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Summary: This paper surveys the recent literature on dynamic games estimation when there
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1. INTRODUCTION

During the last twenty years a substantial body of empirical works on dynamic games has
emerged. The theoretical underpinnings are given by the pioneering works by Abreu et al. (1990)
and Maskin and Tirole (1988), which emphasize that equilibrium outcomes are typically not a
singleton. Abreu et al. (1990) propose a method to calculate the set of subgame perfect equilibria,
while Maskin and Tirole (1988) illustrate equilibrium multiplicity in the context of a Markov
perfect dynamic pricing game. Some empirical works have departed from the classical theory
by imposition of additional ad hoc simplifying assumptions requiring that a unique and identical
equilibrium is played in the cross section of markets. This paper focuses on the literature that
remains with the classical theory permitting equilibrium multiplicity.

The pioneering paper by Jovanovic (1989) describes the problem of equilibrium multiplicity for
statistical inference. Multiplicity arises when a complete specification of the environment does not
give rise to a unique determination of the endogenous variables. Jovanovic shows that equilibrium
selection will place restrictions on observables that complete the model. If an equilibrium selection
mechanism is included into the model, then this requires an extra assumption, which may give
rise to the possibility of misspecification; see de Paula (2013).

Tamer (2003) treats equilibrium multiplicity as an incomplete model. Incompleteness refers to
the property that the model may have multiple outcomes for some (or all) parameter values, see
also Bresnahan and Reiss (1991). Leaving the equilibrium selection mechanism unspecified, and
assuming random sampling, the incomplete model gives rise to a set of inequalities, or bounds,
that need to be satisfied by a set of parameter values. The influential works by Tamer (2003) and
Ciliberto and Tamer (2009) show that these bounds contain useful information that in general
leads to set identification of parameters. There is an emerging body of works that applies these
ideas to inference in one-shot static games with equilibrium multiplicity; see de Paula (2013) and
Aradillas-López (2020) for excellent surveys.

This paper reviews recent contributions on econometric methods under equilibrium multiplicity
in the context of dynamic Markov games. Data generated by dynamic Markov games have the
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2 T. Otsu and M. Pesendorfer

feature that multiple observations over time from play of one equilibrium are observable. This
distinguishing feature gives rise to an advantage over one-shot static games which can facilitate
the inference problem posed by multiplicity concerns. In particular, if the time series dimension
is large, then estimation can proceed using the time series for one Markov equilibrium, see
Jofre-Bonet and Pesendorfer (2003). Our aim in this paper is to consider settings in which the
time series dimension is short, and the researcher wishes to pool data across markets. Our focus
will be on describing recent approaches that develop statistical testing procedures for poolability
and parameter inference under the presence of equilibrium multiplicity using a cross section of
markets. For a general discussion on backgrounds and applications of dynamic games estimation,
we refer a detailed survey by Aguirregabiria et al. (2021).

The setup for dynamic Markov games is described in Section 2.1. Well-known properties
are highlighted in Section 2.2. Traditional estimation approaches, such as the classic minimum
distance approach based on the set of Markov perfect equilibrium conditions, are described
in Section 2.3. We also review the moment inequality approach by Bajari et al. (2007). Then
we discuss two important issues for these traditional approaches: effects of iterations on the
asymptotic properties of different estimation methods, and accommodation of unobserved market
heterogeneity. These traditional estimation methods typically focus on the case where the data
used for estimation are generated from a single equilibrium.

In the following sections we discuss two strands of recent advances on econometrics for dy-
namic games. First, Section 3 discusses hypothesis testing for homogeneity of the data generating
process or equilibrium multiplicity. We describe the asymptotic tests by Otsu et al. (2016) that
examine homogeneity of the distribution of state variables, where asymptotics may refer to the
number of time periods or the number of markets getting large. We also discuss recent advances
on homogeneity or multiplicity testing, such as an approximately exact test by Bugni et al. (2021)
and rank test based on serial correlations due to multiplicity by de Paula and Tang (2021). Second,
Section 4 discusses robust inference methods under equilibrium multiplicity. We review conven-
tional approaches for multiplicity robust inference methods and discuss two recent advances: set
inference for partially identified parameters by Otsu et al. (2021), which is based on the duality
approach in Schennach (2014), and nonparametric point identification analysis by Luo et al.
(2022). Finally, Section 5 discusses some directions for future research.

2. SETUP AND TRADITIONAL METHODS

This section describes our setup and well-known implications, and reviews traditional estimation
methods.

2.1. Setup

Consider the dynamic Markov game setup in discrete time t = 1, 2, . . .. We describe the setup
for one market. The same setup applies for all markets j = 1, . . . , M .

Players. A typical player is denoted by i = 1, . . . , N . The number of players is fixed and does
not change over time. Every period the econometrician observes a profile of states and actions
described as follows.

States. Each player is endowed with two state variables (st
i , ε

t
i ) with st

i ∈ Si in finite support
and εt

i ∈ RK at each period t . The state variable st
i is publicly observed by all players. We maintain

the assumption that the econometrician observes st
i but does not observe εt

i . We assume that εt
i is
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Equilibrium multiplicity 3

drawn from a continuous cumulative distribution function F with support RK , observed privately
by player i at the beginning of period t , and is independent from the past variables (st ′

i , εt ′
i )

for all t ′ < t and i = 1, . . . , N . The vector of all players’ public state variables is denoted by
st = (st

1, . . . , s
t
N ) ∈ S = ×iSi whose cardinality is |S|.

Actions. Each player chooses an action at
i ∈ Ai = {0, 1, . . . , K} in finite support at each

period t . The decisions are made after the state (st
i , ε

t
i ) is observed. The decisions can be made

simultaneously or sequentially. The decision may also be taken after an idiosyncratic random
utility (or a random profit shock) is observed. We leave the details of the decision process
unspecified. The vector of joint actions in period t is denoted by at = (at

1, . . . , a
t
N ) ∈ A =

×iAi whose cardinality is |A|. We assume actions are publicly observed by all players and the
econometrician. We also use the notation a = (ai, a−i) where a−i denotes the actions of all players
other than player i. While most of our exposition considers the finite action space Ai , we shall
sometimes remark on the continuous action settings in which Ai = RK .

