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ABSTRACT. The Ising antiferromagnet is an important statistical physics model with close connections to the MAX

CUT problem. Combining spatial mixing arguments with the method of moments and the interpolation method,
we pinpoint the replica symmetry breaking phase transition predicted by physicists. Additionally, we rigorously es-
tablish upper bounds on the MAX CUT of random regular graphs predicted by Zdeborová and Boettcher [Journal of
Statistical Mechanics 2010]. As an application we prove that the information-theoretic threshold of the disassorta-
tive stochastic block model on random regular graphs coincides with the Kesten-Stigum bound. MSc: 05C80.

1. INTRODUCTION

1.1. Motivation. The Ising model is to statistical physics what the k-SAT problem is to computer science or the
Ramsey problem to combinatorics: it serves as a benchmark for new techniques to prove their mettle. Devised
by Lenz in the 1920s to explain magnetism, the Ising model can be defined on an arbitrary graph G . Think of
the vertices of G as iron atoms that each carry one of two possible magnetic spins, ±1. With the topology of
interactions defined by the edges of G , the Hamiltonian HG (the ‘energy’ function) maps a spin configuration
σ ∈ {±1}V to the number of edges of G that link two vertices with the same spin, i.e.,

HG (σ) = ∑
{v,w}∈E

1+σvσw

2
. (1.1)

Together with a real parameter β the Hamiltonian induces a probability distribution µG ,β on the set of spin
configurations via

µG ,β(σ) = exp(−βHG (σ))

ZG ,β
(σ ∈ {±1}V ) where ZG ,β = ∑

τ∈{±1}V

exp(−βHG (τ)). (1.2)

This probability measure is called the Boltzmann distribution. The normalising term ZG ,β is known as the par-
tition function. If β> 0, then µG ,β favours spin configurations σ with a small number of edges joining vertices
with the same spin; this case is known as the antiferromagnetic Ising model. By contrast, in the ferromagnetic
case β< 0 configurations with many aligned spins receive a boost.

Both variants of the Ising model are of keen interest in physics and the literature on each, rigorous as well
as non-rigorous, is vast [31, 38]. But the antiferromagnetic Ising model appears to be more challenging. Ac-
cording to physics lore this is because its Boltzmann distribution is prone to a complicated type of long-range
correlation known as ‘replica symmetry breaking’. Another way to see the challenge is that from the partition
function we could solve the NP-complete problem MAX CUT: as β increases the mass of the Boltzmann dis-
tribution shifts to spin configurations with more edges joining vertices with opposite spins. Ultimately the
measure concentrates on the maximum cuts of the graph G , and it is well known (and easy to check) that

MAXCUT(G) = dn

2
+ lim

β→∞
∂

∂β
log ZG ,β. (1.3)

We study the Ising antiferromagnet on the random d-regular graph G = G(n,d). From a statistical physics
perspective, this example has been suggested as one of the simplest models where replica symmetry breaking
is expected to occur. Fond of lattice-like geometries, physicists favour the random regular graph, which con-
verges to the d-regular tree in the Benjamini-Schramm topology, over the Erdős-Rényi model. In particular,
regularity greatly simplifies the physics ‘cavity equations’ that Zdeborová and Boettcher [64] employed to put
forward a beautiful, well-known conjecture about MAX CUT on random regular graphs. From a combinatorics
perspective, the random regular graph provides a neat but notoriously challenging model for MAX CUT, both
structurally (determining the fraction of edges it should be possible to cut, asymptotically almost surely) and
algorithmically (finding algorithms that give large cuts in such graphs). The problem has received a great deal
of attention in the combinatorics community, e.g. [19, 20, 27, 28, 39, 40, 62]. Additionally, the Ising model is
intimately related to the regular version of the disassortative stochastic block model [17], a prominent case
study in Bayesian inference.
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In the remainder of Section 1 we state the main results of the paper precisely. In Section 2 we outline the
proof strategy, and in Section 3 we discuss the advances over earlier work. Details of the proofs of Theorem 1.1,
Theorem 1.2, and Corollary 1.3 are given respectively in Sections 4, 5, and 6.

1.2. Replica symmetry breaking. The key quantity associated with the Ising model on G is the partition func-
tion ZG,β. This is because various combinatorially meaningful observables derive from the partition function
via differentiation; see, for example, (1.3). Because ZG,β scales exponentially in n, it is common to consider
the normalised logarithm n−1 log ZG,β, known as the free energy. Routine arguments show that this random
variable concentrates about its mean. Hence, we are led to investigate the function

Φd : β ∈ (0,∞) 7→ lim
n→∞

1

n
E
[
log ZG,β

]
; (1.4)

the limit is known to exist for all d ≥ 3,β > 0 [8]. In particular, for a fixed d ≥ 3 the singularities β of Φd (the
points at which Φd cannot be expanded to an absolutely convergent power series) are called the phase tran-
sitions of the Ising model. Hence, from a mathematical physics point of view computing Φd and pinpointing
the phase transitions is the key challenge associated with the model.

Jensen’s inequality immediately yields the inequality

Φd (β) ≤ lim
n→∞

1

n
logE

[
ZG,β

]= log2+ d

2
log

1+e−β

2
, (1.5)

where the equality is taken from the (easy) calculation of E[ZG,β] as (2.10) in Lemma 2.1. A tempting first guess
might be that (1.5) is generally tight. Combinatorially this would indicate that the Boltzmann distribution µG,β

is free from long-range correlations. To see this, consider the experiment of removing a single random edge
e = {v, w} fromG. Because short cycles are scarce, w.h.p. the vertices v, w have distanceΩ(logn) inG−e. Hence,
in the absence of long-range correlations, in a sample σ from the Boltzmann distribution of G− e, the spins
σv ,σw should be asymptotically independent, i.e., P[σv =σw | G,e] = 1/2+o(1). Therefore, adding e back in
should change the partition function by

log
ZG,β

ZG−e,β
= log

(
1− (1−e−β)P[σv =σw |G,e]

)
∼ log

1+e−β

2
.

Removing a random edge dn/2 times until all the edges are gone and observing that the partition function of
the empty graph equals 2n , we would thus obtain equality in (1.5). However, the following theorem shows that
(1.5) is tight only for β up to an explicit threshold β∗.

Theorem 1.1. For any d ≥ 3 let

β∗(d) = log

(p
d −1+1p
d −1−1

)
. (1.6)

(i) If β≤β∗(d), then

Φd (β) = log2+ d

2
log

1+e−β

2
.

(ii) If β>β∗(d), then

Φd (β) < log2+ d

2
log

1+e−β

2
.

Because the function β 7→ log2+ d
2 log 1+e−β

2 is analytic, Theorem 1.1 implies that Φd (β) is non-analytic at
the point β=β∗. Hence, there occurs a phase transition at β∗ that separates a regime where ZG,β concentrates
about its mean from a regime where the mean is driven up by rare events. In physics jargon this phase tran-
sition is called the replica symmetry breaking transition. The value β∗ has a special combinatorial meaning:
it is the reconstruction threshold for a broadcasting process first studied by Kesten and Stigum [41], and is
thus known as the ‘Kesten-Stigum bound’. Thus, Theorem 1.1 shows that the replica symmetry breaking phase
transition in the Ising antiferromagnet on G occurs precisely at the Kesten-Stigum bound.

1.3. Bounding MAX CUT. Theorem 1.1 does not provide a simple expression for Φd (β) for β > β∗. Indeed,
such a simple expression may not exist. This is because according to physics predictions the value Φd (β)
for β > β∗ results from a complicated variational problem over an infinite-dimensional space of probability
measures that meticulously characterises the long-range correlations of the Boltzmann distribution [16].
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Yet in the limit β→∞ it is possible to derive an explicit upper bound on the value of Φd (β). To state this
bound consider the following right stochastic band matrix M of size (d +1)× (d +1):

M =



0 1 0 · · · · · · · · · 0

1
2 0 1

2

. . .
...

0 1
2 0 1

2

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . 1

2 0 1
2

0 · · · · · · · · · 0 1 0


. (1.7)

Moreover, let

Fd (α, z) =− log
(
ζA dξ

)
log z

+ d log
(
1−2α2 +2α2z

)
2log z

, where (1.8)

A = (1−2α)id+2α
p

zM , (1.9)

ζ= [
1, 0, 0, · · · ] ∈R1×(d+1), (1.10)

ξ= [
1, z−1/2, z−1, z−3/2, · · ·]T ∈R(d+1)×1. (1.11)

Theorem 1.2. For any d ≥ 3 we have

lim
β→∞

β−1Φd (β) ≤ inf
0<α≤1/2

0<z<1

Fd (α, z).

Since (1.3) shows that the MAX CUT problem is tied to Φd (β) for large β, we can use Theorem 1.2 to derive
upper bounds on the maximum cut size of the random regular graph.

Corollary 1.3. Let MAXCUT(G) be the number of edges cut by a maximum cut of G. Then, w.h.p.,

MAXCUT(G) ≤ dn

2
inf

0<α<1/2
0<z<1

(
1+ 2

d
Fd (α, z)

)
+o(n). (1.12)

Zdeborová and Boettcher [64] conjectured that the expected maximum cut size in a random regular graph
is upper bounded by the solution to the one-step replica-symmetry breaking equations upon taking the limit
β→∞ and provided numerical estimates of the resulting cut size. Corollary 1.3 matches their numbers. To
elaborate, Zdeborová and Boettcher combine the generic “1RSB ansatz”, which ultimately takes the form of
a variational problem on an infinite-dimensional space of probability measures, with a numerical heuristic
called “extremal optimization” to obtain numerical predictions. Using the interpolation method, we prove that
the variational problem does indeed yield a valid upper bound. More importantly, we go on to observe that
the infinite-dimensional variational problem actually just encodes a random walk problem that boils down to
the one-dimensional optimization task (1.12). Thus, we derive a manageable analytic formula to go with the
numerical predictions from [64].

Table 1 displays the upper bounds from Corollary 1.3 for d = 3, . . . ,10. For comparison the table also con-
tains the previous best rigorous upper bounds we are aware of, and the best rigorous lower bounds. Upper
bounds appear to have received little attention. For d > 3 the upper bounds shown come from straightforward
application of the first moment method, counting cuts of the given size; this can be done either by standard
counting arguments or using [13, Corollary 2.8], in either case followed by a small numerical computation. For
d = 3 better upper bounds come from the first moment method but restricting to cuts satisfying some local
maximality conditions; the bound shown is from [62]. The lower bounds result from analyses of algorithms,
and are from [32] via [21] for d = 3, [27] for d = 4 and [28] for d > 4.

The article of Zdeborová and Boettcher contains a second, more prominent conjecture that ties together the
MIN BISECTION and MAX CUT problems on random regular graphs, namely that the two cases result w.h.p. in
asymptotically equal numbers of edges ‘dissatisfied’ (respectively, cut and not cut). Unfortunately the methods
of the present work do not appear to shed light on this question.

However, the work does shed light on a different question of interest: as an application of Theorem 1.1 we
can calculate the information-theoretic threshold of the disassortative stochastic block model.
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d 3 4 5 6 7 8 9 10
best previous upper bound 0.9320 0.8900 0.8539 0.8260 0.8038 0.7855 0.7701 0.7570
Corollary 1.3 upper bound 0.9241 0.8683 0.8350 0.8049 0.7851 0.7659 0.7523 0.7388

best lower bound 0.9067 0.8333 0.7989 0.7775 0.7571 0.7404 0.7263 0.7144
expected cut size at β∗ 0.8536 0.7887 0.7500 0.7236 0.7041 0.6890 0.6768 0.6667

expected cut size at Gibbs uniqueness 0.7500 0.6667 0.6250 0.6000 0.5833 0.5714 0.5625 0.5556

TABLE 1. Bounds on the fraction of edges in a maximum cut of G(n,d).

1.4. The stochastic block model. Over the past decade the stochastic block model has become a prominent
benchmark for Bayesian inference as well as graph clustering. The impressive literature on the model is sur-
veyed in [2, 50]. Like the Ising model, the stochastic block model comes in two variants. In the assortative
version edges are more likely join vertices with the same spin while in the disassortative model edges are more
likely to occur between vertices with opposite spins. Thus, the disassortative variant resembles the Ising anti-
ferromagnet.

