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Summary. Principal component analysis (PCA) is a most frequently used statistical tool

in almost all branches of data science. However, like many other statistical tools, there is

sometimes the risk of misuse or even abuse. In this paper, we highlight possible pitfalls in using

the theoretical results of PCA based on the assumption of independent data when the data are

time series. For the latter, we state with proof a central limit theorem of the eigenvalues and

eigenvectors (loadings), give direct and bootstrap estimation of their asymptotic covariances,

and assess their efficacy via simulation. Specifically, we pay attention to the proportion of

variation, which decides the number of principal components (PCs), and the loadings, which

help interpret the meaning of PCs. Our findings are that while the proportion of variation is

quite robust to different dependence assumptions, the inference of PC loadings requires careful

attention. We initiate and conclude our investigation with an empirical example on portfolio

management, in which the PC loadings play a prominent role. It is given as a paradigm of

correct usage of PCA for time series data.

Keywords : Bootstrap, Inference, Limiting distribution, PCA, Portfolio management,

Time series.

1. Introduction

Principal component analysis (PCA) is probably one of the most widely used statistical

tools in statistics and fields well beyond. Comprehensive summaries and numerous em-
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pirical examples of PCA can be found in books such as Flury (1997), Jolliffe (2002) and

Tsay (2005, 2014). Now, classical results for PCA are obtained under the assumption of

independent (vectorial) data. However, applications to dependent data abound in which

dependence is ignored. To cite but a few examples, we mention Stone (1947) in eco-

nomics, Craddock (1965) and Maryon (1979) in meteorology, Ahamad (1967) for crime

rates, Feeney and Hester (1967), Tsay (2005), Wei (2019) and Keijsers and Dijk (2019) in

finance, and others. The issues that arise naturally are the defects, in both theory and

practice, of this misuse, and a correct inference of PCA for time series. These are the

issues that this paper aims to resolve.

For independent data, classical results about the limiting distribution of the principal

components (PCs) can be found in Anderson (2003) and are widely known. For dependent

data, a comprehensive and practically relevant central limit theorem for time series data

is lacking in the literature. In this paper, we will state with proof a central limit theorem

for stationary and ergodic multivariate linear time series by building on Hannan (1976).

Besides the limiting distributions of estimated eigenvalues and estimated eigenvectors, we

also give the limiting distribution of the proportion of variation to facilitate the decision

of PC numbers. Then, we introduce two special cases or approximations of the theorem

when the processes are Gaussian, which assume simpler dependence structure, one being

the classical result for independent data. The efficacy of our theorem and the two special

cases are assessed via simulation for Gaussian time series. It turns out that the proportion

of variation is a statistic quite robust to different modes of dependence, in that they have

only negligible effect. However, the situation with the loadings is markedly different. In

the simulation, the efficacy of our theorem is verified, while the two special cases behave

poorly for the loadings numerically and thus are not practically useful for time series data.

Inference based on the limiting distribution necessitates the estimation of the asymp-

totic covariances of eigenvalues and eigenvectors. For this, we give two methods: the

direct and the bootstrap estimation. The former is recommended for Gaussian processes

and some light-tail processes, while the latter is applicable to general processes.

In practice, PCA for time series is widely implemented but inference is often missing

or inappropriate. To illustrate, we focus on a specific application field of PCA, namely



PCA FOR TIME SERIES 3

the stock portfolio management. Portfolios can be constructed based on the principal

components and they are named “principal portfolios” (Partovi and Caputo, 2004). In

Pasini (2017), it is shown that these principal portfolios can get enhanced returns and

financial risk control. Further, they can be viewed as individual assets, based on which all

the asset allocation strategies can be applied to reduce risk. See, e.g., Yang (2015). An

important benefit is that in principal portfolios investors do not need to concern themselves

with the co-movements among assets. The first principal portfolio is normally understood

as the market component with roughly equal contributions of the underlying stocks. A

number of following principal portfolios always represent synchronized fluctuations that

only happen to a group of stocks.

The obtained principal portfolios are each a linear combination of all the stocks. How-

ever, although diversification can help reducing risks, the benefit will decrease as the

number of stocks increases. Investors always prefer a portfolio that is sufficiently diverse,

at the same time being as small as possible. Thus, implementing inference to the prin-

cipal portfolio loadings is important since a much smaller portfolio could be obtained by

discarding stocks with insignificant loadings. The sparser loadings will also lead to a more

refined interpretation. In the real data example, we indicate how possible principal port-

folios could be constructed by performing a proper inference on the loadings of the PCA.

By so doing, we give a paradigm of correct procedures of implementing PCA on time

series, and highlight the fact that without an appropriate inference, mis-interpretations

in general, and wrong portfolio strategy in particular, can arise.

The paper is organised as follows. In Section 2, we give with proof a central limit

theorem of the principal components for time series, and obtain the limiting distributions

of eigenvalues, eigenvectors and the proportion of variation. To compare, in Section 3 we

introduce two special cases of the theorem for Gaussian processes, one being the classical

result for independent data. To estimate the asymptotic covariances of the eigenvalues and

eigenvectors, two methods, the direct and the bootstrap estimation, are given in Section 4.

In Section 5, we conduct simulations to assess the efficacy of the above theoretical results

and highlight pitfalls of using classical results (based on the assumption of independent

data) for time series. We also evaluate the numerical performance of the two estimation
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methods. An empirical example of the stocks portfolio is given in Section 6 to show a

paradigm of correct implemention of PCA for time series data. We conclude in Section 7.

Details about the simulation are in Appendix A.

2. A central limit theorem

Let X(t) be a stationary and ergodic p-dimensional linear vector process generated as

X(t) =
∞∑

j=0

G(j)e(t − j), t ∈ {..., −1, 0, 1, ...}, (1)

where e(t) is p-dimensional, and E(e(t)) = 0p, E(e(t1)e(t2)T ) = K1(t1 = t2) with K a p×p

nonsingular matrix. Here 1(·) is the indicator function. The Kronecker delta δt1t2
is 1 when

t1 = t2 and 0 otherwise. Here G(j)’s are p×p matrices with
∑∞

j=0 tr{G(j)KG(j)T } < ∞.

Let Γ(s) = ΓX(s) = E(X(t + s)X(t)T ) for s ∈ {..., −1, 0, 1, ...}. Specifically, let

Γ ≡ Γ(0) be the covariance matrix. Then, the spectral density matrix of X(t) at frequency

ω is defined as

f(ω) = (2π)−1
∞∑

s=−∞

exp{−isω}Γ(s),

where i = (−1)1/2. Let the transfer function be h(ω) =
∑∞

j=0 G(j)e−ijω.