Choice probability matrix. Let σ (a|s) = Pr{at = a|st = s} denote the conditional probability
that an action profile a will be chosen conditionally on a state s. Throughout the paper we
restrict attention to Markov perfect equilibrium outcomes, which imply that σ is time invariant
and that given st , at is independent from all past variables (at ′ , st ′ ) for t ′ < t . The matrix of
conditional choice probabilities is denoted by σ , which has dimension |S| × (|A| · |S|). It consists
of conditional probabilities σ (a|s) in row s, column (a, s), and zeros in row s, column (a, s′) with
s′ �= s. We denote the marginal probability of action ai with σi(ai |s) =∑a−i

σ (ai, a−i |s).
State-action transition matrix. Let g(s′|a, s) = Pr{st+1 = s′|at = a, st = s} denote the state-

action transition probability that a state s′ is reached when the current action profile and state are
given by (a, s). We also assume that g is time invariant and that given (at , st ), st+1 is independent
from all past variables (at ′ , st ′) for t ′ < t . We use the symbol G to denote the (|A| · |S|) × |S|
dimensional state-action transition matrix in which column s′ ∈ S consists of the vector of
probabilities [g(s′|a, s)]a∈A,s∈S.

State transition matrix. Under the above assumptions on σ and G, the state variables st obey a
(first-order) Markov chain with the (stationary) state transition matrix P = σG whose dimension
is |S| × |S|. A typical element p(s′|s) =∑a∈A σ (a|s)g(s′|a, s) of the |S| × |S| matrix P equals
the probability that state s′ is reached when the current state is given by s. Hereafter we focus on
the first-order Markov chain.1

Period payoff. After actions are observed, players collect their period payoffs πi(at , st , εt
i ) ∈ R,

and π = (π1, . . . , πN ). We assume that the payoff is additively separable for the at
i -th component

of εt
i , i.e., πi(at , st , εt

i ) = π̄i(at , st ) + εt
i (a

t
i ). That is, when player i choses action at

i = k, then
only the k-th element of the vector εt

i enters the period payoff. We denote with �̄i the |A| · |S| × 1
dimensional payoff vector [π̄i(a, s)]a∈A,s∈S and with �i the |A| · |S| × 1 dimensional vector of
expected payoffs [π̄i(a, s) + Eεi(ai)]a∈A,s∈S.

1 To illustrate how the matrices σ , G, and P are defined, consider binary decisions in a single player setting. Every
period the player decides wether to be active or not, at ∈ {0, 1}, and the agent’s state variable, st ∈ {0, 1}, evolves
deterministically with st = at−1 indicating wether the player was active in the last period or not. In this case, the matrices
take the following forms:

σ =
[
σ (0|0) σ (1|0) 0 0

0 0 σ (0|1) σ (1|1)

]
, G =

⎡⎢⎢⎣
1 0
0 1
1 0
0 1

⎤⎥⎥⎦ , P =
[
σ (0|0) σ (1|0)
σ (0|1) σ (1|1)

]
.
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4 T. Otsu and M. Pesendorfer

Game payoff. Players discount future payoffs with discount factor β ∈ (0, 1). The expected
discounted game payoff is E

[∑∞
t=1 βt−1πi(at , st , εt

i )
]
. We sometimes denote game payoffs using

the |S| × 1 dimensional ex ante value function Vi(σ ) = σ�i + βσGVi(σ ), or Vi(σ ) = (I|S| −
βσG)−1σ�i , where I|S| denotes the |S| × |S| identity matrix.

Markovian strategies. Player i’s choice of an action is a function ai(st , εt
i ) ∈ {0, 1, . . . , K} that

depends on the publicly observed state vector st and the player-specific private information εt
i .

Markovian perfect equilibrium (MPE). Player i’s Markovian strategy must be optimally taken
given the strategy profile of rivals, and beliefs must be consistent with the strategies.

2.2. Well-known properties

We next describe some important well-known properties for our setup. They concern the equi-
librium fixed point mapping, the nonuniqueness of equilibria property, and the existence of a
steady-state distribution.

Equilibrium fixed point mapping. Let

ui(ai, s, σ, εi) =
∑

a−i∈A−i

σ−i(a−i |s)

{
πi(a, s, εi) + β

∑
s′∈S

g(s′|ai, a−i , s)Vi(s′, σ )

}
(2.1)

denote the continuation value of action ai , where σ−i(a−i |s) =∑ai
σ (ai, a−i |s) and Vi(s′, σ ) is

the element of Vi(σ ) corresponding to s′. Let 1{·} be the indicator function. The optimality con-
dition of choice ai implies that σi(ai |s) = ∫

ε
1{ui(ai, s, σ, ε) ≥ ui(k, s, σ, ε) for all k �= ai}dF .

Let p = (σ1, . . . , σN ) be the (N · K · |S|) × 1 vector that stacks choice probabilities and let
� = (�1, . . . , �N ) be the corresponding (N · K · |S|) × 1 vector of stacked right hand side ele-
ments. We can write the optimality condition in matrix notation as

p = �(p|π, F, β, G). (2.2)

The representation lemma in Aguirregabiria and Mira (2007) together with proposition 1 and
theorem 1 in Pesendorfer and Schmidt-Dengler (2008) establish the following characterization
and existence results.

LEMMA 2.1. Consider the setup and assumptions of Section 2.1 for the finite action space.
Equation (2.2) is a necessary and sufficient condition for choice probabilities to be consistent
with an MPE. An MPE exists.

In the continuous action setting, a set of necessary equilibrium con-
ditions are given by the first order condition ∂

∂ai
ui(ai, s, p, εi) = 0 where

ui(ai, s, σ, εi) =∫a−i∈A−i
{πi(a, s, εi)+β

∑
s′∈Sg(s′|ai, a−i , s)Vi(s′, σ )}dσ−i(a−i |s) and σ−i

denotes the distribution function of rival players’ actions. The first order condition can be written
in the form of equation (2.2) with elements σi(ai |s) = σi(ai |s) + ∂

∂ai
ui(ai, s, σ, ε).

