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Abstract

We propose an intuitive representation of product design in which

firms locate inside a circle and consumers in its outer circumference.

Designs trade-off horizontal and vertical transport costs. Our setting

encompasses all linear demand rotations. Firms with lower quality

and/or higher marginal costs choose niche designs that cater to specific

consumers at the expense of alienating the rest. Firms choose inter-

mediate designs or more polarized ones instead depending on the con-

vexity of the vertical transport cost. We examine such design choices

in monopoly, duopoly, and monopolistic competition settings.
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1 Introduction

Firms constantly make decisions not only about prices and quantities, but

also regarding the kind of goods that they produce. In this paper, we analyze

product design as a form of consumer targeting: a choice of the degree to

which a product is attractive to a broad versus a narrow group of consumers.

Even though some choices of product characteristics may be costless to the

firm, they are non-trivial decisions. A broader product design has the advan-

tage of appealing to a wider consumer base, but it often comes at a cost; the

same design features that aim to alienate few consumers are also unlikely to

excite the passions of any. For example, a fashion or product designer might

choose a neutral colour that is unlikely to offend any consumers, but that

may not thrill any of them either. Software designers might choose designs

that can handle many uses; but these may be slower and more cumbersome

than very slick clean programs designed to address specific needs.

We model product design choices as a trade-off between conventional

representations of horizontal and vertical differentiation.2 This naturally

leads different designs to create demand rotations, as introduced by John-

son and Myatt (2006). That is, moving towards a relatively more generic

design involves a rotation of a firm’s demand curve: the consumers who en-

joy the good the most gain less utility, but the consumers who enjoy it the

least gain more utility.3 As an example, consider the dining experience in a

new Persian restaurant that can offer only a limited number of dishes and

must choose between menu items that are designed with broader audiences

2There is a literature that considers firms that choose both vertical and horizontal

features–notably, Economides (1989) and Neven and Thisse (1990). However, in their

models, firms can separately choose horizontal and vertical characteristics (see, also, Ir-

men and Thisse (1998) and Vandenbosch and Weinberg (1995)). Instead, in this paper,

horizontal and vertical aspects are inherently linked so that it is impossible to affect a

consumer’s horizontal transport cost without also influencing the vertical distaste. This

also provides a contrast with the analysis in Dos Santos Ferreira and Thisse (1996) where

there is no vertical cost (in our language) associated with choosing different horizontal

transport costs.
3This design decision, thus, contrasts with standard models of horizontal differentia-

tion, in which the concern is which consumers to satisfy rather than how much to satisfy

segments of the population; and models of vertical differentiation in which designs are

commonly ranked in consumers’ preferences.
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in mind (for example, offering burgers), or items that might appeal only to

more refined palettes (such as kalleh pacheh, a traditional broth prepared

with lamb’s head and trotters). This kind of design choice creates an in-

teresting trade-off. A blander, more conventional menu might appeal to a

broader audience; at the same time, no individual diner is likely to be enam-

oured, and, thus, prices would have to be much lower. In seeking to attract

a wider range of horizontal preferences through design, there is a sense in

which there is a vertical quality drop through the loss of authenticity.

We introduce a framework that can allow for the terms of this trade-off

to vary smoothly and, so, lead to interior design choices that change mar-

ginally with parameters of the models (such as marginal costs). The model

also allows for parametrizations where extreme outcomes–most broad or

most niche designs–necessarily arise, so that marginal changes in costs lead

to drastic changes in design. Extreme design choices can be a convenient

assumption, as it effectively restricts the attention to two kinds of designs.

This has been the focus of recent literature (including Johnson and My-

att; 2006; Kuksov, 2004; Larson, 2011; and Bar-Isaac, Caruana, Cuñat,

2012, from now on BCC).4 We provide a more general approach, and a sim-

ple characterization of when we should expect extreme or interior design

choices.

Another contribution of our framework is to present an intuitive rep-

resentation of demand rotations; one that encompasses all linear demand

rotations. In our model, consumers are located on the circumference of a

circle (as in Salop (1979)), but firms can locate on any point on the interior

of the circle. Consumer preferences are reflected in linear horizontal costs

associated with moving around the circle and vertical costs associated with

moving to the interior.5 Locations closer to the center of the circle corre-

spond to broader, more generic offerings with higher vertical costs and lower

horizontal costs.

4Von Ungern-Sternberg (1988), instead, imposes conditions that ensure an interior

solution and analyses a symmetric equilibrium.
5Alternatively, as we describe in Section 2.3, the vertical costs can be understood as

higher marginal costs that the firm incurs.
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Whether firms choose extreme or interior designs depends on vertical

transport costs and, more specifically, their convexity. Intuitively, following

our previous example, if a customer cares a great deal for authenticity but is

relatively insensitive once moving away from a genuinely authentic cuisine,

then the restaurateur will do best by choosing an extreme offering: either as

bland and generic as possible to cater to a wide audience, or as authentic as

possible to target extreme tastes. Instead, if the aficionado intensely dislikes

bland generic offerings but is relatively insensitive across offerings that are

somewhat authentic, then the restaurateur optimizes with an intermediate

menu that balances between the aficionado’s tastes and those of the broader

population. Both possibilities seem plausible and motivate our model, as it

can accommodate both interior and extreme designs.6

Indeed, recent empirical work has considered endogenous product design

and highlights that interior designs are relevant for application and worth

modelling. For example, Ershov (2020) examines a change in categories on

the Android app store and its effects on the introduction of more-niche and

more-broad apps. More recently, Gong (2021) and Bonelli, Buyalskaya, and

Yao (2021) use natural language processing techniques to provide continuous

measures of design for social media influencers and mutual fund prospec-

tuses. These highlight not only that design can be measured and quantified,

but that varied types of design (rather than solely extremal ones) do indeed

arise. These works also empirically confirm some of our findings; in partic-

ular, as we discuss below, that higher quality goods choose broader designs

and that more intense competition leads to nichier designs.

Of course, these empirical settings involve competition, rather than a

single firm. Embedding our model of product design into a monopolis-

tic competition model, we establish several further results. First, we find

sufficient conditions to ensure extreme product offerings (either maximally

6This discussion is reminiscent of aspects of the strategy literature and, specifically,

Porter’s (1998) notion of firms “stuck in the middle” in their strategic orientation, which

suggests that “extremal” approaches may be optimal. The empirical validity of Porter’s

conjecture has found mixed support (see Campbell-Hunt (2000) for a meta-analysis of

empirical studies). Our analysis highlights when extremal product designs are optimal

and when, instead, intermediate designs may be preferred.
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generic or niche) or interior product offerings. As suggested above, these

key conditions are related to the convexity of the vertical transport cost

that regulates the relative speed by which horizontal and vertical cost vary.

Different and rich market configurations in terms of product design arise

through the interplay of firms’ marginal cost heterogeneity and the trade-

off between vertical and horizontal quality. In particular, a continuum of

different designs, rather than only two extreme designs, can arise in equilib-

rium. Second, we show that the higher the marginal cost of production, the

nichier the offering.7 The intuition is a familiar one: a firm with a very high

marginal cost must charge a relatively high price and, thus, values variance

in consumer valuations in the hope of finding some consumers willing to

buy. Third, we show that when search costs fall, firms offer nichier designs.

In this context, we provide examples of how long-tail and superstar effects

arise.8 Finally, while this demonstrates that many results in BCC are ro-

bust in this new setting in which intermediate designs arise, we qualify other

results; notably, we show that profits may be non-monotonic in search costs

even when all firms are ex-ante identical, and that a small change in search

costs can lead many firms to change their designs.

In the last section of the paper, we briefly introduce a Bertrand duopoly

model to further highlight the strategic interactions of design choices. We

show that the firm with the higher marginal cost always chooses an extremal

niche design. Meanwhile, the other firm chooses a design that is broader the

lower its marginal cost. These results are in line with those from the mo-

nopolistic competition model. This Bertrand framework has been adopted

and further developed to consider symmetric firms and the welfare effects of

entry or exit of firms (González-Maestre and Granero, 2018, 2020).

