
A Strongly Polynomial Algorithm for Linear Exchange Markets∗

Jugal Garg1 and László A. Végh2

1Department of Industrial and Enterprise Systems Engineering, University of Illinois at
Urbana-Champaign

2Department of Mathematics, London School of Economics

jugal@illinois.edu,l.vegh@lse.ac.uk

Abstract

We present a strongly polynomial algorithm for computing an equilibrium in Arrow-Debreu exchange
markets with linear utilities. Our algorithm is based on a variant of the weakly-polynomial Duan–
Mehlhorn (DM) algorithm. We use the DM algorithm as a subroutine to identify revealed edges, i.e.
pairs of agents and goods that must correspond to best bang-per-buck transactions in every equilibrium
solution. Every time a new revealed edge is found, we use another subroutine that decides if there is
an optimal solution using the current set of revealed edges, or if none exists, finds the solution that
approximately minimizes the violation of the demand and supply constraints. This task can be reduced
to solving a linear program (LP). Even though we are unable to solve this LP in strongly polynomial
time, we show that it can be approximated by a simpler LP with two variables per inequality that is
solvable in strongly polynomial time.

1 Introduction
Market equilibrium is a central concept in economics to analyze and predict the outcome of agents’ inter-
actions in markets. It has found applications in a variety of domains, even in non-market settings which
may not involve any exchange of money but only require the remarkable fairness and efficiency properties of
equilibria, see e.g. [38].

Exchange is one of the most fundamental market models, introduced by Walras [45]. An exchange market
is like a barter system, where a set of agents arrive at a market with an initial endowment of divisible goods
and have a utility function over allocations of goods. Agents can use their revenue from selling their initial
endowment to purchase their preferred bundle of goods. In a market equilibrium, the prices are such that
each agent can spend their entire revenue on a bundle of goods that maximizes her utility at the given prices,
and all goods are fully sold.

The celebrated result of Arrow and Debreu [2] shows the existence of an equilibrium for a broad class
of utility functions. Computational aspects have been already addressed since the 19th century (see e.g.,
Brainard and Scarf [3]), and polynomial time algorithms have been investigated over the last twenty years;
see the survey by Codenotti et al. [4] for early work, and the references in Garg et al. [18] for more recent
developments.

In this paper we study the case where all utility functions are linear. Linear market models have been
extensively studied since 1950s; see [9] for an overview of earlier work. These models are also appealing
from a combinatorial optimization perspective due to their connection to classical network flow models and
their rich combinatorial structure. A well-studied special case of the exchange market is the Fisher market
setting, where every buyer arrives with a fixed budget instead of an endowment of goods. Using network flow
techniques, Devanur et al. [10] gave a polynomial-time combinatorial algorithm that was followed by a series

∗Financial support from the Division of Computing and Communication Foundations, National Science Foundation (NSF)
[Grant 1755619] and the H2020 European Research Council (ERC) [Grant ScaleOpt–757481] is gratefully acknowledged.

1



of further such algorithms (for example Vazirani [40], Goel and Vazirani [21]), including strongly polynomial
ones: Orlin [33], Végh [43]. A combinatorial algorithm for the general exchange market was developed later
by Duan and Mehlhorn [13], and no strongly polynomial algorithm has been known thus far.

Strongly polynomial algorithms and rational convex programs. Assume that a problem is given
by an input of N rational numbers given in binary description. An algorithm for such a problem is strongly
polynomial (see Section 1.3 in [23]), if it only uses elementary arithmetic operations (additions, multiplica-
tions, divisions, and comparisons), and the total number of such operations is bounded by poly(N). Further,
the algorithm is required to run in polynomial space: that is, the size of the numbers occurring throughout
the algorithm remain polynomially bounded in the size of the input. Here, the size of a rational number p/q
with integers p and q is defined as dlog2(|p|+ 1)e+ dlog2(|q|+ 1)e.

It is a major open question to find a strongly polynomial algorithm for linear programming. Such
algorithms are known for special classes of linear optimization problems. We do not present a comprehensive
overview here but only highlight some examples: systems of linear equations with at most two nonzero
entries per inequality [1, 5, 29]; minimum cost circulations e.g. [22, 32, 36]; LPs with bounded entries in
the constraint matrix: [37, 39]; generalized flow maximization [44, 31], and variants of Markov Decision
Processes: [46, 48].

For nonlinear convex optimization, only sporadic results are known. The relevance of certain market
equilibrium problems in this context is that they can be described by rational convex programs, where
a rational optimal solution exists with encoding size bounded in the input size (see Vazirani [41]). This
property gives hope for finding strongly polynomial algorithms.

The linear Fisher market equilibrium can be captured by two different convex programs, one by Eisenberg
and Gale [16], and one by Shmyrev [35]. These are special cases of natural convex extensions of classical
network flow models by Végh [42, 43]. In particular, the second model is a network flow problem with a
separable convex cost function; [43] provides a strongly polynomial algorithm for the linear Fisher market
using this general perspective.

No such description is known for the exchange market model. A rational convex program was given in
Devanur et al. [9], but the objective is not separable and hence the result in [43] cannot be applied. Previous
convex programs (Nenakov and Primak [30], Cornet [6], Jain[25]) included nonlinear constraints and did not
appear amenable for a combinatorial approach (see [9] for an overview).

Model. Let A be the set of n agents and G a set of goods. Without loss of generality, we can assume
that there is one unit in total of each divisible good, and that there is a one-to-one correspondence between
agents and goods: agent i brings the entire unit of the i-th good, gi to the market. If agent i buys xij units
of good gj , her utility is

∑
j uijxij , where uij is the utility of agent i for a unit amount of good gj . Given

prices p = (pi)i∈A, the bundle that maximizes the utility of agent i is any choice of maximum bang-per-buck
goods, that is, goods that maximize the ratio uij/pj . The prices p and allocations (xij)i,j∈A form a market
equilibrium, if (i)

∑
i∈A xij = 1 for all j, that is, every good is fully sold; (ii) pi =

∑
j∈A pjxij for all i, that

is, every agent spends her entire revenue; and (iii) xij > 0 implies that uij/pj = maxk uik/pk, that is, all
purchases maximize bang-per-buck.

Algorithms for the linear exchange market. A finite time algorithm based on Lemke’s scheme [28] was
obtained by Eaves [14]. A necessary and sufficient condition for the existence of equilibrium was described
by Gale [17]. The first polynomial-time algorithms for the problem were given by Jain [25] using the ellipsoid
method and by Ye [47] using an interior point method. The combinatorial algorithm of Duan and Mehlhorn
[13] builds on the algorithm [10] for linear Fisher markets. An improved variant was given by Duan et al. [12]
with the current best weakly polynomial running time O(n7 log3(nU)), assuming all uij values are integers
between 0 and U . A main measure of progress in these algorithms is the increase in prices. However, the
upper bound on the prices depends on the uij values; therefore, such an analysis can only provide a weakly
polynomial bound. The existence of a strongly polynomial algorithm is described by Duan and Mehlhorn [13]
as a major open question. There is a number of simple algorithms for computing an approximate equilibrium
[11, 19, 20, 26], but these do not give rise to polynomial-time exact algorithms.

2



1.1 Overview of the algorithm
We provide a strongly polynomial algorithm for computing an exact equilibrium in linear exchange markets
with running time O(n10 log2 n). Let F ∗ denote the set of edges (pairs of agents and goods) that correspond
to a best bang-per-buck transaction in every market equilibrium. In the algorithm, we maintain a set F ⊆ F ∗
called revealed edges, and the main progress is adding a new edge in strongly polynomial time. At a high
level, this approach resembles that of Végh [43], which extends Orlin’s [32] approach for minimum-cost
circulations.

In a money allocation (p, f), (pi)i∈A is a set of prices and (fij)i,j∈A represent the amount of money paid
for good gj by agent i; fij may only be positive for maximum bang-per-buck pairs. In the algorithm we
work with a money allocation where goods may not be fully sold and agents may have leftover money; we
let s(p, f) ∈ RG denote surplus vector. Thus, ‖s(p, f)‖

1
is the total surplus money left, and ‖s(p, f)‖∞ is

the maximum surplus of any good. We show that if fij > ‖s(p, f)‖
1
in a money allocation, then (i, gj) ∈ F ∗

(Lemma 3.3). This is analogous to the method of identifying abundant arcs for minimum cost flows by Orlin
[32].

We use a variant of the Duan-Mehlhorn (DM) algorithm to identify revealed edges. We show that the
potential φ(p, f) = ‖s(p, f)‖∞/(

∏
j pj)

1/n decreases geometrically in the algorithm; from this fact, it is not
difficult to see that an edge with fij > ‖s(p, f)‖

1
appears in a strongly polynomial number of iterations,

yielding the first revealed edge. We need to modify the DM algorithm [13] so that, among other reasons, the
potential decreases geometrically when we run the algorithm starting with any arbitrary price vector p; see
Remark 5.7 for all the differences.

To identify subsequent revealed edges, we need a more flexible framework and a second subroutine. We
work with the more general concept of F -allocations, where the money amount fij could be negative if
(i, gj) ∈ F . This is a viable relaxation since an F -equilibrium (namely, a market equilibrium with possibly
negative allocations in F ) can be efficiently turned into a proper market equilibrium, provided that F ⊆ F ∗
(Lemma 3.4). Given a set F of revealed edges, our Price Boost subroutine finds an approximately optimal
F -allocation using only edges in F . Namely, the subroutine finds an F -equilibrium if there exists one;
otherwise, it finds an F -allocation that is zero outside F , and subject to this, it approximately minimizes
φ(p, f). This will provide the initial prices for the next iteration of the DM subroutine. Since DM decreases
φ(p, f) geometrically, after a strongly polynomial number iterations it will need to send a substantial amount
of flow on an edge outside F , providing the next revealed edge.

Let us now discuss the Price Boost subroutine. The analogous subproblem for Fisher markets in [43]
reduces to a simple variant of the Floyd-Warshall algorithm. For exchange markets, we show that optimizing
φ(p, f) can be captured by a linear program. A strongly polynomial LP algorithm would therefore immedi-
ately provide the desired subroutine. Alas, this LP is not contained in any special class of LP where strongly
polynomial algorithms are currently known.

We will exploit the following special structure of the LP. First, we can eliminate the fij variables and only
work with price variables. We obtain a form where the objective is to maximize the sum of all variables over
a feasible set of the form P ∩P ′. The first polyhedron P is a monotone two variable per inequality (M2VPI)
system: there is one positive and one nonnegative variable per inequality. The constraint matrix defining the
second polyhedron P ′ is what we call a Z+-matrix : all off-diagonal elements are nonpositive but all column
sums are nonnegative. This corresponds to a submatrix of the transposed of a weighted Laplacian matrix.
A pointwise maximal solution to an M2VPI system can be found in strongly polynomial time using classical
results by [1, 5, 24, 29]. To deal with the constraints defining P ′, we approximate our LP by a second LP
that can be solved in strongly polynomial time.

More precisely, we replace the second polyhedron P ′ by Q such that 1
n2Q ⊆ P ′ ⊆ Q, and that Q is

also a system with one positive and one nonnegative variable per inequality. Thus, an M2VPI algorithm is
applicable to maximize the sum of the variables over P ∩ Q in strongly polynomial time. For an optimal
solution p̄, the vector p̄/n2 is feasible to the original LP and the objective value is within a factor n2 of the
optimum. For the purposes of identifying a new revealed edge in the algorithm, such an approximation of
the optimal φ(p, f) value already suffices.

The construction of the approximating polyhedron Q is obtained via a general method applicable for
systems given by Z+-matrices. We show that for such systems, Gaussian elimination can be used to generate
valid constraints with at most two nonzero variables per row. Moreover, we show that the intersection of all

3



relevant such constraints provides a good approximation of the original polyhedron.

The rest of the paper is structured as follows. Section 2 introduces basic definitions and notation.
Section 3 describes the overall algorithm by introducing the notion of F -allocations, the main potential,
and the two necessary subroutines. Section 4 proves the lemmas necessary for identifying revealed edges.
Section 5 presents the first of these two subroutines, a variant of the Duan-Mehlhorn algorithm. Section 6
shows how the second subroutine, Price Boost, can be reduced to solving an LP. Section 7 exhibits the
polyhedral approximation result for Z+-matrices. Section 8 concludes with some open questions.

2 Preliminaries
For a positive integer t, we let [t] := {1, 2, . . . , t}, and for k < t, we let [k, t] := {k, k+ 1, . . . , t}. For a vector
a ∈ Rn, we let

‖a‖
1

:=

n∑
i=1

|ai|, ‖a‖
2

:=

√√√√ n∑
i=1

a2i , and ‖a‖∞ := max
i∈[n]
|ai|

denote the `1, `2, and `∞-norms, respectively. Further, we let supp(a) ⊆ [n] denote the support of the vector
a ∈ Rn, that is, supp(a) := {i ∈ [n] | ai 6= 0}. For a subset S ⊆ [n], we let a(S) :=

∑
i∈S ai.