Formally the d-regular disassortative stochastic block model is defined by way of the following experiment.
Let Vn = {v1, . . . , vn} be a set of n vertices. In a first step we draw a spin assignment σ∗ ∈ {±1}Vn uniformly at
random. Subsequently we draw a d-regular graph G∗ =G∗(σ∗) from the distribution

P
[
G∗ =G |σ∗]∝ exp(−βHG (σ∗)). (1.13)

Thus, the probability that a given d-regular graph G comes up is proportional to the Boltzmann weight exp(−βHG (σ∗))
of the ‘ground truth’ σ∗.

The obvious question is whether the bias introduced by (1.13) has a discernible impact on the distribution
of the graph. In other words, is it possible to tell G∗ apart from the ‘null model’ G? To formalise this we use the
Kullback-Leibler divergence of G∗ from G,

DKL
(
G∗∥G)=∑

G
P

[
G∗ =G

]
log

P [G∗ =G]

P [G=G]
.

The Kullback-Leibler divergence is an information-theoretic potential that gauges the difference between ran-
dom objects. Specifically, if DKL (G∗∥G) = o(n) then extensive observables such as the maximum cut value or
the logarithm of the partition function in the two random graph models are asymptotically equal [46]. By con-
trast, if DKL (G∗∥G) =Ω(n), then one can tell the two random graph models apart by calculating the partition
function [18]. In particular, in the latter case there exists a (not necessarily efficient) algorithm A that given a
graph G outputs A(G) ∈ {0,1} such that

lim
n→∞P [A(G) = 0] = lim

n→∞P
[
A(G∗) = 1

]= 1. (1.14)

Hence, A, the essence of which is calculating the partition function, distinguishes the stochastic block model
from the null model with high probability.

Theorem 1.4. For any d ≥ 3 the following are true.

(i) If β≤β∗(d), then limn→∞ DKL (G∗∥G)/n = 0 and limn→∞ DKL (G∥G∗)/n = 0.
(ii) If β>β∗(d), then limn→∞ DKL (G∗∥G)/n > 0 and limn→∞ DKL (G∥G∗)/n > 0.

By definition, then, β∗ is the information-theoretic threshold for weak recovery of the stochastic block
model.

2. TECHNIQUES

This section contains a survey of the proofs of the main results and the techniques they are based on. We begin
with the proof of the first part of Theorem 1.1, which combines moment computations with a spatial mixing
argument. To motivate this combination we first discuss the Erdős-Rényi case, in which a straightforward
moment calculation does the trick. Subsequently we discuss the proof of the second part of Theorem 1.1,
which relies on the connection between the Ising model and the stochastic block model. This connection
also shows how Theorem 1.4 follows from Theorem 1.1. The final subsection then deals with the the proof of
Theorem 1.2, based on the interpolation method.
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2.1. The second moment method. To get started, we will compute the typical value of the Ising partition
function using the method of moments for the Erdős-Rényi model. To this end, we reproduce the calculation
by Mossel, Neeman and Sly [51] for the Erdős-Rényi model GER where m = dn/2 edges are drawn uniformly at
random. (We skip their supplementing of the second moment method with small subgraph conditioning for
increased precision.) We will show why this does not directly extend to the random regular model.

For the first moment we simply obtain

E
[

ZGER,β
]= ∑

σ∈{±1}Vn

E
[
exp(−βHGER (σ))

]= ∑
σ∈{±1}Vn

(
1− 1−e−β

n2

n∑
i , j=1

1{σvi =σv j }

)m+o(n)

. (2.1)

The second equality holds because the edges of GER are asymptotically independent. A moment’s reflection
reveals that the expression in the braces is maximised byσ such that

∑
i σvi = o(n). Combinatorially this means

that σ corresponds to an approximately balanced cut. Since there are 2n+o(n) such σ, (2.1) yields

E
[

ZGER,β
]= 2n+o(n)

(
1+e−β

2

)dn/2

= exp

(
n

((
1− d

2

)
log(2)+ d

2
log(1+e−β)+o(1)

))
. (2.2)

Calculating the second moment is similarly straightforward. Indeed, we obtain

E
[

Z 2
GER,β

]
= ∑

σ,σ′∈{±1}Vn

E
[
exp(−βHGER (σ)−βHGER (σ′))

]
(2.3)

= ∑
σ,σ′

(
1− 1

n2

n∑
i , j=1

(
1−e−β

)(
1{σvi =σv j }+1{σ′

vi
=σ′

v j
}
)
−

(
1−e−β

)2
1{σvi =σv j ∧σ′

vi
=σ′

v j
}

)m+o(n)

.

As in the first moment calculation it is easy to see that asymptotically balanced σ,σ′ dominate. Moreover,
rearranging the sum according to the inner product a =σ ·σ′, we obtain

E
[

Z 2
GER,β

]
=

n∑
a=−n

(
n

(n −a)/4,(n −a)/4,(n +a)/4,(n +a)/4

)(
(1+e−β)2

4
+

( a

n

)2 (1−e−β)2

4

)m+o(n)

. (2.4)

Introducing α = a/n and the entropy function H(p) = −p log p − (1−p) log(1−p) for 0 < p < 1, we can apply
Stirling’s formula to simplify (2.4) to

E
[

Z 2
GER,β

]
= exp

(
n max−1<α<1

fd (α,β)+o(n)

)
, where (2.5)

fd (α,β) = (1−d) log(2)+H((1+α)/2)+ d

2
log

(
(1+e−β)2 +α2(1−e−β)2

)
. (2.6)

Substituting α= 0 into (2.6) yields

fd (0,β) = (2−d) log(2)+d log
(
1+e−β

)
(2.7)

which is twice the exponent from (2.2). Hence, if fd (α,β) attains its maximum at α = 0, then (2.1) and (2.5)
show that E[Z 2

GER,β]/E[ZGER,β]2 = exp(o(n)). Routine concentration arguments (see e.g. [15]) therefore apply

and show that ZGER,β concentrates about its expectation. In particular, we obtain

lim
n→∞

1

n
E
[
log ZGER,β

]= lim
n→∞

1

n
logE

[
ZGER,β

]= log2+ d

2
log

1+e−β

2
if max−1<α<1

fd (α,β) = fd (0,β). (2.8)

By contrast, if the maximum in (2.5) is attained at α ̸= 0, then the second moment exceeds the square of the
first moment exponentially. Hence, the moment method succeeds iff fd (α,β) attains its maximum at α= 0.

Whether or not this is the case depends on the value of β. Specifically, for a given d ≥ 3 the function fd (α,β)
is maximised at α= 0, and (2.8) is satisfied, if

β≤β†(d) = log

p
d +1p
d −1

;

as mentioned above, this discovery belongs to Mossel, Neeman and Sly [51]. Note that β∗(d) = β†(d − 1) >
β†(d). Conversely, results from [5, 51] imply that

lim
n→∞

1

n
E
[
log ZGER,β

]< log2+ d

2
log

1+e−β

2
for β>β†(d). (2.9)

Hence, β†(d) marks the replica symmetry breaking threshold for the Ising model on the Erdős-Rényi graph.
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FIGURE 1. The function fd (α,β) for d = 3 and β = 1.25 (left), β = 1.32 (middle) and β = 1.40
(right). For d = 3, we have β† ≈ 1.32 and β∗ ≈ 1.76.

To what extent do these considerations carry over to the random regular graph G(n,d)? The following
lemma shows that the first moment for random regular graphs is about the same as in the Erdős-Rényi case;
the calculations, given in [51], are similar to those above.

Lemma 2.1. For any d ≥ 3,β> 0 we have

E[ZG,β] =Θ

(
2n

(
1+eβ

2

)dn/2)
. (2.10)

For the second moment, the expression from (2.5) for the Erdős-Rényi model carries over to the random
regular graph and yields the upper bound

E
[

Z 2
G(n,d),β

]
≤ exp

(
n max−1<α<1

fd (α,β)+o(n)

)
. (2.11)

The fact that the bound extends to random regular graphs may not appear entirely immediate; the analytic ex-
planation derives from the convexity of the Kullback-Leibler divergence [1, 13]. A similar trick has been applied
with some success to various random regular graph problems, notably graph colouring [1]. Unfortunately, in
our case the second moment trick only yields the desired solution for β<β†(d), while Theorem 1.1 requires it
for all β<β∗(d). Indeed, for β>β†(d) the trick fails in a rather spectacular way: once β crosses above β†(d) the
value α= 0 turns from a global maximum of the function fd (α,β) into a local minimum! Figure 1 provides an
illustration. Thus, we have to turn to other means to establish the first part of Theorem 1.1, which we explore
next.

2.2. Broadcasting and non-reconstruction. Our approach towards proving the first part of Theorem 1.1 relies
on combining spatial mixing arguments with the method of moments. To be precise, we will exhibit an event
O such that for all β<β∗(d),

E
[

ZG(n,d),β1 {O }
]=Θ(E

[
ZG(n,d),β

]
) =Θ

(
2n

(
1+e−β

2

)dn/2)
, E

[
Z 2
G(n,d),β1 {O }

]
= 4n+o(n)

(
1+e−β

2

)dn

. (2.12)

Together with routine concentration arguments (2.12) will imply the first part of Theorem 1.1.
To elaborate, the event O concerns the relative location of two typical samples from the Boltzmann distri-

bution. Hence, for a graph G let σG ,σ′
G denote two independent samples from µG ,β. Then for a sequence

εn = o(1) that tends to zero slowly enough (and that we will specify precisely in due course) we let

O = {
E
[|σG ·σ′

G| |G
]< εnn

}
. (2.13)

Thus, O is the event that two typical samples from the Boltzmann distribution are nearly orthogonal. Since the
combinatorial interpretation of α in (2.11) is to pinpoint the value of the inner product of spin configurations
that renders the largest contribution, one might reasonably hope that conditioning on O will eliminate the
need for taking values α ̸= 0 into consideration. Indeed, the proof of the second part of (2.12) will be relatively
straightforward. Unfortunately, it turns out that the same cannot quite be said of the proof of the first part.

Proposition 2.2. The event O from (2.13) satisfies (2.12) for all d ≥ 3, β≤β∗(d).

The proof of Proposition 2.2 uses two tools: the stochastic block model G∗ from (1.13) and the analysis of
a broadcasting process on the infinite d-regular tree from [10]. Specifically, the stochastic block model will
help to derive the first part of (2.12). Indeed, the definition (1.13) suggests that the probability that G∗ =G for
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a given graph G should be roughly proportional to the partition function ZG ,β (see e.g. [18]). This is because
G has a chance proportional to

∑
σ∈{±1}Vn

(
exp(−βHG (σ))/

∑
G exp(−βHG (σ))

)
, and if the denominators were

the same over all σ, this would be proportional to ZG ,β =∑
σ exp(−βHG (σ)). By symmetry each denominator

depends only on the magnetisation of σ (the sum of its entries), and summands with magnetisation near 0 are
far more frequent, so it is reasonable to hope that they dominate the sum. Capitalising on this intuition, the
following lemma shows that we can make use of G∗ to establish the first part of (2.12).

Lemma 2.3. Let d ≥ 3,β> 0. If P [G∗ ∈O ] ∼ 1, then E
[

ZG,β1 {O }
]=Θ

(
E
[

ZG,β
])

.

To show that P [G∗ ∈O ] ∼ 1 we will couple the planted model G∗ with a broadcasting process on the infinite
(d −1)-ary tree Td−1. Let u0 signify the (degree-d) root of Td−1. Proceeding down the tree, the broadcasting
process constructs an assignment τ ∈ {±1}V (Td−1) as follows. Initially we choose τu0 ∈ {±1} uniformly at ran-
dom. Subsequently, having defined τu for all u at distance at most ℓ from u0 already, we define the value τw

of a child w of such a vertex u by letting

P [τw =τu |τu] = e−β/(1+e−β). (2.14)

In words, w retains the spin of its parent with probability e−β/(1+e−β), and is assigned the opposite spin with
the remaining probability 1/(1+e−β). Let Tℓ denote the σ-algebra generated by the spins τu of all vertices u at
distance greater than ℓ from u0. The following result shows that the spin τv0 decorrelates from Tℓ in the limit
of large ℓ if β<β∗(d). In other words, the broadcasting process ‘forgets’ the spin of the root, a property known
as non-reconstruction [10].