Nonuniqueness. The fixed point mapping (2.2) can have multiple solutions. Pesendorfer and
Schmidt-Dengler (2008) and Doraszelski and Satterthwaite (2010) provide examples of dynamic
Markovian games with multiple equilibria.

Limiting steady-state distribution. When the limit exists, let Q(s′, s) =
limT →∞ T −1∑T

t=1 1{st = s′, s0 = s} denote the long run proportion of time that the Markov
chain P spends in state s′ when starting at the initial state s0 = s. Suppose the unconditional long
run proportion of time Q(s′) = limT →∞ T −1∑T

t=1 1{st = s′} that the Markov chain P spends
in state s′ satisfies Q(·) = Q(·, s) for all initial states s. Then the |S| dimensional row vector of
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Equilibrium multiplicity 5

probabilities Q = {Q(s)}s∈S is called the steady-state distribution of the Markov chain. Since the
state space is finite, Q describes a multinomial distribution. The properties of Markov chains are
well known. We next describe some property useful for our purpose. To do so, we introduce the
concept of communicating states.

Communicating states. We say that a state s′ is reachable from s if there exists an integer T

so that the chain P will be at state s′ after T periods with positive probability. If s′ is reachable
from s, and s is reachable from s′, then the states s and s′ are said to communicate. The random
component εt

i having full support in the real numbers implies that all actions arise with strictly
positive probability for any state s ∈ S. Thus, states will communicate if the state-action transition
matrix allows that state s′ (or s) can in principle be reached when starting from state s (or s′) for
any pair of states s, s′ ∈ S.

LEMMA 2.2. Suppose all states of the Markov chain P communicate (or sometimes called
ergodic or irreducible). Then the steady-state distribution Q exists and is unique. It satisfies
Q(s) > 0 for all s ∈ Sand Q = QP.

This lemma guarantees existence and uniqueness of the steady-state distribution and states that
the long run proportion of time that the Markov chain P spends in state s is strictly positive for
any state s ∈ S and the equation Q = QP must hold. A proof of the above properties is given in
proposition 1.14 and corollary 1.17 in Levin et al. (2009).

2.3. Traditional estimation methods

This section reviews the traditional inference approach.
While early work, for example Jofre-Bonet and Pesendorfer (2003), envisioned estimation

for a single industry with time series data, subsequent methodological contributions extended
the ideas to a cross section of markets with (possibly) short time horizon. The facilitating
assumption invoked on the data generating process (DGP) is that the data consist of an identical
and independently distributed (iid) sample generated from a single MPE.

For each market j , a sequence of action-state profiles dj = (at
j , st

j )t=1,...,T is observed, where
T is the length of time periods in the data set. Let n = M · N · T denote the total number of
observations.

Assumption (DGP): The observed data (dj )j=1,...,M consist of an iid sample drawn from a
single MPE.

Identification. The model is identified if there exists a unique set of model primitives (π, F, β, g)
that can be inferred from a sufficiently rich data set describing choices and state transitions
from a single equilibrium. Rust (1994), and Magnac and Thesmar (2002) show that exclusion
restrictions or functional form assumptions on model primitives are required, and Pesendorfer and
Schmidt-Dengler (2008) characterize necessary and sufficient conditions for point identification
of parameters. Bajari et al. (2007) consider moment inequality models that do not require point
identification.

Estimation. Let θ = (θπ , θF , β, θg) ∈ 
 ⊂ Rq denote a vector of parameters to parametrize the
model primitives (π, F, β, g). The estimation methods follow the two-step approach originally
developed in Hotz and Miller (1993) for single agent settings. First, consistent estimators of
choice probabilities p̂0 are obtained from the data on actions and states. Second, the equilibrium
conditions in (2.2) are invoked to estimate the parameters θ .

The first stage choice probability estimates ideally would involve a nonparametric estimation.
Frequently parametric assumptions are invoked to facilitate estimation in practice. Jofre-Bonet
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6 T. Otsu and M. Pesendorfer

and Pesendorfer (2003) consider a continuous action framework in which choice probabilities
are specified by a Weibull distribution function of actions, while Aguirregabiria and Mira (2007)
and Pesendorfer and Schmidt-Dengler (2008) consider a discrete action framework using the
empirical frequency estimator. Bajari et al. (2007) allow for both continuous and discrete action
variables.

In the second stage, a commonly used approach for discrete actions is to estimate θ based on
the minimum distance (MD) problem: minθ ρn(p̂0, θ ), where

ρn(p̂0, θ ) = [p̂0 − �(p̂0, θ )]′W−1[p̂0 − �(p̂0, θ )] (2.3)

for a suitable weight matrix W .
The one-step pseudo-maximum likelihood (PML) estimator, proposed in Aguirregabiria and

Mira (2007), is asymptotically equivalent to a MD estimator with the weight matrix W = �p̂0 ,
where �p̂0 denotes the variance matrix of p̂0. Pesendorfer and Schmidt-Dengler (2008) propose
a general class of MD estimators and show that the efficient weight matrix is given by W =
[I − ∇p�]�p̂0 [I − ∇p�]′, where ∇p� is the Jacobian matrix of � with respect to p. This efficient
estimator is asymptotically equivalent to the maximum likelihood estimator. The generalized
method of moments (GMM) estimator proposed in Pakes et al. (2007) is also asymptotically
equivalent to a MD estimator.

For continuous actions, Jofre-Bonet and Pesendorfer (2003) use the first order conditions for
optimal actions ∂

∂ai
ui(ai, s, p̂0, εi ; θ ) = 0 to conduct inference. The privately known εi enters

the first order condition of a dynamic bidding game in additive separable form that enables
nonparametric identification and estimation of the distribution of εi . Srisuma (2013) extends MD
problem (2.3) to the case of continuous actions.