The linear exchange market We let A := [n] denote the set of agents, G := {g1, g2, . . . , gn} denote the
set of goods, and uij ≥ 0 denote the utility of agent i for a unit amount of good gj . Let E ⊆ A×G denote
the set of pairs (i, gj) such that uij > 0; let m := |E|. We will assume that for each i ∈ A there exists a
gj ∈ G such that uij > 0, and for each gj ∈ G there exists an i ∈ A such that uij > 0. Hence, m ≥ n.

The goods are divisible and there is one unit of each in total. Agent i arrives to the market with her
initial endowment comprising exactly the unit of good gi. As mentioned in the introduction, the general
case with an arbitrary set of goods and arbitrary initial endowments can be easily reduced to this setting;
see [25, 9].

Let p = (pj)gj∈G denote the prices where pj is the price of good gj . Given prices p, we let

αi := max
gk∈G

uik
pk
, ∀i ∈ A.

For each agent i ∈ A, the goods satisfying equality here are called maximum bang-per-buck (MBB) goods;
for such a good gj , (i, gj) is called an MBB-edge. We let MBB(p) ⊆ E denote the set of MBB-edges at prices
p.

Definition 2.1. Let f = (fij)i∈A,gj∈G denote the money flow where fij is the money spent by agent i on
good gj . We say that (p, f) is a money allocation if

(i) p > 0, and f ≥ 0;

(ii) supp(f) ⊆ MBB(p);

(iii)
∑
gj∈G fij ≤ pi for every agent i ∈ A;

(iv)
∑
i∈A fij ≤ pj for every good gj ∈ G.

For the money allocation (p, f), the surplus of agent i is defined as

ci(p, f) := pi −
∑
gj∈G

fij ,

and the surplus of good gj ∈ G is defined as

sj(p, f) := pj −
∑
i∈A

fij .

4



Parts (iii) and (iv) in the definition of the money allocation require that the surplus of all agents and goods
are nonnegative. We let c(p, f) := (ci(p, f))i∈A and s(p, f) := (sj(p, f))gj∈G denote the surplus vectors
of the agents and the goods, respectively. Clearly, ‖s(p, f)‖

1
= ‖c(p, f)‖

1
, and ‖s(p, f)‖∞ ≤ ‖s(p, f)‖

1
≤

n‖s(p, f)‖∞ .

Definition 2.2. A money allocation (p, f) is called a market equilibrium if ‖s(p, f)‖
1

= 0.

Note that if (p, f) is a market equilibrium and λ > 0 is any positive number, then (λp, f) is also a market
equilibrium. We will refer to this as the price scaling property of market equilibria.

Existence of an equilibrium A market equilibrium may not exist for certain inputs. For example,
consider a market with 3 agents and 3 goods, where agent i brings one unit of good gi for i = 1, 2, 3. Let
E = {(1, g1), (1, g2), (2, g3), (3, g3)}. Clearly, in this market, at any prices, Agent 3 will consume the entire
g3. If p2 > 0, then Agent 2 will demand a non-zero amount of g3, and therefore no market equilibrium exists.

A necessary and sufficient condition for the existence of an equilibrium can be given as follows. Let us
define the directed graph (A, Ē), where (i, j) ∈ Ē if and only if uij > 0 (that is, if (i, gj) ∈ E).

Lemma 2.3 ([17, 9]). There exists a market equilibrium if and only if for every strongly connected component
S ⊆ A of the digraph (A, Ē), if |S| = 1, then there is a loop incident to the node in S.

This condition can be easily checked in strongly polynomial time. Further, it is easy to see that if
the above condition holds, then finding an equilibrium in an arbitrary input can be reduced to finding an
equilibrium in an input where the digraph (A, Ē) is strongly connected. Thus, we will assume the following
throughout the paper:

The graph (A, Ē) is strongly connected. (?)

3 The overall algorithm
In this section, we describe the overall algorithm. We formulate the statements that are needed to prove our
main theorem:

Theorem 3.1. There exists a strongly polynomial algorithm that computes a market equilibrium in linear
exchange markets in time O(n10 log2 n).

We start by introducing the concepts of revealed edges, F -allocations, and balanced F -flows.

3.1 Revealed edges
Throughout the paper, we let F ∗ ⊆ E denote the set of edges (i, gj) ∈ E that are MBB edges for every
market equilibrium (p, f). Throughout the algorithm, we maintain a subset of edges F ⊆ F ∗ called the
revealed edge set. This is initialized as F = ∅.

Definition 3.2. For an edge set F ⊆ E, (p, f) is an F -money allocation, or F -allocation in short, if

(i) p > 0, and fij ≥ 0 for (i, gj) ∈ E \ F ;

(ii) supp(f) ∪ F ⊆ MBB(p);

(iii)
∑
gj∈G fij ≤ pi for every agent i ∈ A;

(iv)
∑
i∈A fij ≤ pj for every good gj ∈ G.

An F -allocation is called an F -equilibrium if ‖s(p, f)‖1 = 0.

Note that fij could be negative for (i, gj) ∈ F . A ∅-allocation simply corresponds to a money allocation.
The main progress step in the algorithm is adding new edges to F . This is enabled by the following

lemma; the proof is deferred to Section 4.

5



Algorithm 1: Arrow-Debreu Equilibrium
Input : Set A of agents, set G of goods, and utilities (uij)i∈A,gj∈G
Output: Market equilibrium (p, f)

1 F ← ∅;
2 repeat
3 (p̂, f̂)← Boost(F ) // Theorem 3.7
4 (p, f)← DM(F, p̂) // Theorem 3.8
5 F ← F ∪ {(i, gj) | fij > ‖s(p, f)‖

1
} // Lemma 3.3

6 until ‖s(p, f)‖1 = 0
7 f ←Final-Flow(p) // Lemma 3.4
8 return (p, f)

Lemma 3.3. Let F ⊆ F ∗, and let (p, f) be an F -allocation. If fk` > ‖s(p, f)‖
1
for an edge (k, g`) ∈ E, then

(k, g`) ∈ F ∗.

Our algorithm obtains an F -equilibrium. Whereas an F -equilibrium is not necessarily a market equilib-
rium, the following holds true:

Lemma 3.4. Let F ⊆ F ∗, and assume we are given an F -equilibrium (p, f). Then a market equilibrium
(p, f ′) can be obtained in O(nm) time.

We let Final-Flow(p) denote the algorithm as in the Lemma. This is a maximum flow computation in
an auxiliary network, as described in the proof in Section 4.

3.2 Balanced flows
Balanced flows play a key role in the Duan-Mehlhorn algorithm [13], as well as in previous algorithms for
Fisher market models, e.g., [10, 21, 40]. We now introduce the natural extension for F -allocations.

Definition 3.5. Given an edge set F ⊆ E and prices p, we say that (p, f) is a balanced F -flow, if (p, f) is
an F -allocation that minimizes ‖s(p, f)‖1 , and subject to that, it minimizes ‖c(p, f)‖2 .

Lemma 3.6 ([27, 8]). Given F ⊆ E and prices p such that F ⊆ MBB(p), a balanced F -flow can be computed
in O(nm log (n2/m)) time.

Whereas the original form does not include a revealed set F , the extension to F -flows is immediate. We
let Balanced(F, p) denote the subroutine guaranteed by the Lemma.

3.3 The algorithm
The overall algorithm is presented in Algorithm 1. The main progress is gradually expanding a revealed
edge set F ⊆ F ∗, initialized as F = ∅. Every cycle of the algorithm performs the subroutines Boost(F ) and
DM(F, p̂), and at least one new edge is added to F at every such cycle. Once an F -equilibrium is obtained
for the current F , we use the subroutine Final-Flow(p) as in Lemma 3.4 to compute a market equilibrium.

We now introduce the key potential measures used in analysis. For an F -allocation (p, f), we define

φ(p, f) :=
‖s(p, f)‖∞

(
∏n
j=1 pj)

1/n
.

Note that this is invariant under scaling, i.e. φ(p, f) = φ(λp, λf) for any λ > 0. Further, (p, f) is an
F -equilibrium if and only if φ(p, f) = 0. For a given F ⊆ F ∗, we define

Ψ(F ) := min{φ(p, f) : (p, f) is an F -allocation, supp(f) ⊆ F}. (1)

Theorem 3.7. There exists a strongly polynomial time algorithm that for any input F ⊆ E, returns in time
O(n4 log n) an F -allocation (p̂, f̂) with supp(f̂) ⊆ F such that Ψ(F ) ≤ φ(p̂, f̂) ≤ (n− 1)2Ψ(F ).

6



The algorithm in the theorem will be denoted as Boost(F ), and is described in Section 6. In particular,
if Ψ(F ) = 0, then Boost(F ) returns an F -equilibrium.

The second main subroutine DM(F, p̂), is a variant of the algorithm by [13], described in Section 5.
As the input, it uses the prices p̂ obtained in the F -allocation (p̂, f̂) returned by Boost(F ), and outputs
an F -allocation (p, f) such that either ‖s(p, f)‖

1
= 0, that is, an F -equilibrium, or it is guaranteed that

fij > ‖s(p, f)‖
1
for some (i, gj) ∈ E \ F connecting two different connected components of F . Such an edge

(i, gj) can be added to F by Lemma 3.3.
The existence of the edge will follow from the decrease in the potential φ(p, f) during the algorithm

DM(F, p̂); this is proved in Section 5.

Theorem 3.8. There exists a strongly polynomial O(n9 log2 n) time algorithm, that, for a given F ⊆ E and
prices p̂, computes an F -allocation (p, f) such that

φ(p, f) ≤ φ(p̂, f̃)

n4(m+ 1)
,

where f̃ is the balanced flow computed by Balanced(F, p̂).

The following lemma shows how the decrease in φ(p, f) implies the existence of an edge with large flow
value connecting two components of F .

Lemma 3.9. Let (p, f) be an F -allocation with φ(p, f) < Ψ(F )/(n(m + 1)). Then, fij > ‖s(p, f)‖
1
for at

least one edge (i, gj) ∈ E \ F such that i and gj are in two different undirected connected components of F .

Proof. For a contradiction, assume fij ≤ ‖s(p, f)‖
1
for every (i, gj) ∈ E \ F where i and gj are in different

connected components of F . Let us modify f to another flow f ′ as follows. We start by setting f ′ = f ;
then, for every (i, gj) ∈ E \F where i and gj are in the same component, we reroute fij units of flow from i
to gj using a path in F . Such a path may contain both forward and reverse edges; we increase the flow on
forward edges and decrease it on reverse edges. Further, we set f ′ij := 0 for (i, gj) ∈ E \ F if i and gj are in
different connected components of F . The assumption yields

‖s(p, f ′)‖∞ ≤ ‖s(p, f ′)‖1 ≤ (m+ 1)‖s(p, f)‖
1
≤ n(m+ 1)‖s(p, f)‖∞ .

Here, we used that setting f ′ij to 0 may increase the surplus by fij ≤ ‖s(p, f)‖1 according to the assumption.
Therefore,

φ(p, f ′) ≤ n(m+ 1)φ(p, f) < Ψ(F ),

a contradiction to the definition of Ψ(F ), since supp(f ′) ⊆ F . �

Using the above, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.9, the number of connected components of F decreases after every cycle
of Algorithm 1; thus, the total number of cycles is ≤ 2n − 1. Consider any cycle. Let (p̂, f̂) denote that
F -allocation returned by Boost(F ) with φ(p̂, f̂) ≤ (n− 1)2Ψ(F ), and let (p̂, f̃) denote the balanced F -flow
at prices p̂. Then,

‖s(p̂, f̃)‖∞ ≤ ‖s(p̂, f̃)‖
1
≤ ‖s(p̂, f̂)‖

1
≤ n‖s(p̂, f̂)‖∞ ,

since (p̂, f̃) minimizes ‖s(p̂, f̃)‖
1
among all F -allocations. Therefore φ(p̂, f̃) < n3Ψ(F ). Theorem 3.8 guar-

antees that DM(F, p̂) finds an F -allocation (p, f) with φ(p, f) < Ψ(F )/(n(m + 1)). By Lemma 3.9, F is
extended by at least one new edge in this cycle. The overall running time estimation is dominated by the
running time estimation of the calls to DM. �

4 F -allocations and F -equilibria
This section is devoted to the proof of the Lemmas 3.3 and 3.4, which enable us to add new edges to the
revealed set F , as well as to convert an F -equilibrium to an equilibrium.

