to be repeatedly
reviewed as more information comes to light (e.g.
development of a vaccine or new information on
immunity from the disease). Typically, the iterative
improvements to the DSS are performed until it is
deemed to be requisite, i.e. the DC is content that
the structure of the DSS is as required (Phillips,
1984). Given the urgency of the issue at hand, it is
prudent to begin the process of establishing such a
requisite DSS by first developing its framework to
address the new challenges of the COVID-19 deci-
sion making problem. As more information and
data come in, the DSS can be appropriately modi-
fied within the framework and the data can be fed
into it. Thus our contribution here is the framework
for a multi-attribute Bayesian DSS for COVID-19.

There have been several studies focused upon spe-
cific aspects of the COVID-19 decision-making prob-
lem such as impacts on mortality and poverty (Decerf
et al., 2020), a cost-benefit analyses of a lockdown
(Layard et al., 2020; Miles et al., 2020), and the impact
of specific countermeasure strategies (Karnon, 2020;
Lander, 2020; Peto et al., 2020). However, none of
these studies adopted a Bayesian approach which we
believe is essential in this case as it not only supports
uncertainty handling but also gives the government a
more transparent and auditable tool. Additionally,
these studies look at specific cases but do not describe
their general framework. This makes it hard to adapt
the existing work as new information comes in. We
note here that clinical decision support tools for
COVID-19 (e.g. Liu et al., 2020b; McRae et al., 2020;
Reeves et al., 2020; Wu et al., 2020) are beyond the
scope of discussion for this paper.

In the OR literature, Bayesian approaches have
been used to model probabilities (see e.g. Vargo &
Cogill, 2015; Zafari & Soyer, 2020). There have been

recent calls however, for developing Bayesian sub-
jective utility models to address deep uncertainty in
evolving decision contexts (French, 1995; French,
2020). This paper addresses this by developing a
framework for providing decision support in an
evolving and complex decision context.

3. A COVID-19 decision support framework

In this section, we describe how to construct a frame-
work for a DSS to be used for examining the efficacy
of different COVID-19 countermeasures within a
Bayesian decision analysis. We assume that the DC
satisfies the following key requirements: (1) they must
agree on a single agreed rationale for their stated
beliefs, and (2) the preferences and any elicited expert
judgement used is adopted as their own.

In this paper, we use the definition of a DSS from
French et al. (2009) that, “A decision support system
is a computer-based system that supports the deci-
sion-making process, helping [DCs] to understand the
problem before them and to form and explore the
implications of their judgements, and hence to make a
decision based upon understanding”.

It is convenient to break the process of creating a
DSS down into four phases:

3.1. Elicitation of the class of strategies we
might consider and the attributes of the
utility function

We start by considering the types of strategy whose
effectiveness we need to assess. In this framework,
for the purpose of this paper, a strategy is defined
by the regimes that might be imposed (such as a
lockdown) and the thresholds (based on the system,
which when reached leads to a switching of
regimes). These strategies are designed to control
the behaviour of the population and are typically
tiered by the level of stringency these represent, i.e.
the amount of disruption they cause to the normal
life of the population.

The attributes of the utility function are the dif-
ferent features of interest that each strategy affects.
We define A ¼ fA1,A2, :::,Amg as the set of attrib-
utes of interest, with ai the value that attributes Ai.
In the context of decision support for COVID-19,
attributes which may be of interest include: the
years of life saved across the population from avoid-
ing infection by the virus; the years saved through
timely medical examinations, for example through
the detection of cancer and the encouragement to
report to Accident and Emergency departments
(A&E) when exhibiting symptoms of a stroke or
heart attack. A further threat to survival will be the
response to increased poverty as categorised by the
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distribution of life expectancy given movements in
the social class across the population induced by,
for example, less effective education, unemployment
or reduced employment activities. Note that all these
attributes can be measured in units of years of life
saved. On top of these, we may need to consider
further attributes that define the quality of life of
the population or its wellbeing, such as measures of
depression and anxiety or economic hardship.