Bajari et al. (2007) relax the requirement of point identification of the parameter vector θ .
Instead they consider set identified models and propose a two-step estimator for the identified
set of parameters. In particular, based on the characterization of an MPE σ , Vi(s, σi, σ−i ; θ ) ≥
Vi(s, σ ′

i , σ−i ; θ ) for any alternative σ ′
i , they consider the population criterion function∫

[min{Vi(s, σi, σ−i ; θ ) − Vi(s, σ ′
i , σ−i ; θ ), 0}]2dH (i, s, σ ′

i ),

where H is some distribution over a set for (i, s, σ ′
i ). Bajari et al. (2007) suggest constructing its

empirical counterpart ρV
n (θ ) by estimating the value function Vi(·; θ ) for given θ in the first step

and evaluating the integral by simulation. Their set estimator is


̂ =
{
θ ∈ 
 : ρV

n (θ ) ≤ min
θ ′∈


ρV
n (θ ′) + μn

}
,

for some suitably chosen positive sequence μn that decays to zero and may depend on the data;
see, e.g., Chernozhukov et al. (2007). Furthermore, their moment inequality approach allows
action spaces to be continuous.

Some authors have considered iterating the fixed point equation (2.2). Unfortunately, this can
lead to poor statistical properties due to multiplicity of solutions in the fixed point equation in-
herent to games. Consider the iterated (nested) PML estimator, proposed in Aguirregabiria and
Mira (2007). It entails solving the above MD problem iteratively by replacing p̂0 in � in the 
-th
iteration with p̂
 obtained from p̂
 = �(θ
, p̂
−1). Pesendorfer and Schmidt-Dengler (2010) show
analytically in a dynamic game framework with a unique symmetric equilibrium that this type of
iteration can lead almost surely to inconsistent (Lyapunov stable) estimates. For a fixed number
of iterations, Bugni and Bunting (2020) study asymptotic properties of the iterated PML and
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Equilibrium multiplicity 7

MD estimators. They show that the above described optimally-weighted one-step MD estimator
is asymptotically more efficient than iterated MD and iterated PML estimators. Kasahara and
Shimotsu (2012) propose modified algorithms with the aim to alleviate the convergence issues of
iterated methods. The computation time of the K-PML and K-MD estimators, which may differ
in applications, does not appear to be driven by differences in the computational complexities.
This can be seen from the fact that both the K-PML and K-MD problems can be viewed as MD
problems which differ only in the weight matrices used.

As indicated in Pesendorfer and Schmidt-Dengler (2008) and reconfirmed in Bugni and Bunting
(2020), the asymptotic theory of the MD estimator of θ becomes analogous to that of the standard
GMM theory (e.g., Newey and McFadden, 1994) under standard conditions. GMM theory directly
implies that the optimally-weighted one-step MD estimator is asymptotically optimal. There is no
gain achievable by iteration. Other estimation methods, such as the (iterated) PML, are typically
inefficient for estimating dynamic games.

It is insightful to note that in the single agent setup, the fixed point mapping for p typically
satisfies the zero Jacobian with respect to p at the fixed point so that additional policy map-
ping iterations have no first-order effect on the asymptotic distribution (Aguirregabiria and Mira,
2002). In contrast, the mapping � for dynamic games typically fails to satisfy such a zero Ja-
cobian property. To recover this zero Jacobian property, Dearing and Blevins (2021) develop
an efficient version of the iterative PML estimator by considering an alternative mapping (say,
�̃) which approximates the full Newton step of the original constrained maximum likelihood
problem. They show that the iterative maximum likelihood estimator using �̃ is asymptot-
ically efficient and the first-order asymptotic properties of the estimator do not vary across
iterations.

Unobserved heterogeneity. The benchmark setup discussed above has been extended in
various directions. In particular, several papers develop estimation methods to accommodate
unobserved market heterogeneity. Aguirregabiria and Mira (2007) extend their PML estima-
tor to allow discrete and finitely supported unobserved heterogeneity in which the pseudo-
likelihood function is specified by the finite mixture form. Arcidiacono and Miller (2011)
and Connault (2015) extend the estimation approach to account for unobserved heterogene-
ity in state variables which refers to an element that is known to players and may evolve over
time in a Markovian way, but is not observed by the econometrician. Importantly, the ini-
tial unobserved heterogeneity for a specific market is an iid draw from a known probability
distribution.

Other extensions. Srisuma and Linton (2012) extend two-step games estimators to allow
for a continuous state space. Doraszelski and Judd (2012) and Arcidiacono et al. (2016) con-
sider random (poisson) arrival of decision nodes which reduces the computational complexity
of the ex ante value function calculation. Egesdal et al. (2015) propose a constrained maxi-
mum likelihood estimator. Miessi Sanches et al. (2016) propose conditions under which the
minimization problem in (2.3) simplifies to standard OLS/GLS. Abbring and Campbell (2010)
study last-in first-out dynamics, which typically implies a unique MPE. Abbring et al. (2018)
propose a simple dynamic model of entry/exit which has an essentially unique symmetric
MPE.2

2 Although this paper focuses on the MPE, several papers consider alternative equilibrium concepts. Weintraub et al.
(2008) and Ifrach and Weintraub (2016) weaken the dependence of firms’ strategies on rival firms’ state variables.
Aguirregabiria and Magesan (2019) relax the equilibrium consistency condition of firms’ beliefs. Fershtman and Pakes
(2012) and Asker et al. (2020) relax the equilibrium conditions and introduce the experience-based-equilibrium concept.
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3. MULTIPLICITY: TESTING

A maintained assumption in the conventional estimation approaches is that the DGP is identical
across markets. Researchers assume that action-state profiles are generated from an identical
equilibrium in all markets, and policy functions can be estimated by pooling those data across
markets. If this assumption does not hold, then policy functions will be inconsistently estimated
and the resulting inference for structural parameters will be erroneous. We next review the
literature that explores statistical tests of validity of this pooling assumption and also presence of
multiple equilibria.