7



Proof of Lemma 3.3. The claim is immediate if (k, g`) ∈ F ; for the rest of the proof we therefore assume
(k, g`) /∈ F . Let (p′, f ′) be any market equilibrium; we need to show that (k, g`) ∈ MBB(p′). Every edge in
F is an MBB-edge for (p, f) by the definition of an F -allocation, and also for (p′, f ′) because of F ⊆ F ∗. By
the price scaling property of market equilibria, we can assume that p′` = p`. Let T ⊆ G be the set of goods
whose prices at p′ are at least the prices at p, i.e., T := {gj ∈ G | p′j ≥ pj}. Clearly, g` ∈ T . Let S be the
set of agents who have MBB edges to goods in T at p′, i.e.,

S := {i ∈ A | ∃gj ∈ T, (i, gj) ∈ MBB(p′)} .

For a contradiction, suppose (k, g`) /∈ MBB(p′). First, we show that k 6∈ S. Indeed, if there existed a good
gj ∈ T such that (k, gj) ∈ MBB(p′), then we would get uk`/p` = uk`/p

′
` < uij/p

′
j ≤ uij/pj , a contradiction

to (k, g`) ∈ MBB(p).
Consider the goods in T at prices p. Since no good is oversold, we have∑

i∈A,gj∈T
fij ≤ p(T ) .

Also note that fij ≥ 0 whenever i ∈ A \ S and gj ∈ T . This is because fij could be negative only on edges
in F ; however, for every (i, gj) ∈ F such that gj ∈ T , we must have i ∈ S, since F ⊆ F ∗ ⊆ MBB(p′) by the
definition of F ∗. Therefore, the previous inequality implies∑

i∈S,gj∈T
fij + fkl ≤ p(T ) .

Observe that by the choice of T , there are no edges (i, gj) ∈ MBB(p) with i ∈ S and gj ∈ G \ T . Thus, the
first term in the left hand side is the total money they spend. Since their total surplus is at most ‖s(p, f)‖

1
,

we obtain
p(S) ≤ p(T )− fk` + ‖s(p, f)‖1 .

Using fk` > ‖s(p, f)‖
1
and breaking p(S) into two parts, we can rewrite the above as∑

j∈S,gj 6∈T

pj <
∑

j /∈S,gj∈T

pj . (2)

Let us now examine the market equilibrium (p′, f ′), where f ′ ≥ 0 and f ′ij > 0 is allowed only for the MBB
edges at p′. Since every agent spends their budget exactly at equilibrium, we have

p′(S) =
∑

i∈S,gj∈G
f ′ij .

Further, since there are no MBB edges at prices p′ from agents outside S to goods in T , we obtain

p′(S) =
∑

i∈S,gj∈G
f ′ij ≥

∑
i∈S,gj∈T

f ′ij = p′(T ) .

Again we can rewrite the above as ∑
j∈S,gj 6∈T

p′j ≥
∑

j /∈S,gj∈T

p′j . (3)

Now, since p′j ≥ pj for gj ∈ T and p′j < pj for gj 6∈ T , (2) and (3) give a contradiction. �

We formulate a simple corollary that will be needed in the proof of Lemma 3.4.

Corollary 4.1. If F ⊆ F ∗, then for every F -equilibrium f , supp(f) ⊆ F ∗.

Proof of Lemma 3.4. An F -equilibrium (p, f) may not be a market equilibrium since f can have negative
values on some edges in F . If that is the case, we find a flow f̃ such that (p, f̃) is a market equilibrium as
follows.

8



Let us construct the network N(p) on vertex set A ∪G ∪ {s, t}, where s is a source node and t is a sink
node, and the following set of edges: (s, i) with capacity pi for each i ∈ A, (gj , t) with capacity pj for each
gj ∈ G, and (i, gj) with infinite capacity for each (i, gj) ∈ MBB(p). Let us use Orlin’s algorithm [34] to
obtain a maximum s− t flow f̃ in N(p) in time O(nm).

If f̃ has value
∑
gj∈G pj , then clearly (p, f̃) is a market equilibrium. We show that this must indeed be

the case. Let (p′, f ′) be a market equilibrium. By the price scaling property of market equilibria, we can
assume that

∑
gj∈G p

′
j =

∑
gj∈G pj . If p

′ = p, then clearly (p, f̃) is an equilibrium. For the rest of the proof,
assume p′ 6= p, let Ē := F ∪ supp(f), and let E′ := MBB(p′). Corollary 4.1 and the definition of F ∗ imply
Ē ⊆ F ∗ ⊆ E′.

Let α := maxgj∈G{p′j/pj}, and T := {j ∈ G | p′j/pj = α}. Let S be the set of agents who have at least
one MBB edge to goods in T when prices are p′, i.e.,

S = {i ∈ A | ∃gj ∈ T, (i, gj) ∈ E′}.

We must have ∑
i∈S

p′i ≥
∑
gj∈T

p′j . (4)

Now consider the connected components of the bipartite graph (A∪G, Ē). Since Ē ⊆ E′, it follows that
pj/pk = p′j/p

′
k whenever j and k are in the same connected component. Thus, if T ∩Ci 6= ∅ for a connected

component, then G∩Ci ⊆ T . This implies that S∪T is the union of some connected components C1, . . . , C`
of (A ∪G, Ē), that is,

⋃`
k=1(G ∩ Ck) = T , and

⋃`
k=1(A ∩ Ck) = S. At the F -equilibrium (p, f), we have∑

i∈S
pi =

∑
gj∈T

pj . (5)

The equations (4) and (5), along with the definition of α, imply that

α
∑
i∈S

pi ≥
∑
i∈S

p′i ≥
∑
gj∈T

p′j = α
∑
gj∈T

pj = α
∑
i∈S

pi .

Consequently,
∑
i∈S p

′
i =

∑
gj∈T p

′
j and T = {gj ∈ G | j ∈ S}, i.e., the set of goods brought by agents in S

is exactly equal to T . This further implies that f ′ for agents in S and for goods in T is supported only on
the MBB(p) edges between them, and hence f̃ must saturate all agents in S (and equivalently, all goods in
T ) because the set of MBB edges between S and T remains same at p and p′. Next, we remove the agents
in S and goods in T , and repeat the same analysis on the remaining set of agents and goods. This proves
that (p, f̃) is a market equilibrium. �

5 The Duan-Mehlhorn (DM) subroutine
In this section, we present a variant of the Duan-Mehlhorn (DM) algorithm [13] algorithm as a subroutine
DM(F, p̂) in Algorithm 2. The input is a revealed edge set F and prices p̂ such that F ⊆ MBB(p̂), and the
output is either an F -equilibrium, or an F -allocation (p, f) where fij > ‖s(p, f)‖

1
for some (i, gj) ∈ E \ F

connecting two different components of F . The modifications compared to the original DM algorithm are
listed in Remark 5.7. We now provide a description where the subroutine terminates once an arc with
fij > ‖s(p, f)‖1 is identified. The variant as required in Theorem 3.8 can be obtained by simply by removing
the termination condition, and letting the algorithm run for O(n6 log2 n) iterations of the outer loop.

We call one execution of the outer loop a phase, and one execution of the inner loop an iteration.
Algorithm 2 first computes a balanced flow f using the subroutine Balanced(F, p) as in Lemma 3.6.
Then, the agents are sorted in decreasing order of surplus. Without loss of generality, we assume that
c1(p, f) ≥ · · · ≥ cn(p, f). Then, we find the smallest ` for which the ratio c`(p, f)/c`+1(p, f) is more than
1 + 1/n. If there is no such ` then we let ` := n. Let S be the set of first ` agents, and let Γ(S) be the set
of goods for which there is a non-zero flow from agents in S. Since f is balanced, the agents outside S have
zero flow to goods in Γ(S), i.e., fij = 0,∀i 6∈ S, gj ∈ Γ(S) and the surplus of every good in Γ(S) is zero. The

9



Algorithm 2: DM(F, p̂)

Input : Utilities (uij)i∈A,gj∈G, an edge set F ⊆ E, and prices p̂ with F ⊆ MBB(p̂).
Output: An F -equilibrium (p, f) or an F -allocation (p, f) such that fij > ‖s(p, f)‖

1
for an

(i, gj) ∈ E \ F , where i and gj are in different connected components of F .
1 p← p̂; f ← Balanced(F, p) // Lemma 3.6
2 repeat
3 Sort the agents in decreasing order of surplus, i.e., c1(p, f) ≥ c2(p, f) ≥ . . . ≥ cn(p, f)
4 Find the smallest ` for which c`(p, f)/c`+1(p, f) > 1 + 1/n, and let ` = n when there is no such `.
5 S ← [`]; Γ(S) = {gj ∈ G | ∃i ∈ S : fij 6= 0}
6 γ ← 1
7 repeat
8 x← 1; Define pj ← xpj ,∀gj ∈ Γ(S), fij ← xfij ,∀i ∈ S,∀gj ∈ Γ(S)

// ci(p, f) and sj(p, f) change accordingly
9 Increase x continuously up from 1 until one of the following events occurs

10 Event 1: A new edge, say (a, gb), becomes MBB // a ∈ S, gb 6∈ Γ(S)

11 Event 2: mini∈S ci(p, f) = max{maxi 6∈S ci(p, f), 0} // Balancing
12 Event 3: γx = 1 + 1/(56e2n3) // Price-rise
13 if Event 1 occurs then
14 c̃i(p, f)← ci(p, f), ∀i ∈ S \ {a}
15 c̃a(p, f)← ca(p, f)− pb
16 c̃i(p, f)← ci(p, f) + fib, ∀i /∈ S
17 if ∃i ∈ A \ S s.t. (i, gb) ∈ F or mini∈S c̃i(p, f) ≤ max{maxi/∈S c̃i(p, f), 0} then
18 break // break from the inner loop

19 fib ← 0,∀i ∈ A; fab = pb; Γ(S)← Γ(S) ∪ {gb}; γ ← γx

20 until Event 2 or 3 occurs
21 f ← Balanced(F, p)
22 until either fij > ‖s(p, f)‖

1
for an edge (i, gj) ∈ E \ F with i and gj in different components of F ,

or ‖s(p, f)‖
1

= 0
23 return (p, f)

parameter γ measures the cumulative price increment throughout a phase; we set γ = 1 before starting the
sequence of inner loops.

Next, the algorithm runs the inner loop where it increases the prices of goods in Γ(S) and the flow
between agents in S and goods in Γ(S) by a multiplicative factor x ≥ 1 until one of three events occurs.
Observe that except for the MBB edges (i, gj) where i /∈ S, gj ∈ Γ(S), all MBB edges remain MBB with this
price change, and the surplus of every good in Γ(S) remains zero. When prices of goods in Γ(S) increase,
an edge (i, gj) from i ∈ S and gj 6∈ Γ(S) can become MBB. We need to stop when such an event occurs in
order to maintain an F -allocation; this is captured by Event 1. In Event 2, we stop when the surplus of an
agent i ∈ S becomes equal to either the surplus of an agent i′ 6∈ S or zero. Let us note that ci(p, f) ≥ 0 is
maintained throughout; we use the expression max{maxi/∈S ci(p, f), 0} to also cover the possible case S = [n].
In Event 3, we stop when γx becomes 1 + 1/(56e2n3).

If Event 1 occurs, then we have a new MBB edge (a, gb) from a ∈ S to gb 6∈ Γ(S). Using this new edge,
it is now possible to decrease the surplus of agent a and increase the surpluses of agents i 6∈ S by increasing
fab and decreasing fib. We next check if this can lead to making the surplus of an agent i ∈ S and i′ /∈ S
equal. Observe that it is always possible if there exists an edge (i′, gb) ∈ F . If yes, then we break from the
inner loop, otherwise we update flow so that agent a buys the entire good gb, add gb to Γ(S), update γ to
γx, and go for another iteration.

Lemma 5.1. The number of iterations in a phase is at most n.

Proof. Consider the iterations of a phase. At the beginning of every iteration, the size of Γ(S) grows by 1,
and hence there cannot be more than n iterations in a phase. �

10



When we break from the inner loop, we recompute a balanced flow and then check if either ‖s(p, f)‖1 is
zero or there is an edge (i, gj) /∈ F with fij > ‖s(p, f)‖1 connecting two different components of F . If yes,
then we return the current (p, f), otherwise we go for another phase. Next, we show that (p, f) remains an
F -allocation throughout the algorithm, which implies that the algorithm returns an F -allocation.

Lemma 5.2. The output (p, f) of Algorithm 2 is an F -allocation.

Proof. We only need to show that F ⊆ MBB(p) throughout the algorithm. Observe that an MBB edge
(i, gj) becomes non-MBB only if i /∈ S and gj ∈ Γ(S), where S and Γ(S) are obtained with respect to a
balanced flow f . If an edge (i, gj) ∈ F is such that i /∈ S and gj ∈ Γ(S) then it contradicts that f is a
balanced flow because the edges in F are allowed to carry negative flow. �

The running time analysis of Algorithm 2 is based on the evolution of the norm ‖c(p, f)‖
2
and prices p.

If a phase terminates due to Event 3, then we call it price-rise, otherwise balancing. The next two lemmas
are crucial that eventually imply that the potential function φ(p, f) decreases substantially within a strongly
polynomial number of phases.