3.2. Elicitation of a quantification of the DC’s
marginal utilities of these attributes and the
criterion weights

A subjective expected utility analysis consists of two
components: a utility function UðaÞ over a set of
measured attributes a ¼ ða1, a2, :::, amÞ and a set of
multivariate probability densities psðaÞ : s 2 S

� �
into

the future associated with each possible countermeas-
ure strategy. Whilst the latter would be provided by
the appropriate domain experts working with statisti-
cians and mathematical modellers, the utility function
UðaÞ needs to be elicited from the DC to reflect how
they intend to frame their objectives and prioritise
them. More precisely, if a� and aþ denote what the
DC perceive to be respectively the worst and best
credible outcomes then for each vector of outcomes a,
a : a� � a � aþf g, UðaÞ is an increasing linear

function of the probability qðaÞ where the DC finds
the outcome a with certainty equally preferable to a
hypothetical situation where they are faced with
obtaining the best possible outcome aþ with probabil-
ity qðaÞ and the worst a� with probability 1�qðaÞ: In
this way, aspects of the DC’s risk aversion can be cap-
tured (see Papamichail & French, 2003; Smith, 2010).

On the basis of certain basic axioms (see Smith,
2010), various ways have been devised to indirectly
elicit these preferences efficiently, effectively and
specifically with less biases. One assumption that is
often made, and can be checked against a DC’s
expressed preferences, is that the DC has value inde-
pendent attributes. The attributes a are said to be
value independent if the DC always finds two strat-
egies s1 and s2 (leading to densities over outcomes
p1ðaÞ and p2ðaÞ respectively) equally preferable
whenever the marginal distributions over p1ðaÞ and
p2ðaÞ for each component attribute in a are the
same. It can then be shown that we can find posi-
tive criterion weights ðk1, k2, :::, kmÞ,

Pm
i¼1 ki ¼ 1

such that UðaÞ can be written

UðaÞ ¼
Xm
i¼1

kiUiðaiÞ

where UiðaiÞ – called the marginal utility of ai – is
an increasing function of its argument, and ki �
0, i ¼ 1, 2, :::,m: Whether the attributes satisfy value

independence is not an inherent feature of the
attributes but is a subjective judgement of the DC.
It has been found that in practice, provided the
attribute vector a is carefully defined, this simple
form well approximates the DC’s actual utility func-
tion in the vast majority of analyses. The advantage
of making this assumption is that UðaÞ is then
much easier to elicit and the output of the analysis
much more transparent and easy to explain: see
(Smith, 2010) for a long discussion of these points.
In particular, the criterion weights of the different
component attributes can be chosen to reflect their
relative importance. On the other hand, the form of
the marginal utilities can be chosen to reflect the
extent to which a DC considers an outcome good or
bad relative to its extremes for each single attribute
in turn. Henceforth, in this paper, we will assume
the DC has value independent attributes.

3.3. Building a probabilistic model of each
attribute and performing a Bayesian analysis
which combines available data with probabilistic
expert judgements

This is the process of obtaining pðaijsÞ : the prob-
ability of attribute i having value ai given strategy s.
In the context of COVID-19, this involves obtaining
a probabilistic model for the number of deaths
based on the strategy taken. This requires some
sophistication since the spread of the virus at any
time is complex and uncertain as it is a function of
both the regime that a strategy is in at that time
and the latent state of the disease. Therefore, any
model informing the DC needs to be able to accom-
modate expert judgements, epidemiological model-
ling and data, all synthesised through Bayesian
techniques; where in complex cases these techniques
would tend to be computational.

3.4. Calculating a final score on each attribute
as an expectation of its utility function

These scores are weighted by the elicited criterion
weight to provide expected utility scores for each of
the strategies considered. Note that there is always
an explanatory rationale to whether or not a strategy
scores well based on each of the different individual
attribute scores and the predictions of the uncertain
consequences of each strategy.