Throughout we also compare the decentralized solutions to the plan-

ner’s problem and highlight a force that leads the planner to prefer nichier

7The paper and its results are stated in terms of differences in marginal costs of pro-

duction. As is standard, and as we discuss below, these can be rewritten in terms of

differences in vertical quality. Under this interpretation, firms with better products will

choose broader designs.
8The term “long tail” was introduced in an article in Wired (Anderson (2004)). See,

also, Brynjolfsson, Hu and Smith (2006).
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designs. Specifically, firms choose their strategies to attract marginal con-

sumers whereas the planner cares about the welfare of all consumers. This

force, which applies in all our models, is analogous to the familiar Spence

(1975) quality distortion. There are other forces at play, that depend on the

particular model, as we discuss in each case.

2 Baseline Model of Product Design

We adapt the well-known Salop (1979) circular model of horizontal differ-

entiation to consider product design. As in Salop’s model, we assume that

consumers are uniformly distributed on the circumference of a circle of ra-

dius 1. It is convenient and without loss of generality to suppose that there

is a mass 2 of consumers. However, we break with the standard model in

supposing that firms can locate not only on the circumference of this circle,

but also on the interior of a ring. The outer edge of the ring is a circle of

radius 1, corresponding to consumer locations, and the inner edge is a circle

with inner radius , where 1    0. Locations anywhere in this ring

correspond to different possible designs.9

In this section, we start by considering a monopolist firm facing a single

consumer. This allows us to highlight economic forces and serves as a build-

ing block to analyze the models of competition in later sections. The firm

has a constant per-unit marginal cost  and can locate anywhere within the

ring. Thus, a firm’s location is determined by the angle and the distance

to the center. In our example of the restaurant, a location consists of the

type of cuisine (Italian, Persian, etc.) corresponding to an angle of the cir-

cle, in addition to a choice of how authentic (further out towards the outer

edge of the ring) or bland/generic (towards the inner edge of the ring) the

restaurant’s food is.

If the firm locates exactly at the location of a consumer, this consumer’s

value for the product is  . Otherwise, the consumer must incur travel costs

9We present the paper with   0 to reduce algebra and ease exposition. The results

for  = 0 are similar, and they coincide with those obtained for the limit case where 

tends to 0
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to reach the firm. She first travels along a radius towards the center of the

ring and, only then, travels along the arc.10 If she travels a distance  along

the radius and  along the arc, the travel costs are assumed to be () + 

with (·) twice continuously differentiable and 0(·)  0. That is, we assume
linear unit travel costs along the arc but allow any increasing shape for the

cost associated with travelling along a radius.11 By construction, the cost of

travelling along a radius is common to all consumers and can be interpreted

as vertical differentiation. Meanwhile, the cost of travelling along the arc

varies across consumers, depending on their locations. Thus, a change in this

cost can be interpreted as a change in horizontal differentiation. Throughout

the paper, we refer to the cost of travelling along the arc as a horizontal cost

and the cost of traveling along a radius as a vertical cost. A central element

of the model is that firm strategies always involve a trade-off between these

two costs. This framework is illustrated in Figure 1.

Consumer 

Firm

Travel along the 
radius at cost c(.) Travel along an arc at 

cost 1 per unit of 
distance travelled

Figure 1: Design and consumer travel costs.

Without loss of generality, the monopolist is located at angle 0. Thus,

10The consumer travels towards the center and along a ring independently, with different

associated costs. Hence, these dimensions are better suited for two different characteristics

of a good (such as the brightness and hue of its colour), rather than dimensions in a physical

space.
11Linear costs along the arc deliver linear demand functions, while unit costs are without

loss of generality.
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the location decision consists of choosing how far inside the ring it wants to

be, which we capture by  ∈ [ 1]. Locating at  = 1 corresponds to a fully
tailored design in which the firm aims for a niche consumer base. Such a

design maximizes the valuation of the consumer located at angle 0, but it

also maximizes the heterogeneity in consumer valuations. Locating closer

to the centre reduces this and has a similar effect to reducing horizontal

transport costs in a standard circular setting. However, moving towards the

center also reduces the vertical quality of the good by imposing a common

additional cost on all consumers.

If a monopolist chooses a price  and a design , the marginal consumers

who are indifferent between purchasing or not are located at angles  and

−, where  ∈ [0 ] satisfies

 − (1− )− −  = 0. (1)

The right-hand side, of course, simply represents the payoff, 0, associated

with choosing not to purchase. The left-hand side is the net utility for

consumer , who values the good at  but must incur vertical transport

costs, (1 − ), horizontal transport costs  given the design  and their

angle relative to the good , and the price of the good, . It is clear that

when the value of  that is the solution to (1) is interior then overall demand

is 2; if the solution is negative then the firm makes no sales, and if   

then the firm sells to all consumers (that is the quantity is 2). Solving for

 in (1), therefore, allows us to write the demand for a firm that chooses

price  and design  as

( ) = max(0min(2
2


( −  (1− )− ))). (2)

2.1 Optimal Design

We focus on the case in which optimal choices lead to a demand that is

in the interval (0 2).12 This is guaranteed to be the case if intermediate

12Similar qualitative results arise when the constraint that demand can be no higher

than 2 binds–that is, all consumers are served. In particular, this case naturally arises
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values of  are considered. In this case, the demand function simplifies to

( ) =
2


( −  (1− )− ) . (3)

Note that the demand function ( ) is linear in  and that the higher is

–i.e. the nichier the design–the steeper is the slope of the demand curve.

This steeper slope reflects more-diverse valuations by different consumers

(if there were no diversity, the demand curve would simply be a single step

reflecting the common valuation). A higher  also involves a higher intercept

with the price axis, representing a higher valuation of the consumer who likes

the good the most. Since a higher  leads to a higher intercept and a steeper

slope, it follows that any two designs result in demands that cross only once,

and so different design choices induce demand rotations as in Johnson and

Myatt (2006).

The monopolist’s problem is to choose  and  in order to maximize:

Π( ) =
2


[ − (1− )− ] (−) (4)

Our assumption on the differentiability of the vertical transport cost

implies the differentiability of the profit function, and allow us to use first-

and second-order conditions to characterize the optimal design if this is

intermediate. Here in the text, we present the results, while proofs are

deferred to the Appendix.

Proposition 1 When the optimal design ∗ is intermediate, it satisfies the
following condition:

0(1− ∗) =
1

2
(∗ ∗). (5)

This condition has an intuitive economic interpretation. If the monop-

olist decides to set a price that leads to sales , the marginal consumer is

located at horizontal distance 1
2
 from the best-matched consumer. The mo-

nopolist optimizes by choosing a design that minimizes the overall combined

(horizontal and vertical) transport for this marginal consumer. Thus, the

when  is close enough to 0.
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marginal vertical quality loss from standardizing the product on the left-

hand side of Equation (5) is equated to the marginal horizontal gain on the

right-hand side. In other words, the optimal design ensures that the mar-

ginal rates of substitution of vertical and horizontal quality for the indifferent

consumer are equalized. The next result provides further characterization

of the optimal design.

Proposition 2 A necessary condition for an intermediate design solution

is that a consumer’s vertical transport cost is locally convex. Meanwhile, if

vertical transport costs are concave–that is, 00()  0 for all –then a

monopolist optimally chooses an extremal design ∗ ∈ { 1}.

We provide some intuition for this result. Note that Proposition 1 shows

that the marginal cost of standardizing the product is key in determining the

optimal design. Thus, it is no surprise that how this cost changes explains

whether an intermediate or an extreme design arises. Consider the following

experiment: For a given fixed price, let the firm change the design towards

standardization (reducing ). If a marginal change attracts more consumers,

would a further move still do so? That is the case when 00(·)  0 because,

while the horizontal costs are reduced linearly, vertical costs increase only

at a slower speed, which makes the good more attractive to inframarginal

consumers. A similar argument would lead to an optimal fully niche design

if the initial marginal change induced a reduction of the customer base. As

a result, and as Proposition 2 states, when the vertical transport costs are

concave, the optimal design must be extreme.