Lemma 2.4 ([10]). Let d ≥ 3 and β<β∗(d). Then

lim
ℓ→∞

E

∣∣∣∣P[
τv0 = 1 |Tℓ

]− 1

2

∣∣∣∣= 0. (2.15)

As an aside, β∗(d) actually is the sharp non-reconstruction threshold [37]. Thus, (2.15) ceases to hold for
β>β∗(d).

Equipped with Lemma 2.4 the proof of the condition E
[

ZG,β1 {O }
] ∼ E

[
ZG,β

]
proceeds as follows. For a

typical vertex of G∗, say v1, we couple the spins that the planted configuration σ∗ assigns to vertices in the
ℓ-ball around v1 with the broadcasting process. This coupling is based on the fact that the random regular
graph G∗ converges to the d-regular tree in the Benjamini-Schramm topology. Then we re-sample the spins
inside the ℓ-ball given the spins assigned to all the vertices at distance greater than ℓ from v1 according to the
Boltzmann distribution µG∗,β. Let σ∗∗ denote the resulting spin configuration. Lemma 2.4 will enable us to
conclude that the re-sampled spin σ∗∗

v1
is asymptotically independent from the original spin σ∗

v1
. Finally, we

will show that both σ∗ and σ∗∗ are distributed approximately as two samples from the Boltzmann distribution
µG∗,β, thereby deriving the following.

Lemma 2.5. Let d ≥ 3 and β<β∗(d). Then P [G∗ ∈O ] ∼ 1.

As shown in Section 4, Proposition 2.2 will be an easy consequence of Lemma 2.3 and Lemma 2.5, proved
respectively in Sections 4.2 and 4.3. Moreover, the first part of Theorem 1.1 follows from Proposition 2.2 and a
few lines of calculations; this is shown just below.

The above argument highlights the difference between the Erdős-Rényi graph and the random regular graph
and the reason why we have the strict inequality β†(d) < β∗(d) for all d ≥ 3. Indeed, in the d-regular tree, to
which the random regular graph converges locally, every vertex has d−1 children. By contrast, the Erdős-Rényi
graph of average degree d converges locally to a Galton-Watson tree with offspring distribution Po(d). Hence,
the average number of children has mean d rather than d −1. The effect is that the broadcasting process on
the Galton-Watson tree is able to remember the spin of the root for smaller values of β than in the regular case.
Therefore, it is natural to expect that on the Erdős-Rényi graph long-range correlations emerge for smaller β.

Proof of Theorem 1.1, part 1. First, we argue by Azuma’s inequality that for any d ≥ 3 and β > 0, log ZG,β is
concentrated about E[log ZG,β]. As is standard, construct G using dn/2 independent random variables Xi each
giving the matching of the next point in the configuration model. Compare this to a uniform random reference
matching. If Xi matches a point A to B but the reference matching matched A to C ̸= B and B to D , update
the reference by matching A to B and C to D . The reference copy has two edges added and two deleted, and
with Xi uniformly random the reference remains uniformly random, so Xi changes the expectation of log ZG,β

conditioned on X1, . . . , Xi by at most 2β. Azuma’s inequality yields

P
[∣∣log ZG,β−E[log ZG,β]

∣∣> t
]≤ 2exp

(
− t 2

4β2dn

)
(t > 0). (2.16)
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For β < β∗(d), Proposition 2.2 gives E[ZG,β] = Θ(E[ZG,β1{O }]) while trivially E[Z 2
G,β] ≥ E[Z 2

G,β1{O }], so from

the Paley-Zygmund inequality,

P

[
ZG,β ≥ 1

2
E[ZG,β]

]
≥ 1

4

E[ZG,β]2

E[Z 2
G,β]

=Ω(1)
E[ZG,β1{O }]2

E[Z 2
G,β1{O }]

=Ω(exp(−o(n))), (2.17)

the last inequality again from Proposition 2.2. Thus, P
[
log ZG,β ≥ logE[ZG,β]−2

] = Ω(exp(−o(n))). For any
ε> 0, were there arbitrarily large n for which logE[ZG,β] > E[log ZG,β]+εn this would contradict the result from
Azuma. But by Jensen’s inequality logE[ZG,β] ≥ E[log ZG,β], so E[log ZG,β] = logE[ZG,β]+o(n). Taking the value
of logE[ZG,β] from Lemma 2.1 (or Proposition 2.2) establishes the desired identity

Φd (β) = log2+ d

2
log

1+e−β

2
(2.18)

for β<β∗(d). Finally, because the function Φd (β) is continuous in β, 2.18 extends to β=β∗(d) as well.
□

2.3. The Bethe free energy. In the next step we prove the the second statement of Theorem 1.1. As discussed
earlier, the probability that a given graph G comes up as the result G∗ of the stochastic block model is (nearly)
proportional to the partition function ZG ,β. Therefore, if the partition function ZG,β is tightly concentrated
about its mean E[ZG,β], then we might expect that the distribution of G∗ and of the plain random d-regular
graph are ‘close’. By contrast, if ZG,β is not concentrated but prone to a lottery phenomenon where a few un-
likely outcomes render a disproportionate contribution to E[ZG,β], then we should expect that this discrepancy
is exacerbated upon passing to size-biased model G∗ as outliers receive an extra boost. The following lemma
formalises this intuition. It replaces the vague ‘concentration’ phrasing with asymptotic equality of E

[
log ZG,β

]
and logE

[
ZG,β

]
, and the equivalent for G∗, with logE

[
ZG,β

]
known from (2.10); this equality certainly follows

from sufficient concentration, while without concentration the equality would be an odd coincidence.

Lemma 2.6 ([17, Lemma 4.4]). Let d ≥ 3 and β> 0. We have Φd (β) = log2+ d
2 log 1+e−β

2 if and only if

lim
n→∞

1

n
E
[
log ZG∗,β

]= log2+ d

2
log

1+e−β

2
. (2.19)

By the first part of Theorem 1.1 the lemma’s hypothesis holds for β < β∗(d). To prove the second part of
Theorem 1.1 we will show that the conclusion (and thus the hypothesis) is violated if β>β∗(d). As a stepping
stone we use a variational formula for E[log ZG∗,β] from [17]. Let P∗([−1,1]) be the space of all probability
measures on the interval [−1,1] with mean zero. Moreover, for a given such probability measure π let (µπ,i )i≥1

be a family of independent samples from π and let Λ(x) = x log x. The expression

BIsing(π,β,d) = E

[
Λ

(∑
σ∈{±1}

∏d
i=1 1− (1−e−β)(1+σµπ,i )/2

)
21−d (1+e−β)d

− dΛ
(
1− (1−e−β)(1+µπ,1µπ,2)/2

)
1+e−β

]
(2.20)

is called the Bethe free energy.

Lemma 2.7 ([17, Theorem 2.3]). For any β> 0 and any d ≥ 3, we have

lim
n→∞

1

n
E[log ZG∗,β] = sup

π∈P∗([−1,1])
BIsing(π,β,d).

Combining Lemmas 2.6 and 2.7, we see that the second part of Theorem 1.1 boils down to showing that

sup
π∈P∗({±1})

BIsing(π,β,d) > log2+ d

2
log

1+e−β

2
for β>β∗(d). (2.21)

Luckily, the variational formula (2.21) asks to take a supremum over distributions π. Therefore, it suffices to
point to a specific distribution π such that BIsing(π,β,d) exceeds the first moment bound. Specifically, for a
small ε> 0 let us introduce

π∗
ε = 1

2
(δ2ε+δ−2ε) (2.22)

where δz is the point mass on z. The underlying idea behind π∗
ε is to perform a Taylor expansion around the

uniform distribution. The same strategy has been successfully applied, among others, in [14]. It is easy to
see that for ε= 0 we precisely obtain BIsing(π∗

0 ,β,d) = log(2)+d log((1+e−β)/2)/2. The following proposition
shows that for β>β∗(d) small ε> 0 yield a slightly but strictly larger value.
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Proposition 2.8. For any β>β∗(d) there exists ε> 0 such that

BIsing(π∗
ε ,β,d) > log2+ d

2
log

1+e−β

2
.

Proof of Theorem 1.1, part 2. This follows directly from Lemma 2.7 and Proposition 2.8. □

Proof of Theorem 1.4. The theorem follows from Theorem 1.1, Theorem 17.1 in [17] and the fact that the dis-
assortative stochastic block model with two communities is the planted Ising antiferromagnet. □

2.4. The interpolation method. With Theorem 1.1 in place, let us consider the case that β→∞ which eventu-
ally allows us to derive improved upper bounds on the expected maximum cut size of random regular graphs.
Unfortunately, the stochastic dependencies between vertex spins make it difficult to get a handle on a simple
expression like we had for β<β∗(d) where we simply obtained the first moment bound. Apart from the obvi-
ous short-range dependencies that, for example, induce adjacent vertices to prefer opposite spins, we expect
long-range dependencies to occur above the Kesten-Stigum bound. Thus, for β > β∗(d) the spin of a vertex
impacts those of distant vertices.

The ‘1-step replica symmetry breaking ansatz’ from physics attempts to describe these long-range depen-
dencies by means of an additional hidden variable [43, 47]. The basic hypothesis is that for β > β∗(d) the
phase space, i.e., the set {±1}Vn of all possible spin configurations, decomposes into a number S1, . . . ,Sℓ of
‘pure states’ w.h.p. Mathematically S1, . . . ,Sℓ are pairwise disjoint subsets of {±1}Vn such that µG,β(S1)+ ·· · +
µG.β(Sℓ) ∼ 1. Thus, the sets cover nearly the entire support of the Boltzmann distribution. Furthermore, once
we condition on a pure state Sh , long-range effects disappear; formally,

E

∣∣∣∣∣ ℓ∑
h=1

µG,β(Sh)
(
P

[
σG,v1 = s,σG,v2 = s′ |G,σG ∈ Sh

]−P
[
σG,v1 = s |G,σG ∈ Sh

]
P

[
σG,v2 = s′ |G,σG ∈ Sh

])∣∣∣∣∣= o(1).

Hence, long-range correlations of the unconditional measure µG,β arise because the spin σG,v1 of a vertex
hints at the pure state Sh to which σG belongs, which in turn skews our expectations as to the other spins. The
existence of such a pure state decomposition has been established rigorously [16].

How does this picture help to estimate the partition function ZG,β? The basic idea behind the interpolation
method is to set up an synthetic model of a spin system that exhibits precisely the long-range dependencies
predicted by the 1-step rsb ansatz, and no others. Mathematically this model is represented by a factor graph
(or a Markov random field); see the left panel of Figure 2. The factor graph contains variable nodes (the white
circles) that represent the vertices of our graph. Each of these variable nodes is connected to an external field
(the blue box) that is meant to represent the impact of the short-range dependencies imposed by one of the
incident edges of the corresponding vertex of G. But instead of the complicated direct interactions between
the vertices through actual edges as in the original random graph G, the variable nodes only interact with each
other through the yellow node. This node represents the hidden variable postulated by the 1-step rsb ansatz,
i.e., the index of the pure state. Finally, the red boxes are ‘negative edges’. They are necessary because the
variable nodes do not interact directly. In effect, the number of blue nodes is twice the number of edges of the
actual graph G, and thus we have to compensate for the impact of dn/2 spare blue boxes.

The cunning idea behind the interpolation method is to build a family of factor graph models parametrised
by time t ∈ [0,1]. The interpolation scheme starts from the artificial factor graph model at time t = 0. At each
intermediate time step t ∈ (0,1) the model blends the synthetic t = 0 case and the actual Ising model on G.
Ultimately at time t = 1 all the synthetic ingredients (the blue and red boxes) disappeared and we are left with
just the Ising antiferromagnet on G. Remarkably, it is possible to prove that the partition function decreases
monotonically in terms of t . As a consequence, the partition function of the synthetic model upper bounds
that of the Ising model on G. Fortunately we do not need to carry out the interpolation method in full. The
result that we need follows from a more general version of the interpolation bound derived in [61].