Lemma 5.3. In Algorithm 2, the price of every good monotonically increases and the total surplus, i.e.,
‖s(p, f)‖

1
, monotonically decreases.

Proof. Clearly, the price of every good monotonically increases in Algorithm 2. During a price increase
step, sj(p, f) = 0 is maintained for every gj ∈ Γ(S), and sj(p, f) does not change for gj ∈ G \ Γ(S). If the
allocation changes during Event 1, then sb(p, f) decreases to 0, and the other surpluses remain unchanged.
When a balanced flow is recomputed at the end of a phase, then ‖s(p, f)‖1 can only decrease. �

The proof of the next lemma is an adaptation of the proof in [12], and is given in Appendix A.

Lemma 5.4. Let f be a balanced flow at the beginning of a phase, and let (p′, f ′) be the prices and flow at
the end of the phase. Then

(i)
∏n
j=1 p

′
j ≥

(
1 + 1

56e2n3

)∏n
j=1 pj in a price-rise phase, and

(ii) ‖c(p′, f ′)‖2 ≤ ‖c(p, f)‖2/
(
1 + 1

56e2n3

)
in a balancing phase.

Lemma 5.5. The number of arithmetic operations in a phase of Algorithm 2 is O(n3).

Proof. From Lemma 5.1, the number of iterations in a phase is at most n. In each iteration, we find the
minimum x where one of the events occur, which takes at mostO(n2) arithmetic operations. If Event 1 occurs,
then we define another surplus vector c̃(p, f), and based on this we decide to exit from the inner loop. This
requires additional O(n2) arithmetic operations. In total, each iteration takes O(n2) arithmetic operations.
The steps before the inner loop like sorting etc. takes O(n log n) arithmetic operations. We compute a
balanced flow after exiting from the inner loop, in time O(nm log (n2/m)) according to Lemma 3.6. Overall,
each phase takes O(n3) arithmetic operations since m ≤ n2. �

In the next lemma, we show that the potential function φ(p, f) decreases by a large factor within a
strongly polynomial number of phases. This together with Lemmas 3.3 and 3.9 imply that every major cycle
terminates in strongly polynomial time.

Lemma 5.6. The potential function φ(p, f) decreases by a factor of at least 1/nγ in O((2 + γ)2n6 log2 n)
phases of Algorithm 2 for any γ > 0.

Proof. Every phase of Algorithm 2 is either price-rise or balancing. Using ‖s(p, f)‖
1
/n ≤ ‖s(p, f)‖∞ ≤

‖s(p, f)‖
1
, we have the following inequality:

‖s(p, f)‖1
n(
∏
j pj)

1/n
≤ φ(p, f) =

‖s(p, f)‖∞
(
∏
j pj)

1/n
≤ ‖s(p, f)‖1

(
∏
j pj)

1/n
. (6)

Recall from Lemma 5.3 that ‖c(p, f)‖1 is monotonically decreasing and the prices are monotonically increas-
ing throughout. According to Lemma 5.4, if there are C(2 + γ)n3 log n consecutive balancing phases for

11



some constant C > 0, then ‖c(p, f)‖2 decreases by a factor of at least 1/n2+γ . This further implies that the
`1 norm, i.e., ‖s(p, f)‖1 = ‖c(p, f)‖1, decreases by a factor of at least 1/n1.5+γ .

Consider now a sequence of C2(2 + γ)2n6 log n phases. If this contains C(2 + γ)n3 log n consecutive
balancing phases, then the statement follows as above. Otherwise, there are at least C(2 + γ)n3 log n price-
rise phases. In that case, the geometric mean of prices, i.e., (

∏
j pj)

1/n, increases by a factor of at least n2+γ .
This together with (6) proves the claim. �

Proof of Theorem 3.8. According to the above lemma, if we do not terminate Algorithm 2 in the first
iteration when an arc (i, gj) ∈ E \ F with fij > ‖s(p, f)‖

1
is found, then the potential φ(p, f) decreases by

a factor n4(m+ 1) within O(n6 log2 n) phases.
For a strongly polynomial algorithm, we also need to keep all intermediate numbers polynomial bit length.

For this, we can use the Duan-Mehlhorn [13] technique by restricting the prices and update factor x to powers
of (1 + 1/L) where L has polynomial bit length. This guarantees that all arithmetic is performed on rational
numbers of polynomial bit length. As shown in [13] this does not change the number of iterations of the DM
subroutine. �

Remark 5.7. Compared to the original DM algorithm in [13], Algorithm 2 differs in the following.

1. We handle Event 1 (in line 10) differently than the other two events and this gives rise to two nested
loops, unlike [13] where every event is handled similarly and there is only one loop.

2. The edges in F are allowed to carry negative flow, unlike [13] where flow is always non-negative.

3. We initialize prices to p, unlike [13] where every price is initialized to 1. And, we stop once a new edge
is revealed.

6 A linear program for Ψ(F )

In this section, we first formulate an LP to compute Ψ(F ). Then, we introduce the class of Z+-matrices,
and formulate a general statement (Theorem 6.4) that shows how certain LPs with a Z+ constraint matrix
can be approximated by a two variable per inequality system. We use this to prove Theorem 3.7. The proof
of Theorem 6.4 will be given in Section 7.

Given F ⊆ E, we consider the bipartite graph (A ∪ G,F ). Let C1, C2, . . . , Ct denote the connected
components that have a nonempty intersection with G. (In particular, we include all isolated vertices in
G, but not those in A.) Let γi := |Ci ∩ G|. Let us fix an arbitrary good in each of these components; for
simplicity of notation, let us assume that the fixed good in Ci is gi.

If all edges in F are forced to be MBB edges, then fixing the price pi of gi uniquely determines the prices
of all goods in Ci ∩ G. Indeed, for any buyer k ∈ Ci ∩ A, and any goods g`, g`′ ∈ Ci ∩ G with k`, k`′ ∈ F ,
we have that p`/p`′ = uk`/uk`′ . Consequently, for any i ∈ [t], and for any g` ∈ Ci ∩ G, we can compute
the multiplier θi` > 0 such that p` = θi`pi whenever all edges in F are MBB. For an agent ` ∈ A, let
ρ(`) ∈ [t] denote the index of the component containing the good g` of this agent: that is, g` ∈ Cρ(`) ∩ G,
and p` = θρ(`)`pρ(`). Let Θi :=

∑
g`∈Ci∩G θi`; the total price of the goods in Ci is Θipi.

g1 g6 g2 g7 g8 g3 g9 g10 g4 g5

2 3 1 9 6 7 8 10 5 4

1 2 1 1 1 1 1 1 1 1 1 13

Figure 1: Example problem setting.

12



6.1 Constructing the LP
The variables (pi)i∈[t] uniquely determine the price of every good. We compute Ψ(F ) in terms of these
variables. To differentiate between this t-dimensional price vector and the n-dimensional price vector of all
goods, we say that for a price vector p̄ ∈ Rt, the vector p ∈ Rn is the extension of p̄, if p` = θρ(`)`p̄ρ(`) for all
` ∈ [n] (in particular, p` = p̄` for ` ∈ [t]). We also say that the F -allocation (p, f) is an extension of p̄, if p
is the extension of p̄.

Example. Throughout this section and the next one, we illustrate the argument with
the example in Figure 1. There are 10 agents and 15 edges in F . The edges in F
are depicted by solid edges with the uij values indicated; all these are 1 except for
u17 = 2. The picture does not include the edges in E \ F except for one example: the
dashed line for (6, g8) with u68 = 3. There are 5 connected components, containing
goods {g1, g6}, {g2, g7, g8}, {g3, g9, g10}, {g4}, and {g5}, with p6 = p1, p7 = p8 = 2p2,
and p3 = p9 = p10. Thus, Θ1 = 2, Θ2 = 5, Θ3 = 3, Θ4 = 1, Θ5 = 1, and γ1 = 2,
γ2 = 3, γ3 = 3, γ4 = 1, γ5 = 1.

We now formulate linear constraints that ensure that a vector p̄ ∈ Rt can be extended to an F -allocation
(p, f) with ‖s(p, f)‖∞ ≤ 1, and supp(f) ⊆ F . The first set of constraints will enforce that all edges in F are
MBB, and the second set will guarantee the existence of a desired money flow f with the surplus bounds.

First, the edges in F are MBB if and only if ukj/pj ≤ ukj′/pj′ for any k ∈ A, and any gj , gj′ ∈ G such
that (k, gj) ∈ E, (k, gj′) ∈ F . The θi` coefficients already capture that equality holds if (k, gj), (k, gj′) ∈ F .
For the rest of the pairs, we can express this constraint in terms of the p̄ variables as

ukjθρ(j′)j′ p̄ρ(j′) − ukj′θρ(j)j p̄ρ(j) ≤ 0 ∀k, j, j′ ∈ A, (k,gj) ∈ E \ F, (k, gj′) ∈ F. (7)

We add a second set of constraints for ‖s(p, f)‖∞ ≤ 1. Since f is supported on F and is allowed to be
negative, this can be guaranteed if and only if for any component Ci, i ∈ [t], the total price of the goods
in Ci ∩G exceeds the total budget of the agents in Ci ∩ A by at most γi = |Ci ∩G|. Recall that given the
prices p̄ of the fixed goods, the total price of goods in Ci ∩G is Θip̄i. We obtain the constraints

Θip̄i −
∑

k∈Ci∩A

θρ(k)kp̄ρ(k) ≤ γi ∀i ∈ [t]. (8)

Let us now define the following LP:

max

t∑
i=1

p̄i

s. t. constraint sets (7) and (8),
p̄ ≥ 0.

(PF )

Note that p̄ = 0 is a feasible solution. Using LP duality, the above program is unbounded if and only if the
next LP has a feasible solution p̄ 6= 0.

constraint set (7),

Θip̄i −
∑

k∈Ci∩A

θρ(k)kp̄ρ(k) ≤ 0 ∀i ∈ [t]

p̄ ≥ 0.

(P 0
F )

13



Example. Let us show the formulation for the example in Figure 1. The variables are
p̄1, p̄2, p̄3, p̄4, and p̄5. From the constraint set (7), we only show the example of k = 6,
j = 8, and j′ = 3:

3p̄3 − 2p̄2 ≤ 0.

For the components, we have

2p̄1 − p̄2 − p̄3 ≤ 2

5p̄2 − p̄1 − p̄3 ≤ 3

3p̄3 − p̄1 − 2p̄2 ≤ 3

p̄4 − 2p̄2 − p̄3 − p̄5 ≤ 1

p̄5 − p̄4 ≤ 1.

Lemma 6.1. (i) Any solution p̄ ∈ Rn to (PF ) can be extended to an F -allocation (p, f) with ‖s(p, f)‖∞ ≤
1, and supp(f) ⊆ F .

(ii) If (PF ) is bounded, then there exists a pointwise maximal solution p̄∗ ∈ Rt, that is, p̄ ≤ p̄∗ for any
solution p̄ ∈ Rt to (PF ). Let (p∗, f∗) denote the extension of these prices to an F -allocation with
‖s(p∗, f∗)‖∞ ≤ 1, and supp(f∗) ⊆ F . Then, Ψ(F ) = φ(p∗, f∗).

(iii) Under assumption (?), every nonzero solution to (P 0
F ) is strictly positive. Such a solution can be

extended to an F -equilibrium.

Proof. The proof of part (i) was given above. For part (ii), let p̄ and p̄′ be two different solutions, and let
p̄′′i = max{p̄i, p̄′i} for all i ∈ [t]. Then it is easy to see that p̄′′ satisfies all inequalities (7) and (8). (This is true
more generally for systems where the transposed of the constraint matrix is pre-Leontief, see Section 6.2. )
This implies the existence of a pointwise maximal p̄∗ in case (PF ) is bounded.

Let (p, f) be the optimal F -allocation such that Ψ(F ) = φ(p, f). Since φ(p, f) = φ(αp, αf) for any α > 0,
we may assume that ‖s(p, f)‖∞ = 1. Then, (pi)i∈[t] is feasible to (PF ), and therefore pi ≤ p∗i for all i ∈ [t].
Consequently, φ(p∗, f∗) ≤ φ(p, f). By definition of Ψ(F ), we have φ(p∗, f∗) ≥ Ψ(F ). Thus, equality must
hold, which in particular implies p∗i = pi for all i ∈ [t].

Let us now turn to part (iii), when (P 0
F ) has a nonzero solution p̄ ∈ Rt (and thus (PF ) is unbounded).

Let p ∈ Rn be the extension of p̄.
Summing up the second set of constraints in (P 0

F ), the coefficient of every p̄i is nonnegative. Consequently,
all these inequalities must hold at equality, implying that in every component Ci, the total budget of the
agents in Ci ∩A equals the total price of the goods in Ci ∩G. Further, if i ∈ A has no incident edges in F ,
then pi = 0 must hold. If p > 0, then the union of the components Ci equals A ∪ G. Then, we can set f
with supp(f) ⊆ F such that ‖s(p, f)‖1 = 0, and such a (p, f) gives an F -equilibrium.