Suppose we have observations {X(1), ..., X(n)}. Define the sample covariance matrix

as Cn = (1/n)
∑n

t=1(X(t) − X̄)(X(t) − X̄)T , where X̄ is the sample mean. Denote the

(i, j)-th component of Cn, Γ, h(ω) and f(ω) by Cn,ij , Γij , hij(ω) and fij(ω), respectively.

Denote the conjugate of fij(ω) by fij(ω).

Let λ = (λ1, ..., λp) and Φ = (φ1, .., φp) be the eigenvalues and eigenvectors of Γ,

respectively. Assume all eigenvalues are positive and distinct. Specifically, λ1 > λ2 >

... > λp > 0. Let l = (l1, ..., lp) and A = (a1, .., ap) be the eigenvalues and eigenvectors

of Cn, respectively. Let Λ = diag(λ) and L = diag(l). Then we can express Γ = ΦΛΦT

and Cn = ALAT .

When applying PCA, we pay attention to the number and loadings of PCs. The

number of PCs are usually decided by the proportion of variation

γk =
k∑

i=1

λi/
p∑

i=1

λi =
k∑

i=1

λi/tr(Γ), rk =
k∑

i=1

li/
p∑

i=1

li =
k∑

i=1

li/tr(Cn), (2)
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for k = 1, ..., p. Let γ = (γ1, . . . , γp) and r = (r1, . . . , rp). To derive the asymptotics, we

introduce two assumptions.

Assumption 1. Let Ft be the sub σ-algebra generated by {X(n), n ≤ t}. Denote the

a-th component of e(t) as ea(t), a = 1, ..., p. Suppose that

E{ea(t)|Ft−1}, E{ea(t)eb(t)|Ft−1},

E{ea(t)eb(t)ec(t)|Ft−1}, E{ea(t)eb(t)ec(t)ed(t)|Ft−1},
(3)

are constants for all a, b, c, d = 1, ..., p.

Assumption 2. Suppose fkk(ω), k = 1, 2, ..., p, are all square integrable.

The following lemma is from Hannan (1976), after correcting some (possibly typo-

graphical) errors in the second term of his equation (3).

Lemma 1. Suppose X(t) is stationary, ergodic, and generated by (1). Then, under

Assumptions 1 and 2, for i, j, k, l = 1, ..., p,
√

n{Cn,ij −Γij} has a joint asymptotic normal

distribution with zero mean, and the asymptotic covariance between
√

n{Cn,ij − Γij} and
√

n{Cn,kl − Γkl} is

2π

∫ π

−π

{
fik(ω)fjl(ω) + fil(ω)fjk(ω)

}
dω

+(4π2)−1
p∑

a,b,c,d=1

κabcd

∫ π

−π

∫ π

−π
hia(ω1)hjb(ω1)hkc(ω2)hld(ω2)dω1dω2,

(4)

where κabcd is the joint fourth cumulant of ea(t), eb(t), ec(t) and ed(t). Specifically,

κabcd =E{ea(t)eb(t)ec(t)ed(t)} − E{ea(t)eb(t)}E{ec(t)ed(t)}

− E{ea(t)ec(t)}E{eb(t)ed(t)} − E{ea(t)ed(t)}E{eb(t)ec(t)}.

Let Y(t) = ΦT X(t) be the principal components of X(t), and q(ω) = ΦT h(ω) be its

transfer function. Then, the spectral density matrix of Y(t) is

g(ω) = ΦT f(ω)Φ = (2π)−1
∞∑

s=−∞

exp{−isω}ΓY(s),
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with ΓY(s) = E(Y(t + s)Y(t)T ) for s ∈ {..., −1, 0, 1, ...}. Although ΓY(s) is diagonal at

s = 0, it is not so at other s. Thus, different from the PCs obtained for i.i.d. data, which

is free from spatial dependence, there is temporal spatial dependence in Y(t). Applying

Lemma 1 to Y(t), Corollary 1 follows.

Corollary 1. Let Tn = ΦT CnΦ and U =
√

n(Tn − Λ). Denote the (i, j)-th com-

ponent of U by uij . Then, {uij} has a joint asymptotic normal distribution whose mean

is zero and whose asymptotic covariance (denoted as C) between {uij} and {ukl} is

C(uij , ukl) =2π

∫ π

−π

{
gik(ω)gjl(ω) + gil(ω)gjk(ω)

}
dω

+(4π2)−1
p∑

a,b,c,d=1

κabcd

∫ π

−π

∫ π

−π
qia(ω1)qjb(ω1)qkc(ω2)qld(ω2)dω1dω2.

(5)

Now, we state the main result, a central limit theorem for the eigenvalues, the eigen-

vectors and the proportion of variation as follows.

Theorem 1. Let X(t) satisfy the assumptions of Lemma 1 and suppose λ1 > λ2 >

... > λp > 0. Define D =
√

n(L − Λ), H =
√

n(A − Φ) and V = ΦT H. Then, for the

elements of the matrix D = diag(di) and V = {vij} for i, j = 1, ..., p, the following results

hold

di = uii + o(1), vii = o(1), and vij = uij/(λj − λi) + o(1), i 6= j, (6)

a.s. as n → ∞. Then, the limiting distributions of D and H are obtained since the

asymptotic distribution of {uij} is given in Corollary 1.

Let =⇒ denote weak convergence. We show the asymptotics of the proportion of vari-

ation and loadings of PCs specifically.

(1) The eigenvalues l has the limiting distribution
√

n(l − λ) =⇒ N (0, B), where B =

{bij}i,j=1,...,p with bij = C(uii, ujj).

For k = 1, ..., p, the proportion of variation rk has the limiting distribution

√
n(rk − γk) =⇒ N (0, η2

k), η2
k =

p∑

i=1

p∑

j=1

C(uii, ujj)βi(k)βj(k), (7)

with βi(k) = (1(i ≤ k) − γk)/tr(Γ).
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(2) For k = 1, ..., p, the PC loadings ak has the limiting distribution

√
n(ak − φk) =⇒ N (0, Σk), Σk =

p∑

i=1,i6=k

p∑

j=1,j 6=k

C(uik, ujk)

(λk − λi)(λk − λj)
φiφ

T
j . (8)

Proof. Let Z = ΦT A, then Tn = ZLZT , and V =
√

n(Z−I). By the same argument

as Anderson (2003) (Page 546), substituting Tn = Λ + (1/
√

n)U, Z = I + (1/
√

n)V and

L = Λ + (1/
√

n)D in the equations Tn = ZLZT and I = ZZT , the result in (6) follows.