To state the resulting upper bound precisely, fix any probability measure r on [−1,1]. Let (r i )i≥[d ] be a family
of independent random variables with distribution r; thus, r i ∈ [−1,1] for all i . Further, define

ρi (σ) = 1+σr i

2
(σ=±1).

The idea is that ρ1, . . . ,ρd represent the short-range influences that the neighbours of some vertex, say v1,
exercise on the spin of that vertex within a single pure state. More specifically, think of ρi (s) as the probability
that the i -th neighbour of v1 would take spin s ∈ {±1} if we removed v1 from the random graph. The following
lemma is an immediate consequence of [61, Theorem E.5].
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t = 1t = 0

FIGURE 2. The factor graphs G0 and the original factor graph G1 with n = 4,d = 3.

Lemma 2.9. Let d ≥ 3,β> 0. Then for any y > 0 and any r ∈P ([−1,1]) we have Φd (β) ≤ϕβ,y (r), where

ϕβ,y (r) = 1

y
logE[X y

1 ]− d

2y
logE[X y

2 ], (2.23)

X1 =
∑

τ∈{±1}

d∏
h=1

1− (1−e−β)ρh(τ), X2 = 1− (1−e−β)
∑

τ∈{±1}
ρ1(τ)ρ2(τ).

Clearly, (2.23) is not exactly what we had in mind when aiming for an explicit expression of the upper bound
for Φd (β). However, a key feature of Lemma 2.9 is that the inequality holds for any y,r. We are thus free to
choose these parameters so that we obtain a reasonable expression and, hopefully, at the same time a good
upper bound.

Following physics intuition [47, 48] we define the measure r as follows. Let δx ∈ P ([−1,1]) be the atom on
x ∈ [−1,1]. Then for α ∈ [0,1/2] we let

rα =αδ−1 + (1−2α)δ0 +αδ1 ∈P ([−1,1]). (2.24)

Intuitively, we ‘freeze’ a spin to +1 or −1 with probability α. Otherwise, if the spin does not freeze we leave it
unbiased, i.e., it takes either spin ±1 with equal probability. The rationale behind distribution r is to model
the long-range correlations that emerge under µG,β for β> β∗(d) via the one-step replica-symmetry breaking
ansatz. To this end, δ−1 and δ1 signify that the synthetic hidden variable in the interpolation method impacts
the spin of the respective variable node. Put differently, for α> 0 we explicitly take into account the long-range
correlations postulated by the 1-step rsb ansatz. What does the bound look like in the trivial case α = 0? For
any y > 0 we obtain

Φd (β) ≤ϕβ,y (r0) ≤ 1

y

(
logE[X y

1 ]− d

2
logE[X y

2 ]

)
= 1

y
log

(
2

(
1+e−β

2

)d )y

− d

2y
log

(
1+e−β

2

)y

(2.25)

= log2+ d

2
log

1+e−β

2
. (2.26)

Hence, we simply recover the first moment bound (1.5). However, for large β the strictly positive α render a
better bound. The following proposition simplifies the expression from Theorem 1.2 for large β. Recall F from
(1.8).

The following proposition shows that for the distribution r from (2.24) the function ϕβ,y (r) boils down to a
manageable expression.

Proposition 2.10. Let d ≥ 3,β> 0,0 < z < 1,0 <α< 1/2. Then with y = y(β) =− log(z)/β we have

lim
β→∞

1

βy

(
logE

[
X y

1

]− d

2
logE[X y

2 ]

)
= Fd (α, z).

Proof of Theorem 1.2. The theorem is an immediate consequence of Lemma 2.9 and Proposition 2.10. □

Proof of Corollary 1.3. For any d-regular graph G on n vertices and any β> 0, we have

2

dn
MAXCUT(G) = 1− 2

dn
min

σ∈{±1}n
HG (σ) ≤ 1+ 2

βdn
log Zβ(G).
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Thus by Theorem 1.2, we obtain

limsup
n→∞

2

dn
E[MAXCUT(G)] ≤ 1+ 2

d
lim
β→∞

Φd (β)/β (2.27)

≤ 1+ 2

d
inf

0<α≤1/2
0<z<1

Fd (α, z). (2.28)

The corollary follows. □

2.5. Organisation. Let us outline how the remainder of the paper is organized. Section 4 is devoted to proving
Proposition 2.2, while Section 5 contains the proof of Proposition 2.8. Jointly, the two sections provide the
missing pieces for the proof of Theorem 1.1. Finally, in Section 6 we prove the two key Lemmas 6.1 and 6.2
needed for the proof of Corollary 1.3.

2.6. Notation. We will denote a random d-regular graph on n vertices by G(n,d). When the context is clear,
we will simply write G=G(n,d). We tacitly assume that dn is even. Throughout the paper we will use standard
Landau notation with the usual symbols o(·),O(·),Θ(·),ω(·) and Ω(·). These symbols refer to the limit n →∞ by
default, but may refer to other limits where specified.

For a subset I ⊂ R we denote by P (I ) the set of all Borel probability measures on I . Moreover, for a finite
set Ω ̸= ; let P (Ω) be the set of all probability distributions on Ω. We recall that the entropy H(µ) of such a
probability distribution µ ∈P (Ω) is defined as

H(µ) =− ∑
ω∈Ω

µ(ω) logµ(ω).

We will also need the Kullback-Leibler divergence of µ,ν ∈P (Ω), defined as

DKL
(
µ∥ν)= ∑

ω∈Ω
µ(ω) log

µ(ω)

ν(ω)
∈ [0,∞],

with the conventions 0log0 = 0, 0log 0
0 = 0 and − log0 =∞.

3. DISCUSSION

In this section we relate the contributions of the present paper to prior work. We begin with the statistical
physics perspective.

3.1. Replica symmetry breaking. The Ising model, proposed by Lenz in 1920 [44], has become a cornerstone
of statistical physics generally [31, 38]. Moreover, the Ising model on random graphs in particular has proved a
testbed for the investigation of the idea of replica symmetry breaking that was proposed by Mézard and Parisi
on the basis of the non-rigorous ‘cavity method’ [47, 48]. The corroboration of the cavity method’s predictions
for the ferromagnetic Ising model on Erdős-Rényi graphs by Dembo and Montanari [23] was a first success,
although replica symmetry breaking does not occur in this model. The proof was based on the analysis of the
Belief Propagation recurrences on random trees. These techniques have subsequently been extended to the
Potts model, a generalisation of the Ising model with more than two possible spin values [24, 25].

The antiferromagnetic version of the Potts and Ising models is closely related to the stochastic block model.
The results of Mossel, Neeman and Sly [53] on the block model with two communities therefore imply the
existence and location of a replica symmetry breaking phase transition in the Ising antiferromagnet on the
Erdős-Rényi graph. Thus, as we saw above a new contribution of the present paper is the extension to random
regular graphs. Moreover, results from Coja-Oghlan, Krzakala, Perkins and Zdeborová [15] imply the existence
and location of a replica symmetry breaking phase transition for the Potts model on Erdős-Rényi graphs. The
recent work of Coja-Oghlan, Hahn-Klimroth, Loick, Müller, Panagiotou and Pasch [17] extend these results to
graphs with given degree sequences. However, the results from [17] determine the location of the replica sym-
metry breaking phase transition only implicitly as the solution to an infinite-dimensional variational problem.
Thus, the contribution of Theorem 1.1 is the explicit analytic formula for the phase transition β∗(d), which
matches the combinatorially meaningful Kesten-Stigum bound [41].

Apart from the Potts and Ising models, replica symmetry breaking phase transitions have been pinpointed
in several other models. Examples include random (hyper)graph colouring, several other random constraint
satisfaction problems and further models from mathematical physics, such as the Viana-Bray spin glass model
[35]. But usually the formula for the phase transition comes in as a complicated variational problem. Indeed,
the question whether the replica symmetry breaking transition equals the explicit Kesten-Stigum threshold
has been linked to the order of the phase transition [60], a question that merits further rigorous attention.
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3.2. The MAX CUT problem. The semidefinite programming based MAX CUT algorithm of Goemans and Williamson
[33] has been one of the most important contributions to algorithms research. The algorithm achieves an
approximation ratio of min0≤θ≤π 2

π
θ

1−cos(θ) ≈ 0.878 on graphs with non-negative edge weights. On regular
graphs better approximation ratios can be achieved (also via semidefinite programming) [29]. The question
whether the Goemans-Williamson approximation ratio is optimal has sparked an important line of research.
Håstad [36] derived from the PCP theorem that no approximation better than 0.941 can be attained unless
P=NP. Moreover, Koth [42] showed that the unique games conjecture implies the optimality of the Goemans-
Williamson approximation ratio; see Barak [6] for a discussion.

Given the great interest in MAX CUT generally, it is hardly surprising that the problem has been studied
intensively on random graphs, too. In the classical combinatorics literature upper bounds have typically
been based on the first moment method, while greedy algorithms were employed to derive lower bounds
[9, 12, 19, 20, 27, 28, 39, 40]. A semidefinite programming approach was taken in [49] on Erdős-Rényi graphs.
Table 1 summarises the best explicit prior bounds for random regular graphs. Naturally, arguments based
on the method of moments or greedy algorithms suffer from the shortcoming of being inherently local, i.e.,
confined to short-range interactions. In effect, they remain oblivious to the long-range interactions that, ac-
cording to physics prediction, shape the MAX CUT problem on random graphs. Therefore, it is unsurprising
that these techniques only carry so far.

The first complex model where the long-range interactions predicted by the theory of replica symme-
try breaking were well understood is the Sherrington-Kirkpatrick spin glass. The model can be viewed as a
weighted MAX CUT problem on a complete graph. Specifically, the weight of the edge between vertices v, w
is a Gaussian J v,w . The random variables (J v,w )1≤v<w≤n are mutually independent. Hence, the model is de-
scribed by the random Hamiltonian

HSK(σ) =− 1p
n

∑
1≤i< j≤n

J i jσiσ j (σ ∈ {±1}n),

which induces a partition function and a Boltzmann distribution as in (1.2). Clearly, the ‘ground state energy’
minσHSK(σ) corresponds to the maximum cut weight. Parisi’s seminal work [59] predicted formulas for the
free energy and the ground state energy of the Sherrington-Kirkpatrick model. After several decades Talagrand
established the ‘Parisi formula’ rigorously [63]. An important ingredient to this work was the interpolation
method, which Guerra had proposed [34]. Panchenko developed a different argument [57], which also led to a
proof of Parisi’s ultrametricity conjecture [56].

Franz and Leone [30] extended the interpolation method to sparse random graphs; see also [55]. The ver-
sion of the interpolation method quoted in Lemma 2.9 is an adaptation to random regular graphs. Further-
more, Dembo, Montanari and Sen [26] used interpolation techniques to strike a chord between the sparse
Erdős-Rényi graph and the Sherrington-Kirkpatrick model. Specifically, they proved that

lim
d→∞

lim
n→∞

2p
dn

[
MAXCUT(G(n,d/n))− dn

4

]
= p⋆ ≈ 0.7632, (3.1)

where p⋆ derives from the ground state energy of the Sherrington-Kirkpatrick model. Conceptually it seems
natural to expect that the Sherrington-Kirkpatrick model occurs as the limit of sparse random graphs as the
average degree gets large, basically due to central limit theorem-like effects. Yet this result says nothing about
any finite d and, indeed, sparse random graphs for fixed finite values of d appear to exhibit a more diverse and
potentially even more intricate behavior. As a result, we are only just beginning to understand the genuine
behaviour of sparse models in the replica symmetry breaking phase; see, e.g., [7].

Finally, Panchenko [58] obtained a variational formula for the free energy of the Ising antiferromagnet on
Erdős-Rényi graphs. The formula involves an optimisation over exchangeable distributions on {±1}N×N subject
to certain invariance conditions. Coja-Oghlan and Perkins [16] extended this result to random regular graphs,
also pointing out that a corresponding variational formula can be derived for the MAX CUT of G(n,d) for any
fixed d . However, the formula is not explicit, and it appears difficult (to put it mildly) to extract any numerical
estimates. Thus, the contribution of Corollary 1.3 is that we obtain a (relatively) simple explicit formula that
incorporates at least the first level of the physicists’ replica symmetry breaking formalism.