One can reinterpret this idea in the context of whether or not the demand

rotations induced by design changes are ordered, in the sense of Johnson

and Myatt (2006).13 Consider the different demand curves that are traced

out as the firm chooses different designs in Figure 2. Indeed, our model

provides a simple way to visualize all possible demand rotations in a linear

demand model and intuitively decomposes them into simple horizontal and

13Demand rotations are ordered if the intersection point between two (inverse) demand

functions moves upwards as the demand becomes flatter. See Johnson and Myatt (2006)

for a formal definition of such ordered demand rotations.
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a vertical differentiation attributes. A concave travel cost (·) ensures that,
as the firm moves from niche designs that induce steep demand functions to

flatter broad designs, the drop-off in the price intercept is not too severe, as

in the top right panel of Figure 2. This implies that the family of rotations

is ordered. In particular, the upper envelope of sales/price combinations

(traced out in grey) that can be achieved by the family of demand rotations

is composed of the most niche and the most broad designs.14 Thus, the firm

chooses one of these two designs.

p

q
Design 1 Design s Design B

mc

Designs with linear vertical transport costs c(t):
Single point of  rotation

a

a

a

b

b

b

p

q
Design 1 Design s Design B

mc

Designs with concave vertical transport 
costs c(t): Outer envelope of  demand 
curves traced out by extremal designs

a

a

a

b

b

b

p

qDesign 1 Design s Design B

mc

Designs with convex vertical transport 
costs c(t): Outer envelope of  demand 
curves traced out by all designs 
intermediate design may be optimal

a

a

a

b

b

b

Consumer a

B

s

1

Consumer b

Designs

Figure 2: Summary of rotation orderings as a function of transport costs.

Meanwhile, when (·) is convex, one cannot immediately conclude that
the optimal design is going to be an intermediate one. Note that the case of

linear transport costs still entails an extreme optimal design. As illustrated

in the top left panel of Figure 2, in this case, all demand curves cross through

14This visualisation of the outer envelope also provides an intuition for Lemma 1 of

Johnson and Myatt (2006) which provides sufficient conditions for extremal designs based

on properties of the induced demand curves.
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the same point of rotation. Thus, it is still the case that the upper envelope

of the demand curves is composed by only the most niche and the most

broad designs. But once (·) is convex, the family of rotation is no longer
ordered, and all designs contribute to the upper envelope of the demand

curves (see the bottom left panel of Figure 2). Of course, since the firm

also chooses prices only one point on this outer envelope is relevant. We

show that if the degree of convexity is sufficiently high, the potential gains

from choosing an intermediate design become strong enough to make such

a choice optimal.

Note that Propositions 1 and 2 are necessary conditions for an optimal

intermediate design. We can, however, establish elementary conditions that

are sufficient to guarantee it.

Proposition 3 An intermediate optimal design arises if the vertical cost

function (·) satisfies the following two inequalities:

20(1−) + (1−)   −  20(0).

Essentially, a sufficient condition for a solution to be interior is that the

cost function () is sufficiently flat at  = 0 and steep enough at  = 1−.
While these two conditions may not be always satisfied, they are interesting

for two reasons. First, they are simple to check and interpret, and second,

they do not impose any particular functional behavior in the interior of the

domain–in particular, whether the function needs to be globally concave

or convex. In the context of the restaurant example, these conditions cor-

respond to checking the extent to which an aficionado suffers from moving

from full authenticity and gains from departing from the most bland cui-

sine. More broadly, a rich literature in marketing and psychology analyzes

the contexts and product categories in which consumers value uniqueness

and those in which uniqueness concerns are less marked (Lynn and Syn-

der, 2002; Han et al, 2010; Chan et al. 2012); thus, illustrating where such

convexity/concavity in preferences is likely to be found.

Next, we turn to the comparative statics of the optimal design, and show

that a firm with higher marginal costs would choose a nichier design. As

12



discussed in the introduction, this result has a simple intuition–a firm with

a high marginal cost would need to charge a relatively high price, so for the

firm to make sales, it needs to find some consumers who fall in love with the

product, leading to a niche design. Instead, firms with very low marginal

costs hope to sell to many consumers and avoid choices that put off any

potential consumers. Therefore, they choose more-generic designs.

Proposition 4 A monopolist with a higher marginal cost of production, ,

chooses a nichier design.

2.2 Welfare Analysis

Now we turn our attention to the optimal product choice from a welfare

perspective. Our goal is to understand the distortions that the monopolist

creates with its decisions. The planner’s problem is to choose a price  and

design  that maximizes

 ( ) = ( ) [ − (1− )− (| buys)−] . (6)

This expression is simply the number of units sold multiplied by the

average surplus created per sale. As may be readily anticipated (and shown

in the appendix), the optimal price is set equal the marginal cost . The

monopolist, by charging a higher price, creates a quantity distortion; that

is, fewer customers than optimal are served.

Meanwhile, the condition for an optimal design is

0 (1− ) =
1

4
( ) (7)

The left hand side is the average vertical cost, and the right hand side is

the average horizontal cost. These are efficiently equated at the optimum.

Note that this condition differs from

0(1− ) =
1

2
( ),

the one obtained in Equation (29) characterizing an optimal design for the
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monopolist for a given price . Here, the monopolist equates the horizontal

and vertical costs for the marginal consumer, as opposed to the average

consumer. This is the well known quality distortion described in Spence

(1975).

Now, with the use of (3) one can rewrite (7) as

0(1− ) =
 −  (1− )−

2


which is the same expression determining ∗ in (30). Thus, in this model,
the planner and the monopolist eventually choose the same design. The

reason is that, due to the linear demand structure of the model, the design

adjustments to correct for the monopolist’s quantity and quality distortions

fully offset each other. The planner prefers a nichier design to cater to the

average consumer. But, as mentioned above, the planner also has an in-

centive to reduce the price so that more consumers are served. But then

the average consumer now is further away horizontally, creating a force to-

wards a broader design. The linearity in the model leads these two effects

to perfectly cancel each other out when  = .

2.3 Reinterpretation of the cost structure

We introduce two reinterpretations of our model that allow for a broader

scope and additional insights. The first one assigns the vertical transport

cost to the firm and the second one redefines firm heterogeneity in terms of

a vertical quality component.

In our model, vertical transport costs are borne by consumers. As a first

re-interpretation of the model, we argue that they can easily be interpreted

as borne by the firm instead. That is, instead of having a utility-based trade-

off in which broader goods come at the cost of alienating core consumers,

we can model the trade-off between appealing to more consumers at the

cost of an increased marginal cost of production that gets passed-through to

consumers via prices. This allows for additional applications of the model;

for example, a firm could produce a good with more and more features that

would be appreciated by all consumers, and make the product more general
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purpose. However, making the product suit a wider range of consumers

would come at a higher production cost. This alternative model has identical

predictions as our utility-based trade-off.

To see this, note that, as obtained in expression (28) in the proof of

Proposition 1, the optimal price for a given a design  is:

 =
 − (1− ) +

2
.

Further, one can substitute this in (4). and express profits as

Π =
( − (1− )−)2

2


Rather than interpreting the vertical transport cost (1− ) as one that

is borne by the consumer, it could instead be understood as part of the

marginal cost incurred by the firm. As one can see, the consumer valuation,

 , the marginal cost of production,, and the vertical transport cost (1−)
appear additively in the determination of the optimal price, and in the

calculation of profits.

This observation immediately allows for a reinterpretation of costs in

which a lower  (that moves towards the centre) raises the marginal costs of

the firm in order to reduce the horizontal transport costs of the consumer.

This interpretation can also provide further intuition for Proposition 2: when

these costs are concave, the firm will chooses  to be as low or as high as

possible. Moreover, the fact that one often thinks of such costs as convex

lends additional support to our focus on intermediate designs.

Second, looking at the profit expression in Equation (4), one can imme-

diately see that the effect of reducing the marginal cost  is identical to the

effect of increasing the consumer valuation  by the same quantity. This

equilibrium property allows for our second re-interpretation of the model.

The effect of a lower  is identical to the effect of being able to produce a

higher quality good (i.e., higher  ). This implies that Proposition 4 can also

be understood as a comparative static in the ability of the firm to produce

high-quality goods; arguing that firms with goods of an inherently lower
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quality tend to choose nichier designs.