Using the fact that H = ΦV and Corollary 1, the limiting distributions of D and H are

obtained. Using the delta method, the limiting distribution of rk is obtained by noting

the fact that it is a differentiable function of l. Thus, the proof is complete. �

For Gaussian processes, κabcd is zero, and (5) is simplified to

C(uij , ukl) = 2π

∫ π

−π

{
gik(ω)gjl(ω) + gil(ω)gjk(ω)

}
dω. (9)

Corollary 2. Let X(t) be a Gaussian process that satisfies the assumptions of The-

orem 1. Then, the following asymptotic results hold for k = 1, 2, ..., p.

(1) Jointly, l and ak are asymptotically normally distributed and asymptotically unbiased.

(2) For l,
√

n(l − λ) =⇒ N (0, B), where bij = 4π
∫ π

−π |gij(ω)|2dω. Thus, (7) is now

√
n(rk − γk) =⇒ N (0, η2

k), where η2
k =

p∑

i=1

p∑

j=1

4π

∫ π

−π
|gij(ω)|2dωβi(k)βj(k). (10)

(3) For
√

n(ak − φk) =⇒ N (0, Σk), (8) is now

Σk =
p∑

i=1,i6=k

p∑

j=1,j 6=k

2π
∫ π

−π

{
gij(ω)gkk(ω) + gik(ω)gkj(ω)

}
dω

(λk − λi)(λk − λj)
φiφ

T
j . (11)

3. Special cases for Gaussian processes

As we have said, generally speaking, there is temporal spatial dependence in Yt. However,

in some special cases, Yt has simpler dependence structure, thus leading to neater results.

We discuss two such cases for Gaussian processes here.

(a) All ΓY(s) are diagonal, which means Yt are independently evolving time series, i.e.,

there is only temporal dependence in Yt. It follows that g(ω) is diagonal.
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(b) ΓY(0) is diagonal and all other ΓY(s) are zero, which means Yt are independent

vectors, i.e., there is no temporal or spatial dependence in Yt.

The first case has been studied by Taniguchi and Krishnaiah (1987), although it is difficult

to envisage a real situation where ΓY(s) is diagonal for all s. Perhaps, this case could

be viewed as an approximation of Theorem 1, i.e., substituting g(ω) by its diagonalized

version. The second case covers the classical PCA for independent data Xt. It is developed

for Gaussian data and has been extensively studied. See, e.g., Anderson (2003). To be

consistent, we state the asymptotic results for Gaussian processes under (a) and (b) in

Corollary 3 and 4, respectively.

Corollary 3. Let X(t) be a Gaussian process that satisfies the assumptions of The-

orem 1, and suppose all ΓY(s) are diagonal. Then, in (5), C(uij , ukl) is zero except when

i = j = k = l, i = k 6= j = l or i = l 6= k = j,

C(uii, uii) = 4π

∫ π

−π
g2

ii(ω)dω, C(uij , uij) = C(uij , uji) = 2π

∫ π

−π
gii(ω)gjj(ω)dω, i 6= j.

which means the elements of U are asymptotically independent. Thus, the following

asymptotic results hold for k = 1, 2, ..., p.

(1) Jointly, l and ak are asymptotically normally distributed and asymptotically unbiased.

(2) For l,
√

n(l − λ) =⇒ N (0, B), where bij = 4π
∫ π

−π g2
ii(ω)dω1(i = j). Thus, (7) is now

√
n(rk − γk) =⇒ N (0, η2

k), where η2
k =

p∑

i=1

4π

∫ π

−π
g2

ii(ω)dωβ2
i (k).

(3) For
√

n(ak − φk) =⇒ N (0, Σk), (8) is now

Σk =
p∑

i=1,i6=k

2π
∫ π

−π gkk(ω)gii(ω)dω

(λk − λi)
2 φiφ

T
i .

(4) All of the lk are asymptotically independent of all of the ak.

Corollary 4. Let X(t) be a Gaussian process that satisfies the assumptions of Theo-

rem 1. Suppose f(ω) = Γ/(2π), which means X(t) is i.i.d. and N (0, Γ), and it follows that
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Table 1. Comparisons among Corollary 2, 3 and 4 for

Gaussian processes. A ✓means yes and a ✗means no.

Corollary 2 3 4

Dependence in Yt

Temporal ✓ ✓ ✗

Spatial ✓ ✗ ✗

Asymptotic properties

Joint Gaussianity of l and ak ✓ ✓ ✓

Unbiasedness of l and ak ✓ ✓ ✓

Independence among lk ✗ ✓ ✓

Independence between all lk and ak ✗ ✓ ✓

g(ω) = Λ/(2π). Then, in (5), C(uij , ukl) is zero except when i = j = k = l, i = k 6= j = l

or i = l 6= k = j,

C(uii, uii) = 2λ2
i , C(uij , uij) = C(uij , uji) = λiλj , i 6= j,

which means the elements of U are asymptotically independent. Thus, the following

asymptotic results hold for k = 1, 2, ..., p.

(1) Jointly, l and ak are asymptotically normally distributed and asymptotically unbiased.

(2) For l,
√

n(l − λ) =⇒ N (0, B), where bij = 2λ2
i1(i = j). Thus, (7) is now

√
n(rk − γk) =⇒ N (0, η2

k), where η2
k =

p∑

i=1

2λ2
i β2

i (k).

(3) For
√

n(ak − φk) =⇒ N (0, Σk), (8) is now

Σk =
p∑

i=1,i6=k

λkλi

(λk − λi)
2 φiφ

T
i .

(4) All of the lk are asymptotically independent of all of the ak.

We compare the results of Corollary 2, 3 and 4 for Gaussian processes in Table 1. Intu-

itively, a simpler dependence structure would bring benefits such as asymptotic indepen-

dence or simpler forms of the asymptotic covariance. It should be noted that Corollaries 2,
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3 and 4 study the same estimate l, rk and A, but give different asymptotics. An essential

question is how these different dependence structures affect the inference of the number

and loadings of PCs in practice. Especially, we want to know the consequences of making

inference under the assumption of independent observations (Corollary 4) when the real

data is time series (Corollary 2). This situation is possibly the most common misuse of

PCA for time series. Thus, we will discuss the estimation of the asymptotic covariance

of eigenvalues and eigenvectors in the next Section, which is essential for the inference of

the number and loadings of PCs.