3.3. The stochastic block model. The Ising antiferromagnet is intimately related to the stochastic block model
which has gained significant attention in recent years [2]. The model provides a benchmark for both Bayesian
inference and graph clustering, the basic idea being to create a random graph with a community structure. In
the simplest version the vertex set is partitioned into q communities and edges between vertices in the same
community are either more likely (assortative) or less (disassortative). The question is for what discrepancy
of edge densities it is possible to at least partially recover the community structure or, less ambitiously, to
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at least discriminate a random graph drawn from the block model from a null model. The modern study
of the stochastic block model originated with conjectures that Decelle, Krzakala, Moore and Zdeborová [22]
derived via the cavity method. Specifically, they predicted a phase diagram that splits the model parameters
into regions where recovering the community structure is information-theoretically and/or algorithmically
feasible.

Mathematically the most complete picture exists for graphs with independent edges in the case of q = 2
communities. In this case the information-theoretic and algorithmic thresholds were established in a series
of papers by Mossel, Neeman and Sly [51, 52, 53, 54] and Massoulie [45]. For q > 2 communities algorithms
that match the conjecture from [22] have been proposed by Abbe and Sandon [3] and Bordenave, Lelarge and
Massoulie [11]. As explained above, the contribution of Theorem 1.4 is to show that for the disassortative reg-
ular case with two communities the information-theoretic threshold equals the explicit Kesten-Stigum bound
β∗(d). Finally, as an interesting direction for future research we point to the question of developing an efficient
algorithm that (partially) recovers the community structure σ∗ for β>β∗(d).

4. PROOF OF PROPOSITION 2.2

The proof of Proposition 2.2 requires several steps. First we perform some preparatory calculations; in partic-
ular, we compute the first moment of the partition function of a random multi-graph drawn from the pairing
model. Subsequently we establish a relationship between the stochastic block model G∗ and the ‘null model’
G. Then we construct a coupling of the spin configuration around a typical vertex of G∗ with the broadcasting
process from Lemma 2.4 to estimate the probability that G∗ ∈ O . Finally, we perform a truncated moment
computation to obtain (2.12).

4.1. The pairing model. In order to calculate the first moment, as well as for some of the manoeuvres to follow,
it will be convenient to replace the simple random d-regular graph G by a random graph chosen from the
pairing model. Hence, think of the elements of Vn × [d ] as vertex clones. Moreover, let Γ be a random perfect
matching of the complete graph on Vn × [d ]. Finally, let G be the d-regular multigraph on Vn obtained by
contracting the clones Vn × [d ]. With S the set of all simple graphs, it is well known that

P [G ∈S ] =Ω(1) and P [G ∈ E ] =P [G ∈ E |S ] for any event E . (4.1)

In order to compute the first moment E[ZG,β] we will compute E[ZG,β] and then investigate the impact of
conditioning on S .

To calculate E[ZG,β] we proceed as follows. For σ ∈ {±1}Vn let ρ(σ) = (ρ1(σ),ρ−1(σ)) be the distribution on
±1 defined by

ρ1(σ) = 1

n

n∑
i=1

1{σvi = 1}, ρ−1(σ) = 1

n

n∑
i=1

1{σvi =−1}.

Thanks to the linearity of expectation we can write the first moment as

E[ZG,β] = ∑
σ∈{±1}Vn

E[ψG,β(σ)] where ψG,β(σ) = exp
(−βHG(σ)

)
.

Naturally, ψG,β(σ) depends on the number of edges that join vertices with the same spin. Hence, to calculate
E[ψG,β(σ)] we need to know the number of graphs with a given number of such edges.

The following lemma solves this problem. Let M (σ) be the set of all probability distributions

µ11 +µ1−1 = ρ1, µ−1−1 +µ1−1 = ρ−1, µ1−1 =µ−11 (4.2)

and such that µ11dn,µ−1−1dn are even integers and µ1−1dn is an integer. Moreover, let G (σ,µ) be the event
that G has µ11dn/2 edges that join vertices v, w with σv ,σw = 1. Then due to regularity there are µ−1−1dn/2
edges joining vertices that both carry a −1 spin and µ1−1dn edges that connect vertices with opposite spins.

Lemma 4.1. For σ ∈ {±1}Vn and µ ∈M (σ) we have

P
[
G ∈G (σ,µ)

]= (
dnρ1(σ)

dnµ11

)(
dnρ−1(σ)

dnµ−1−1

)
(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

(dn −1)!!
.

Proof. The denominator (dn −1)!! simply counts the total number of possible perfect matchings Γ. Moreover,
the two binomial coefficients account for the number of ways of selecting clones of vertices with spin ±1 to
constitute edges of the four possible types. Finally, the numerator equals the number of possible ways to match
the clones up according to these designated types. □

As it stands the formula from Lemma 4.1 does not yet lend itself to asymptotical calculations. But Stirling’s
formula yields the following approximation.
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Corollary 4.2. For σ ∈ {±1}Vn and µ ∈M (σ) we have P
[
G ∈G (σ,µ)

]= exp
(
−dn

2 DKL
(
µ∥ρ⊗ρ

)+O(logn)
)

.

Corollary 4.2 follows from a more general lemma about partitions of random regular graphs from [13]. But
since we will encounter similar calculations again in due course and because the proof is quite short, we in-
clude it here. We need Stirling’s formula

k ! =
p

2πk

(
k

e

)k

exp(O(1/k)) (4.3)

and the elementary formula

(2k −1)!! = (2k)!

k !2k
. (4.4)

Proof of Corollary 4.2. Applying (4.4), we obtain

(dnµ11 −1)!! = (dnµ11)!

2dnµ11/2(dnµ11/2)!
(dnµ−1−1 −1)!! = (dnµ−1−1)!

2dnµ−1−1/2(dnµ−1−1/2)!
, (dn −1)!! = (dn)!

2dn/2(dn/2)!
.

Hence,

(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

(dn −1)!!
= 2dn(1−µ11−µ−1−1)/2

(
dnµ1−1

dnµ1−1/2

)−1(
dn/2

dnµ/2

)(
dn

dnµ

)−1

= 2dnµ1−1

(
dnµ1−1

dnµ1−1/2

)−1(
dn/2

dnµ/2

)(
dn

dnµ

)−1

. (4.5)

Thus, Stirling’s formula (4.3) gives

(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

(dn −1)!!
= exp

(−dnH(µ)/2+O(logn)
)

. (4.6)

Further, combining (4.2) and (4.3), we obtain(
dnρ1(σ)

dnµ11

)(
dnρ−1(σ)

dnµ−1−1

)
= exp

(
dn(H(µ)−H(ρ(σ))+O(logn)

)
. (4.7)

Finally, combining Lemma 4.1 with (4.6) and (4.7), we obtain

P
[
G ∈G (σ,µ)

]= exp
(
dn(H(µ)−2H(ρ(σ)))/2+O(logn)

)= exp
(
dn(H(µ)−H(ρ(σ)⊗ρ(σ)))/2+O(logn)

)
= exp

(−dnDKL
(
µ∥ρ(σ)⊗ρ(σ)

)
/2+O(logn)

)
,

as claimed. □

Let Mn = ∪
σ∈{±1}Vn M (σ) be the set of all conceivable distributions µ. Moreover, for µ ∈ Mn set ρ1(µ) =

µ11 +µ1−1 and ρ−1(µ) = 1−ρ1(µ). Additionally, let µ∗ =µ∗
β

be the distribution

µ∗
11 =µ∗

−1−1 =
1

2(1+eβ)
, µ∗

1−1 =µ∗
−11 =

eβ

2(1+eβ)
. (4.8)

Furthermore, let M∗
n be the set of all µ ∈Mn such that dTV(µ,µ∗) < n−0.49. Finally, let G (µ) be the set of all pairs

(G ,σ) such that σ ∈ {±1}Vn satisfies ρ1(σ) = ρ1(µ) and G ∈G (σ,µ). The following lemma supplies the promised
formula for the first moment of ZG,β.

Lemma 4.3. For all d ≥ 3,β> 0 we have

E[ZG,β] = (1+exp(−nΩ(1)))
∑

µ∈M∗
n

|G (µ)|exp

(
−dn

2

(
µ11 +µ−1−1

))=Θ

(
2n

(
1+e−β

2

)dn/2)
. (4.9)

Proof. For a givenµ ∈Mn the total number ofσ ∈ {±1}Vn withµ ∈M (σ) equals
( n
ρ1(µ)n

)
. Therefore, Corollary 4.2

and (4.3) yield

E[ZG,β] = ∑
µ∈Mn

|G (µ)|exp

(
−dn

2

(
µ11 +µ−1−1

))

= ∑
µ∈Mn

(
n

ρ1(σ)n

)
exp

(
−dn

2

[
DKL

(
µ∥ρ(µ)⊗ρ(µ)

)+β
(
µ11 +µ−1−1

)]+O(logn)

)
(4.10)

= max
µ∈Mn

exp

(
n

[
H(ρ(µ))− d

2
DKL

(
µ∥ρ(µ)⊗ρ(µ)

)− dβ

2

(
µ11 +µ−1−1

)]+O(logn)

)
. (4.11)
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Due to the linear relations (4.2) we can view the expression inside the square brackets, i.e.,

φd ,β(µ) = H(ρ(µ))− d

2
DKL

(
µ∥ρ(µ)⊗ρ(µ)

)− dβ

2

(
µ11 +µ−1−1

)
, (4.12)

as a function of the two variables µ11 and µ−1−1. The function is strictly concave because the entropy function
is strictly concave and the Kullback-Leibler divergence is convex. Hence, the unique stationary point of φd ,β is
its maximiser. Since the derivatives of φd ,β work out to be

∂φd ,β

∂µ11
= d −1

2
log

ρ1(µ)

ρ−1(µ)
+ d

2
log

µ1−1

µ11
− dβ

2
,

∂φd ,β

∂µ−1−1
= 1−d

2
log

ρ1(µ)

ρ−1(µ)
+ d

2
log

µ1−1

µ−1−1
− dβ

2
,

the stationary point occurs at µ∗. Substituting the solution (4.8) into (4.11), we obtain

E[ZG,β] = exp

(
n

[
log2+ d

2
log

1+e−β

2

]
+O(logn)

)
. (4.13)

as well as the first equality sign in (4.9). To obtain the second part of (4.9) we take another look at Lemma 4.1,
which shows together with Stirling’s formula that there exists c = c(d ,β) such that

|G (µ)|
exp

(
−βdn

2 (µ11 +µ−1−1)
)

(dn −1)!!
= c

n
exp

(−nφd ,β(µ)
)

uniformly for all µ ∈M∗
n . (4.14)

Since the function φd ,β is strictly concave, (4.14) shows together with the first part of (4.9) and the Laplace
method that

E[ZG,β] =Θ(exp(−nφd ,β(µ∗))) =Θ

(
2n

(
1+e−β

2

)dn/2)
,

which completes the proof. □

Having calculated E[ZG,β] sufficiently accurately, we proceed to extend this formula to the simple random
graph G and to the truncated first moment E[ZG,β1 {O }]. Fortunately we can kill these two birds with one stone.

4.2. The truncated first moment. We need to calculate truncated first moments of the form E[ZG,β1A ] for
some event A . To this end we define a pairing model variant of the stochastic block model. In analogy to
(1.13) we draw σ∗ ∈ {±1}Vn uniformly at random. Further, given σ∗ for any possible outcome G of G we let

P
[
G∗ =G |σ∗]∝ exp(−βHG (σ∗)). (4.15)

The following lemma will enable us to reduce the task of computing E[ZG,β1A ] for an event A to estimating
the probability of G∗ ∈ A . Similar lemmas have been known for other random problems since the work of
Achlioptas and Coja-Oghlan [4].

Lemma 4.4. Let d ≥ 3,β> 0 and let E be a set of graph/spin configuration pairs. Then

1

E[ZG,β]

∑
σ∈{±1}Vn

E[ψG,β(σ)1{(G,σ) ∈ E }] =Θ(P[(G∗,σ∗) ∈ E ])+o(1).