As the attributes chosen are value independent
(Insua & French, 2010; Keeney & Raiffa, 1993), the
subjective expected utility score �UðsÞ of each strat-
egy s over the m attributes a1, a2, :::, am with respect-
ive marginal utilities U1,U2, :::,Um and the
associated criterion weights k1, k2, :::, km elicited in
phase 2, is given by
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�UðsÞ ¼
Xm
i¼1

ki �UiðsÞ: (1)

Here, the marginal expected utility scores for each
attribute j given strategy s are given by

�UiðsÞ ¼
ð
UiðaiÞdpðaijsÞ (2)

where pðaijsÞ is the DC’s subjective probability dis-
tribution built in phase 3 and UiðaiÞ is the marginal
utility function elicited in phase 2. Note here that in
this context it is natural to define the attributes to
extend to a point in time when the virus is no lon-
ger a threat. In this sense, the eventual utility scores
associated with a given attribute is always uncertain
throughout the decision making process.

4. A simplified Bayesian analysis of COVID-19
strategies

In this section, we give a simple illustration of how
a formal Bayesian multi-criteria decision analysis, as
described in Section 3, could have been used to help
DCs weigh the efficacy of different options open to
them. Typically, marginal utility functions would
need to be elicited. We have mentioned above that
these would typically be risk-averse, which would
have the effect of reducing expected utility scores
when the outcomes of associated strategies are more
uncertain. However, because our main focus in this
example is how the Bayesian multi-criteria decision
analysis balances the efficacy achieved associated
with different options, we shall in the first instance
make the common assumption that each of the mar-
ginal utilities is linear in its attribute.

By making this assumption, the analysis becomes
much simpler because the DC’s uncertainty only enters
into calculations through the expectations of the random
variables defining the future. For simplicity, we simulate
the effects of each strategy up to 40weeks.1

In this example we include an analysis of the effects
of policies on health issues. For simplicity, we do not
include the effects of the policies on the economy or
the political environment. However, in a real-world
analysis, these would also need to be assessed.

4.1. Class of strategies and attributes

4.1.1. Regimes
In practice, there is a large set of different regimes
to consider, including potentially all possible combi-
nations of preventative measures such as: closing
schools, making mask wearing compulsory and pro-
moting working from home. Here, we have chosen
to limit our example to 3 regimes that the strategies
will be able to switch between for simplicity. These

loosely correspond to a regime implemented so far
by the UK government. The three regimes are:

� r0 – No lockdown: No restrictions.
� r1 – Partial lockdown: Return to work and

school, non-essential businesses open with
1mþ distancing.

� r2 – Complete lockdown: Work from home in
effect, ban on non-essential interactions, complete
closure of schools and non-essential businesses.

The first two regimes are analogous to the UK
policies in effect on 26th March and 4th July
respectively. A strategy determines when and how
the transitions between these regimes occur, with
the possibility of no transitions allowed.

4.1.2. Strategies
As the DC will be responding to the spread of the
disease in a population which is susceptible to
shocks such as large outbreaks, strategies considered
should naturally include those which include switch-
ing between these three regimes.

In this example, we will consider several strat-
egies that have different thresholds that give the
transitions between regimes. At the time of writing,
the thresholds on what measures the government
was using to inform their strategies were not pub-
licly available. In lieu of this, the transition thresh-
olds for our example were based around the
decisions made by England if they were based on
the metrics defined in our example.

In practice, a DC would likely be interested in a
much wider range of strategies. However, in our
example, for ease of analysis, we will narrow down
the set of strategies that we are interested in by put-
ting the following conditions on them:

� At most, one switch between regimes can take
place in a week.

� Within the timescale of the simulation, once
restrictions have began, we do not return to no
restrictions.

� The transitions between regimes here are set
such that they are dependent on the cumulative
reported deaths, which is assumed to be known
and the reported proportion of the population
infected, which is assumed to be known with a
delay of a week. In practice, this could be esti-
mated from the proportion of positive tests from
a sample of the population with the information
being made available with a delay.

Thus, the state-space diagram for each counter-
measure strategy considered corresponds to one of
the figures in Figure 1.
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Below, we outline the different conditions that a
strategy might have for switching between regimes.