4. Estimation of the asymptotic covariance of eigenvalues and eigenvectors

To conduct inference on the eigenvalues, eigenvectors and proportion of variation, an

intuitively plausible approach is to produce directly consistent estimates of B, Σk and

η2
k from their analytical forms in (7) and (8). The main challenge lies in the second

term of C(uij , ukl) in (5). In principle, this can be handled by the estimation of the

integral of the fourth-order cumulant spectra as similar challenges often appear in the

asymptotic covariances of quantities in time series analysis, such as spectral mean statis-

tics (Shao, 2009), whittle estimation (Giraitis and Robinson, 2001) and so on. Now, this

was the approach adopted by Taniguchi, Puri and Kondo (1996). However, their pro-

posed estimator turns out to be computationally complex: its consistency requires the

existence of the eighth order moment and the procedure involves a choice of a smooth-

ing parameter with no theoretical guidance. As a result, in the literature, researchers

have tended to avoid direct estimation of this term and preferred more appealing alter-

natives, such as the self-normalization approach (Shao, 2009) and the bootstrap method

(Meyer, Paparoditis and Kreiss, 2020). Thus, we will only implement the direct estima-

tion when κabcd is negligible, e.g., Gaussian processes, under which case Corollary 2 can

be applied. Simulation results in the next section will show that this method has some

scope of application for some light-tailed data.

Our experience suggests that a data-dependent bootstrap method can alleviate the

troublesome aspects mentioned earlier and can be applied to general processes beyond

the Gaussian.
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4.1. Direct estimation

For a given Gaussian process, to estimate the asymptotic covariances B, Σk and η2
k in

Corollary 2, we need to estimate Φ, Λ and g(ω). For Φ and Λ, natural estimators are A

and L. For the spectral density matrix f(ω), define the raw periodogram f̃(ω) and the

smoothed periodogram f̂(ω) as

f̃(ω) = (2π)−1
n−1∑

s=−(n−1)

exp{−isω}Γ̂(s), f̂(ω) =
M∑

m=−M

WM (m)f̃(ω + m/n),

where Γ̂(s) = (1/n)
∑n

t=1(X(t + s) − X̄)(X(t) − X̄)T , M is the bandwidth, and WM (m)

is the spectral window function. For example, WM (m) = 1(|m| ≤ M )/(2M + 1) is the

Daniell window. It is known that f̂(ω) is a consistent estimator. Thus, the estimator of

g(ω) is ĝ(ω) = AT f̂(ω)A. Then, we obtain the following estimators of B, Σk and η2
k,

b̂ij = 4π

∫ π

−π
|ĝij(ω)|2, η̂2

k =
p∑

i=1

p∑

j=1

4π

∫ π

−π
|ĝij(ω)|2dωβ̂i(k)β̂j(k),

Σ̂k =
p∑

i=1,i6=k

p∑

j=1,j 6=k

2π
∫ π

−π

{
ĝij(ω)ĝkk(ω) + ĝik(ω)ĝkj(ω)

}
dω

(lk − li)(lk − lj)
aia

T
j ,

with β̂i(k) = (1(i ≤ k) − rk)/
∑p

j=1 lj .

Similar procedures can be applied to obtain the direct estimation of the asymptotic

covariances B, Σk and η2
k in Corollary 3 and 4.

4.2. Bootstrap method

Our second method is to resample and derive the bootstrap covariance estimator, avoiding

the difficulty and complexity of estimating the second term in (5). It is applicable to

general processes, especially non-Gaussian and heavy-tailed processes. Various bootstrap

methods for dependent data have been explored by researchers, including block bootstrap,

sieve bootstrap, bootstrap in frequency domain, and others. Comprehensive reviews of

bootstrap for dependent data can be found in Bühlmann (2002), Lahiri (2003) and Politis

(2003).

Our experiences with the surrogate data method, the time frequency toggle method

and the moving block bootstrap have narrowed the choice to the last method. The first

two methods are in the frequency domain. The idea of the surrogate data method from



12 Zhang X. and Tong H.

Theiler et al. (1992) is to bootstrap the phase of the Fourier coefficients but keep their

magnitude unchanged. This method has limited validity because every surrogated sample

has exactly the same periodogram (and mean) as the original series. For this reason, this

method fails for our problem since it will generate exactly the same eigenvectors.

The time frequency toggle method was proposed by Kirch and Politis (2011), whose

basic idea is to bootstrap the Fourier coefficients of the observed time series, and then to

back-transform them to obtain a bootstrap sample in the time domain. It is more general

than the surrogate data method in that it can capture the distribution of statistics based

on the periodogram, and thus can work for our problem. However, our simulation results

show that its performance for heavy-tailed data is not good. The reason may lie in the

fact that the sample paths of this method are asymptotically Gaussian, due to the Fourier

coefficients being asymptotically so. This seems inevitable for almost all methods using

discrete Fourier transforms.

The moving block bootstrap (MBB) originated in Hall (1985) and Carlstein (1986), and

was further developed in Künsch (1989), Liu and Singh (1992) and others for stationary

observations. It resamples blocks of (consecutive) observations at a time. As a result,

the dependence structure of the original observations is preserved within each block. To

explain briefly, let us consider an observed univariate time series X(1), ..., X(n), for a

parameter θ which is a functional of the j-dimensional marginal distribution of the time

series, we consider the j-dimensional vectors

S(t) = (X(t), ..., X(t + j − 1)), t = 1, ..., n − j + 1.

For fixed block size ρ, define the blocks in terms of S(t) as

Ξt = (S(t), ..., S(t + ρ − 1)), t = 1, .., n + 2 − ρ − j.

For τ ≥ 1, select τ blocks randomly from the collection {Ξt, t = 1, .., n+2−ρ−j}, and align

them to generate the MBB observations {S∗(1), ...S∗(ρ); S∗(ρ + 1), ..., S∗(2ρ); ..., S∗(τρ)}.

And τ should be the smallest integer such that τρ ≥ n. Then, the estimator θ̂ is derived

based on the MBB observations.

It can be seen that the above procedure can be easily modified for multivariate time

series, so it can be applied to our PCA problem. However, the eigenvectors depend on
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the entire distribution of the process, so the question of decision of j arises. An ad-hoc

solution is to work with the naive block bootstrap (using j = 1). This will inevitably result

in some efficiency loss compared to the ordinary block bootstrap, but the simulation in

the next section suggests that the numerical performance is good and acceptable. So,

we will use MBB for our problem, while also leaving the door open for other bootstrap

methods.

5. Simulation

In this section, we will assess, via simulation, the asymptotics and estimation methods in

above sections. Instead of focusing on the eigenvalues, eigenvectors and the proportion of

variation (λ, Φ and γ), our major interest is here in the asymptotic covariances of their

estimates (l, A and r), namely B, Σk and η2
k, with different formulas given by Corollaries 2,

3 and 4 for Gaussian processes. In Section 5.1, we will check the efficacy of these formulas.