Proof. The definition (4.15) of G∗ ensures that∑
σ∈{±1}Vn

E[ψG,β(σ)1{(G,σ) ∈ E }] = ∑
σ∈{±1}Vn

P[(G∗,σ∗) ∈ E |σ∗ =σ]E[ψG,β(σ)]. (4.16)

We now split the above sums up into three parts: for a small ε> 0 pick C > 0 large and let

S = {
σ ∈ {±1}Vn : |ρ1(σ)−1/2| ≤C n−1/2} , S′ = {

σ ∈ {±1}Vn \ S : |ρ1(σ)−1/2| ≤ n−0.49} , S′′ = {±1}Vn \ (S ∪S′).

Then Lemma 4.3 implies that ∑
σ∈S′′

E[ψG,β(σ)] = o(E[ZG,β]). (4.17)

In fact, (4.14) implies that for large enough C ,∑
σ∈S′

E[ψG,β(σ)] ≤ εE[ZG,β]. (4.18)

In addition, (4.14) implies together with the fact that µ∗ is the unique stationary point of the concave function
φd ,β that

E[ψG,β(σ)] =O(2−nE[ZG,β]) uniformly for all σ ∈ {±1}Vn , (4.19)

E[ψG,β(σ)] =Θ(2−nE[ZG,β]) uniformly for all σ ∈ S. (4.20)
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Furthermore, because σ∗ is uniformly random we can choose C so large that∑
σ∈{±1}Vn

P[(G∗,σ∗) ∈ E |σ∗ =σ] ≤ ε+ ∑
σ∈S

P[(G∗,σ∗) ∈ E |σ∗ =σ]. (4.21)

Combining (4.16)–(4.21) and taking ε→ 0 slowly, we obtain the assertion. □

As an immediate consequence of Lemma 4.4 we obtain the following.

Corollary 4.5. For all d ≥ 3,β> 0 and for any event A the following two statements are true.

(i) If P [G∗ ∈A ] =Ω(1), then E[ZG,β1A ] =Θ(E[ZG,β]).
(ii) We have P [G∗ ∈A ] = 1−o(1) iff E[ZG,β1A ] ∼ E[ZG,β].

As an application of Corollary 4.5 we will compute E[ZG,β] = E[ZG,β1S ]. To this end we need bound the
probability of the event G∗ ∈S away from zero.

Lemma 4.6. For all d ≥ 3,β> 0 we have P [G∗ ∈S ] =Ω(1).

Proof. Following the well known proof that P[G ∈ S ] = Ω(1), we will use the method of moments. Thus, fix
µ ∈M∗

n and σ ∈ {±1}Vn with ρ1(σ) = ρ1(µ). Let X be the number of self-loops of G and let Y be the number of
double-edges. We will show that for any fixed integers k,ℓ≥ 1,

E

[
k∏

j=1
(X − j +1)

ℓ∏
j=1

(Y − j +1)

]
∼ κkλℓ with κ= d −1

eβ+1
, λ= (d −1)2(1+e2β)

2(1+eβ)2
. (4.22)

Clearly (4.22) implies that P[G∗ ∈S ] =P[X = Y = 0] ∼ exp(−κ−λ) =Ω(1).
To verify (4.22) we start by computing the means of X ,Y . To be more precise, let X1 be the number of self-

loops at vertices vi with σvi = 1. In order to construct a self-loop we need to pick a vertex and two of its clones

and calculate the probability that these clones get matched. Thus, the number of choices equals
(d

2

)
ρ1(σ)n.

Therefore, Lemma 4.1 and (4.8) yield

E[X1 |G (σ,µ)] =
(d

2

)
ρ1(σ)n

(dnρ1(σ)−2
dnµ11−2

)(dnρ−1(σ)
dnµ−1−1

)
(dnµ11 −3)!!(dnµ−1−1 −1)!!(dnµ1−1)!(dnρ1(σ)

dnµ11

)(dnρ−1(σ)
dnµ−1−1

)
(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

∼ κ

2
. (4.23)

Because (4.8) ensures that ρ1(σ) ∼ 1/2, (4.23) implies that

E[X |G (σ,µ)] ∼ κ. (4.24)

Similar considerations yield the mean of Y . Specifically, we decompose Y into Y11, Y−1−1 and Y1−1, which,
respectively, count double-edges among vertices assigned spin 1, among vertices with spin −1, and between
vertices with different spins. To work out Y11 we need to select two vertices with spin 1, two clones of each and

a perfect matching. Thus, the number of choices comes to 2
(ρ1(σ)n

2

)(d
2

)2
. Hence, Lemma 4.1 and (4.8) yield

E[Y11 |G (σ,µ)] =
2
(ρ1(σ)n

2

)(d
2

)2(dnρ1(σ)−4
dnµ11−4

)(dnρ−1(σ)
dnµ−1−1

)
(dnµ11 −5)!!(dnµ−1−1 −1)!!(dnµ1−1)!(dnρ1(σ)

dnµ11

)(dnρ−1(σ)
dnµ−1−1

)
(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

∼ (d −1)2µ2
11

4ρ1(σ)2 ∼ (d −1)2

4(eβ+1)2
. (4.25)

The same calculation applies to the mean of Y−1−1. Moreover, analogously we obtain

E[Y1−1 |G (σ,µ)] =
2ρ1(σ)ρ−1(σ)n2

(d
2

)2(dnρ1(σ)−2
dnµ11

)(dnρ−1(σ)−2
dnµ−1−1

)
(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1 −2)!(dnρ1(σ)

dnµ11

)(dnρ−1(σ)
dnµ−1−1

)
(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

∼ (d −1)2µ2
1−1

2ρ1ρ−1
= (d −1)2e2β

2(1+eβ)2
. (4.26)

Combining (4.25) and (4.26), we obtain

E[Y |G (σ,µ)] ∼λ. (4.27)

The calculations that we performed towards (4.24) and (4.27) easily extend to a proof of (4.22). Indeed, in-
stead of just accounting for the choice of placing a single double-edge or loop, we need to place fixed numbers
k,ℓ. Since k,ℓ remain bounded as n →∞, the probability that any choices overlap is O(1/n). Therefore, the
joint factorial moment of X ,Y works out to be κkλℓ, which is (4.22). □

Proof of Lemma 2.1. The lemma follows from Lemma 4.3, Corollary 4.5 and Lemma 4.6. □
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Proof of Lemma 2.3. This is an immediate consequence of Corollary 4.5 and Lemma 4.6. □

4.3. Coupling with the broadcasting process. In this section we are going to establish a coupling of the local
structure of G∗ around a given vertex vi with the broadcasting process from Lemma 2.4. Specifically, we are
going to prove the following statement.

Lemma 4.7. For any d ≥ 3,β> 0 there exists εn = o(1) such that the event O from (2.13) satisfies E[ZG,β1 {O }] ∼
E[ZG,β].

We begin the proof of of Lemma 4.7 by showing that the bounded-depth neighbourhoods in G∗ are typically
acyclic.

Lemma 4.8. Let d ≥ 3, β> 0. Moreover, for an integer ℓ≥ 1 let Cℓ be the number of cycles of length ℓ in G∗. Then
for any fixed integer L we have

∑
ℓ≤L Cℓ =O(logn) w.h.p.

Proof. By Lemma 4.3 and Corollary 4.5 we may condition on the event G (µ) for some µ ∈M∗
n and on the event

|ρ1(σ∗)| ∼ 1/2. A cycle of length ℓ passes through (not necessarily distinct) vertices u = (u1, . . . ,uℓ). For each
step of the cycle we select a clone it where the cycle enters and one jt ̸= it where it leaves. Set i = (i 1, . . . , i t )
and j = ( j 1, . . . , j t ). However, we overcounted by a factor of 2ℓ (for the direction and the choice of the starting
point). Given these choices let e11 be the number of edges of the cycle that connect two vertices of spin 1 under
σ∗ and define e−1−1 similarly. Moreover, let e1−1 be the number of cycle edges that join vertices with different
spins. Following Lemma 4.1 we estimate the probability of the event C (u, i , j ) that the specified cycle actually
appears in G∗ by

P
[
C (u, i , j ) |G (µ),σ∗]∼ (

dnρ1(σ)−2e11 −e1−1

dnµ11 −2e11

)(
dnρ−1(σ)−2e−1−1 −e1−1

dnµ−1−1 −2e−1−1

)(
dnρ1(σ)

dnµ11

)−1(
dnρ−1(σ)

dnµ−1−1

)−1

· (dnµ11 −2e11 −1)!!(dnµ−1−1 −2e−1−1 −1)!!(dnµ1−1 −e1−1)!

(dnµ11 −1)!!(dnµ−1−1 −1)!!dnµ1−1!

∼ (dn)−ℓ
(

µ11

ρ1(σ∗)2

)e11
(

µ−1−1

ρ−1(σ∗)2

)e−1−1
(

µ1−1

ρ1(σ∗)ρ−1(σ∗)

)e1−1

∼
(

2

dn(eβ+1)

)ℓ
eβe1−1 [due to (4.8)]. (4.28)

Since the total number of choices for u, i , j is bounded by nℓ
(d

2

)ℓ
, (4.28) implies that E[Cℓ | G (µ),σ∗] = O(1).

Therefore, the assertion follows from Markov’s inequality. □

For a vertex v of G∗ and an integer ℓ ≥ 0 let σ∗
v,ℓ be the spin configuration that σ∗ induces on the vertices

at distance at most ℓ from v . Furthermore, let τℓ,τ′
ℓ

be two independent copies of the spin configuration that
the broadcasting process from Section 2.2 induces on the vertices of the infinite d-regular tree Td at distance
at most ℓ from its root.

Lemma 4.9. For any d ≥ 3,β> 0,ℓ≥ 0 the spin configurations σ∗
v1,ℓ and τℓ have total variation distance o(1).

Proof. Thanks to Lemma 4.3 and Corollary 4.5 we may condition on the event G (µ) for a µ ∈ M∗
n and on

|ρ1(σ∗)| ∼ 1/2. Moreover, due to Lemma 4.8 we may confine ourselves to the case that the depth-ℓ neighbour-
hood of v1 is acyclic. Let T be a possible outcome of the depth-ℓ neighbourhood of v1 under these assump-
tions. Moreover, let e11,e−1−1,e1−1 be the numbers of edges of T that join vertices both assigned spin 1 under
σ∗, or both assigned spin −1, or assigned different spins, respectively. Further, set e = e11+e1−1+e−1−1. Finally,
let E (T ) be the event that T occurs in G∗. Then Lemma 4.1 and (4.8) show that

P
[
E (T ) |G (µ),σ∗]= (

dnρ1(σ∗)−2e11 −e1−1

dnµ11 −2e11

)(
dnρ1(σ∗)

dnµ11

)−1

·
(

dnρ−1(σ∗)−2e−1−1 −e1−1

dnµ−1−1 −2e−1−1

)(
dnρ−1(σ∗)

dnµ−1−1

)−1

· (dnµ11 −2e11 −1)!!(dnµ−1−1 −2e−1−1 −1)!!(dnµ1−1 −e1−1)!

(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

∼
(

2

dn

)2e
(

eβ

1+eβ

)e1−1 (
1

1+eβ

)e11+e−1−1

. (4.29)
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Hence, (4.29) shows that the probability of observing a given spin assignment σ∗
v1,ℓ depends only on the num-

ber of edges joining vertices with the same spin, and that this dependence is precisely the same as in the case
(2.14) of the broadcasting process. Thus, σ∗

v1,ℓ and τℓ have total variation distance o(1). □

For a graph G , a vertex v of G and an integer ℓ > 0 let ∂ℓ(G , v) be the set of vertices at distance precisely ℓ

from v . Further, for a spin configuration χ ∈ {±1}V (G) let

µG ,β,v,ℓ(s |χ) =
∑

σ∈{±1}V (G) 1{σv = s, ∀u ∈ ∂ℓ(G , v) : σu =χu}exp(−βHG (σ))∑
σ∈{±1}V (G) 1{∀u ∈ ∂ℓ(G , v) : σu =χu}exp(−βHG (σ))

(s =±1);

in words, this is the conditional Boltzmann marginal of v given the ‘boundary condition’ χ at the vertices at
distance precisely ℓ from v .