So far, we have characterized the design choices of a monopolist. This

provides the intuitions and tools to analyze the competitive models. First,

we embed the previous setting within a sequential search model of monopo-

listic competition. Then, we analyze the duopoly case, in which firms simul-

taneously compete in the design space. We show that the results obtained

so far extend easily to these competitive environments. We then explore the

market configurations that arise in such settings.

3 Monopolistic Competition

In this section, we maintain the form of consumer preferences and firm design

choices from the baseline model, but we introduce competition from multiple

firms. We do so tractably by supposing that consumers must incur search

costs to observe product offerings.

Formally, we adapt the model of Wolinsky (1986) or Anderson and Re-

nault (1999) in which consumers incur a search cost  to learn both the

price and utility they would obtain from a new firm that they encounter

at random. This modelling approach has been widely used to consider the

impact of changes in search costs on market outcomes (examples include,

Bakos (1997), Cachon, Terwiesch and Xu (2008) and Goldmanis, Hortaçsu,

Onsel and Syverson (2010)). As in BCC, we adapt the supply side to sup-

pose that, in addition to choosing prices, firms can choose designs. While

that paper considers a simpler design decision, in which only two optimal

designs ever arise, here we consider the specific design choice outlined in

Section 2. We highlight both some robustness of earlier findings and some

qualifications.

We begin by describing the model more formally. First, we show that a

necessary condition for interior designs is convexity of the vertical transport

cost and that higher-cost firms choose nichier designs. These results build

on the findings in Section 2. This setting, however, provides considerably

more richness and allows us to consider both industry- and firm-level effects.

In particular, many different design types coexist in a market. In order to
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explore these industry-level effects, we examine an environment in which all

firms are assumed to be symmetric before discussing the consequences of

firm heterogeneity.

3.1 Model and preliminary analysis

Consider a continuum of active firms indexed by  ∈  that is uniformly

distributed around the circle.15 We allow for heterogeneity in firms’ marginal

costs of production  and assume that this attribute is independent of the

horizontal location. All firms simultaneously decide their design  and price

.

Consumers have to decide whether or not to search in a sequential way.

Before visiting a store , a consumer is ignorant of the actual price , the

design  and the horizontal distance to the firm that depends on her angle

of location, . She can learn all of these if she visits the store at a cost

  0. Then, she decides whether to buy or to incur an additional cost  to

visit another store.

In equilibrium, consumers hold the right expectations on the joint dis-

tribution of these three attributes in the market. Just as in McCall (1970),

if a consumer finds it worthwhile to search at all, then she optimizes by

choosing a threshold rule. This rule establishes that a consumer buys if and

only if she obtains a net utility from purchase greater than or equal to some

threshold level,  ; otherwise, the consumer continues to search.16

Firm ’s location from the consumer’s perspective is uniformly distrib-

uted on (0 ). Consequently, it can be shown that  is implicitly defined

15 In particular we take the mass of firms as exogenously given, and abstract from firms’

entry decisions for ease of exposition.
16Note that since there is a continuum of firms, the continuation value of continuing

searching does not depend on the history of search. Therefore, the consumer prefers to

visit a new random store rather than to go back to one that she has discarded before. In

particular, this implies that it is irrelevant whether or not consumers can costlessly visit

stores that they have visited in the past.

17



by Z
∈

Z 

0

( − (1− )− −  − )  = , (8)

where

 = max(0min(
1


( − (1− )−  −  )) (9)

represents the distance that makes the consumer indifferent between buying

from firm  or continue searching.

In the appendix we provide more detail on how to derive expression (8).

It has an intuitive interpretation. The left-hand side is the average gain over

purchasing a product that delivers net utility  if a new search is conducted.

The right-hand side is the cost of doing so. Thus, this formula determines

 as the net utility from a product that leaves the agent indifferent between

searching again and buying it.

If a firm’s demand per consumer visit is interior ( ∈ (0 )), it is

determined by

(  ) = 2 =
2


( −  (1− )−  − ) (10)

and firm total profits can be written as:

Π =
2


( −), (11)

where  denotes the probability of a consumer purchasing on a visit to a

random firm, and so  =

Z
∈




.17

We can define an equilibrium as a family of ( ( )∈), where  solves
(8) and ( ) maximizes profits for each firm 

The analysis of the model builds on that of Section 2. In effect, one can

view the firm’s problem as acting like a monopolist on residual demand–

17We can write profits as Π = 2(−), where  is the total number of customers

that visit the store in all periods. Given, the definition of ,  =
∞
=0

(1 − ) = 1

. The

expression in (11) follows directly.

18



this is immediate on comparing (10) to (3) and noting that they differ only

in the appearance of  and that, from an individual firm’s perspective, the

firm can treat this as a constant. Consequently, analogues to Propositions

1, 2, 3, and 4 apply:

Proposition 5 In an equilibrium in which the consumer search threshold is

given by  as defined in (8) and with each firm’s design and price denoted

∗ and ∗ :

1. When firm 0 equilibrium design, ∗ , is intermediate, it satisfies the
following condition:

0(1− ∗ ) =
1

2
(∗  

∗
  ). (12)

2. A necessary condition for an intermediate design solution is that a

consumer’s vertical transport cost is locally convex. Meanwhile, if ver-

tical transport costs are concave–that is, 00()  0 for all –then

firms optimally choose extremal designs ∗ ∈ { 1} for all .

3. Firm  will choose an intermediate optimal design if the vertical cost

function (·) satisfies the following two inequalities:

20(1−) + (1−)   −  −  2
0(0). (13)

4. Consider two firms with different marginal costs 1  2; then, in

equilibrium, Firm 1 has a (weakly) nichier design; that is, 1 ≥ 2.

3.2 Symmetric Firms

The case where are all firms are symmetric is a natural benchmark that

allows for further clear analytic results and intuition. In this section, we

consider all firms to be identical–that is, having the same marginal cost .

Given a consumer threshold,  , implicitly defined in (8), and the probability

of consumers purchasing at a random firm , every firm faces the identical
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problem of choosing  and  in order to maximize

Π =
2


( −  −  (1− )− ) (−). (14)

By maximizing profit with respect to price, we derive the optimal price

+ =
+  −  − (1− +)

2
. (15)

Following (12) in Proposition 5, the optimal design satisfies:

0(1− +) =
(+ +)

2
=
1

+

¡
 −  − 

¡
1− +

¢− +
¢
. (16)

Consider a reduction in the cost of search–that is, a fall in . By

inspection of (8), this leads to more-intense competition, or a higher value

of  : Consumers can shop at lower cost and, thus, may be more demanding

in terms of price and match with the products offered. Consequently, firms

respond by seeking to offer more to customers, in part through opportunities

of better matches that arise out of nichier designs. Of course, all firms

change their behaviors simultaneously, and so this argument is incomplete

in ignoring aggregate equilibrium effects. However, the following proposition

establishes that the overall effect is consistent with this intuition.

Proposition 6 In the case of symmetric firms that choose an interior de-

sign, the design becomes nichier the lower the search costs.

These result suggests an ambiguous relationship between search costs

and industry profitability. There is a direct effect: Lower search costs might

increase competition; but as Proposition 6 shows, there will also be a coun-

teracting effect through design choices. When other firms choose nichier

designs, they are, in effect, more differentiated, and this can, therefore,

moderate price competition; moreover, with nichier designs and lower search

costs, better matches arise and so more surplus is created. These effects can

(though need not) counteract and overwhelm the more direct effect of lower

search costs on intensifying competition and reducing prices.
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Proposition 7 In the case of symmetric firms that choose an interior de-

sign, profits increase in search costs if and only if
0(1−+)−+00(1−+)
0(1−+)−2+00(1−+)  0.

Both cases–that is, profits increasing or decreasing in search costs–can

arise.

It is worth contrasting this result with the parallel one in BCC–namely,

Proposition 5(iv). There, in the case of homogeneous firms, profits necessar-

ily increase as search costs fall.18 The difference stems from the fact that in

BCC, only extremal designs arise, but there can still be an "intermediate"

outcome in which some firms choose the most broad design while others

choose the most niche one. Here, instead, firms directly choose intermediate

designs. Thus, the comparative static involves design changes of a different

nature. In this paper, there are smooth changes towards nichier designs by

all firms, while in BCC, there are abrupt changes from fully broad to fully

niche by only a few firms.