The asymptotic distribution of Corollary 2 is denoted by AD. Results based on Corollaries

3 and 4 are abbreviated as DAG and IND to indicate the case with diagonalized spectral

density matrix and the case of independent observations, respectively. Conducting PCA

to simulated data and repeating over replications, we can get their empirical distribution,

which is denoted as ED. By comparing the formula of B, Σk and η2
k given be AD, DAG and

IND respectively with the empirical covariance of
√

n(l−λ),
√

n(ak −φk) and
√

n(rk −γk)

given by ED, we can assess their performance.

In Section 5.2, we assess the two estimation methods, i.e. the direct method (DE) and

the bootstrap method (BE) introduced in Section 4. For each simulation replication, we

estimate the standard deviation of eigenvectors using the two estimation methods and

averaging over replications. We compare them with the empirical standard deviations

(ED). Here we handle not only Gaussian processes, but also non-Gaussian ones, including

some with outliers, or skewed Gaussianity, or heavy-tail.

In the following simulation, we take finite-order Vector Autoregressive (VAR) and

Vector Moving Average models (VMA) as examples, which are respectively defined as

X(t) = e(t) +
J∑

j=1

F(j)X(t − j), X(t) = e(t) +
J∑

j=1

G(j)e(t − j),
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where e(t) is a white noise series and J is the order.

5.1. Efficacy of the asymptotics for Gaussian processes

Let the length of time series be n = 5000, the dimension be p = 5, and the replication

time be N = 2000. Suppose e(t) is from N (05, 10I5), with I5 being the identity matrix of

dimension 5. Consider the following Data Generating Processes (DGPs):

• DGP 1: VAR(1) process with multivariate Gaussian noise.

• DGP 2: VMA(1) process with multivariate Gaussian noise.

Elements of F(j) and G(j) are obtained by first drawing random numbers from the

uniform distribution and then transformed in order to ensure the stationarity of the VAR

models and invertibility of the VMA models. And they are shown in Appendix A.1.

For the eigenvalues we will check their asymptotic covariance matrix Cov (lk, lk′) ≡
bkk′/n to show the asymptotic dependence among them. For the eigenvectors and the

proportion of variation, we will check the asymptotic standard deviation of each element,

σ(akk′) ≡ Σk,k′k′/
√

n and σ(rk) ≡ ηk/
√

n, for the sake of inference. We check σ(rk) for

k = 1, . . . , p − 1 since rp is always 1 and thus σ(rp) is always 0. Note that they all have

an empirical entry (ED), and three asymptotic entries (AD, DAG and IND), which will

be marked in the subscript.

For σ(rk), we compute the difference (∆) of AD with respect to ED in percentage as

∆AD(rk) = σAD(rk) − σED(rk). (12)

For σ(akk′), to avoid the influence of scale, we compute the difference ratio (∆∗) of AD

with respect to ED in percentage as

∆∗
AD(akk′) = σAD(akk′)/σED(akk′) − 1. (13)

Similarly, we can compute ∆DAG(rk), ∆IND(rk), ∆∗
DAG(akk′) and ∆∗

IND(akk′).

For each model, the vectorized Cov (lk, lk′) and ∆∗(akk′) for k, k′ = 1, ..., 5 are each

a 25-dimensional vector. See their plots in Fig.1 for DGP 1 and 2 respectively. For

the vectorized Cov (lk, lk′), the 1st, 7th, 13rd, 19th and 25th elements are Var (lk) ≡



PCA FOR TIME SERIES 15

Vectorized covariance matrix of l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 7 13 19 25

ED AD DAG IND

Difference ratios of elements of A (%)

−20

−15

−10

−5

0

5

10

15

a1 a2 a3 a4 a5

AD      DAG      IND      

Vectorized covariance matrix of l

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 7 13 19 25

ED AD DAG IND

Difference ratios of elements of A (%)

−15

−10

−5

0

5

10

a1 a2 a3 a4 a5

AD      DAG      IND      

Fig. 1. The vectorized Cov (lk, lk′) and ∆∗(akk′ ) for k, k′ = 1, ..., 5 for DGP 1 (Top pane) and DGP

2 (Bottom pane).
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Table 2. The difference ∆(rk) in percentage for k = 1, ..., 4 for DGP 1 and DGP

2.

DGP1 DGP2

k 1 2 3 4 1 2 3 4

AD -0.015 -0.011 -0.008 -0.000 0.009 0.010 -0.002 0.008

DAG 0.045 -0.009 0.031 0.027 0.009 0.030 0.013 0.020

IND -0.125 -0.108 -0.018 0.010 -0.063 -0.016 -0.018 0.013

Cov (lk, lk), and other elements are Cov (lk, lk′) for k 6= k′. From the figure, we can

see AD fits ED well. IND tends to give a smaller Var (lk), while DAG gives the same

Var (lk) as AD, both cases being consistent with the theoretical results. However, for

Cov (lk, lk′) , k 6= k′, IND and DAG claim that lk are uncorrelated, which is not supported

by ED.

For σ(akk′), AD performs pretty well and the difference ratios are controlled within

5%. In contrast, IND and DAG have poor performance; the difference ratio can even

reach a figure as big as 20% for DGP 1.

As for the proportion of variation, Table 2 shows ∆(rk) subscripted by AD, DAG and

IND. Among the three asymptotic standard deviations, σAD(rk) is most close to σED(rk),

with the differences controlled within 0.02%. Although the differences for σDAG(rk) and

σIND(rk) are larger, they are all controlled within 0.2%, which is negligible.

We have implemented two additional simulation DGPs, which is of higher order. See

the Appendix A.2.

• DGP 3: VMA(2) model with multivariate Gaussian noise.

• DGP 4: VMA(3) model with multivariate Gaussian noise.

To summarize, for Gaussian processes, the simulation has confirmed the efficacy of Theo-

rem 1 and indicated the deficiency of the diagonal spectral density matrix (DAG) assump-

tion and the independent-data (IND) assumption for time series. On the positive side,

the standard deviations of the proportion of variation have negligible difference under the

three assumptions. Thus, making interval inference under which assumption makes not

much difference for determining the number of effective PCs. However, DAG and IND
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perform poorly for the eigenvectors, which can seriously affect the interpretation of PC

loadings.