Corollary 4.10. For any d ≥ 3,β> 0,ε> 0 there exists ℓ> 0 such that E
∑n

i=1

∣∣µG∗,β,vi ,ℓ(1|σ∗)− 1
2

∣∣< εn.

Proof. Because the random pair (G∗,σ∗) is invariant under vertex permutations, we have

E
n∑

i=1

∣∣∣∣µG∗,β,vi ,ℓ(1|σ∗)− 1

2

∣∣∣∣= nE

∣∣∣∣µG∗,β,vi ,ℓ(1|σ∗)− 1

2

∣∣∣∣
and Lemma 2.4 and Lemma 4.9 show that the r.h.s. gets small in the limit of large ℓ. □

Proof of Lemma 4.7. We apply Corollary 4.10 to a function ε′n = o(1) that tends to zero slowly. Specifically, let
X (G∗,σ∗) = ∑n

i=1 1{|µG∗,β,vi ,ℓ(1|σ∗)− 1
2 | > ε′}. Corollary 4.10 implies together with Markov’s inequality that

P[X (G∗,σ∗) > ε′′n] ≤ ε′′ for a suitable 1 ≪ ℓ = o(logn), provided that ε′,ε′′ = o(1) tend to zero slowly enough.
Hence, Lemma 4.4 shows that

E[ZG,βP[X (G,σG) ≤ ε′′n |G]] ∼ E[ZG,β]. (4.30)

We claim that (4.30) implies that there exists n−1/4 ≪ δ= o(1) such that

E[ZG,β1{P[X (G,σG) > δn |G] < δ}] ∼ E[ZG,β]. (4.31)

Indeed, (4.30) shows that for a suitable δ,

E[ZG,β1{P[X (G,σG) > δn |G] ≥ δ}] ≤ δ−1E[ZG,βP[X (G,σG) > ε′′n |G]] = o(E[ZG,β]).

Due to (4.31) it suffices to prove that there exists ε= o(1) such that for any d-regular graph G of sufficiently
large order n the following is true:

if P[X (G ,σG ) > δn] < δ then E
∣∣σG ·σ′

G

∣∣≤ εn. (4.32)

Indeed, since E|σG ·σ′
G | = E[E[|σG ·σ′

G | | σ′
G ]], we may condition on σ′

G . Hence, let V ′
1 contain all vertices

v ∈V (G) such that σ′
G ,v = 1 and let V ′

−1 =V (G) \V ′
1. Further, let

Ys =
∑

v∈V ′
s

1{σG ,v = 1} (s =±1).

Then to establish (4.32) we just need to prove that

|Ys −|V ′
s |/2| = o(n) w.h.p. for s =±1. (4.33)

To deduce (4.33) fix s =±1. If |V ′
s | < δ1/3n, say, then (4.33) is immediate. Hence, we may assume that |V ′

s | ≥
δ1/3n. Draw a vertex v ∈ V ′

s uniformly at random, independently of σG . Then the assumption P[X (G ,σG ) ≤
δn |G] implies that

P
[|µG ,β,v ,ℓ(1|σG )−1/2| > ε′ |σ′

G

]< δ2/3. (4.34)

Now, consider a spin configuration σ′′
G drawn from the Boltzmann distribution given the event

A (v ,σG ) = {
σ ∈ {±1}V (G) : σw =σG ,w for all w at distance ℓ or more from v

}
.

In other words, σ′′
G is obtained by re-sampling the spins of the vertices at distance less than ℓ from v from the

Boltzmann distribution with the boundary condition that σG induces on the vertices at distance precisely ℓ

from v . Since σG is a sample from µG ,β, so is σ′′
G . Moreover, σ′′

G is independent of σ′
G . Therefore, (4.34) yields

E[Ys |σ′
G ] = |V ′

s |P
[
σ′′

G ,v = 1 |σ′
G

]= |V ′
s |E[µG ,β,v ,ℓ(1|σG ) |G ,σ′

G ] ∼ |V ′
s |/2. (4.35)

To complete the proof we apply similarly reasoning to estimate E[Y 2
s |G ,σ′

G ]. Specifically, let v ′ be a second
vertex drawn uniformly from V ′

s , independently of v . Then in analogy to (4.34) we obtain

P
[|µG ,β,v ,ℓ(1|σG )−1/2| > ε′∨|µG ,β,v ′,ℓ(1|σG )−1/2| > ε′ |σ′

G

]< 2δ2/3. (4.36)
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Further, draw σ′′′
G from the Boltzmann distribution given

A (v , v ′,σG ) = {
σ ∈ {±1}V (G) : σw =σG ,w for all w at distance ℓ or more from both v , v ′} .

Since G is d-regular, ℓ is fixed and |V ′
s | ≥ δ1/3n ≥p

n, the vertices v , v ′ are distance more than 2ℓ apart w.h.p.
In this case the spins σ′′′

v ,σ′′′
v ′ are conditionally independent given σ′

G . Consequently, (4.36) implies that

E[Y 2
s |G ,σ′

G ] = |V ′
s |2P

[
σ′′′

G ,v = 1,σ′′′
G ,v ′ = 1 |G ,σ′

G

]
= |V ′

s |2E[µG ,β,v ,ℓ(1|σG ) |G ,σ′
G ]E[µG ,β,v ′,ℓ(1|σG ) |G ,σ′

G ]+o(22) = |V ′
s |2/4+o(n2). (4.37)

Finally, combining (4.35), (4.37) and Chebyshev’s inequality, we obtain (4.33), completing the proof. □

Proof of Lemma 2.5. The lemma follows directly from Corollary 4.5, Lemma 4.6 and Lemma 4.7. □

4.4. The truncated second moment. The aim in this section is to show the following.

Lemma 4.11. For any d ≥ 3,β> 0 there exists εn = o(1) such that the event O from (2.13) satisfies

E
[

Z 2
G(n,d),β1 {O }

]
≤ E

[
ZG(n,d),β

]2 exp(o(n)).

Toward the proof of Lemma 4.11 we require the following observation.

Fact 4.12. Suppose that (µn)n≥1 is a sequence of probability measures µn ∈P ({±1}n) such that

lim
n→∞

∑
σ,σ′∈{±1}n

|σ ·σ′|
n

µn(σ)µn(σ′) = 0.

Then limn→∞ n−1 ∑
σ∈{±1}n |σ ·1|µn(σ)µn(σ′) = 0.

Corollary 4.13. For any d ≥ 3,β> 0 there exists δ= δn = o(1) such that

E
[

Z 2
G(n,d),β1 {O }

]
≤ (1+o(1))

∑
σ,σ′∈{±1}Vn

1
{|σ ·1|, |σ′ ·1|, |σ ·σ′| ≤ δn

}
E[exp(−βHG(σ)−βHG(σ′))].

Proof. This is an immediate consequence of Fact 4.12 and the definition (2.13) of the event O . □

Lemma 4.14. For any d ≥ 3,β> 0 we have∑
σ,σ′∈{±1}Vn

1
{|σ ·1|, |σ′ ·1|, |σ ·σ′| ≤ δn

}
E[exp(−βHG(σ)−βHG(σ′))] ≤ exp

(
n fd (0,β)+O(δn)

)
. (4.38)

Proof. Given σ,σ′ ∈ {±1}Vn let ρ = ρ(σ,σ′) = (ρs,t (σ,σ))s,t∈{±1} and µ = µ(σ,σ′,G) = (µr,s,t ,u(σ,σ′,G))r,s,t ,u∈{±1}

be the vectors with entries

ρs,t (σ,σ′) = 1

n

n∑
v=1

1
{
σv = s,σ′

w = t
}

(s, t ∈ {±1}),

µr,s,t ,u(σ,σ′) = 2

dn

∑
{v,w}∈E(G)

1
{
σv = r,σ′

v = s,σw = t ,σ′
w = u

}
(r, s, t ,u ∈ {±1}).

Thus, ρ(σ,σ′) is the empirical distribution of the spin combinations that σ,σ′ assign to the vertices. Similarly,
µ comprises the statistics of the edges of G joining vertices with different spin combinations. Let

Σ⊗ = {
σ,σ′ ∈ {±1}Vn : |σ ·1|, |σ′ ·1|, |σ ·σ′| ≤ δn

}
, R⊗ = {ρ(σ,σ′) : σ,σ′ ∈Σ⊗}, (4.39)

and let M⊗ be the set of all possible outcomes of the random vector µ(σ,σ′) for any σ,σ′ ∈Σ⊗. For ρ ∈R⊗,µ ∈
M⊗ we use the shorthands ρ++ = ρ+1,+1 and µ++++ = µ+1,+1,+1,+1, and similarly for the other possible sign
patterns. Further, let

H (µ) = 2
(
µ+++++µ−−−−+µ+−+−+µ−+−+

)+ (4.40)

µ+++−+µ++−++µ+−+++µ−++++µ−−−++µ−−+−+µ−+−−+µ+−−−. (4.41)

Finally, for µ ∈M⊗ we define ρ(µ) ∈R⊗ by

ρi j (µ) = ∑
k,l∈{±1}

µi j kl for i , j ∈ {±1} .
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We now claim that for any µ ∈M⊗,

∑
σ,σ′∈{±1}Vn

P
[
µ(σ,σ′) =µ

]= XµYµZµ

(dn −1)!!
where (4.42)

Xµ =
(

n

ρ++(µ)n,ρ+−(µ)n,ρ−+(µ)n,ρ−−(µ)n

)
,

Yµ = ∏
i , j∈{±}

(
dnρi j (µ)

dnµi j++,dnµi j+−,dnµi j−+,dnµi j−−

)
,

Zµ = (
dnµ++−−

)
!
(
dnµ−++−

)
!

∏
i∈{±}

((
dnµ+i−i

)
!
(
dnµi+i−

)
!
) ∏

i , j∈{±}

(
dnµi j i j −1

)
!!.

Indeed, the first factor Xµ counts all pairs (σ,σ′) with ρ(σ,σ′) = ρ(µ). Moreover, Yµ accounts for the number of
ways of selecting among clones of vertices with a given spin combination those that will be matched to vertices
with another specific sign combination. Finally, Zµ equals the number of possible matchings of clones in
accordance with their designations.