Initial lockdown (r0 ! r1=r0 ! r2): Given that
we are in regime r0, a transition to r1 or r2 occurs
when the cumulative deaths are larger than some
chosen critical value L. We consider three choices
of L:

� Earlier lockdown: L1 ¼ 100;
� lockdown in line with when the UK decided to

go into lockdown: L2 ¼ 300;
� Later lockdown: L3 ¼ 500:

Note that since the population can only transition
out of r0 at most once, there is no need to set out
different conditions for transitioning to r1 and r2.
Instead, each strategy specifies whether its transition
out of r0 is to r1 or r2.

Tightening of lockdown (r1 ! r2): When a popu-
lation is under regime r1, a 5% rise in the observed
number of cases in a week will cause a transition into
r2. As no tightening of lockdown had occurred at the
time of this study, the choice of a 5% rise was an arbi-
trary one for illustrative purposes and, in practice, a
range of values would be considered.

Easing of lockdown (r2 ! r1): Given that a popu-
lation is currently under regime r2, a transition into r1
occurs when the proportion of infected individuals
falls below a certain critical proportion E of the peak
proportion of infected individuals since r2 has been in
effect. We consider the following choices of E:

� No easing: E0 ¼ 0;
� Easing in line with when the UK decided to ease

lockdown: E1 ¼ 0:12;
� Quicker easing: E2 ¼ 0:3;
� Very quick easing: E3 ¼ 0:5:

Based on these transition rules, we assume that
the initial transition out of r0 is to r2 for all but
three of the strategies we consider. A strategy
denoted as LiEj has initial transition from r0 to r2
under critical value Li and allows for easing from r2
to r1 under critical proportion Ej where i 2 f1, 2, 3g
and j 2 f0, 1, 2, 3g: Further, analogous to “no com-
plete lockdown” strategies, we define three strategies
denoted by LiE� where the initial transition is from
r0 to r1 under critical value Li, i 2 f1, 2, 3g: Under
these three strategies, once regime r1 is effected, it
remains in place until the end of the simulations
with no transition into r2 permitted.

4.1.3. Attributes
We will consider the attributes shown in Figure 2
that shows the attribute tree for our example. Since
we are only considering health-related attributes, all

the attributes can be measured in terms of aggregate
expected life-years lost by the population. In this
example, we are interested in the attributes of:

� a1: Life-years lost due to COVID-19.
� a2: Excess life-years lost due to poverty.
� a3: Excess life-years lost due to delayed can-

cer diagnosis.

This attribute tree can be easily adapted to add
other value independent attributes (see Section 3) of
interest for the DC such as cost of strategy imple-
mentation, economic impacts and social impacts
such as quality of life.

4.2. Marginal utilities and criterion weights

4.2.1. Marginal utilities
As in this example each of our attributes is in terms of
life-years lost, we will take our marginal utility function
to be the negative identity function, UiðaiÞ ¼ �ai 8i:

The values of ai are, of course, uncertain.
However, because of the assumption of preference
independence and this linear utility function for the
evaluation of the score, we need only elicit the sub-
jective expectation of this quantity under each strat-
egy. Here, again for simplicity, we have chosen to
identify this expectation with the output a stochastic
model of the process. We assume that the centre
adopts as their expectation those delivered by rele-
vant experts. For a theory justifying when this is an
appropriate protocol for a DC to adopt, see Leonelli
and Smith (2015) and Smith et al. (2015).

4.2.2. Criterion weights
The criterion weights for these attributes reflect how
the DC prioritises them. We compare the effects of

Figure 1. State-space diagram of transitions between the
three regimes for the two different types of strategies.
(a) Strategies including lockdowns. (b) Strategies with-
out lockdowns.
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different setting of the attribute weights k ¼
ðk1, k2, k3Þ on the aggregate weighted life-years lost
where weight ki is for attribute ai, i ¼ 1, 2, 3: For
this example, we will consider the effect of several
choices of criterion weights:

� (1, 0, 0): The DC only cares about life-years lost
due to COVID-19.

� (0.5, 0.5, 0): The DC only cares about life-years
lost due to COVID-19 and delayed cancer diag-
nosis and weights them equally.

� (1/3, 1/3, 1/3):The DC cares about all 3 causes of
life-years lost and cares about them all equally.