Based on the setup described in the previous section, the DGP of the profile (at
j , st

j )t=1,...,T of
the j -th market is characterized by the |S| × (|A| · |S|) dimensional conditional choice probability
matrix pj , which consists of conditional probabilities Pr{at

j = a|st
j = s} in row s, column (a, s),

and zeros in row s, column (a, s′) with s′ �= s, and the (|A| · |S|) × |S| dimensional state-action
transition matrix Gj for Pr{st+1

j = s′|at
j = a, st

j = s}. Note that the transition matrix of states
is written as pj Gj . If all states of the Markov chain pj Gj communicate, then by Lemma 2.2,
there exists a unique steady-state distribution Qj and the identical distribution hypothesis across
markets j = 1, . . . ,M may be tested by homogeneity of the steady-state distribution

HQ
0 : Q1 = · · · = QM. (3.1)

The |S| × 1 dimensional vector of relative frequencies Q̂j = [T −1∑T
t=1 1{st

j = s}]s∈S is a
nonparametric estimator of the steady-state distribution Qj . Otsu et al. (2016) show that a test
statistic for HQ

0 is

TQ = T

M∑
j=1

(Q̂j − Q̂)′V̂−(Q̂j − Q̂)
d→ χ2((M − 1)(|S| − 1)), (3.2)

under HQ
0 , where Q̂ = M−1∑M

j=1 Q̂j and V̂− means a generalized inverse of V̂, the asymptotic

variance estimator of T 1/2(Q̂j − Qj ) by using, e.g., the Newey and West (1987) estimator. The
term V̂ in (3.2) may be replaced with the identity matrix and a researcher can employ a bootstrap
critical value. For example, for every bootstrap iteration, a set of states can be randomly chosen
from the steady-state distribution Q̂ for every market j .3

The above test requires that the steady-state distributions exist and that the Markov chains are
in the steady-state; see Lemma 2.2. That is, regardless of HQ

0 , it is assumed that all states in the
chain pj Gj communicate for each j .

Otsu et al. (2016) relax this assumption and propose an alternative test based on the conditional
state distribution given the initial state. This situation is relevant in new industries in which the
steady-state has not been reached yet, or when there are some absorbing states. Using the state
transition matrix P = pG, the conditional distribution st |s1 = s is described by ι′s(pG)t , where ιs
takes one at the element corresponding to s and zero otherwise. The null hypothesis of identical
DGP can be considered in the form of

Hs
0 :

[
1

T − 1

T∑
t=2

Pr{st = s′|s1 = s}
]

s′∈S

= 1

T − 1

T∑
t=2

ι′sP
t . (3.3)

3 Otsu et al. (2016) also propose testing procedures for homogeneity of the conditional choice probability matrices
(i.e., Hp

0 : p1 = · · · = pM ) and state-action transition matrices (i.e., HG
0 : G1 = · · · = GM ) for a given M . These tests are

also asymptotically valid as T → ∞.
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Equilibrium multiplicity 9

The left hand side is a vector of model-free conditional probabilities, and the right hand side
is the model-based prediction for those probabilities. The hypothesis Hs

0 is implied from two
assumptions: (i) the state variables (st

j )t=1,...,T for j = 1, . . . ,M are iid over j , which allows us
to express the hypothesis Hs

0 without using a market index j ; and (ii) the Markov chain is first-order
and time-homogeneous. The state transition matrix P = [Pr{st+1 = s′|st = s}] s,s′∈S on the right

hand side of (3.3) can be estimated by the frequency estimator P̂ =
[∑M

j=1

∑T −1
t=1 1{st+1

j =s′,st
j =s}∑M

j=1

∑T −1
t=1 1{st

j =s}

]
s,s′∈S.

Let Q̂t
s =

[∑M
j=1 1{st

j =s′,s1
j =s}∑M

j=1 1{s1
j =s}

]
s′∈S

be the relative frequency estimator for the vector of conditional

probabilities
[
Pr{st = s′|s1 = s}] s′∈S for t = 2, . . . , T for a given initial state s. If the model

parametrized by pG is correct, then a test statistic can be defined based on the contrast C′
s =

(T − 1)−1(
∑T

t=2 Q̂t
s − ι′s

∑T
t=2 P̂t ), which satisfies

Ts = MC′
sV̂

−
s Cs

d→ χ2(|S| − 1), (3.4)

as M → ∞ with fixed T under Hs
0, where V̂−

s is a generalized inverse of an estimator of the
asymptotic variance of

√
MCs under Hs

0. The test based on Ts requires T ≥ 3. As in (3.2), the
term V̂s in (3.4) may be replaced with the identity matrix and a bootstrap critical value can be
employed.

In contrast to the asymptotic tests by Otsu et al. (2016), Bugni et al. (2021) propose an
approximation to the exact randomization test (see chapter 15.2 of Lehmann and Romano, 2005)
of the homogeneity hypothesis across markets and time periods

Hhom
0 : Pr{at

j = ·|st
j = ·} and Pr{st+1

j = ·|at
j = ·, st

j = ·} are identical for all j, t,

by employing a Markov chain Monte Carlo (MCMC) algorithm. Under the setup in Section 2.1
and Hhom

0 , the sufficient statistic of the data d = (at
j , st

j )j=1,...,M,t=1,...,T is given by

U (d) =
⎛⎝ {s1

j }Mj=1,
{∑M

j=1 1{aT
j = a, sT

j = s}
}

a∈A,s∈S
,{∑M

j=1

∑T −1
t=1 1{at

j = a, st
j = s, st+1

j = s′}
}

a∈A,s∈S,s′∈S

⎞⎠ ,

and thus in principle we can consider the exact randomization test.
Let D be support of d, and define the set � of mappings from D to D such that each element γ

of � satisfies U (d̃) = U (γ (d̃)) for all d̃ ∈ D. Then the randomization test with significance level
α is given by

φrd(d) = 1

⎧⎨⎩
⎡⎣ 1

|�|
∑
γ∈�

1{τ (γ (d)) ≥ τ (d)}
⎤⎦ ≤ α

⎫⎬⎭ ,

where |�| is the number of elements of � and τ (·) is any scalar-valued function to define the test
statistic. This test is exactly valid; i.e., under Hhom