It is left to show that p̄ > 0, or equivalently, p > 0. Let A0 := {k ∈ A : pk = 0}, and assume A0 6= ∅.
Note that A \A0 6= ∅ since p 6= 0. By assumption (?), there exist k ∈ A \A0 and ` ∈ A0 such that uk` > 0.
There exists at least one edge (k, gj) ∈ F , as otherwise pk = 0, as shown above. By (7), j ∈ A0 must hold.
Let Ci be the component containing agent k and good gj . Clearly, for every gj′ ∈ Ci ∩G, we have j′ ∈ A0.
Hence, the budget of every agent in Ci ∩A must also equal 0, in particular, pk = 0, a contradiction. �

6.2 Monotone two variable per inequality systems
LetM2(m,n) denote the set of m× n rational matrices with at most one positive and at most one negative
entry per row. For a matrix A ∈ M2(m,n), and an arbitrary vector b ∈ Qm, the LP Ax ≤ b is called a
monotone two variable per inequality system, abbreviated as M2VPI. In every such system, whenever the
objective function max

∑
i xi is bounded, there exists a pointwise maximal feasible solution, that is, a feasible

x∗ such that for every feasible solution x, x ≤ x∗.

14



This property holds more generally. Namely, a matrix is called pre-Leontief if every column contains at
most one positive element. If A> is pre-Leontief, then the system A>x ≤ c has a pointwise maximal feasible
solution whenever max

∑
i xi is bounded; see [7]. Whereas M2VPI systems are strongly polynomially solvable,

as stated in the next theorem, no such algorithm is currently known for the general pre-Leontief setting.

Theorem 6.2 ([29, 24]). Consider an M2VPI system Ax ≤ b with A ∈ M2(m,n). Then there exists
a strongly polynomial O(mn2 logm) time algorithm that finds a feasible solution or concludes infeasibility.
Further, if there exists a pointwise maximal feasible solution, the algorithm also finds that one.

Note that this theorem is not directly applicable to (PF ). Whereas the constraints (7) are of the required
form, the constraints (8) have only one positive coefficient but possibly multiple negative ones. In what
follows, we show that finding an approximate solution to (PF ) can be reduced to an M2VPI system.

6.3 Z+-matrices
LetM ∈ Rt×t be the matrix representing the left hand side of the constraints in (8). That is, for all i, j ∈ [t],
we let

Mij :=

{
Θi −

∑
k∈Ci∩A:ρ(k)=i θik, if i = j,

−
∑
k∈Ci∩A:ρ(k)=j θjk, if i 6= j.

(9)

Thus, (8) can be written as Mp̄ ≤ γ, where γ> = (γ1, . . . , γt).

Definition 6.3. A matrix M ∈ Qk×t is a Z+-matrix, if all off-diagonal entries are nonpositive, and all
column sums are nonnegative. For a non-square matrix, by diagonal entries we mean all entries zii for
1 ≤ i ≤ min{k, t}. We let Z+(k, t) denote the set of k × t Z+-matrices.

Clearly, the matrix M defined by (9) is in Z+(t, t). Recall that a matrix is called a Z-matrix if all off-
diagonal entries are nonpositive; the notation reflects the additional requirement on the columns. Further,
note that a matrix is a Z+(t, t)-matrix if and only if it is the transposed of a weighted Laplacian of a directed
graph on t vertices, or if it can be obtained by deleting a row and a column of the transposed of a weighted
Laplacian of a directed graph on t+1 vertices. We will prove the following theorem on LPs with Z+-matrices
as constraint matrices.

Theorem 6.4. Given a matrix M ∈ Z+(k, t) with ` nonzero entries, and b ∈ Qk, with b > 0, we let

PM = {x ∈ Rt : Mx ≤ b, x ≥ 0}.

Then, in time O(`(min{k, t})3), we can construct a matrix M̄ ∈M2(`′, t) and b̄ ∈ Ql′ for `′ ≤ ` such that

PM ⊆ {x ∈ Rt : M̄x ≤ b̄, x ≥ 0} ⊆ B2PM ,

where B =
∑k
j=1 bj/mini∈[k] bi. Further, the size of the entries in M̄ and b̄ are polynomially bounded in the

encoding size of the input.

Here, we use the notation αP = {αx : x ∈ P} for a set P and a constant α > 0. The proof of Theorem 6.4
will be given in Section 7; we now use it to derive Theorem 3.7.

Proof of Theorem 3.7. Lemma 6.1 establishes that computing Ψ(F ) is equivalent to solving the LP (PF ). We
construct a second LP QF as follows. For the constraint set (8) in the form Mp̄ ≤ γ, we apply Theorem 6.4
to obtain M̄p̄ ≤ γ̄. Note that B ≤ n, since

∑t
i=1 γi = n, and γi ≥ 1 for i ∈ [t]. Then, we let

QF := {p̄ ∈ Rt : p̄ satisfies (7) and M̄p̄ ≤ γ̄}.

Let PF denote the feasible region of (PF ). Using that all right hand sides in (7) are 0, we see that

PF ⊆ QF ⊆ n2PF .

Since QF is an M2VPI system, Theorem 6.2 provides a strongly polynomial algorithm to obtain the prices p̄
maximizing

∑t
i=1 p̄i over QF , or concludes that this objective is unbounded on QF . In case a finite optimum

exists, p̄/n2 is feasible to (PF ) and is within a factor n2 from an optimal solution.

15



If the objective is unbounded on QF , then we claim that we can get a nonzero solution to (P 0
F ). Using

LP duality, the objective is unbounded on QF if and only if there is a feasible solution p̄ 6= 0 to

Q0
F = {p̄ ∈ Rt : p̄ satisfies (7) and M̄p̄ ≤ 0}.

Again, Theorem 6.2 is applicable to find a nonzero solution q. Suppose q 6= 0 is a solution to Q0
F . This

implies that αq is a feasible solution to QF for all α ≥ 0. Since for every feasible solution p̄ to QF , p̄/n2
is a feasible solution to (PF ), this further implies that αq is also a feasible solution to (PF ) for all α ≥ 0.
Therefore, q must be a solution to (P 0

F ).
The number of nonzero entries in M is ≤ 2n. Thus, constructing M̄ and γ̄ takes O(n4) time. We obtain

an M2VPI system with ≤ m+ 2n constraints and ≤ n variables, and m = O(n2), thus the running time for
solving the M2VPI system is O(n4 log n) that dominates the total running time.

Finally, for a strongly polynomial algorithm we also have to provide polynomial bounds on the encoding
lengths of the numbers during the algorithm. The entries ofM are simple expressions of the input parameters
uij . Then, Theorem 6.4 guarantees that M̄ and vector γ̄ also have bounded encoding length. Thus, the
strongly polynomial M2VPI algorithm takes a polynomial size input and therefore the overall algorithm will
be strongly polynomial. �

7 Approximating systems with Z+-matrices
This section is dedicated to the proof of Theorem 6.4. For consistency with the market terminology, we use
p̄ ∈ Rt as the variables. Recall that we need to show that given a system PM = {p̄ ∈ Rt : Mp̄ ≤ γ, p̄ ≥ 0}
with M ∈ Z+(k, t) with ` nonzero entries and γ ∈ Qk, γ > 0, we can construct a matrix M̄ ∈ M2(`′, t)
and γ̄ ∈ Ql′ for `′ ≤ ` in O(`t3) time such that PM ⊆ {p̄ ∈ Rt : M̄p̄ ≤ γ̄, p̄ ≥ 0} ⊆ B2PM , where
B =

∑k
j=1 γj/mini∈[k] γi.

Let Mi ∈ Rt denote the i-th row of the matrix M for i ∈ [t]. We will assume that k = t, that is, M is a
square matrix. Indeed, if k > t, then the last k− t rows only contain nonpositive coefficients. Therefore, for
i > t, Mip̄ ≤ 0 holds for every p̄ ≥ 0. If t > k, then by the Z+-property, all entries of the last t− k columns
must be 0, and thus, we can delete these columns. We further assume that all diagonal entries are strictly
positive; if Mii = 0 then we can remove the i-th row and i-th column similarly. Let us also note that every
matrix in Z+(t, t) can be obtained in the form (9), corresponding to a market problem with t components.

Lower bounding the vector Mp̄ For i ∈ [t], we let λi :=
∑
j 6=i γj , and we let λ := (λ1, . . . , λt)

>.

Lemma 7.1. Let M ∈ Z+(t, t). Assume that p̄ ∈ Rt+ satisfies Mp̄ ≤ γ. Then, we also have

Mp̄ ≥ −λ ≥ −(B − 1)γ.

Proof. The sum of the rows is
∑
j∈[t]Mj ≥ 0 since M is a Z+-matrix. Therefore, for any i ∈ [t], we have

Mip̄ =

∑
j∈[t]

Mj

 p̄−

 ∑
j∈[t],j 6=i

Mj

 p̄ ≥ −
∑

j∈[t],j 6=i

γj = −λi.

The inequality λ ≤ (B − 1)γ follows by the definition of B. �

7.1 Gaussian elimination for Z+-matrices
We will use Gaussian elimination to generate new constraints. For this purpose, we show that Gaussian
elimination on Z+-matrices will only add nonnegative multiples of rows to other rows.

Lemma 7.2. Let T ∈ Z+(`, t). Then, using Gaussian elimination, we can obtain a matrix T ′ = Y T ,
where T ′ ∈ R`×t is an upper triangular matrix with diagonal entries 0 or 1, and all off-diagonal entries are
nonpositive; further, all entries of Y ∈ R`×` are nonnegative. If Tik < 0 for some k ∈ [t], i ∈ [k + 1, `], then
T ′kk = 1.

16



Proof. Let T (k) = Y (k)T be the matrix after k steps in the Gaussian elimination with T (0) = T and Y (0) = I`.
By induction on k, we simultaneously show the following:

• Y (k) is a nonnegative matrix;

•
∑`
i=k+1 T

(k)
ij ≥ 0 for j ∈ [k + 1, t];

• T (k)
ij ≤ 0 for i 6= j;

• T (k)
ii ≥ 0 for all i ∈ [k].

Note that the last three properties imply that the lower right (`−k)×(t−k) submatrix of T (k) is a Z+-matrix.
The properties clearly hold for k = 0; assume we have proved these for k−1. Consider the k-th iteration.

If T (k−1)
kk = 0, then no row operation is performed. In this case, we set T (k) := T (k−1) and Y (k) := Y (k−1).

We only need to verify that
∑`
i=k+1 T

(k)
ij ≥ 0 for j ∈ [k + 1, t]. This follows from the induction hypotheses:∑`

i=k T
(k−1)
ij ≥ 0, and T (k−1)

kj ≤ 0 for j ∈ [k + 1, t].

If T (k−1)
kk > 0, then we multiply the k-th row by 1/T

(k−1)
kk , and add −T (k−1)

ik /T
(k−1)
kk times the k-th row

to the i-th row for all i ∈ [k + 1, `]. By induction, these coefficients are all nonnegative. We update the
transformation matrix Y (k) accordingly, and thus it remains a nonnegative matrix. Consider now the j-th
column of T (k) for j ∈ [k + 1, t]. We have

∑̀
i=k+1

T
(k)
ij =

∑̀
i=k+1

T
(k−1)
ij − T (k−1)

kj

∑̀
i=k+1

T
(k−1)
ik /T

(k−1)
kk . (10)

The second induction hypothesis for j = k gives

T
(k−1)
kk +

∑̀
i=k+1

T
(k−1)
ik ≥ 0.

Rearranging, and using that T (k−1)
kk > 0, we obtain

−
∑̀
i=k+1

T
(k−1)
ik /T

(k−1)
kk ≤ 1.

If we multiply this by T (k−1)
kj ≤ 0, we get

−T (k−1)
kj

∑̀
i=k+1

T
(k−1)
ik /T

(k−1)
kk ≥ T (k−1)

kj .

Substituting into (10), this yields

∑̀
i=k+1

T
(k)
ij ≥

∑̀
i=k+1

T
(k−1)
ij + T

(k−1)
kj ≥ 0,

again by the induction hypothesis.
For the last part, let Tik < 0 for k ∈ [t], i ∈ [k + 1, `]. Note that T (k−1)

ik ≤ T
(k−2)
ik ≤ . . . ≤ T

(0)
ik < 0. The

induction hypothesis gives
∑`
j=k T

(k−1)
jk ≥ 0, and therefore T (k−1)

kk > 0. We set T (k)
kk = 1, and this entry does

not change in any later steps of the algorithm. �

17



7.2 Constructing the approximate system
Let us now describe the construction of the M2VPI system M̄p ≤ γ̄ as in Theorem 6.4. We define a digraph
([t], H) by adding an arc ij ∈ H if Mij < 0. For each i ∈ [t], we let Di ⊆ [t] be the set of vertices reachable
from i in the digraph ([t], H), and let di := |Di|. We let M (i) denote the di × t submatrix of M comprising
the rows Mj for j ∈ Di. We partition [t] into three groups:

T1 := {i ∈ [t] : |{j : ij ∈ H}| ≤ 1},
T2 := {i ∈ [t] \ T1 : rk(M (i)) = di},
T3 := {i ∈ [t] \ T1 : rk(M (i)) < di}.