5.2. Efficacy of the estimation methods

In this part, we pay attention to the estimation of the standard deviation of the eigenvec-

tors and proportions of variation, namely σ(akk′) and σ(rk). For each simulated sample of

time length n = 2000 and dimension p = 5, we estimate the standard deviation by direct

estimation. We average over N = 2000 samples and denote the average standard deviation

as σDE. For each sample, we implement bootstrap with the MBB method. By reference

to Lahiri (2003), which suggested that the optimal block size is of order n1/3, we take the

block size as 10, and the block number is 200 accordingly. Then, the bootstrap estimation

of standard deviation of the eigenvectors are obtained with 500 bootstrap replications.

We take average over N = 2000 samples and denote the average standard deviation as

σBE.

Here we handle not only Gaussian processes, but also some non-Gaussian processes,

including one process with outliers, one skewed process and two heavy-tailed processes.

The models are as follows.

• DGP 5: VMA(1) model with multivariate Gaussian noise, but 1% of all the noises

are outliers from other multivariate Gaussian distributions.

• DGP 6: VMA(1) model with noise from a multivariate skew normal distribution.

• DGP 7: VMA(1) model with noise from a multivariate t(5) distribution.

• DGP 8: VMA(1) model with noise from a multivariate t(8) distribution.

The coefficient matrix of the VMA(1) model is the same as that of DGP 2, check it and

other details about the DGPs in Appendix A.2.

For the proportion of variation, similar to (12), we can compute ∆DE(rk) and ∆BE(rk)

with respect to ED for k = 1, ..., p, which are shown in Table 3 for DGPs 1-8. It can be

seen that the bootstrap estimation behaves well except that it may be slightly sensitive to

the outliers (DGP 5). As for the direct estimation, its behavior for heavy-tailed processes
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Table 3. The ∆DE(rk) and ∆BE(rk) (%) .

DGP1 DGP2 DGP3 DGP4

k DE BE DE BE DE BE DE BE

1 -0.013 -0.047 0.030 0.011 0.018 0.016 0.004 -0.024

2 0.021 -0.014 0.013 -0.000 0.019 0.010 0.021 -0.007

3 0.006 -0.010 0.014 -0.009 -0.002 -0.003 0.005 -0.006

4 0.017 0.003 0.012 -0.000 -0.001 -0.000 0.007 -0.004

DGP5 DGP6 DGP7 DGP8

k DE BE DE BE DE BE DE BE

1 0.035 0.252 -0.077 -0.015 -0.428 -0.088 -0.147 -0.041

2 0.016 0.182 -0.049 -0.012 -0.363 -0.067 -0.118 -0.022

3 0.026 0.137 -0.023 -0.010 -0.249 -0.028 -0.078 -0.010

4 0.006 0.044 -0.006 -0.006 -0.175 -0.038 -0.071 -0.020

(DGP 7 and 8) are worse than the bootstrap estimation. Nevertheless, all the values in

the table are controlled within 0.5%, which is quite small in practice.

As for the loadings, similar to (13), we can compute ∆∗
DE(akk′) and ∆∗

BE(akk′) with

respect to ED for k, k′ = 1, ..., p. Furthermore, to condense and summarize the element-

wise information, we compute the mean absolute difference ratio (∆̃) for each eigenvector

as

∆̃DE(ak) =
p∑

k′=1

|∆∗
DE(akk′)|/p, ∆̃BE(ak) =

p∑

k′=1

|∆∗
BE(akk′)|/p,

which can represent the accuracy of the standard deviation of the kth eigenvector. The

∆̃s (%) of PC loadings for DGPs 1-8 are shown in Table 4. From the table, it can be seen

that for most models, the ∆̃s are controlled within 15%. Although some ∆̃s exceed 15%,

such as in DGP 2 and 5, they occur in the less consequential 4th or 5th PC. For DGPs

1 to 6, most ∆̃s of DE are smaller than those of BE, meaning that the direct estimation

method outperforms the bootstrap method. These models are Gaussian, skew normal or

Gaussian with outliers, and are or are close to a Gaussian process. This fact might explain

the success of the direct estimation method.

However, for the heavy-tailed processes in DGP 7 and 8, the direct estimation method
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Table 4. The ∆̃DE(ak) and ∆̃BE(ak) (%).

DGP1 DGP2 DGP3 DGP4

DE BE DE BE DE BE DE BE

PC1 1.72 1.83 1.83 1.78 0.77 2.49 2.17 4.63

PC2 1.40 4.83 1.04 1.93 1.35 1.78 3.77 10.06

PC3 2.44 7.52 2.10 8.92 1.01 1.73 0.82 4.72

PC4 7.32 10.38 9.36 17.58 1.01 1.79 2.00 4.47

PC5 4.87 5.10 7.77 11.07 1.13 1.15 1.32 0.88

DGP5 DGP6 DGP7 DGP8

DE BE DE BE DE BE DE BE

PC1 1.89 9.11 1.34 1.44 29.02 3.19 11.70 2.07

PC2 1.86 8.42 1.51 1.33 29.66 1.36 11.11 1.81

PC3 3.19 12.22 1.25 2.33 32.39 6.07 14.65 4.74

PC4 17.45 13.09 2.34 7.82 30.02 12.08 13.47 9.84

PC5 1.12 7.12 1.45 9.46 36.47 11.00 19.48 5.08

behaves poorly. The tail of DGP 7 is heavier than DGP 8, and the performance is worse.

The poor performance for the heavy-tailed process is due to the joint fourth cumulant of

heavy-tailed processes being non-negligible. Thus, we recommend the bootstrap method,

which can be implemented for general processes easily.

6. An empirical example

Now, we return to principal portfolio management by studying an empirical example, the

PCA of which plays a central role, so as to illustrate the importance of Theorem 1 and the

utility of the bootstrap method, and to sound a warning against cavalier usage of PCA in

time series without due attention to the standard errors of the estimated eigenvectors. In

doing so, our hope is that our procedure will provide a paradigm of implementing PCA

for time series that encompasses estimation, inference and interpretation.

We use a set of the daily returns of 10 stocks traded in the New York Stock Exchange.

It consists of CVX (Chevron), XOM (Exxon), AAPL (Apple), FB (Facebook), MSFT
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(Microsoft), MRK (Merck), PFE (Pfizer), BAC (Bank of America), JPM (JP Morgan),

and WFC (Wells Fargo & Co.). The data are from August 2, 2016 to December 30, 2016,

a total of 106 days. Within the 10 stocks, CVX and XOM belong to the energy industry,

while AAPL, FB and MSFT are in the information technology (IT) sector. MRK and

PFE are both health companies. BAC, JPM, and WFC are in the financial sector. See,

e.g., Section 4.5 of Wei (2019) for a fuller description of the data set.