0 , the rejection probability satisfies E[φrd(d)] ≤ α

for any finite N , T , and M (Lehmann and Romano, 2005). However, since � is usually difficult
to enumerate, this test is practically infeasible. To address this practical issue, Bugni et al. (2021)
propose an MCMC-based approximation for φrd(d). In particular, they construct an iterative
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10 T. Otsu and M. Pesendorfer

algorithm which randomly picks an element γ (k)(d) from �, develop the approximate test

φ
(K)
rd (d) = 1

{[
1

K

K∑
k=1

1{τ (γ (k)(d)) ≥ τ (d)}
]

≤ α

}
,

and show its validity as the number of iterations increases; i.e., lim sup
K→∞

E[φ(K)
rd (d)] ≤ α for any

finite N , T , and M . The main idea of their iterative algorithm is to draw the action and state
profiles (a(k), s(k)) = γ (k)(d) separately from configurations that yield the same value of the
sufficient statistic U (d).

de Paula and Tang (2021) study testable implications of multiple equilibria in static and
dynamic discrete games, where players’ private signals are correlated but the econometrician
can split the sample into clusters within which equilibrium selections under multiplicity are
correlated. In the context of dynamic games, correlation among players’ private signals naturally
arises through time-varying serially correlated unobserved heterogeneity, say ηt , and the clusters
can be constructed by matching players across different periods in the same dynamic game.

To be specific, consider the setup in Section 2.1, where the publicly observable state variables
are augmented as (st , ηt ). Although st is observable to the econometrician, ηt is not. We partition
disjointly the set of players, IA and IB , and then define at

A = {at
i : i ∈ IA}, at

B = {at
i : i ∈ IB},

and matrices PAB and P̃AB for joint probability masses of (at
A, at

B ) and (at−1
A , at+1

B ), respectively.
Under the assumption that a single equilibrium is played in each market and some rank conditions
on the matrices defined by conditional probability masses of Pω{at

A, at
B |ηt = η} for each MPE

ω = 1, . . . , dω conditional on η, de Paula and Tang (2021) explore mixture representations of
PAB and P̃AB by unobserved heterogeneity and equilibrium selection, and show that the number
of MPE is identified as dω = {rank(PAB)}2/rank(P̃AB). Therefore, inference on the number of
MPE including uniqueness can be conducted by applying the rank test in Kleibergen and Paap
(2006).

4. MULTIPLICITY: INFERENCE

What can we do if the tests described in the last section reject the null of homogeneous DGP
across markets or unique equilibrium? This section reviews some existing approaches and recent
advances for inference on structural parameters under equilibrium multiplicity.

First, a researcher may search for a subsample where the null of homogeneity is accepted.
Second, unobserved-heterogeneity robust inference methods, such as Aguirregabiria and Mira
(2007), Arcidiacono and Miller (2011), and Connault (2015), can be adopted under some further
assumptions to estimate structural parameters under the presence of equilibrium multiplicity.
However the following caveats arise: unobserved heterogeneity typically affects choice probabil-
ities and payoffs jointly, while equilibrium multiplicity affects choice probabilities only. Hence,
the channel in which unobserved heterogeneity enters has to exclude payoff effects and focus
on choice probability effects. Second, the unobserved-heterogeneity robust inference methods
postulate a unique outcome arising with a given probability. As the pioneering work by Tamer
(2003) shows, postulating a particular probability distribution over equilibrium outcomes is an
‘ad hoc’ assumption that changes the model and can lead to inconsistent estimates if specified
incorrectly. It requires knowledge of the ‘equilibrium selection rule’. Third, parametric specifica-
tions employed for the distribution of unobserved heterogeneity are typically restrictive and may
cause inconsistency. For instance, a recent paper that accounts for unobserved heterogeneity in
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Equilibrium multiplicity 11

dynamic games is Arcidiacono et al. (2016). It postulates a parametric functional form in which
unobserved heterogeneity affects choice probabilities. Yet, if this approach were adopted to ac-
count for multiplicity, then this would translate into a particular functional form how multiplicity
may affect choice probabilities. If this functional form is misspecified, then this may lead to
inconsistent parameter estimates.

For large T , Bajari et al. (2007) propose to estimate choice probabilities for each market
separately. To conduct inference that accounts for equilibrium multiplicity, the second step
estimator can be based on pooling all equilibrium conditions from all markets. This approach
permits consistent inference that accommodates different equilibria in different markets. Yet,
when T is small the market-specific choice probabilities can no longer be consistently estimated.

4.1. Set inference

An inference method for the identified set of parameters which does not require specification of
the equilibrium selection rule is proposed in Otsu et al. (2021). They consider the asymptotic
setting where T fixed and the number of markets M diverges. In this subsection we describe this
approach.

The econometrician observes action-state profiles dj = (at
j , st

j )t=1,...,T generated by the equi-
librium play of some underlying economic model in market j = 1, . . . , M . The market-specific
choice probabilities pj are usually not observed in the data, and treated as random variables.
It is assumed that (dj , pj )j=1,...,M is an iid sequence. Then Otsu et al. (2021) consider the
d = 2 · K · |S| · N dimensional moment function for the observable d and unobservable p:

g(d, p; θ ) =
[[

p(ai ,s,i) − �(ai ,s,i)(p; θ )
]
ai∈Ai ,s∈S,i∈N[

f (s)p(ai ,s,i) − f (ai ,s,i)
]
ai∈Ai ,s∈S,i∈N

]
, (4.1)

where the upper script ‘(ai, s, i)’ means the element corresponding to player i, action ai , and
state s. The upper block in (4.1) consists of the equilibrium restrictions (2.2) and the lower
block contains moment restrictions placed on the choice probabilities by the data. Here f (ai ,s,i) =∑T

t=1 1{at
i = ai, st = s} is the frequency of action-state profile (ai, s), and f (s) =∑T

t=1 1{st = s}
is the frequency of state s. Although E[g(d, p; θ )] = 0 holds, GMM cannot be applied to estimate
θ due to the latent variables p.