� (0.45, 0.45, 0.1): The DC cares about all 3 causes
of life-years lost and but life-years lost caused
by short and medium term attributes are
more important.

4.3. Probabilistic model of each attribute

For each attribute, we will give a probabilistic model
giving us the probability of an attribute obtaining
each value for each strategy, pðaijsÞ:

4.3.1. Covid-19 deaths (a1)
To estimate the deaths from COVID-19 and the
proportion of infected individuals in the population,
we use a simple discrete-time SIRD compartmental
epidemiological model. The states in this model are
“Susceptible” (S), “Infectious” (I), “Recovered” (R)
and “Dead” (D). The dynamics of this model can be
seen in Figure 3 and are described in the supple-
mentary material S1. Clearly, D is an absorbing state
and we assume that those that have recovered from
COVID-19 are immune to it. We stratify our popu-
lation in this model by region and age.

In order to capture the uncertain nature of the
future, we have modelled uncertainty around the
rate of infection with detail given in supplementary
material S1.2. By running our stochastic simulation
1000 times we obtained expected values for both the
attribute of number of deaths due to COVID-19
and the number of weeks spent in each regime. One
of these simulations for each strategy is shown in
Figure 4. Note here that in practice the expected

numbers used are those provided by epidemiologists
using more sophisticated models.

4.3.2. Delayed cancer diagnoses (a2)
In this example, deaths due to delayed diagnoses of
cancer are used here as a proxy for deaths that
would not have normally occurred, as a composite
of missed treatments and patients who have not pre-
sented in hospital. This was chosen as a proxy as
information was easily available. In practice, this
could be improved on by either creating attributes
for other excess deaths due to missed treatments
and eliciting models of each attribute or, when that
is not feasible, updating the utility function for this
attribute. The latter could be done simply by assum-
ing that deaths due to delayed cancer diagnosis will
form a certain proportion of all of the deaths due to
missed treatment. Estimates like this are often
necessary in the early stages of a decision support
system for an emergency response when there is
sparse information about the underlying science.

Sud et al. (2020) evaluate how delays to cancer
diagnoses due to the COVID-19 outbreak impact sur-
vival and life-years lost. This study gives a nearly lin-
ear relationship for delay in cancer diagnoses to extra
deaths per age group. Using this relationship, we are
able to produce plausible values for the expected total
number of deaths arising from this delay. These can
be used as benchmark values the DC might use for its
subjective expectations of this attribute.

As at the time of this report there is little
research done on the impact of partial lockdown on
cancer referrals, we will assume that the number of
deaths in a partial lockdown is half of those in a
total lockdown. In practice, the DC would elicit
expert judgement about this value where possible
and perform a sensitivity analysis.

4.3.3. Poverty (a3)
Here, we notice that the centre has other experts
available who can assess the impact on years of life
lost on poverty induced by a strategy.

For example, Decerf et al. (2020) evaluate the
impact of the COVID-19 outbreak in terms of num-
ber of poverty-years. Poverty-years are calculated using

Figure 2. Example of an attribute tree for COVID-19.
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COVID-19’s predicted effect on GDP and estimates
the number of additional people in poverty as a result
(in the UK, 4.37 million). Decerf et al. (2020) conser-
vatively assumes that these individuals will remain

poor only for a single year. We use Decerf et al.
(2020)’s calculation that 8.8 poverty-years equate to 1
life-year to inform our DSS, which gives us an esti-
mate for the impact of lockdown on life-years lost due

Figure 3. SIRD disease dynamics.

Figure 4. Plots showing how the daily deaths evolve over time for one simulation within the stochastic model. (a) Strategies
including lockdowns. (b) Strategies without lockdowns.
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to poverty. Further information is given in the supple-
mentary material section S2.

4.4. Final scores calculated

We can now combine this all together to get
Equation 3 and assess which strategy maximises the
utility score given the criterion weights.