First, we describe the data and check informally whether the data satisfy the basic

assumptions: ergodicity, stationarity and Gaussianity. From the marginal distribution,

the time series plot in Fig.2 and the QQ plot of the normalized data in Fig.3, we can see

that the time series do not appear to display obvious trend non-stationarity apart from

a few possible outliers. The data appear to be non-Gaussian, and there are heavy tails.

Thus, we consider using the bootstrap method to estimate the standard deviations, based

on which we can make inference on the number and loadings of the PCs.
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Fig. 2. The time series plot of the stock returns data.

In Fig.4, we plot the proportion of variation and its 95% confidence interval with the

estimated standard deviation by the bootstrap method. The eigenvalues of the first four

components account for r4 = 77.8% of the total sample variance. This value together

with a visual inspection of Fig.4 suggests the choice of four PCs. (In Wei (2019), the first

four components account for 77.5%, and the small difference is due to a recording error of

the fourth eigenvalue in Wei (2019). He recorded 0.00011 but re-running his R-code we
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Fig. 3. The QQ plot of the normalized stock returns data.

obtained 0.00013. Our value, but not his, is consistent with Figure 4.2 in the book.)
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Fig. 4. The proportion of variation with 95% confidence interval.

The PC loadings are shown in Table 5. The dash-lines in the tables separate the sectors.

For every element of the first four PC loadings, akk′ for k = 1, . . . , 4, k′ = 1, . . . , 10, we test

the null hypothesis H0 : akk′ = 0 with the estimated standard deviations in Theorem 1 by

the bootstrap method. To compare, we conduct similar tests under the DAG assumption

(Corollary 3) and under the IND assumption (Corollary 4), using the estimated standard

deviations by the direct estimation method. The PC loadings and inference are shown
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Table 5. The PC loadings.

CVX XOM AAPL FB MSFT MRK PFE BAC JPM WFC

PC1 0.166 0.230 0.028 0.088 0.075 0.470 0.369 0.539 0.391 0.324

PC2 0.104 0.126 0.431 0.513 0.362 0.329 0.167 -0.289 -0.175 -0.379

PC3 0.407 0.243 0.173 0.319 0.286 -0.596 -0.316 0.191 0.088 0.251

PC4 0.576 0.552 -0.354 -0.231 -0.197 0.035 0.126 -0.222 -0.091 -0.265

PC5 0.120 0.026 0.180 -0.324 0.127 0.396 -0.725 0.279 0.012 -0.266

PC6 0.034 0.203 0.377 -0.213 -0.116 0.223 -0.118 -0.438 -0.206 0.678

PC7 0.016 -0.088 -0.639 0.505 0.052 0.320 -0.358 -0.164 -0.065 0.255

PC8 0.099 -0.023 0.264 0.399 -0.841 0.024 -0.136 0.155 -0.009 -0.097

PC9 0.622 -0.686 0.069 -0.093 0.011 0.065 0.080 -0.217 0.265 0.041

PC10 0.227 -0.215 -0.042 -0.033 0.051 0.031 0.165 0.416 -0.827 0.110

in Table 6, where insignificant elements are suppressed (at 5% significant level), and

significant elements are shown with their signs. The values in Table 5 are the same as

that shown in Wei (2019) (after reversing the signs of some loadings to be consistent with

our results). He did not conduct inference to the loadings but did a rough screening by an

arbitrary truncation in that loadings smaller than 0.1 (in absolute values) are suppressed,

which are also shown in Table 6.

As we can see from the significant loadings in Table 6, our Theorem 1 leads to the

fewest number of significant elements while the arbitrary truncation in Wei (2019) gives

the largest number. The results of DAG and IND are almost identical, with DAG making

minimal impact. The IND is of particular interest because it represents to-date the most

frequently (mis-)used PCA for time series data, i.e., ignoring the dependence and non-

Gaussianity of the observed data. Now, the significant loadings in Table 6 lead to different

interpretations of the first four PCs, as summarized in Table 7. The result based on

Theorem 1 tends to give a sharper identification of important stocks. Note also that

with Theorem 1 significant stocks always lie within the same sector, while this is not the

case with IND (Corollary 4) or with Wei (2019). The above observations are particularly

relevant for principal portfolios management mentioned in Section 1 because they can help

the investors to formulate more effectively their investment strategies on which stocks to

long or short. Specifically, it is interesting to point out that PC2 and PC3 based on

Theorem 1 are particularly relevant due to the clear contrast between the IT sector and

the finance sector in PC2, and that between the IT sector and the health sector in PC3.
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Table 6. The PC loadings with inference from Theorem 1, DAG (Corollary 3), IND(Corollary

4), and truncation in Wei (2019).

CVX XOM AAPL FB MSFT MRK PFE BAC JPM WFC

Theorem 1 PC1 + + + + + + +

PC2 + + + – –
PC3 + – –
PC4 + +

DAG PC1 + + + + + + +

(Corollary 3) PC2 + + + + – – –
PC3 + + + – – + +

PC4 + + –

IND PC1 + + + + + + +

(Corollary 4) PC2 + + + + + – – –
PC3 + + + – – + +

PC4 + + – –

Truncation PC1 + + + + + + +

(Wei, 2019) PC2 + + + + + + + – – –
PC3 + + + + + – – + +

PC4 + + – – – + – –

Table 7. Interpretations of the first four PCs based on Theorem 1 and IND (Corollary 4).

Theorem 1 IND (Corollary 4) Wei (2019)

PC1
The general market

other than IT.

The general market

other than IT.

The general market

other than IT.

PC2 Financial vs. IT. Financial vs. IT & health. Financial vs. non-financial.

PC3 Health vs. IT. Health vs. non-health. Health vs. non-health.

PC4 Energy. Energy vs. IT & financial. Energy vs. non-energy.
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Accordingly, the IT sector seems to be set well apart from other sectors, indicating different

positions (long or short) from other sectors in the portfolio. The different interpretations

demonstrate the importance of an appropriate significance test of the loadings.

We argue that without an appropriate test, users of PCA may be unaware of the subtle

variabilities of loadings, and tend to mis-interpret the eigenvectors.