In this setup, following Schennach (2014), the identified region for the structural parameters θ

can be defined as


0 =
{
θ ∈ 
 : inf

λ∈�
|Eλ×μ[g(d, p; θ )]| = 0

}
, (4.2)

where μ is the probability measure of the observables d, λ is the conditional probability measure
of p given d, and � is the set of all conditional probability measures supported on the set of
choice probabilities. In other words, the identified region 
0 is the set of parameters in which
some conditional measure λ can rationalize the moment conditions. The expectation Eλ×μ[·] is
infeasible to compute because the true distribution λ of the equilibrium choice probabilities is
unknown and the econometrician does not want to specify the distributional form. As described
in Section 2, the fixed point problem in (2.2) can have multiple solutions, and the set inference
approach in Otsu et al. (2021) explicitly allows such a scenario. In particular, based on the duality
approach in Schennach (2014), they treat the market-specific choice probabilities p as latent
variables with their conditional probability measure λ treated as an infinite-dimensional nuisance
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12 T. Otsu and M. Pesendorfer

parameter, and show by entropic latent variable integration that

θ ∈ 
0 if and only if inf
γ∈Rd

|Eμ[g̃(d, θ, γ )]| = 0, (4.3)

where

g̃(d, θ, γ ) =
∫

g(d, p; θ ) · exp(γ ′g(d, p; θ ))dF (p)∫
exp(γ ′g(d, p; θ ))dF (p)

,

with a user-specified probability measure F . In practice, F may be set as the uniform distribution
on the strategy set Q. A similar result can be obtained for the case where p is parametrized
by τ ∈ Q̄ (say, p(τ )), as far as Q̄ is compact and �(p(·); θ ) is continuous at each θ ∈ 
.
The dual problem (4.3) is equivalent to the primal problem (4.2). The moment condition in
the dual involves the function g̃(d, θ, γ ) that is an integral of the original moment function
g(d, p; θ ) under an exponential distribution of the unobservables. Schennach (2014) shows this
selected exponential distribution has the property of being the ‘least favorable’ distribution of the
unobservables.

Note that, while the intermediate problem (4.2) requires optimization over the infinite-
dimensional set �, the equivalent problem (4.3) entails optimization over only a finite-dimensional
Euclidean space for γ . This property allows for a practically feasible characterization of the iden-
tified region 
0 for the structural parameters. Based on the data (dj )j=1,...,M , we can replace
the population moment in (4.3) with the sample analogue ḡ(θ, γ ) = M−1∑M

j=1 g̃(dj , θ, γ ) and
define a GMM-type criterion as

Q(θ ) = sup
γ∈Rd

−1

2
ḡ(θ, γ )′V̂ (θ, γ )−1ḡ(θ, γ ), (4.4)

where V̂ (θ, γ ) is some estimator of V ar(g̃(d, θ, γ )). A simple but conservative confidence set
suggested by Schennach (2014) is

Ĉ = {θ ∈ 
 : −2MQ(θ ) ≤ χ2
d,α}, (4.5)

where χ2
d,α is the (1 − α)-th quantile of the χ2 distribution with degree of freedom d. Schennach

(2014) shows its asymptotic validity in the sense that limn→∞ Pr{θ /∈ Ĉ} ≤ α for all θ ∈ 
0.
A drawback of the confidence set Ĉ is: when the dimension d of the moment function g̃ (or γ )

is high, the critical value tends to be large. Recall that d = ms · N · K + 1. Thus, if the number
of states, players, or actions is large, the confidence set may be too large to obtain a meaningful
conclusion.

Otsu et al. (2021) propose an adapted version of Kleibergen (2005) statistic to the moment
function g̃ defined by the entropic latent variable integration. For each θ , let γ̃ (θ ) be an estimator
of the solution in (4.4) satisfying certain regularity conditions. Then the test statistic is written
as

K(θ ) = Mḡ(θ, γ̃ (θ ))′V̂ (θ, γ̃ (θ ))−1D̂(θ )
[
D̂(θ )′V̂ (θ, γ̃ (θ ))−1D̂(θ )

]−1

× D̂(θ )′V̂ (θ, γ̃ (θ ))−1ḡ(θ, γ̃ (θ )), (4.6)

where D̂(θ ) is a d × q matrix with the l-th column

∂ḡ(θ, γ̃ (θ ))

∂θl

− Ĝl(θ, γ̃ (θ ))′V̂ (θ, γ̃ (θ ))−1ḡ(θ, γ̃ (θ )),
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Equilibrium multiplicity 13

and Ĝl(θ, γ ) = M−1∑M
j=1 g̃(dj , θ, γ )∂g̃(dj , θ, γ )/∂θl . In the limit, the distribution of this statis-

tic satisfies K(θ0)
d→ χ2

q for each θ0 ∈ 
0. The confidence set based on this statistic is obtained
as

C̃ = {θ ∈ 
 : K(θ ) ≤ χ2
q,α}, (4.7)

where χ2
q,α is the (1 − α)-th quantile of the χ2 distribution with degree of freedom q. Note that

the critical value χ2
q,α depends only on the dimension of structural parameters θ and is robust to

the dimension of the moment function g̃.
In practice, the dimensionality of the function g can be high, which may pose computational

difficulties, or may not be practical for the data at hand. We briefly outline three ways in which the
dimensionality is typically reduced in applied work. First, if the data are not sufficiently rich to
consider a frequency distribution of the vector p for every realization of the market-state-action-
player set, then the second element in (4.1) can be replaced with moment conditions of action
variables possibly aggregated across states. Second, to facilitate computation of the d-dimensional
strategies p, the strategy function may be parametrized with a low dimensional parameter vector
τ ∈ Q̄ ⊆ Rl̄ , by assuming p(ai ,s,i) = p(ai, s; τ ). This approach is commonly used for empirical
dynamic models and referred to as a policy function approximation. Equation (2.2) is then replaced
with the corresponding fixed point equation for τ defined on Q̄. Finally, for computational reasons
it can be useful to aggregate the first element in equation (4.1) across action-state-players into a
single equation. The equilibrium condition can be equivalently formulated as a problem of finding
zeros of the following one-dimensional equation:

∑
i∈N

∑
s∈S

∑
ai∈Ai

{p(ai ,s,i) − �(ai ,s,i)(p; θ )}2 =
0.