�UðsÞ ¼
X3
i¼1

ki �UiðsÞ ¼
X3
i¼1

kið�aiðsÞÞ (3)

Here aiðsÞ is the expected value of attribute i
under strategy s. In this example, this is the magni-
tude of the utility function, �UiðsÞ:

4.5. Results

From Figure 5, we can see that under k ¼ ð1, 0, 0Þ
where only life-years lost due to COVID-19 are of

interest, strategies that do not involve a lockdown
perform orders of magnitudes worse. Looking at
strategies that do involve lockdown, “earlier lock-
down” and “slower easing of lockdown” lead to
fewer life-years lost. The second scenario under k ¼
ð0:5, 0:5, 0Þ, in which life-years lost due to delayed
cancer diagnoses are also considered, we can begin
to see the drawbacks of the lockdown with reduced
disparity between strategies that include lockdown
and those that do not. However, the lockdown strat-
egies remain more desirable. This example also
shows little difference between the lockdown strat-
egies that only differed in their easing of lockdown
with more significant differences depending on
when the lockdown conditions were implemented.

Under k ¼ ð1=3, 1=3, 1=3Þ, which includes life-
years lost due to poverty with equal weighting for
all attributes, the non-lockdown strategies perform
the best. It is interesting to see how small the weight
on our long term impacts on health might need to

Figure 5. Regional aggregate weighted life-years lost under different attribute weightings for each strategy with age stratifica-
tion. Top left: COVID-19 deaths only. Top right: COVID-19 and delayed cancer diagnoses deaths equally weighted. Bottom left:
COVID-19, delayed cancer diagnoses and poverty deaths equally weighted. Bottom right: COVID-19, delayed cancer diagnoses
and poverty deaths custom weighting.
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be before we impose the most stringent of lockdown
strategies. For k ¼ ð0:45, 0:45, 0:1Þ, we treat short
and medium term years lost as more important
than long term years lost. While lockdown strategies
generally still perform better, the disparity among
all strategies is much less.

We further explore these trade-offs in Figure 6,
which shows a Pareto front plotting life-years lost
due to poverty against those lost from COVID-19
and cancer combined, assuming equal weighting.
We can see how the trade-off in weights leads to
different strategies being the most effective, with the
weights giving the gradient of the line. This plot can
help to reduce the number of strategies considered,
as in this example strategies with no easing of lock-
down are strictly dominated by strategies with quick
easing of lockdown. Thus, there is no weighting of
attributes in which we would rather have no easing.
We can also find the value c in k� ¼ ðc, c, 1�2cÞ for
which the DC would swap preferences between
strategies that involve lockdown and those that
don’t. In this example, that point is at c ¼ 0:4:19,
where short and medium term attributes are
weighted as 2.58 times more important than long
term attributes. At c � 0:4:19, the optimal weight-
ing would be strategies that involve lockdown. For
comparing trade-offs between more attributes at the
same time, an n-dimensional Pareto front with each
axis on its own label should be used. Further analy-
ses of the trade-offs between the attributes using
Pareto fronts is given in the supplementary materi-
als S3-S4.

5. Discussion

In this paper, we presented how a DC can create a
DSS under which countermeasure strategies for
COVID-19 could be evaluated in real-time, using
the best expert judgements associated with various
strategies that it might be feasible for the DC to
enact. This DSS enables the DC to input the

attributes they consider to be vital, with attribute
weightings reflecting their priorities, to evaluate and
choose an appropriate metric by which these attrib-
utes can be measured.

The novelty of the framework lies in demonstrat-
ing how to provide multi-attribute Bayesian decision
support in evolving decision contexts. We have
shown that Bayesian decision analysis is an appro-
priate and holistic approach for addressing uncer-
tainty in dynamic environments as we move from
short-term to longer-term considerations. Indeed,
the results of a Bayesian subjective utility approach
are informative and help decision makers devise
action plans (French, 2020).

In the results from our example, we observed the
effect of different criterion weights demonstrating
their effect on the optimal decision. For illustrative
purposes, the analysis presented here was simplified.
In order to be operationalised, it would need to be
refined with additional attributes as well as a utility
function and attribute weightings that reflect the
priorities of the DC. Firstly, more attributes – such
as hospital admissions, well-being, economic viabil-
ity and public acceptability – could be considered.