3.2.1 Welfare Analysis

This section highlights that the monopolistic competitive equilibrium suf-

fers from the same Spence (1975) quality distortion discussed in Section 2.2.

Again, each firm–a local monopolist–optimizes by attracting the marginal

consumer. Instead the planner is concerned for all consumers. However,

in this monopolistic competition model, welfare also incorporates the con-

sumers’ search costs.

Total welfare is composed of the sum of all consumers’ expected utilities

and all firms’ profits. Given that firms end up selling to all consumers, and

that there is a mass 1 of consumers, total welfare can be expressed as

 =  +Π

where profits are simply Π = −. Meanwhile, the consumer surplus, equal
to the value of searching and denoted,  , as shown in the appendix in (39),

18Of course, both in that paper and in this one, in a region where designs are unaffected

(for example, if all firms are choosing the nichiest design before any fall in search costs),

profits rise monotonically with search costs.
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can be written as

 =  − (1− )− −
√
2

We can use these two expressions to write welfare as:

 =  −− (1− )−
√
2

Prices do not appear in this expression and are irrelevant for welfare given

that all consumers end up buying one unit. Thus, total welfare is equal to

 minus the different costs: the production cost, ; the vertical transport

cost, (1−), which is common to all consumers; and the √2 term, which
subsumes the horizontal transport costs and the search costs.

An interior welfare maximizing design  satisfies

0(1− ) =

r


2
 (17)

This expression is "half" of the one obtained in (40) for the monopolistic

competitive equilibrium design +:

0(1− +) = 2

r


2+
 (18)

where the monopolist equates the marginal horizontal cost with the combi-

nation of the vertical and search cost for the marginal consumer.

Thus, it is clear that, starting from the competitive design +, the social

planner has an incentive to deliver nichier designs.

The argument above is a little imprecise in that conditions (17) and (18)

could deliver multiple solutions, making a comparison between the multiple

 and + difficult. However, with sufficient assumptions on the functional

form of (·), that comparison is straight forward. For instance, if one assumes
that 000  0 one gets a unique local (and thus global) welfare optimum

and a unique monopolistic competitive equilibrium. Then one can easily

conclude that   +. In this way, we can conclude that the Spence (1975)

quality distortion is the leading force in this model; that is, the decentralized

equilibrium involves designs that are too broad.
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3.3 Asymmetric Firms

The contrast between Proposition 6 and the corresponding result in BCC

might lead to a broader concern that other results in that paper also cru-

cially rely on the assumption that only extreme (fully niche or fully generic)

designs arise. Most notably, BCC show that market restructuring following

a fall in search costs (through the diffusion of the internet, for example) can

simultaneously account for higher market shares of: (i) the most successful

“superstar” firms; and (ii) the least successful ones, creating the “long tail”

effect. We highlight below that these results can also arise when a range of

intermediate designs are offered in the market.

Assume, now, that firms vary in their marginal costs of production,.
19

For concreteness, it is convenient to suppose that these marginal costs are

uniformly distributed on the unit interval [0 1]. If the vertical transport

costs (·) are concave, then, since Proposition 5.2 applies, a polarized distri-
bution of product designs arises, with firms choosing either the most niche

kind of design  = 0 or the broadest one  = . By Proposition 5.4, firms

with low marginal costs prefer the broadest kind of design. Simultaneously,

the least efficient firms opt for the most niche kind of design. Thus, a

threshold determines which firms choose each of the two designs.

Similarly, when Condition (13) of Proposition 5 is satisfied, firms choose

intermediate designs according to each firm’s marginal cost–again, with

more efficient firms preferring broader designs. These market configura-

tions also have immediate implications for prices and quantities sold. It is

straightforward to show that, keeping design fixed, higher marginal costs

are associated with higher prices and lower sales. Moreover, the endogenous

design choices reinforce these effects, as higher marginal costs induce firms

to choose more-specific designs that, in turn, induce higher prices and lower

sales. Therefore, regardless of the market configuration, prices are monoton-

ically increasing and sales are monotonically decreasing as the design moves

from being more generic to nichier.

19Recall that this is equivalent to having all firms homogeneous in their marginal costs,

but heterogeneous in their vertical quality,  . This is the case, for instance, in BCC.
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To illustrate the above case with convex transport costs and intermediate

designs, consider the example described in Figure 3. Panels 1 and 2 plot

designs and sales against a firm’s marginal costs. In this example,  is set

at 0, so that a fully broad product is valued identically by all consumers–in

particular, this implies that any firm that chooses a fully broad design and

makes sales would sell to all consumers who visit the firm. The blue line

corresponds to a lower search cost and the green line to a higher search cost.
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Figure 3: Designs and sales against marginal cost

with () = 322,  = 0 and  = 3, at 1 = 04 and 2 = 05.

The first panel of Figure 3 shows that with a lower search cost, fewer

firms choose a fully broad design, and that all firms choose nichier designs.

Intuitively, with the more intense competition implied by lower search costs,

firms compete, in part, by offering consumers products that are better tar-

geted. This is consistent with Proposition 7 for the case of homogeneous

firms. This example and the symmetric case are more broadly illustrative.

Following a line of argument similar to that in BCC, a fall in search costs

results in consumers searching more intensively (higher ).20 Following ex-

pressions (10) and (11) and reasoning similar to that in Proposition 4, it is

immediate that as search costs fall, firm designs become nichier.

20More specifically, they show this for all stable equilibria in a simplified dynamic system

that captures the interplay between  and  (see BCC for formal definitions and proofs.)
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The second panel shows an interesting implication: sales of both the most

and least efficient firms increase when consumer search costs falls. In other

words, a superstar and a “long-tail” effect arise simultaneously. That such

superstar and long-tail effects can simultaneously arise is consistent with

the findings in BCC. But this example highlights that this can arise with

convex as well as concave vertical transport costs and, consequently, in the

more realistic case that firms choose intermediate designs and there are a

range of different design types offered in the market rather than just two.

The example also highlights that by relaxing the assumptions that lead

to extremal designs, it is possible to encounter more-complex responses to

a marginal reduction in search costs: While some firms react by only mar-

ginally changing their pricing, others marginally change both their pricing

and their product design. Finally, as in BCC, yet another group of a few

firms with extremal designs discretely change their whole design and pric-

ing, switching to a strategy entailing much higher prices and lower sales and,

thus, releasing consumers that fuel the superstar and long-tail effects.

4 Bertrand Duopoly

We now move on to consider a classic competitive model of a Bertrand

duopoly where consumers can observe prices and designs of both firms at

no cost.

This section highlights the robustness of some of our earlier insights.

Notably, we show the necessity of convex vertical transport costs for interior

designs, and that higher marginal costs are associated with niche designs

in this setting too. The setting and, especially Proposition 9 below, also

highlights that design choices can be strategic to affect price competition,

as in more standard models of vertical differentiation.

Further, this Bertrand case points to further directions in which this

framework can be explored. Indeed, building on an earlier version of this

paper, González-Maestre and Granero (2018, 2020) adapt and extend this

analysis to allow for  identical firms and to consider comparative statics in

. They focus on equilibria with symmetric designs and highlight that higher
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competition can lead to higher prices (similar to the insight in Section 3.2,

where the indirect effect of design choice may counteract the direct effect).

In this section, we analyze two firms  = 1 2 with differing marginal

costs of production,  ≥ 0, competing in their choices of design and price.
Specifically, we suppose that firms, first, choose their design simultaneously.

These decisions then become public, and in a second stage, firms simulta-

neously choose prices. This timing is intended to capture that prices can

adjust more easily than demand.21 Finally, consumers observe locations,

prices and designs of both firms and choose one of the two products (if any).