If i ∈ T1, then Mi has at most one positive and at most one negative entry; thus, we can keep the constraint
Mip̄ ≤ γi unchanged. For i ∈ T2 ∪T3, for every outgoing arc ij ∈ H, we shall define a constraint in the form
v(ij)

>
p̄ ≥ δ(ij). Further, for every i ∈ T2, we shall add an additional constraint p̄i ≤ κi.

The construction is somewhat technical, even though the underlying idea is relatively simple. For each
ij ∈ H, we wish to obtain the constraint v(ij)

>
p̄ ≥ δ(ij) such that p̄j has a positive coefficient, p̄i has a

nonpositive coefficient, and all other coefficients are 0. We wish to derive a valid constraint for (PF ) by
taking a nonnegative combination of constraints from Mp̄ ≥ −λ; recall from Lemma 7.1 that these are valid
for (PF ). Lemma 7.2 shows that when we apply Gaussian elimination to a Z+-matrix, then we only add
rows with nonnegative coefficients. Hence, if we apply Gaussian elimination to the matrix M , and apply
the same operations to the right hand side −λ, then we can derive valid constraints from Mp̄ ≥ −λ. In the
construction that follows, we apply a permutation to a submatrix of M where in the penultimate step of
Gaussian elimination produces a constraint of the desired form.

Let i ∈ T2 ∪ T3, and d := di. For every ij ∈ H, let us define a permutation σ(ij) of the set [t] as follows.
We set σ(d − 1) = j, σ(d) = i, and fill the first d − 2 positions with the elements of Di \ {i, j} in such a
way that for any k ∈ Di \ {i}, there is an edge `k ∈ H such that σ(k) < σ(`) ≤ d. The final t− d positions
contain the elements of [t] \ Di in an arbitrary order. Let M (ij) ∈ Rd×t denote the matrix obtained from
M (i) by applying the permutation σ(ij) to the rows and the columns, and deleting the last t− d rows. It is
easy to see that M (ij) is a Z+-matrix.

Example. The picture shows the graph
([t], H) for the system obtained from Fig-
ure 1. We have D1 = D2 = D3 = {1, 2, 3},
and D4 = D5 = {1, 2, 3, 4, 5}. Now,

M (1) =

 2 −1 −1 0 0
−1 5 −1 0 0
−1 −2 3 0 0

 ,

M (4) =


2 −1 −1 0 0
−1 5 −1 0 0
−1 −2 3 0 0

0 −2 −1 1 −1
0 0 0 −1 1

 ,

and M (2) = M (3) = M (1), M (5) = M (4).
We get T1 = {5}, T2 = {1, 2, 3}, and
T3 = {4}.

1

2

4

3

5

Let us apply Gaussian elimination as in Lemma 7.2 to M (ij) to obtain an upper triangular matrix

18



N (ij) = Y (ij)M (ij). Let γ(ij), λ(ij) ∈ Rd be the vectors obtained by permuting the components of γ and λ
with σ(ij), and removing the last t− d entries.

Let us set v(ij) to be the (d − 1)-st row N
(ij)
d−1 with the inverse of the permutation σ(ij) applied to its

elements. (So that its i-th coordinate corresponds to p̄i). Let

δ(ij) := −Y (ij)
d−1λ

(ij). (11)

For i ∈ T2, we add an additional constraint p̄i ≤ κ(i). Let us pick an arbitrary ij ∈ H, and let

κ(i) := Y
(ij)
d γ(ij). (12)

It will be shown in Lemma 7.4 that this value is independent of the choice of the arc ij. The LP M̄p̄ ≤ γ̄
will be the following system:

Mip̄ ≤ γi ∀i ∈ T1,
p̄i ≤ κ(i) ∀i ∈ T2,

v(ij)
>
p̄ ≥ δ(ij) ∀ij ∈ H, i ∈ T2 ∪ T3,
p̄ ≥ 0.

(13)

7.3 Proof of correctness
We need one more claim before proving Theorem 6.4.

Claim 7.3. Let i ∈ [t] and let d := di.

(i) For any ij ∈ H, N (ij)
kk = 1 for all k ∈ [d− 1], and N (ij)

k` = 0 for all k ∈ [d], ` ∈ [d+ 1, t].

(ii) If i ∈ T2, then N (ij)
dd = 1, and if i ∈ T3, then N (ij)

dd = 0.

(iii) If i ∈ T3, then Mi can be written as a linear combination of the vectors {Mh : h ∈ Di \ {i}}.

Proof. (i) In the definition of the permutation σ(ij) it was required that for any k ∈ [d−1], there is an entry
M

(ij)
`k < 0 for some ` with σ(k) < σ(`) ≤ d. The last part of Lemma 7.2 guarantees that N (ij)

kk = 1 for all
k ∈ [d− 1]. Further, we note that according to the definition of the set Di, we have M (ij)

k` = 0 for all k ∈ [d],
` ∈ [d+ 1, t]. Thus, the last t− d entries of every row in M (ij) are 0’s and therefore also in N (ij).

(ii) Together with the fact the N (ij) is an upper triangular matrix, we see that the only nonzero entry of
the d-th row N

(ij)
d is the diagonal entry N (ij)

dd ∈ {0, 1}. Also note that rk(N (ij)) = rk(M (ij)) = rk(M (i)).
If i ∈ T2, then we must have rk(N (ij)) = d, and therefore N (ij)

dd = 1, as otherwise N (ij)
d = 0. On the other

hand, if i ∈ T3, then N
(ij)
dd = 0, as otherwise N (ij) would be an upper triangular matrix with the first d

diagonal entries equal to one, contradicting rk(N (ij)) < d.

(iii) We claim that rk(Mh : h ∈ Di \ {i}) = d − 1. This implies the statement, since we assumed that
rk(M (i)) = rk(Mh : h ∈ Di) = d− 1. Note that the first d− 1 rows of M (ij) are permutations of the vectors
Mh for h ∈ Di \ {i}, and hence have the same rank. The rank is preserved during Gaussian elimination.
Therefore,

rk(Mh : h ∈ Di \ {i}) = rk(M
(ij)
h : h ∈ [d− 1])

= rk(N
(ij)
h : h ∈ [d− 1]) = d− 1.

The last equality follows since N (ij) is an upper triangular matrix with the first d− 1 diagonal entries being
1, according to part (i). �

Proof of Theorem 6.4. Form of the constraints. First, let us show that the system M̄p̄ ≤ γ̄ given in
(13) is an M2VPI system. This is clearly true for the constraints for i ∈ T1 and for i ∈ T2. Consider now the
constraints v(ij)

>
p̄ ≥ δ(ij). The vector v(ij) was obtained as the appropriate permutation of the (d−1)-st row

of the matrix N (ij). Using that N (ij) is an upper triangular matrix and Claim 7.3(i), this row may contain

19



Example. Continuing with the example, we have γ> = (2, 3, 3, 1, 1), and λ> =
(8, 7, 7, 9, 9). Let us consider i = 1, j = 2. We use the permutation σ(12) = (32145),
yielding

M (12) =

 3 −2 −1 0 0
−1 5 −1 0 0
−1 −1 2 0 0

 , γ(12) =

3
3
2

 , λ(12) =

7
7
8

 ,

From Gaussian elimination, we get

N (12) =

1 − 2
3 − 1

3 0 0

0 1 − 4
13 0 0

0 0 1 0 0

 , Y (12)γ(12) =

 1
12
13

59
15

 , Y (12)λ(12) =


7
3

28
13

181
15

 .

This yields the constraint v(12)
>
p̄ ≥ δ(12) for v(12)> =

(
− 4

13 , 1, 0, 0,
)
, and δ(12) = − 28

13 ,
that is,

− 4

13
p̄1 + p̄2 ≥ −

28

13
.

Further, we can also use this to obtain p̄1 ≤ κ(1) for κ(1) = 59
15 , that is,

p̄1 ≤
59

15
.

The system QF comprises the constraint set (7), and the following constraints:

p̄2 −
4

13
p̄1 ≥ −

28

13
, p̄1 ≤

59

15
, (i = 1, j = 2) p̄2 ≥ −

88

15
, (i = 4, j = 2)

p̄1 − p̄2 ≥ −
31

5
, p̄2 ≤

32

15
, (i = 2, j = 1) p̄3 ≥ −

154

15
, (i = 4, j = 3)

p̄3 −
7

13
p̄1 ≥ −

49

13
, (i = 1, j = 3) p̄5 − p̄4 ≥ −9, (i = 4, j = 5)

p̄1 −
2

3
p̄3 ≥ −

47

9
, p̄3 ≤

61

12
, (i = 3, j = 1) p̄4 − p̄5 ≥ −31. (i = 5, j = 4)

p̄3 − p̄2 ≥ −
22

5
, (i = 2, j = 3)

p̄2 −
1

3
p̄3 ≥ −

22

9
, (i = 3, j = 2) .

nonzero entries only in positions d − 1 and d. Further, v(ij)j = N
(ij)
(d−1)(d−1) = 1, and v(ij)i = N

(ij)
(d−1)d ≤ 0 as

it is an off-diagonal entry.

Containment of PM . We show that every p̄ satisfying Mp̄ ≤ γ is also feasible to (13). For i ∈ T1, the
constraint Mip̄ ≤ γi is identical to the i-th constraint in PM .

For i ∈ T2, let ij ∈ H be the edge used in the definition of κ(i). According to Claim 7.3, the row N
(ij)
d

has a single nonzero entry N (ij)
dd = 1. Lemma 7.2 guarantees that the coefficient matrix Y (ij) is nonnegative.

Therefore, the constraint p̄i ≤ κ(i) can be obtained as a nonnegative combination of the constraint set
Mp̄ ≤ γ, by multiplying Mhp̄ ≤ γh for h ∈ Di by Y

(ij)

dσ(ij)(h)
.

The validity of the constraints v(ij)
>
p̄ ≥ δ(ij) follows similarly. Recall from Lemma 7.1 that Mp̄ ≥ −λ is

valid for p̄. The constraint v(ij)
>
p̄ ≥ δ(ij) is obtained by taking a nonnegative combination of the inequalities

Mp̄ ≥ −λ combining Mhp̄ ≥ −λh for h ∈ Di with the nonnegative coefficient Y (ij)

(d−1)σ(ij)(h)
. Hence, all these

20



inequalities are valid for p̄.

Approximate reverse containment. We next show that if p̄ is feasible to (13), then p̄ is feasible to
B2PM , that is, Mp̄ ≤ B2γ. Clearly, for i ∈ T1, Mip̄ ≤ γi ≤ B2γi. The more difficult part is to show the
validity of Mip̄ ≤ B2γi for i ∈ T2 ∪ T3.

For i ∈ T3, we show that the constraints

v(ij)
>
p̄ ≥ δ(ij) ∀j : ij ∈ H

together imply Mip̄ ≤ B2γi. For i ∈ T2, we will also make use of the additional constraint p̄i ≤ κ(i) to derive
Mip̄ ≤ B2γi. The following technical lemma will be needed.

Lemma 7.4. Consider any i ∈ T2 ∪ T3.

(i) There is a unique vector q(i) ∈ Rt+ such that M`q
(i) = 0 for all ` ∈ Di \ {i}, q(i)i = 1, and q(i)` = 0 for

` ∈ [t] \Di.

(ii) For any ij ∈ H, v(ij)j = 1 and v(ij)i = −q(i)j .

(iii) If i ∈ T2, then there exists a vector r(i) ∈ Rt+ withMr(i) ≤ γ, M`r
(i) = γ` for all ` ∈ Di, and r

(i)
i = κ(i).

(iv) If i ∈ T3, then there exists a vector r(i) ∈ Rt+ with Mr(i) ≤ γ, and M`r
(i) = γ` for all ` ∈ Di \ {i}.

Proof. As before, we let d = di. For part (i), let us apply Gaussian elimination as in Lemma 7.2 to the
matrixM (ij) for any ij ∈ H. Note thatM (ij)

` q̂ = 0 for ` ∈ [d−1] is equivalent toM`q = 0 for all ` ∈ Di \{i},
where q̂ is the vector obtained from q by permuting the elements by σ(ij). The system of linear equations
M

(ij)
` q̂ = 0 for ` ∈ [d− 1] is turned into the system N

(ij)
` q̂ = 0 for ` ∈ [d− 1] using the elimination.