Observe that this estimation approach readily accommodates unobserved payoff elements as
nuisance parameters as well. Suppose the period payoff has additionally an additive payoff shock
vij , which is time invariant and market specific. The equilibrium equation system (2.2) becomes
p = �(p, v; θ ) and the function g is redefined accordingly. With these modifications in place,
the structural parameters can be partially identified in the presence of unobserved heterogeneity
as before. This is a notable difference to the approach of Arcidiacono and Miller (2011), which
requires the researcher to use a multinomial distribution for unobserved heterogeneity.

4.2. Point identification

Luo et al. (2022) investigate nonparametric identification of the model in Section 2.1, but allowing
both multiple equilibria and unobservable market heterogeneity which may vary with time. Let
ηt be a state variable with finite support that is publicly observable to players but is unobservable
to econometricians, and e∗ be the index for equilibria conditional choice probabilities with finite
support (i.e., {p : p = �(p|π, F, β, G)} = {pe∗

: e∗ = 1, . . . , |e∗|}). Then define the unobserved
‘type’ variable τ t = τ (ηt , e∗) with finite support {τ1, . . . , τ|τ |} for unknown |τ |. In the first
stage, Luo et al. (2022) identify the conditional choice probabilities of at |st , τ t and transition
probabilities st+1|at , st , τ t by applying the eigenvalue-eigenvector decomposition technique to
identify mixture models (e.g., Hu and Shum, 2012) based on four periods of data. In the second
stage, they employ the conventional identification argument as in Pesendorfer and Schmidt-
Dengler (2008) to identify payoff primitives based on the identified conditional choice and
transition probabilities. Furthermore, by comparing the identified payoff primitives at different
values of τ t , one can also distinguish the unobservable heterogeneity and multiple equilibria.
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14 T. Otsu and M. Pesendorfer

If the payoff functions are same (or different) at different values of τ t , they represent multiple
equilibria (or unobserved heterogeneity).

Let dt = (at , st ) for t = 1, 2, 3, 4 be observables for four periods. The key step in the iden-
tification analysis by Luo et al. (2022) is the first stage, where the conditional probabilities for
(d3, τ 3)|(d2, τ 2) and d4|(d3, τ 3) are identified so that the conditional choice probabilities for
a3|(s3, τ 3) and transition probabilities for s4|a3, s3, τ 3 are implied. First of all, since (dt , τ t ) fol-
lows a first-order Markov process, the joint distribution of three periods of observables can be
written in a multiplicatively separable way (given (d2, τ 2))

Pr{d3, d2, d1} =
∑
τ 2

Pr{d3|d2, τ 2} Pr{d2, τ 2, d1},

i.e., correlation between d3 and d1 given d2 is associated with unobserved heterogeneity and/or
multiple equilibria. Indeed Luo et al. (2022) show that under certain rank conditions, the number
of types |τ | is identified as the maximum rank of the probability matrix Pr{d3 = ·, d̄2, d1 = ·} over
d̄2. Second, by assuming ‘limited feedback’ from the current unobserved state variable ηt onto
the next-period observable state st ′ in the sense that Pr{st ′, ηt ′ |st , ηt } = Pr{st ′ |ηt ′, st } Pr{ηt ′ |st , ηt },
the joint distribution of four periods of observables admits the following mixture representations

Pr{d4, d3, d2, d1} =
∑
τ 3

Pr{d4|d3, τ 3} Pr{d3|τ 3, d2} Pr{τ 3, d2, d1}

=
∑
τ 3

Pr{d4|d3, τ 3}
[∑

τ 2

Pr{d3, τ 3|d2, τ 2} Pr{d2, d1, τ 2}
]

,

which can be utilized to identify the distributions of d4|(d3, τ 3) and (d3, τ 3)|(d2, τ 2), respectively,
via the eigenvalue-eigenvector decomposition technique under some rank and variable linkage
conditions to deal with the type-matching issue induced by up-to-label-swapping identification
of mixtures.

5. CONCLUSION

There are several interesting directions of future research. First, while Maskin and Tirole (2001)
conceptualize Markovian strategies as a way to capture the simplest form of behaviour that is
consistent with rationality, which leads to the notion of payoff relevant state variables, applied
work has taken a richer interpretation of strategies’ dependence on state variables. Collard-Wexler
(2013) allow strategies to depend on plant size, past plant size for each firm, plus fifty market-level
demand levels, which leads to a state space consisting of 1.4 million elements. Arcidiacono et al.
(2016) allow strategies to be a function of the number of stores operated by each firm, population,
and five time-invariant unobserved variables equal to discretized values of a standard normal. A
rich strategy space potentially allows a large set of equilibria that should be balanced against the
original aim of Markovian strategies. An open research question concerns the minimal size of the
state space required to capture rational behaviours consistent with the data.

Second, if the required state space is indeed large as suggested by applied work, then appli-
cations of machine learning tools to conduct inference on dynamic games will be a promising
direction. For example, Semenova (2018) extends the two-step set inference approach in Bajari
et al. (2007), where the state space (and thus the dimension of p) is high-dimensional, by ap-
plying the Neyman orthogonalized moment function and cross fitting to deal with the bias in
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Equilibrium multiplicity 15

the first stage estimation of p using machine learning methods (e.g., Chernozhukov et al., 2018).
This methodology may be extended to other estimation strategies and accommodate unobserved
heterogeneity and multiple equilibria.

Third, it is also interesting to bridge the gap to the subgame-perfect dynamic games framework.
Miller et al. (2021) estimate a novel dynamic price-leadership game, in which one firm proposes
super-markups to rivals (over Bertrand prices) in order to maximize its own discounted payoff
subject to participation constraints of rivals, which entails punishment with reversion to permanent
static Bertrand pricing. The game, which can be solved using techniques of Abreu et al. (1990),
is shown to provide a good fit for the observed pricing path. A future research agenda is to build
on the recursive methods introduced by Abreu et al. (1990) and to develop an estimable class of
subgame-perfect equilibria that relaxes the Markovian strategy framework.
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