We assume that  is sufficiently high to guarantee full market coverage:

that is, all consumers buy from one or other of the two firms. Further, we

assume that, with respect to the horizontal dimension, firms are located

opposite each other (Firm 1 at angle 0 and Firm 2 at angle ).22 We denote

12 to be the consumer that is indifferent between buying from Firm 1 or

Firm 2; this can be written explicitly as

12 =
(1− 2)− (1− 1) + 2 − 1 + 2

1 + 2
. (19)

In the following analysis, we concentrate on the case in which both firms

are active in the market–that is, when 12 ∈ (0 ). Firms’ profits can be
written simply as:

Π1 = 212(1 −1), and (20)

Π2 = 2( − 12)(2 −2). (21)

Given fixed designs, one can calculate optimal prices by solving for the

Nash equilibrium of the last stage. Solving for these prices and substituting

them into Equation (20), allows us to write Firm 1’s profits as a function of

21This contrasts with González-Maestre and Granero (2018), who consider the case in

which the design and pricing decision are simultaneous.
22For simplicity, we abstract from the firms’ choices of angle of location. Such analysis

has been shown to be involved or intractable even in the simpler Hotelling framework

(Osborne and Pitchik, 1987; and Vogel, 2008).
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1 and 2 as follows:

Π1() =
2

9

((1− 2)− (1− 1)−1 +2 + 1 + 22)
2

1 + 2
. (22)

Simple calculus and algebraic manipulation imply that Firm 1’s optimal

design (when interior) satisfies

0(1− 1) =
3

2
12 − . (23)

This condition is the counterpart of Equation (5) in the monopoly model.

The different expression stems from the fact that, now, the design choice has

a strategic aspect (to influence the subsequent price competition) that was

absent in the monopoly and monopolistic competition models.

We begin by establishing a familiar relationship between the shape of the

vertical transport costs and the choice of product design that was present

in the monopoly model:

Proposition 8 A necessary condition for an intermediate design in the

duopoly setting is that the vertical transport costs are locally convex. More-

over, if these costs are concave, then both firms choose an extremal design.

The duopoly setting provides the following new result: At least one firm

adopts an extreme most niche design in equilibrium.

Proposition 9 The firm with higher cost chooses an extreme most niche

design; that is, if 2 ≥ 1, then without loss of generality, firm 2’s equilib-

rium design, 2, satisfies 

2 = 1.

The intuition for this result is a familiar one. When first choosing lo-

cations and then prices, firms (and particularly high-cost firms) have an

incentive to differentiate in order to soften price competition. Depending on

parameters, one might have the better firm choosing an intermediate or even

a fully broad design. This firm may not want to fully soften competition

and may prefer to exploit its comparative productive advantage.
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This result partially replicates the intuition in the sections above, as it

establishes that, in competition, it is the firm with lower marginal costs

that would choose a broader design. This is further corroborated by the

next result, which performs comparative statics on marginal costs.

Proposition 10 Holding constant the marginal cost of the rival, a higher

marginal cost of production  leads to a (weakly) nichier design.

The results in this section allow us to characterize the equilibrium config-

urations that arise in the duopoly setting with perfectly informed consumers.

When vertical transport costs are concave, the firm with the higher mar-

ginal cost chooses a fully niche design. The firm with the lower marginal

cost chooses either a fully broad or a niche design depending on its cost ad-

vantage. When vertical transport costs are convex, the same configurations

can occur, but a third possibility may arise in which the low-marginal-cost

firm chooses an intermediate design.

4.1 Welfare Analysis

Given that we assume that  is sufficiently high for full market coverage,

the fraction of consumers who buy from from Firm 1 is 212 and from Firm

2 is 2( − 12). Then, analogous to expression (6) for the monopoly case,

the planner’s problem here is:

 = 212 [ − (1− 1)− 1[| buys from Firm 1]−1] +

+2( − 12) [ − (1− 2)− 2[ − | buys from Firm2]−2] 

As one can see, with full market coverage, the planner does not care

about prices per se. Prices just determine the extent of transfers between

firms and consumers. Prices are relevant; however, in as much as they deter-

mine the identity of the marginal consumer, 12. It is convenient, therefore,

to take the planner’s problem as choosing the identity of the marginal con-

sumer 12 and of course, designs.
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The first order analysis delivers the following conditions for the optimal

designs 1 and 2 :

0(1− 1 ) =
12

2
, and (24)

0(1− 2 ) =
 − 12

2
. (25)

It is instructive to compare (24) with the corresponding solution for the

decentralized design solutions duopoly, 2, which satisfies (23). Note that

since we assume that Firms 1 and 2 both make sales, then 12   and,

so, 3
2
12 −   12

2
. This suggests that starting from the duopoly outcome

12, the planner would prefer firm 1 to choose a nichier design. This is

consistent with the intuition from the monopolist, and monopolistic cases

discussed above that highlight a force that leads the planner to prefer nichier

designs–that firms optimize with respect to the marginal consumer but the

planner optimizes with respect to all consumers.

Of course, there are other forces at play. In particular, the planner also

cares about the trade-off between transport costs and the costs of produc-

tion (which differ between Firms 1 and 2) so that, generically, the market

shares in the planner’s problem, captured by 12 in the following first order

condition:

(1− 1) + 112 +1 = (1− 2) + 2( − 12) +2

differ from the corresponding ones in the decentralized solution, 12. More-

over, as noted above, since in the decentralized case firms choose designs and

quantities sequentially, there is a strategic vertical differentiation effect (with

the inefficient firm choosing a most niche design) to soften price competition.

This price effect is irrelevant to the planner, as discussed above.Conclusions

We present a general framework to analyze product design decisions, fo-

cusing on the trade-off between having a strong appeal to a narrow consumer

segment versus having some (though a more limited) appeal to a broader

audience.

This framework allows us to characterize all linear rotations and to show,
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intuitively, when demand rotations would be ordered. This question is

closely related to the question of when firms would opt for extreme de-

signs (either fully niche or fully broad) and when they would opt for interior

designs that balance the intensity and the breadth of their consumer appeal.

We provide sufficient conditions for these two outcomes.

In addition, we show that better firms tend to choose broader designs,

while worse firms tend to choose niche designs. When consumers face lower

search costs, all firms weakly shift towards more-niche designs. We show

these results are robust to different forms of competition and contrast the

decentralized and planner solutions.

We embed this representation of design in a model of monopolistic com-

petition. In contrast with the previous literature, interior equilibrium con-

figurations with varied design can arise and demonstrate possibilities that

are new to the literature. For example, we present market configurations

in which, as consumers become more selective, fewer firms choose broad de-

signs. Some firms drift towards slightly nichier designs, while others radically

change to an extreme niche design. This is a useful representation of how

firms adapt their product design and marketing strategies to environments

in which consumers can search more efficiently for products.

The framework is general, flexible, and easy to interpret. It can also be

used as a building block to study further questions on product design. As

an illustration, González-Maestre and Granero (2018) and González-Maestre

and Granero (2020) focus on the impact of changing the number of compet-

ing firms in an extension to our model of Section 4. In addition, the model

allows for alternative interpretations within the same setting. As we discuss

in Section 2.3, one alternative interpretation is one in which production

costs take the role of vertical transportation costs (i.e., if it is more costly

to produce a good that is more homogeneously liked by all consumers); and

another reinterpretation of the model portrays firm heterogeneity as being

due to intrinsic differences in the quality of the goods that each firm pro-

duces. Finally, in line with the literature on informative marketing, it is also

possible to interpret design in the model as the degree of transparency and

information that the firm provides about the product, with more-opaque
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strategies leading to less-dispersed valuations of the good. These alterna-

tive settings lead to different interpretations and a broader applicability of

the model outcomes.

References

[1] Anderson, Chris (2004) “The Long Tail,” Wired, Issue 12.10, Oct.

[2] Anderson, Simon P. and Régis Renault (1999) “Pricing, product diver-

sity and search costs: a Bertrand-Chamberlin-Diamond model,” RAND

Journal of Economics, Vol. 30 No. 4, Winter, pp. 719-735.

[3] Bar-Isaac, Heski, Guillermo Caruana, and Vicente Cuñat, (2012),

“Search, Design, and Market Structure,” American Economic Review,

102(2): 1140-1160.

[4] Bakos, Yannis (1997) “Reducing Buyer Search Costs: Implications for

Electronic Marketplaces,” Management Science, Vol. 43, No.12, pp.

1676-1692.