From Claim 7.3, we have that N (ij)
kk = 1 for all k ∈ [d − 1], and all off-diagonal elements of the upper

triangular matrix N (ij) are nonpositive. Hence, if we set q̂k = 0 for all k ∈ [d + 1, t] and q̂d = 1, then the
system N

(ij)
` q̂ = 0 for ` ∈ [d − 1] has a unique nonnegative solution. Applying the inverse of σ(ij) to q̂ we

obtain the desired vector q(i).

For part (ii), recall that v(ij)i is obtained from N
(ij)
d−1 using the inverse of the permutation σ(ij). We have

already verified that the only possible nonzero entries in N (ij)
d−1 are the (d− 1)-st and d-th components, and

that v(ij)j = N
(ij)
(d−1)(d−1) = 1. Since N (ij)

d−1q̂ = 0, and q̂d = q
(i)
i = 1, we must have q̂d−1 + N

(ij)
(d−1)d = 0, and

thus N (ij)
(d−1)d = −q̂d−1; after permuting, this gives v(ij)i = −q(i)j .

Let us now turn to part (iii). Let i ∈ T2, and let us fix an arbitrary ij ∈ H. The system M`r = γ` for all
` ∈ Di is equivalent to M (ij)r̂ = γ(ij), where r̂ is obtained from r by the permutation σ(ij). After Gaussian
elimination, we obtain the equivalent system

N (ij)r̂ = Y (ij)γ(ij).

According to Claim 7.3, N (ij)
`` = 1 for all ` ∈ [d]. This system has a unique solution r̂ with r̂` = 0 for

d + 1 ≤ ` ≤ t; note also that r̂d = Y
(ij)
d γ(ij) = κ(i). Since the right hand side is nonnegative, and N (ij) is

an upper triangular matrix with all off-diagonal entries being nonpositive, we see that r̂` ≥ 0 for all ` ∈ [d].
Let r(i) be the vector obtained from r̂ by applying the inverse permutation of σ(ij). It remains to show that
M`r

(i) ≤ γ` holds for all ` ∈ [t]\Di. The only positive coefficient in M` can be M``. However, since r
(i)
` = 0,

it follows that M`r
(i) ≤ 0 for these values of `.

The proof of part (iv) is similar. Let i ∈ T3, and let us fix an arbitrary ij ∈ H. The system M`r = γ` for
all ` ∈ Di \{i} is equivalent toM (ij)

` r̂ = γ
(ij)
` for ` ∈ [d−1], where r̂ is obtained by applying the permutation

σ(ij) to the vector r. After Gaussian elimination, we obtain the equivalent system

N
(ij)
` r̂ = Y

(ij)
` γ(ij) ∀` ∈ [d− 1],

21



with N
(ij)
`` = 1 for all ` ∈ [d − 1]. As in part (iii), we see that there is a unique solution with r̂` = 0 for

d ≤ ` ≤ t, and this solution satisfies r̂` ≥ 0 for all ` ∈ [d− 1]. We obtain r(i) by applying the inverse of σ(ij)

to r̂. It follows as above that M`r
(i) ≤ 0 for all ` ∈ [t] \Di. The same argument also gives Mir

(i) ≤ 0, since
r
(i)
i = 0. Hence, Mr(i) ≤ γ holds. �

Assume now that i ∈ T2 ∪ T3. We show that Mip̄ ≤ B2γi. Let q := q(i) as in Lemma 7.4(i). By part (ii)
of the same lemma, and substituting the definition (11) of δ(ij), the constraints can be written as

p̄j − qj p̄i ≥ −Y (ij)
d−1λ

(ij) ∀j : ij ∈ H.

Note that λ(ij)` ≤ (B−1)γ
(ij)
` for all ` ∈ [d] by the definition of B, and Y (ij)

d−1 ≥ 0. Therefore, these constraints
imply

p̄j − qj p̄i ≥ −(B − 1)Y
(ij)
d−1γ

(ij) ∀j : ij ∈ H.

Recall that Mij < 0 if and only if ij ∈ H. Let us multiply the inequality for every j 6= i by Mij ≤ 0, and
add up these inequalities. We obtain

∑
j:ij∈H

Mij p̄j −

 ∑
j:ij∈H

Mijqj

 p̄i ≤ −(B − 1)
∑
j:ij∈H

MijY
(ij)
d−1γ

(ij). (14)

For the rest of the proof, we distinguish the cases i ∈ T3 and i ∈ T2.

Case i ∈ T3. Since Mhq = 0 for all h ∈ Di \ {i}, Claim 7.3(iii) implies Miq = 0. Substituting qi = 1, we see
that Mii = −

∑
j:ij∈HMijqj . With ηi := −

∑
j:ij∈HMijY

(ij)
d−1γ

(ij), (14) can be written as

Miip̄i +
∑
j:ij∈H

Mij p̄j ≤ (B − 1)ηi. (15)

The left hand side isMip̄. We next show ηi ≤ λi, which together with λi ≤ (B−1)γi yieldsMip̄ ≤ (B−1)2γi.
To see ηi ≤ λi, we make use of the vector r = r(i) as in Lemma 7.4(iv). Let r̂ denote the permutation

σ(ij) applied to r. Since M (ij)
` r̂ = γ` is valid for all ` ∈ [d − 1], we have N (ij)

d−1r̂ = Y
(ij)
d−1γ

(ij). This can be
written as

rj − qjri = Y
(ij)
d−1γ

(ij) ∀ij ∈ H. (16)

Summing up these equalities after multiplying the j-th one by Mij < 0, we see as above that

Mir = −ηi.

Since Mr ≤ γ, from Lemma 7.1 we have −ηi = Mir ≥ −λi, and therefore ηi ≤ λi as needed.

Case i ∈ T2. The coefficient of p̄i in (14) equals Mii −Miq. In contrast with the previous case, Miq is not
necessarily 0. We claim that Miq ≥ 0. To see this, note that

∑
h∈DiMhq ≥ 0 since

∑
h∈DiMh ≥ 0 from

the Z+-property and q ≥ 0; further, Mhq = 0 for h ∈ Di \ {i}. Let us further add to (14) Miq times the
inequality p̄i ≤ κ(i). Thus, we obtain

Mip̄ ≤ (B − 1)ηi + κ(i)Miq. (17)

Let r = r(i) as in Lemma (7.4)(iii). As for i ∈ T3, the equations (16) hold. Adding up these equations
multiplied by Mij , and further adding Miq times the equality ri = κ(i), we obtain

Mir = −ηi + κ(i)Miq.

On the other hand, we know that Mir = γi. Thus, γi = −ηi+κ(i)Miq, yielding ηi ≤ κ(i)Miq. Consequently,
from (17) we obtain

Mip̄ ≤ Bκ(i)Miq. (18)

The next claim completes the proof of Mip̄ ≤ B2γi.

22



Claim 7.5. κ(i)Miq ≤ Bγi.

Proof. For ij ∈ H used in defining κ(i), let q̂ be the vector obtained from q by applying the permutation
σ(ij). We first show that Miq = 1/Y

(ij)
dd . To see this, first note that N (ij)

d q̂ = 1, since N (ij)
dd = 1, q̂d = 1, and

all other entries are 0. We have

1 = N
(ij)
d q̂ = Y

(ij)
d (M (ij)q̂) = Y

(ij)
dd (M

(ij)
d q̂) = Y

(ij)
dd (Miq)

The third equality follows since M (ij)
` q̂ = 0 for ` ∈ [d− 1]. Using the definition (12) of κ(i), we have that

κ(i)Miq =

d∑
h=1

Y
(ij)
dh

Y
(ij)
dd

γ
(ij)
h . (19)

Let us now show that Y (ij)
dh ≤ Y

(ij)
dd for all h ∈ [d]. Let us pick h such that it maximizes Y (ij)

dh over h ∈ [d],
and select the largest h where the maximum is taken. For a contradiction, assume that h < d. Since N (ij)

is an upper triangular matrix, we have

0 = N
(ij)
dh =

d∑
`=1

Y
(ij)
d` M

(ij)
`h .

Using that M (ij) is a Z+-matrix, we have M (ij)
hh ≥ 0, M (ij)

`h ≤ 0 for ` 6= h, and
∑d
`=1M

(ij)
`h ≥ 0. Using

the maximality of Y (ij)
dh , we see that equality can only hold if

∑d
`=1M

(ij)
`h = 0, and Y (ij)

d` = Y
(ij)
dh whenever

M
(ij)
`h < 0. This contradicts the maximal choice of h, since the permutation σ(ij) was chosen so that there

exists an ` > h with M (ij)
`h < 0 whenever h < d. Thus, we can conclude that Y (ij)

dh ≤ Y
(ij)
dd for all h ∈ [d].

From (19), it follows that

κ(i)Miq ≤
d∑

h=1

γ
(ij)
h =

∑
h∈Di

γh ≤ Bγi,

using the definition of B. �

Running time and encoding length. We can obtain the constraints in (13) by running Gaussian elimina-
tion for each ij ∈ H; this takes altogether O(`(min{k, t})3) time. We need to show that the encoding size of
M̄ and b̄ are polynomially bounded in the encoding size of M and b. This easily follows since the constraints
are obtained by Gaussian elimination; we refer to [15] for strong polynomiality of Gaussian elimination.

The proof of Theorem 6.4 is now complete. �

8 Conclusions
We have given a strongly polynomial algorithm for computing an exact equilibrium in linear exchange
markets. We use a variant of the Duan-Mehlhorn algorithm as a subroutine in a framework that repeatedly
identifies revealed arcs. Before each iteration of this subroutine, we use another method to find a good
starting solution for the current set of revealed arcs. The best solution here corresponds to the optimal
solution of a linear program. Whereas no strongly polynomial algorithm is known for an LP of this form,
we presented a strongly polynomial approximation by constructing a second LP.

The goal of this paper was to get a better understanding of theoretical solvability of this important
practical problem. For practical purposes, the approximate algorithms mentioned in the introduction may
suffice; in particular, the simple and efficient O(nε (m+n log n)) algorithm by [20] would be a natural choice.
Although we have not implemented our algorithm, we believe that it should be much better in practice than
the worst-case estimate O(n10 log2 n). We are not aware of previous computational studies on exchange
market algorithms; we leave the comparison of our algorithm to [47] and [12] for future work.

From a theoretical perspective, it could be worth exploring whether this approach extends further. An
immediate question is to see if one can use such an approach to obtain a ε-approximation of the LP in

23



strongly polynomial time for every ε > 0. Further, such a method could be potentially useful for a broader
class of LPs; a natural candidate would be systems of the form A>x ≤ c for a pre-Leontief matrix A (see
[7]), a class where a pointwise maximal solution exists, but no strongly polynomial algorithm is known.

Our approach was specific to the market equilibrium problem. The method of identifying revealed arc
sets originates from [43]. This result was applicable not only for the linear Fisher market model, but more
generally, for minimum-cost flow problems with separable convex objectives satisfying certain assumptions.
It would be desirable to extend the current approach to a broader class of convex programs that include the
formulation in [9].

Acknowledgements
The authors are grateful to Kurt Mehlhorn, Vijay Vazirani, and Richard Cole for many interesting discussions
on this problem.

A Proof of Lemma 5.4
We will use the following simple lemmas to prove the result.

Lemma A.1 ([12]). Let r = (r1, . . . , rn) and r′ = (r′1, . . . , r
′
n) be nonnegative vectors. Let k ∈ [1, n] be such

that r′i ≥ r′j for i ≤ k < j. Suppose that δi = ri − r′i ≥ 0 for i ≤ k and δj = r′j − rj ≥ 0 for j > k. Let
D = mini≤k ri −maxj>k rj, and let ∆ =

∑
i≤k δi. If ∆ ≥

∑
j>k δj,

‖r′‖2
2
≤ ‖r‖2

2
−D∆ .

Lemma A.2 ([12, 13]). Given n numbers a1 ≥ a2 ≥ · · · ≥ an ≥ 0. Let l be minimal such that al/al+1 ≤
1 + 1/n. Let l = n if there is no such l. Then (e · n)al ≥ ‖a‖1 and ai ≤ e · al,∀i.

The proof of the following lemma is an adaptation of the proof given in [12].

Lemma 5.4. Let f be a balanced flow at the beginning of a phase, and let (p′, f ′) be the prices and flow at
the end of the phase. Then

(i)
∏n
j=1 p

′
j ≥

(
1 + 1

56e2n3

)∏n
j=1 pj in a price-rise phase, and

(ii) ‖c(p′, f ′)‖
2
≤ ‖c(p, f)‖

2
/
(
1 + 1

56e2n3

)
in a balancing phase.

Proof. Let us denote C = 56e2, and let xmax = 1 + 1
Cn3 . Recall that price-rise phases correspond to Event

3. Since no good leaves Γ(S) during a phase and prices monotonically increase, Event 3 implies that price
of at least one good has increased by xmax. This proves the first part.