7. Conclusion

In this paper, by building on Hannan (1976), we have made explicit the asymptotic

sampling properties of the eigenvalues and eigenvectors in PCA for stationary and ergodic

multivariate linear time series and assessed their efficacy. The classical PCA results for

independent data and the Taniguchi-Krishnaiah method are shown to be deficient for time

series. Although they have led to simpler theoretical results, simulations have revealed

their poor performance for time series data, especially for the eigenvectors. Thus, while

the number of PCs is quite robust in respect of different dependence structure assumption,

the interpretation of the principal component loadings may be questionable under these

assumptions. Direct and bootstrap method to estimate the asymptotic covariance have

been given to draw inference in practice. We argue that when applying a PCA to time

series, the dependence of data should not be ignored and we have shown step by step how

an appropriate inference can be conducted.

Essentially, the shortcomings of the two defective methods for time series lie with the

fact that they have ignored some information contained in cross covariances. Another

way to exploit the omitted information is to adopt a frequency-domain PCA. See, e.g.,

Brillinger (2001) and Priestley, Subba Rao and Tong (1974). However, unsolved problems

remain with this approach, the possible non-causality of the principal components being

a major one. They await further research.
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A. Appendix

In this appendix, we give more information of the simulation, including the details of

DGPs and the results of the two additional simulation in Section 5.1.

A.1. Details of the DGPs

The coefficient matrices of the DGPs are shown as follows.

DGP 1: VAR(1).

F(1) =




0.21 −0.49 0.16 −0.14 −0.36

−0.25 0.074 0.38 −0.14 0.047

−0.11 0.26 0.39 0.091 0.18

−0.41 0.37 0.066 0.37 0.028

0.46 −0.46 0.094 0.18 −0.41




.

DGP 2, 5-8: VMA(1).

G(1) =




−0.46 0.17 0.23 0.40 −0.22

0.15 −0.59 0.05 −0.26 −0.24

0.13 −0.32 −0.26 −0.28 −0.41

0.15 0.20 0.51 −0.38 −0.55

0.43 0.02 −0.25 −0.32 −0.34




.

DGP 3: VMA(2).

G(1) =




0.62 −0.73 −0.02 0.52 −0.52

0.71 −0.11 −0.19 0.43 −0.75

0.09 −0.56 0.79 −0.51 −0.08

0.14 0.90 0.07 −0.53 −0.27

−0.23 −0.01 0.59 0.81 0.10




,

G(2) =




0.26 −0.16 −0.16 −0.38 0.27

0.34 −0.27 −0.33 −0.44 0.06

−0.22 −0.18 0.62 −0.08 0.19

0.26 −0.30 0.15 −0.24 0.02

0.11 0.21 0.21 −0.14 0.45




.
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DGP 4: VMA(3).

G(1) =




0.94 −0.35 −0.49 0.17 −0.18

0.58 0.35 −0.43 −0.29 −0.36

0.42 −0.16 1.07 −0.28 0.39

0.59 0.41 −0.38 0.27 −0.03

0.18 0.66 −0.28 0.42 0.91




,

G(2) =




−0.14 −0.04 −0.33 0.40 0.02

0.27 −0.32 −0.27 0.02 −0.16

0.45 −0.18 0.03 −0.31 0.16

0.41 0.39 −0.33 −0.36 0.10

0.31 0.47 −0.08 0.14 −0.26




,

G(3) =




−0.16 0.24 0.10 0.22 0.17

−0.22 0.17 0.10 0.26 0.14

0.06 −0.03 −0.11 −0.05 −0.17

−0.11 0.02 0.01 0.19 0.11

0.14 −0.11 0.16 −0.21 −0.24




.

As for the distributions of the noise, those of DGP 1-4 are shown in Section 5. Now

we give details and parameters of the noise distribution of DGP 5-8.

DGP 5: VMA(1) model with multivariate Gaussian noise, but 1% of all the noises

are outliers from another multivariate Gaussian distribution.

First we draw 2000 observations of e(t) from N (05, 10I5). Then, 20 random numbers

from 1 to 2000 are drawn, which will be the positions of the outliers. The original obser-

vations in the first 10 positions are replaced by random vectors from N (105, 10I5), and

those in the last 10 positions are replaced by random vectors from N (−105, 10I5).

DGP 6: VMA(1) model with noise from a multivariate skew normal distribution.

The multivariate skew normal distribution is discussed by Chan and Tong (1986)

and Azzalini and Capitanio (1999) and here we use the parameterization in the latter,

SN 5(ξ, Ω, α) . We set ξ = 05, Ω = 10I5 and α = (1, 2, 3, 4, 5).

DGP 7: VMA(1) model with noise from a multivariate t(5) distribution.

DGP 8: VMA(1) model with noise from a multivariate t(8) distribution.
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For the multivariate t-distribution tv(µ, Σ), we set µ = 05, Σ = 10I5, v = 5 for DGP 7

and v = 8 for DGP 8.

A.2. Additional simulation

In this subsection, we present two additional simulations, namely DGP 3 and 4, to enrich

Subsection 5.1 and assess the efficacy of the asymptotics for Gaussian processes.

For each model, the vectorized Cov (lk, lk′) and ∆∗(akk′) in (13) for k, k′ = 1, ..., 5 are

each a 25-dimensional vector. See their plots in Fig.5 for DGP 3 and 4 respectively. For

Vectorized covariance matrix of l
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Fig. 5. The vectorized Cov (lk, lk′) and ∆(akk′ ) for k, k′ = 1, ..., 5 for DGP 3 (Top pane) and DGP

4 (Bottom pane).

the vectorized Cov (lk, lk′), we can see AD fits ED well. IND tends to give a smaller
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Table 8. The difference ∆(rk) in percentage for k = 1, ..., 4 for DGP 3 and DGP

4.

DGP1 DGP2

k 1 2 3 4 1 2 3 4

AD -0.007 -0.000 0.000 0.000 0.011 0.010 0.003 0.003

DAG 0.044 0.026 0.043 0.020 0.035 0.011 0.018 0.005

IND 0.031 0.008 0.035 0.018 -0.068 -0.069 -0.028 -0.023

Var (lk), while DAG gives the same Var (lk) as AD, both cases being consistent with the

theoretical results. However, for Cov (lk, lk′) , k 6= k′, IND and DAG claim that lk are

uncorrelated, which is not supported by ED.

For σ(akk′), AD performs pretty well and the difference ratios are controlled within

6%. In contrast, IND and DAG have poor performance; the difference ratio can even

reach a figure as big as 20% for DGP 3.

As for the proportion of variation, Table 8 shows ∆(rk) subscripted by AD, DAG and

IND. Among the three asymptotic standard deviations, σAD(rk) is most close to σED(rk),

with the differences controlled within 0.02%. Although the differences for σDAG(rk) and

σIND(rk) are larger, they are all controlled within 0.1%, which is negligible.

Supplementary material

Supplementary material includes R codes for the empirical example in Section 6.
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