[5] Bonelli, Maxime, Anastasia Buyalskaya and Tianhao Yao (2021) “The

Effect of Quality Disclosure on Product Differentiation: Evidence from

Mutual Fund Ratings,” working paper, HEC.

[6] Bronnenberg, Bart J. (2015) “The provision of convenience and variety

by the market,” RAND Journal of Economics, 46:3 (Fall), 480-498.

[7] Brynjolfsson, Erik, Hu Yu Jeffrey, and Michael D. Smith, (2003) “Con-

sumer Surplus in the Digital Economy: Estimating the Value of In-

creased Product Variety at Online Booksellers,” Management Science,

Vol. 49, No. 11, pp. 1580-1596.

[8] Cachon, Gérard, Christian Terwiesch and Ye Xu (2008) “On the Effects

of Consumer Search and Firm Entry in a Multiproduct Competitive

Market,” Marketing Science, 27(3), 461-473.

31



[9] Campbell-Hunt C. (2000) “What have we learned about generic com-

petitive strategy? A meta-analysis,” Strategic Management Journal

21(2): 127—154.

[10] Chan, Cindy, Jonah Berger and Leaf Van Boven (2012) “Identifiable

but Not Identical: Combining Social Identity and Uniqueness Motives

in Choice” Journal of Consumer Research, 39(3), 561-573.

[11] Dos Santos Ferreira, Radolphe and Jacques-Francois Thisse, (1996)

“Horizontal and Vertical Differentiation: The Launhardt Model,” In-

ternational Journal of Industrial Organization, 14, pp. 485—506.

[12] Economides, Nicholas (1989) “Symmetric equilibrium existence and op-

timality in a differentiated product market,” J. Econ. Theory 47 , 178

—194.

[13] Ershov, Daniel (2020) “Consumer Product Discovery Costs, Entry,

Quality and Congestion in Online Markets,” working paper, TSE.

[14] Goldmanis, Maris, Ali Hortaçsu, Emre Onsel and Chad Syverson (2010)

“E-commerce and the Market Structure of Retail Industries,” Economic

Journal, Vol. 120 Iss. 545, 651-682.

[15] Gong, Zheng (2021) “Growing Influence,” working paper, University of

Toronto.

[16] González-Maestre, Miguel and Luis M. Granero (2018) “Competition

with targeted product design: price, variety, and welfare,", Interna-

tional Journal of Industrial Organization 59, 406-428.

[17] González-Maestre, Miguel and Luis M. Granero (2020) “Excessive vs.

insufficient entry in spatial models: When product design and market

size matter," Mathematical Social Sciences 106, 27—35.

[18] Han, Y.J., Nunes, J.C. and Dreze, X. (2010), “Signaling status with

luxury goods: the role of brand prominence”, Journal of Marketing,

74(4), 15-30.

32



[19] Irmen, A. and J.-F. Thisse (1998), Competition in Multi-characteristics

Spaces: Hotelling Was Almost Right, journal of economic theory 78 ,

76_102

[20] Johnson, Justin P. and David P. Myatt (2006) “On the Simple Eco-

nomics of Advertising, Marketing, and Product Design,” American Eco-

nomic Review, 96(3): 756-784.

[21] Kuksov, Dimitri (2004) “Buyer Search Costs and Endogenous Product

Design,” Marketing Science, 23(4), 490-99.

[22] Larson, Nathan (2013) “Niche Products, Generic Products, and Con-

sumer Search,” Economic Theory, Vol 52(2), pp 793-832.

[23] Lynn, Michael, and Charles R. Snyder (2002), “Uniqueness Seeking,”

in Handbook of Positive Psychology, ed. Charles R. Snyder and Shane

J. Lopez, Oxford University Press, 395—410.

[24] McCall, John J. (1970) “Economics of Information and Job Search,”

The Quarterly Journal of Economics Inquiry, 84(1), pp. 113-126.

[25] Milgrom, Paul and Shannon, Chris (1994) “Monotone Comparative Sta-

tics”, Econometrica, Vol 61(1), 157-180.

[26] Neven D. and J.-F. Thisse, On quality and variety competition, in “Eco-

nomic Decision Making: Games, Econometrics, and Optimization. Con-

tributions in the Honour of Jacques H. Dreze” (J. J. Gabszewicz, J.-F.

Richard, and L. Wolsey, Eds.), pp. 175_199, North-Holland, Amster-

dam, 1990.

[27] Osborne, Martin J., and Carolyn Pitchik (1987) “Equilibrium in

Hotelling’s Model of Spatial Competition,” Econometrica 55(4): 911—

22.

[28] Porter, Michael E. (1998) “Competitive Strategy: Techniques for Ana-

lyzing Industries and Competitors”, The Free Press: New York.

33



[29] Salop, Steven C. (1979) “Monopolistic competition with outside goods,”

Bell Journal of Economics, 10, 141-156.

[30] Spence, A. Michael (1975) "Monopoly, Quality, and Regulation," The

Bell Journal of Economics, 6, 417-429.

[31] von Ungern-Sternberg, Thomas (1988) “Monopolistic Competition and

General Purpose Products,” Review of Economic Studies 55(2), pp.

231-246.

[32] Vogel, Jonathan (2008) “Spatial Competition with Heterogeneous

Firms,” Journal of Political Economy, vol. 116(3), pp. 423-466.

[33] Vandenbosch, M. B. and C. B. Weinberg, (1995) Product and price

competition in a two-dimensional vertical differentiation model, Mar-

keting Sci. 14, 224_249.

[34] Wolinsky, Asher. 1986. “True Monopolistic Competition as a Result

of Imperfect Information,” The Quarterly Journal of Economics, vol

101(3), pp. 493-511.

A Appendix

Proof of Propositions 1 and 2 If the solution is interior, the first-order

conditions of the profit maximization of (4) are:

2


( − (1− )− 2+) = 0; (26)

2(−)



µ
0(1− )− 1


( −  (1− )− )

¶
= 0 (27)

The first equation delivers the optimal price

 =
 − (1− ) +

2
, (28)

while the second equation combined with (3) delivers

0(1− ) =
1

2
( ), (29)

Both of them combined prove Proposition 1.

34



Note also that if one substitutes (28) in (27) one gets

0(1− ) =
 −  (1− )−

2
. (30)

At an optimal interior design ∗, the second-order conditions must also be
satisfied. In particular, the one with respect to design delivers

2(∗ −)

∗

µ
2

∗2
( −  (1− ∗)− ∗)− 2

∗
0(1− ∗)− 00(1− ∗)

¶
 0. (31)

Now, one can use Equations (3) and (29) and simplify this toµ
(∗ ∗)

∗
− 2

∗
0(1− ∗)− 00(1− ∗)

¶
 0⇔ 00(1− ∗)  0, (32)

which proves Proposition 2.

Proof of Proposition 3 If one substitutes the expression (28) for the optimal

price into (4), profits can then be expressed as a function of design:

Π() =
( − (1− )−)

2

2
(33)

The firm necessarily prefers an interior solution if Π0(1)  0 and Π0()  0.

Given that

Π0() = −( − (1− )−)
2

22
+

0(1− )


( − (1− )−) , (34)

we can write

Π0(1)  0⇔  −  20(0) (35)

Π0()  0⇔ 20(1−) + (1−)   −,

which concludes the proof.

Proof of Proposition 4 To prove this, it is sufficient to show that

∀1  2∀1  2 Π(12)  Π(22)⇒ Π(11)  Π(21) (36)

Note that 2
1
(
−(1−1)−2

2
)2 = Π(12)  Π(22) =

2
2
(
−(1−2)−2

2
)2

implies that
¡√

1 −√2
¢
2 

√
1( − (1 − 2)) − √2( − (1 − 1)) Given

that
¡√

1 −√2
¢
1 

¡√
1 −√2

¢
2, we can write

¡√
1 −√2

¢
1 

√
1( −

(1− 2))−√2( − (1− 1)), which implies that Π(11)  Π(21)

Given that Π is continuous in (), the condition (36) above implies that Π

satisfies the single crossing property in () as defined in Milgrom and Shannon
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(1994). Thus, this proposition is just a particular case of Theorem 4 in Milgrom

and Shannon (1994), which establishes monotone comparative statics.