For the second part, the phase terminates either due to Event 2 or breaking from the inner loop (in line
18). For the latter case, there is a way to adjust the flow so that the surplus of an agent i ∈ S becomes equal
to either zero if S = A or the surplus of an agent i′ /∈ S. Furthermore, the flow adjustment maintains that
the surplus of each agent i ∈ S increases by a factor of at most xmax, surpluses of agents outside S does not
decrease, and the total surplus does not increase. This is a similar situation like Event 2, so we can prove
this case by the proof of Event 2 case.

Let f ′′ be the intermediate flow just before computing a balanced flow in line 21. If Event 2 occurs, then it
implies that p′j ≤ xmaxpj ,∀j. Since pj and fij are increased by the same factor x, ∀i ∈ S,∀j ∈ Γ(S), and the
flow update in line 19 can only decrease the surplus of agents in S, we have ci(p′, f ′′) ≤ xmaxci(p, f),∀i ∈ S.
There are two cases: either the surplus of an agent i ∈ S becomes zero if S = A or it becomes equal to
surplus of an agent i′ /∈ S.

For the first case, we have ci(p′, f ′′) = 0 and cj(p′, f ′′) ≤ xmaxcj(p, f),∀j ∈ S. This implies that

‖c(p′, f ′′)‖2
2
≤ x2max‖c(p, f)‖2

2
− ci(p, f)2 .

Lemma A.2 implies that ci(p, f) ≥ ‖c(p, f)‖1/(e · n). Using this, we get

‖c(p′, f ′′)‖2
2
≤ ‖c(p, f)‖2

2

((
1 +

1

Cn3

)2

− 1

e2n2

)
.

24



Simplifying above using C = 56e2, we get

‖c(p′, f ′′)‖2
2
≤

(
1 +

3

Cn3
− 56

Cn3

)
‖c(p, f)‖2

2

<

(
1− 4

Cn3

)
‖c(p, f)‖2

2
.

Further, we obtain

‖c(p′, f ′′)‖
2
≤

√(
1− 4

Cn3

)
‖c(p, f)‖

2
≤
(

1− 2

Cn3

)
‖c(p, f)‖

2

≤ ‖c(p, f)‖2/
(

1 +
1

Cn3

)
.

Since ‖c(p′, f ′)‖
2
≤ ‖c(p′, f ′′)‖

2
, we get

‖c(p′, f ′)‖
2
≤ ‖c(p, f)‖

2
/

(
1 +

1

Cn3

)
.

For the second case, mini∈S ci(p
′, f ′′) = maxi 6∈S ci(p

′, f ′′). There are two types of agents in S: i such
that gi ∈ Γ(S) (type 1) and i such that gi /∈ Γ(S) (type 2). The price and flow update in line 8 increases the
surpluses of type 1 agents and decreases the surpluses of type 2 agents. Since the price and flow are updated
by the same factor x, the surpluses of type 1 agents increase by the same factor x.

Since the surpluses of agents outside S does not decrease, and the total surplus monotonically decreases,
the total increase in the surpluses of agents outside S is at most the total decrease in the surpluses of type
2 agents. For simplicity, let w1, . . . , w` and u1, . . . , uk denote the surpluses of type 1 and type 2 agents at
(p, f) respectively. Similarly, let v1, . . . , vo denote the surpluses of agents outside S at (p, f). Clearly, we
have l + k + o = n. Define w̄ = mini wi, ū = mini ui, v̄ = maxj vj . Let R = min{ū, w̄}. From the definition
of S, we have R > (1 + 1/n)v̄. At (p′, f ′′), let u′1, . . . , u′k, w

′
1, . . . , w

′
l, v
′
1, . . . , v

′
o are the surpluses of type 1,

type 2, and agents outside S respectively. From the above discussion, we have

w′i ≤ xmaxwi,∀i, and u′i ≤ ui,∀i and v′i ≥ vi,∀i .

Let u′i = ui − δi,∀i and v′j = vj + δ′j ,∀j, where δi, δ′j ≥ 0,∀i, j. Further, we have w′i ≥ v′i,∀i, u′i ≥ v′i,∀i,
and

∑
i δi ≥

∑
j δ
′
j . Since R − v̄ ≥ R/(n + 1) and Event 2 occurred, we have

∑
i δi ≥ R/(2(n + 1)). Using

Lemma A.1, we get

‖u′‖2
2

+ ‖v′‖2
2
≤ ‖u‖2

2
+ ‖v‖2

2
− R2

2(n+ 1)2
.

Recall that w′i ≤ xmaxwi,∀i, and let us use the trivial upper bound ‖w‖2
2
≤ ‖c(p, f)‖2

2
. Together with

the above inequality, we obtain

‖c(p′, f ′′)‖2
2

= ‖w′‖2
2

+ ‖u′‖2
2

+ ‖v′‖2
2

≤ x2max‖w‖22 + ‖u‖2
2

+ ‖v‖2
2
− R2

2(n+ 1)2

≤
(

1 +
1

Cn3

)2

‖c(p, f)‖2
2
− R2

2(n+ 1)2
.

From Lemma A.2, we have ‖c(p, f)‖2
2
≤ ne2R2. Hence,

‖c(p′, f ′′)‖2
2
≤ ‖c(p, f)‖2

2

((
1 +

1

Cn3

)2

− 1

2e2n(n+ 1)2

)

≤ ‖c(p, f)‖2/
(

1 +
4

Cn3

)
,

25



where the last inequality used that C = 56e2. We obtain

‖c(p′, f ′′)‖
2
≤ ‖c(p, f)‖

2√
1 + 4

Cn3

≤ ‖c(p, f)‖
2

1 + 1
Cn3

.

Finally, since ‖c(p′, f ′)‖2 ≤ ‖c(p′, f ′′)‖2 , we get ‖c(p′, f ′)‖2 ≤ ‖c(p, f)‖2/
(
1 + 1

Cn3

)
. �

References
[1] I. Adler and S. Cosares. A strongly polynomial algorithm for a special class of linear programs. Opera-

tions Research, 39(6):955–960, 1991.

[2] K. J. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy. Econometrica:
Journal of the Econometric Society, pages 265–290, 1954.

[3] W. Brainard and H. Scarf. How to compute equilibrium prices in 1891. Cowles Foundation Discussion
Paper, 1270, 2000.

[4] B. Codenotti, S. Pemmaraju, and K. Varadarajan. The computation of market equilibria. ACM SIGACT
News, 35(4):23–37, 2004.

[5] E. Cohen and N. Megiddo. Improved algorithms for linear inequalities with two variables per inequality.
SIAM Journal on Computing, 23(6):1313–1347, 1994.

[6] B. Cornet. Linear exchange economies. Technical report, Cahier Eco-Math, Université de Paris, 1989.

[7] R. W. Cottle and A. F. Veinott. Polyhedral sets having a least element. Mathematical Programming,
3(1):238–249, 1972.

[8] O. Darwish and K. Mehlhorn. Improved balanced flow computation using parametric flow. Inf. Process.
Lett., 116(9):560–563, 2016.

[9] N. R. Devanur, J. Garg, and L. A. Végh. A rational convex program for linear Arrow-Debreu markets.
ACM Transactions on Economics and Computation (TEAC), 5(1):6, 2016.

[10] N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V. Vazirani. Market equilibrium via a primal–
dual algorithm for a convex program. Journal of the ACM (JACM), 55(5):22, 2008.

[11] N. R. Devanur and V. V. Vazirani. An improved approximation scheme for computing Arrow-Debreu
prices for the linear case. In Proceedings of FSTTCS, pages 149–155, 2003.

[12] R. Duan, J. Garg, and K. Mehlhorn. An improved combinatorial polynomial algorithm for the linear
Arrow-Debreu market. In Proc. 27th Symp. Discrete Algorithms (SODA), pages 90–106, 2016.

[13] R. Duan and K. Mehlhorn. A combinatorial polynomial algorithm for the linear Arrow–Debreu market.
Information and Computation, 243:112–132, 2015.

[14] B. C. Eaves. A finite algorithm for the linear exchange model. Journal of Mathematical Economics,
3:197–203, 1976.

[15] J. Edmonds. Systems of distinct representatives and linear algebra. Journal of Research of the National
Bureau of Standards B, 71:241–245, 1967.

[16] E. Eisenberg and D. Gale. Consensus of subjective probabilities: The pari-mutuel method. The Annals
of Mathematical Statistics, 30(1):165–168, 1959.

[17] D. Gale. The linear exchange model. Journal of Mathematical Economics, 3(2):205–209, 1976.

26



[18] J. Garg, R. Mehta, V. V. Vazirani, and S. Yazdanbod. Settling the complexity of Leontief and PLC
exchange markets under exact and approximate equilibria. In Proc. 49th Symp. Theory of Computing
(STOC), pages 890–901, 2017.

[19] R. Garg and S. Kapoor. Auction algorithms for market equilibrium. Mathematics of Operations Re-
search, 31(4):714–729, 2006.

[20] M. Ghiyasvand and J. B. Orlin. A simple approximation algorithm for computing Arrow-Debreu prices.
Operations Research, 60(5):1245–1248, 2012.

[21] G. Goel and V. Vazirani. A perfect price discrimination market model with production, and a rational
convex program for it. Mathematics of Operations Research, 36(4):762–782, 2011.

[22] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling negative cycles.
Journal of the ACM (JACM), 36(4):873–886, 1989.

[23] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization.
Springer Verlag, 1988.

[24] D. S. Hochbaum and J. Naor. Simple and fast algorithms for linear and integer programs with two
variables per inequality. SIAM Journal on Computing, 23(6):1179–1192, 1994.

[25] K. Jain. A polynomial time algorithm for computing an Arrow-Debreu market equilibrium for linear
utilities. SIAM Journal on Computing, 37(1):303–318, 2007.

[26] K. Jain, M. Mahdian, and A. Saberi. Approximating market equilibria. In Proceedings of APPROX-
RANDOM, pages 98–108, 2003.

[27] N. Kamiyama. A note on balanced flows in equality networks. Inf. Process. Lett., 145:74–76, 2019.

[28] C. E. Lemke. Bimatrix equilibrium points and mathematical programming. Management Science,
11(7):681–689, 1965.

[29] N. Megiddo. Towards a genuinely polynomial algorithm for linear programming. SIAM Journal on
Computing, 12(2):347–353, 1983.

[30] E. I. Nenakov and M. E. Primak. One algorithm for finding solutions of the Arrow-Debreu model.
Kibernetica, 3:127–128, 1983.

[31] N. Olver and L. A. Végh. A simpler and faster strongly polynomial algorithm for generalized flow
maximization. In Proceedings of STOC, pages 100–111. ACM, 2017.

[32] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations Research, 41(2):338–
350, 1993.

[33] J. B. Orlin. Improved algorithms for computing Fisher’s market clearing prices. In Proc. 42nd Symp.
Theory of Computing (STOC), pages 291–300, 2010.

[34] J. B. Orlin. Max flows in O(nm) time, or better. In Proceedings of STOC, pages 765–774. ACM, 2013.

[35] V. I. Shmyrev. An algorithm for finding equilibrium in the linear exchange model with fixed budgets.
Journal of Applied and Industrial Mathematics, 3(4):505–518, 2009.

[36] É. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5(3):247–255,
1985.

[37] É. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research,
pages 250–256, 1986.

[38] H. Varian. Equity, envy and efficiency. J. Econom. Theory, 29(2):217–244, 1974.

27



[39] S. A. Vavasis and Y. Ye. A primal-dual interior point method whose running time depends only on the
constraint matrix. Mathematical Programming, 74(1):79–120, 1996.

[40] V. Vazirani. Spending constraint utilities with applications to the adwords market. Mathematics of
Operations Research, 35(2):458–478, 2010.

[41] V. V. Vazirani. The notion of a rational convex program, and an algorithm for the Arrow-Debreu Nash
bargaining game. Journal of the ACM (JACM), 59(2):7, 2012.

[42] L. A. Végh. Concave generalized flows with applications to market equilibria. Mathematics of Operations
Research, 39(2):573–596, 2013.

[43] L. A. Végh. A strongly polynomial algorithm for a class of minimum-cost flow problems with separable
convex objectives. SIAM Journal on Computing, 45(5):1729–1761, 2016.

[44] L. A. Végh. A strongly polynomial algorithm for generalized flow maximization. Mathematics of
Operations Research, 42(2):179–211, 2017.

[45] L. Walras. Eléments d’économie politique pure, ou théorie de la richesse sociale (in French), 1874.
English translation: Elements of pure economics; or, the theory of social wealth. American Economic
Association and the Royal Economic Society, 1954.

[46] Y. Ye. A new complexity result on solving the Markov decision problem. Mathematics of Operations
Research, 30(3):733–749, 2005.

[47] Y. Ye. A path to the Arrow–Debreu competitive market equilibrium. Mathematical Programming,
111(1-2):315–348, 2008.

[48] Y. Ye. The simplex and policy-iteration methods are strongly polynomial for the Markov decision
problem with a fixed discount rate. Mathematics of Operations Research, 36(4):593–603, 2011.

28