Further, such a DSS could be extended by consid-
ering the impact of other countries’ management of
COVID-19, caused by a spillover effect. For
example, the UK’s economy is likely to be affected
by COVID-19 spreading in other countries regard-
less of the UK’s state of lockdown. Our model
implicitly assumes that such further causes of
deprivation are additive, whereas the relationship
between impacts to domestic employment and inter-
national economic variables on the differential
scores associated with different options is likely to
be more subtle. However, we note that, by embark-
ing on this decision analysis, we are drawn into try-
ing to quantify such issues and to fold these
important considerations into the analysis; this DSS
gives a framework for introducing the results of
studies as these become available.

Figure 6. Pareto plots showing the trade-off between life-years lost (LYL) due to poverty (deprivation) on one hand and
COVID-19 and delayed cancer diagnoses on the other. The dashed lines represent examples of different attribute weightings
with the one in red representing the critical weighting between lockdown and non lockdown strategies.
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Another critical issue that could be incorporated
would be the capacity of the health provider, e.g.
the National Health Service (NHS) in the UK, both
with respect to the number of available beds and
the number of doctors and nurses available to treat
COVID-19 as well as non-COVID-19 patients.
Hospitals functioning close to full capacity may lead
to increase in the mortality rate of hospitalised
COVID-19 patients (Wilde et al., 2021) as well as
temporary closure of all non-urgent hospital proce-
dures (COVIDSurg Collaborative, 2020). Thus, if
the NHS were to be overwhelmed, the underlying
model would need to be adapted to reflect the
increased life years lost due to the added pressure.
Indeed, in the UK, COVID-19 policy decisions have
been influenced by the capacity of the NHS
(Guardian: Rowena Mason & Nicola Davis, 2021),
and measures such as introducing additional cap-
acity through construction of temporary hospital
facilities (known in the UK as Nightingale
Hospitals) (NHS, 2020) were effected to prevent
overwhelming the NHS. These capacities could be
incorporated (1) in deciding the thresholds for
changes in regimes and (2) by choosing hospital
admissions as an attribute. The utility function of
this attribute could be an indicator function that
indicates when the hospital capacity is exceeded.
Assigning a very large criterion weight to such an
attribute would have the effect of making any strat-
egy that would lead to the threshold being passed
strictly dominated by other strategies and therefore,
not considered.

We also assumed that all the marginal utilities
were linear. In contexts like the one above, the DC
tends to be risk-averse. The mathematics means that
the scores we assign to different options which lead
to more uncertain outcomes are penalised. There
are two elements that come into play here. The first
issue is that the impacts of previously untried strat-
egies are likely to be more uncertain. A risk-averse
marginal utility would therefore tend to down-
weight the scores of less well-tried options. The
second is that attributes which are intrinsically more
uncertain will tend to be given less weight across all
strategies. For example, the implicit assumption of
giving negligible weight to non-poverty related eco-
nomic effects could be justified if the differential
economic effects of one strategy against another
were extremely uncertain. However, once the mar-
ginal utilities have been elicited, the framework is
able to score the different options in light of this
and the type of analysis above can be adapted.
Further, compliance of the population to flip-flop-
ping between regimes could be accounted for by
considering it within the probabilistic predictions of
the attributes.

Finally, we have used a naïve predictive model of
the progress of the disease. This dynamic model could
obviously be improved; see Keeling et al. (2021);
Aguilar et al. (2020). In particular, we could choose a
stochastic disease model such as Abrams et al. (2020).
Assumptions on immunity after recovery might also
need to be revised as relevant studies become avail-
able; for example Long et al. (2020); Liu et al. (2020a).

In conclusion, further research is needed to extend
on this work in all the ways mentioned above.
However, we have shown, using as simple example,
how a DSS could be created and analysed to assess
different countermeasure strategies for COVID-19. We
have also shown how this could be done in a real
time setting – where there is only basic scientific
understanding of such a disease and the impacts of its
countermeasures, as witnessed for COVID-19 – where
DCs may need to rely on only coarse descriptions
given by the experts when many judgements are
unknown or unsubstantiated by evidence.

Note

1. The code used to generate this example is available
here: https://github.com/peterrhysstrong/COVID-19-DSS
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