Algebra details on Section 2.2 The welfare function is

 ( ) = ( ) [ − (1− )− (| buys)−] .

Noting that (| buys) = (| ≤ ()

2
) and substituting for ( ) as

defined in (3), we obtain:

 ( ) =
1


( −  (1− )− ) ( −  (1− ) + − 2).

The first order condition with respect price  delivers:

−2

(−) = 0

And, thus, it is optimal to set price equal to marginal cost. The welfare function

can then be simplified to obtain

 ( ) =
1


( −  (1− )−)

2
,

which delivers the following optimal condition with respect to quality:

0 (1− ) =
 −  (1− )−

2
=

( )

4
.

Algebra details on Section 3.1 As it is standard in sequential search models

a la McCall (1970), given the stationary environment, it is optimal to purchase a

product if and only if it delivers a utility larger than  Conditional on the strategies

( ) by all firms, we define

 () := Pr( − (1− )− −  ≤ )

as the probability that, if a new store is visited, the utility obtained from buying its

product is not higher than  . Thus, for  to be the equilibrium threshold value, it

has to be the case that a customer holding a product that delivers exactly a utility

 has to be indifferent between buying it, and conducting a new search. In other

words, the following condition needs to be met:

 =  ()+(1− ())[ −(1−)−− |  −(1−)−− ≥  ]−

After some immediate algebra this can be written as

(1−  ())([ − (1− )− −  |  − (1− )− −  ≥  ]− ) = 
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Finally, it is sufficient to realize that

[ − (1− )− −  |  − (1− )− −  ≥  ] =

=

Z
∈

Z 

0

( − (1− )− − )


(1−  ())


where

 = max(0min(
1


( − (1− )−  −  )) (37)

to obtain expression (8) in the text.

Proof of Proposition 5 The proof is immediate given the arguments pre-

sented in the text right above the proposition.

Proof of Proposition 6 Using (16), we can rewrite (15) as

+ = + +0(1− +). (38)

Further, the expression for the consumer stopping rule (8) can be simplified (by

first integrating and then replacing for the optimal price) to:

 =
( − (1− +)− + − )

2

2+
=
(+ −)2

2+
. (39)

Now, we can substitute out + in Equation (39) using (38) to obtain an implicit

formula for the optimal interior design.

0(1− +) =

r
2

+
. (40)

Using this expression, we immediately obtain that

+


=

2

(0(1− +))2 − 2+0(1− +)00(1− +)
=

2

0(0 − 2+00) . (41)

(from now on, and with some abuse of notation, we write  0, and 00 to refer to
(1− +) 0(1− +), and 00(1− +) respectively)

Thus,
+


 0⇔ 0 − 2+00  0. (42)

Next, we check that this is a necessary condition for the design implicitly defined by

(40) to be optimal. That is, we check that the SOC condition of the maximization

problem implies the previous inequality. Take the profit function; substitute its

optimal price (15); and denote  :=  −  −. Then, we have that profits are
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given by

Π =
2



µ
 − 

2

¶2
. (43)

The first-order condition with respect to design is given by

Π


= − 2

2

µ
 − 

2

¶2
+
1


( − )0 = 0⇔ (44)

⇔ 20 =  − , (45)

and the corresponding second-order condition that ensures that the solution does

indeed maximize profits is given by

2Π

2
=
4

3

µ
 − 

2

¶2
− 1

2
( − ) 0− 1

2
(−)0+ 1


(0)2− 1


(−)00  0. (46)

Substituting for ( − ) from expression (45), we get:

4

(+)3

¡
+0

¢2 − 4

(+)2
+(0)2 +

1

+
(0)2 − 1

+
2+000  0⇔ 0 − 2+00  0, (47)

which, as above, establishes that +


 0, or, equivalently, designs become nichier

as search costs fall.

Proof of Proposition 7 Note that, by symmetry, all firms enjoy the same

number of customers and, by assumption, there is full market coverage, and, so,

total industry profits are equal to Π = 2(+−). Differentiating this expression,

we obtain that
Π


= 2

+


. (48)

Thus, it suffices to establish the sign of +


. Now, using (38) and (40), we can

express the equilibrium price as

+ = + +0 = +
2

0
, (49)

and differentiating, we get

+


=
20 + 200 

+



02
= 2

0 + 200
0(0−2+00)
02

= 2
02(0 − 2+00) + 200

020(0 − 2+00)
(40)
= 2

0 − +00

0(0 − 2+∗00) 
(50)

The result follows immediately.

We conclude the proof by highlighting that there are indeed parameters where

symmetric equilibria exist and where either case arises. It can be verified that with

() = 23 and  = 0, at  = 135 profits decrease in , whereas at  = 015, they

increase in .
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Proof of Proposition 8 In order to have an interior design decision, one needs
2Π1()

21
≤ 0

2Π1()

21
= 2

12

1

µ
2

3
(0(1− 1) + )− 12

¶
+ 212

µ
−2
3
00(1− 1)− 12

1

¶
(51)

=
4

3
(
12

1
(0(1− 1) + )− 12

00(1− 1))− 412 12
1


= 212

12

1
+ 212

µ
−2
3
00(1− 1)

¶
− 412 12

1
= 212(−12

1
− 2
3
00(1− 1)) ≤ 0.

This is equivalent to

12

1
+
2

3
00(1− 1) ≥ 0⇔ 1

3

0(1− 1) + 

1 + 2
− 12

1 + 2
+
2

3
00(1− 1) ≥ 0 (52)

⇔
1
2
12

1 + 2
− 12

1 + 2
+
2

3
00(1− 1) ≥ 0⇔ 00(1− 1) ≥ 3

4

12

(1 + 2)
,

which shows that 00(1− 1)  0 is a necessary but not a sufficient condition for an

interior decision.

Proof of Proposition 9 We proceed in two stages. First, we argue that at

least one firm chooses the most niche design, and then we show that this must be

the one with higher marginal cost.

Suppose, for contradiction, that both firms choose designs 1 

2 that are either

interior or broad. Then, (23) states that 0(1 − 1) +  ≤ 3
2
12. Similarly, the

first-order condition for Firm 2 requires that 0(1− 2)+ ≤ 3
2
(−12). Summing

these, we obtain 0(1− 1) + 0(1− 2) + 2 ≤ 3
2
 or 0(1− 1) + 0(1− 2) ≤ −

2
.

Since 0  0, this provides a contradiction.
Next, suppose that 1 ∈ [0 1), then, 0(1−1)+ ≤ 3

2
12. Since 

0(1−1)  0,
it follows that 3

2
12  . Substituting for optimal prices in (19) and rearranging

this last inequality, we obtain: 2 −1  1 + (1− 1)− (1− 2). Now, from

the first half of the proof, if 1 ∈ [0 1) then, necessarily, 2 = 1, and since  is

an increasing function (1 − 1)  (1 − 2) = (0), this, in turn, implies that

2 −1  1  0, which completes the proof.

Proof of Proposition 10 Following Proposition 9, the firm with a higher

marginal cost necessarily chooses the most extreme niche design. Thus without

loss of generality, suppose that 1  2 and that 

1 = 1, and consider

2
2

for

an interior design. Substituting for optimal prices and setting 1 = 1 allows us to

write Firm 2’s profit function as

Π2 =
2

9

¡
(0)− (1− 2)−2 +1 + 2 + 2

¢2
1 + 2

. (53)
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The second-order condition can be shown to be equivalent to

( + 0(1− 2))
2  00(1− 2). (54)

The first-order condition is equivalent to (0) − (1 − 2) −2 +1 − 2 =

2(1 + 2)
0(1 − 2). Taking the total derivative of this expression with respect to

2, we obtain that
2
2

(2(1 + 2)
00(1 − 2) − 0(1 − 2) − ) = 1. It follows that

2
2

 0 as long as

2(1 + 2)
00(1− 2)  0(1− 2) + . (55)

Following (54), 2(1 + 2)
00(1− 2)  2(1 + 2)( + 0(1− 2))

2, so that the above

expression is implied by 2(1+2)(+
0(1−2))2  0(1−2)+, which is necessarily

true since 0  0 and 2 ≥ 0.
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