Combining (4.40) and (4.42), we obtain∑
σ,σ′∈{±1}Vn

1
{|σ ·1|, |σ′ ·1|, |σ ·σ′| ≤ δn

}
E[exp(−βHG(σ)−βHG(σ′))]

= ∑
µ∈Mn

∑
σ,σ′∈{±1}Vn

P
[
µ(σ,σ′) =µ

]
exp(−βH (µ))

≤ |Mn | max
µ∈Mn

∑
σ,σ′∈{±1}Vn

P
[
µ(σ,σ′) =µ

]
exp(−βH (µ))

≤ exp(O(logn)) max
µ∈Mn

XµYµZµ

(dn −1)!!
exp(−βH (µ)), (4.43)

because, naturally, |Mn | ≤ n16. Further, Stirling’s formula (4.3) and the explicit formula (4.4) for the double
factorial yield the approximations

logXρ = nH(ρ(µ))+O
(
logn

)
, logYρ,µ = dn(H(µ)−H(ρ))+O

(
logn

)
, log

Zρ,µ

(dn −1)!!
=−dn

2
H(µ)+O(logn).

Combining these formulas and recalling the the Kullback-Leibler divergence, we obtain

max
µ∈M⊗

XµYµZµ

(dn −1)!!
e−βH (µ) = exp

(
n max

µ∈M⊗
{

H(ρ(µ))−dDKL
(
µ∥ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2

}+O(logn)

)
. (4.44)

To simplify the last optimisation problem we reparametrise the exponent in terms of α ∈ [−1,1]. Combina-
torially the optimal choice ofαwill correspond to the overlap valueσ·σ′/n that renders the largest contribution
to the l.h.s. of (4.38). Hence, let M⊗(α) be the set of all µ ∈M⊗ such that

ρ++(µ) = ρ−−(µ) = 1+α

4
, ρ+−(µ) = ρ−+(µ) = 1−α

4
. (4.45)

Then we claim that for any α ∈ (−1,1),

max
µ∈M⊗(α)

H(ρ(µ))−dDKL
(
µ∥ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2 ≤ fd (α,β). (4.46)

To see this, we first notice that the constrained optimization problem on the l.h.s of 4.46 is upper bounded by
the result of the unconstrained optimization problem, i.e.

max
µ∈M⊗(α)

H(ρ(µ))−dDKL
(
µ∥ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2

≤ max
µ∈M(α)

H(ρ(µ))−dDKL
(
µ∥ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2 (4.47)

where M(α) is the set of all probability measures on Pα({±1}4) parametrised by α. Moreover, we notice that the
function µ ∈ M(α) 7→ H(ρ(µ))−dDKL

(
µ∥ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2 is concave because H(ρ(µ)) is constant on

M(α), the Kullback-Leibler divergence is strictly convex and the function H (µ) is linear. Hence, it suffices to
find the (unique) zero of the derivative of DKL

(
µ∥ρ(µ)⊗ρ(µ)

)
/2+βH (µ)/2 subject to (4.45).
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Letting zα = (1+e−2β)(1+α2)/4+e−β(1−α2)/2, we claim that µα given by

µα,++++ =µα,−−−− = (1+α)2

16zα
e−2β, µα,+−+− =µα,−+−+ = (1−α)2

16zα
e−2β, (4.48)

µα,+++− =µα,++−+ =µα,+−++ =µα,−+++ =µα,−−−+ =µα,−−+− =µα,−+−− =µα,+−−− = 1−α2

16zα
e−β, (4.49)

µα,++−− =µα,−−++ = (1+α)2

16zα
, µα,+−−+ =µα,−++− = (1−α)2

16zα
, (4.50)

fits the bill. Indeed, we calculate

µα,++++ log
µα,++++

ρα,++ρα,++
=µα,++++ log

e−2β

zα
=−µα,++++(log(zα)+2β). (4.51)

The same formula holds with ++++ replaced by any of the other sign patterns from (4.48), i.e., −−−−, +−+−,
−+−+. Moreover,

µα,+++− log
µα,+++−

ρα,++ρα,+−
=µα,+++− log

e−β

zα
=−µα,+++−(log(zα)+β), (4.52)

and similarly for the other seven patterns from (4.49). Further,

µα,++−− log
µα,++−−

ρα,++ρα,−−
=−µα,++−− log zα (4.53)

and analogously for the other sign patterns from (4.50). Consequently, the derivatives work out to be

∂

∂µα,++++

(
DKL

(
µ∥ρ(µ)⊗ρ(µ)

)+βH (µ)
)∣∣∣

µα

= 1+ log
µα,++++
ρ++(µα)2 +2β= 1− log(zα), (4.54)

∂

∂µα,+++−

(
DKL

(
µ∥ρ(µ)⊗ρ(µ)

)+βH (µ)
)∣∣∣

µα

= 1+ log
µα,+++−

ρ++(µα)ρ+−(µα)
+β= 1− log(zα), (4.55)

∂

∂µα,++−−

(
DKL

(
µ∥ρ(µ)⊗ρ(µ)

)+βH (µ)
)∣∣∣

µα

= 1+ log
µα,++−−

ρ++(µα)ρ−−(µα)
= 1− log(zα). (4.56)

In each case the same calculation applies to the other sign patterns from the respective line (4.48)–(4.50).
Since the right hand sides of (4.54)–(4.56) are identical, the constraint that µ belongs to the simplex P ({±1}4)
shows that µα is a stationary point and therefore the unique maximiser of DKL

(
µ∥ρ(µ)⊗ρ(µ)

)
/2+βH (µ)/2.

Moreover, combining (4.51)–(4.53), we find

−DKL
(
µα∥ρα⊗ρα

)−βH (µα) = log(zα) = log

(
1+α2

(
1−e−β

1+e−β

)2)
+2log

1+e−β

2
, (4.57)

Thus, (4.46) follows from the definition (2.6) of fd (α,β) and (4.57).
To complete the proof consider any µ ∈ M(α). Then (4.39) ensures that there exists µ′ ∈ M(0) such that

∥µ−µ′∥2 = O(δ). Consequently, since the function µ 7→ H(ρ(µ))−dDKL
(
µ∥ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2 is dif-

ferentiable, the bound (4.46) shows that

max
µ∈M(α)

H(ρ(µ))−dDKL
(
µ∥ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2 ≤ fd (0,β)+O(δ). (4.58)

Thus, the assertion follows from (4.43) and (4.58). □

Proof of Lemma 4.11. The lemma follows from Lemma 4.3, Lemma 2.1, Corollary 4.13 and Lemma 4.14. □

Proof of Proposition 2.2. The proposition follows from Lemma 2.1, Lemma 2.3, Lemma 2.5, Lemma 4.3, and
Lemma 4.11. □

5. PROOF OF PROPOSITION 2.8

We begin by deriving an explicit formula for B(π∗
ε ,β). Recall that Λ(x) = x log x.

Lemma 5.1. Let d ≥ 3,β> 0. Then for small enough ε> 0 we have

BIsing(π∗
ε ,β,d) =

∑d
i=1

(d
i

)
2−dΛ

(∑
σ=±1

(
1− (

1−e−β
)( 1

2 +σε
))i (

1− (
1−e−β

)( 1
2 −σε

))d−i
)

2
(
(1+e−β)/2

)d

− d
(
Λ

(
1− (

1−e−β
)( 1

2 +2ε2
))+Λ

(
1− (

1−e−β
)( 1

2 −2ε2
)))

2(1+e−β)
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Proof. The expression follows straight from plugging the distribution π∗
ε from (2.22) into the Bethe functional

from (2.20). Let us shed light on its combinatorial meaning. The first term represents the ’weighted penalty
factor’ arising at a root vertex with d adjacent vertices. Since we polarise each of these adjacent vertices with
probability 1/2 independently, the number of adjacent vertices polarised to ε and −ε follows a binomial dis-
tribution. The term

(d
i

)
2−d captures the corresponding probability while the term inside Λ(·) describes the

resulting penalty factor over all adjacent vertices summed over the +1 and −1 spins at the root vertex. The sec-
ond term represents the ’weighted penalty factor’ between two vertices connected via an edge. Here, the first
corresponds to the case that both vertices are polarised to the same spin, while the second summand picks up
the penalty factor for polarisation towards different spins. □

Lemma 5.2. Let d ≥ 3,β> 0. Then as ε→ 0,

BIsing(π∗
ε ,β,d) = log2+ d

2
log

1+e−β

2
+ 4ε4de−2β

(
eβ−1

)2 (
e2β(d −2)−2deβ+d −2

)
(1+eβ)2(1+e−β)2

+O(ε5).

Proof. Lemma 5.1 shows that the function ε 7→ BIsing(π∗
ε ,β,d) has five continuous derivatives in for small

enough ε> 0. Hence, Taylor’s formula yields

BIsing(π∗
ε ,β,d) =BIsing(π∗

0 ,β)+ε
∂

∂ε
BIsing(π∗

ε ,β,d)|ε=0 + ε2

2

∂2

∂ε2 BIsing(π∗
ε ,β,d)|ε=0

+ ε3

6

∂3

∂ε3 BIsing(π∗
ε ,β,d)|ε=0 + ε4

24

∂4

∂ε4 BIsing(π∗
ε ,β,d)|ε=0 +O

(
ε5) . (5.1)

The formula for BIsing(π∗
ε ,β,d) from Lemma 5.1 is complicated but explicit. Therefore, we can rely on a com-

puter algebra system to calculate the first four derivatives of BIsing(π∗
ε ,β,d) symbolically at ε= 0. The result of

this calculation reads

∂

∂ε
BIsing(π∗,β,d)|ε=0 = ∂2

∂ε2 BIsing(π∗,β,d)|ε=0 = ∂3

∂ε3 BIsing(π∗,β,d)|ε=0 = 0, (5.2)

∂4

∂ε4 BIsing(π∗,β,d)|ε=0 =
96de−2β

(
eβ−1

)2 (
e2β(d −2)−2deβ+d −2

)
(1+eβ)2(1+e−β)2

(5.3)

Plugging (5.2)–(5.3) into (5.1) yields the desired formula. □

Proof of Proposition 2.8. Let d ≥ 3. A few lines of algebra reveal that e2β(d −2)−2deβ+d −2 > 0 if β > β∗(d).
Therefore, Lemma 5.2 shows that for small enough ε > 0 and β > β∗(d) we have BIsing(π∗

ε ,β,d) > log2 +
d
2 log 1+e−β

2 , as claimed. □

6. PROOF OF PROPOSITION 2.10

We treat X1, X2 from Lemma 2.9 separately. Let us begin with X2, which is the easier case. In the following, fix
any d ≥ 3, α ∈ (0,1/2) and z ∈ (0,1) and set y = y(β) =−β−1 log z.

Lemma 6.1. We have limβ→∞ logE[X y
2 ] = log

(
1−2α2 +2α2z

)
.

Proof. Recalling the definition of rα from (2.24) and writing the expectation out explicitly, we obtain

E[X y
2 ] = E

[(
1− (1−e−β)

∑
τ∈{±1}

ρ1(τ)ρ2(τ)

)y]
= ∑

r1,r2∈{0,1,−1}
rα(r1)rα(r2)

[
1− (1−e−β)(1+ r1r2)

2

]y

. (6.1)

To evaluate this expression we consider the possible values of the product r1r2.

Case 1: r1r2 =−1: by the choice (2.24) of r this event has probability 2α2 and

1− (1−e−β)(1+ r1r2)

2
= 1. (6.2)

Case 2: r1r2 = 1: in this case, which occurs with probability 2α2 as well, we obtain

1− (1−e−β)(1+ r1r2)

2
= e−β. (6.3)

Case 3: r1r2 = 0: naturally this event occurs with the remaining probability 1−4α2 and

1− (1−e−β)(1+ r1r2)

2
= 1+e−β

2
. (6.4)
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Combining (6.1)–(6.4), we obtain

E

[(
1− (1−e−β)

∑
τ∈{±1}

ρ1(τ)ρ2(τ)

)y]
= 2α2 +2α2e−βy + (1−4α2)

(
1+e−β

2

)y

. (6.5)

Finally, since z = exp(−βy) and(
1+e−β

2

)y

= exp

(
− log z

β
log(1+e−b)

)
→ 1 as β→∞,

combining (6.1) and (6.5) shows that limβ→∞ logE[X y
2 ] = log(1−2α2 +2α2z), as desired. □

The computation of E
[

X y
1

]
is a little more intricate. Combinatorially speaking, the basic idea is this. Con-

sider the picture on the left of Figure 2. The expression

X1 =
∑

τ∈{±1}

d∏
h=1

1− (1−e−β)ρh(τ)

represents the contribution to the partition function of a single white vertex along with its adjacent blue boxes.
Each of these boxed represents an imaginary vertex, or a ‘field’ in physics jargon, that takes the spin τ with
probability ρh(τ). The spins of these imaginary vertices are mutually independent. Hence, the sum on τ in
the definition of X1 accounts for the two possible choices of spin for the white vertex. Thus, if we let H(τ) be
the number of imaginary vertices with spin τ, then the product

∏d
h=1 1− (1− e−β)ρh(τ) equals the expected

Boltzmann weight

E[exp(−βH(τ)) |ρ1, . . . ,ρd ].

Furthermore, the fields ρh(τ) can be either ‘soft’, i.e., ρh(τ) = 1/2, or ‘hard’, meaning ρh(τ) ∈ {0,1}. As in the
proof of Lemma 6.1 we will see that in the limit β→∞ and y → 0 the soft fields are inconsequential. In effect,
the computation of X1 will come down to studying the random variable

∑
τ∈{±1}τ1{ρh(τ) = 1}, which gauges

the relative strength of the hard fields. In other words, the calculation of E
[

X y
1

]
comes down to analysing a

random walk. Let us get down to the details.

Lemma 6.2. We have limβ→∞ logE
[

X y
1

]= log
(
ζA dξ

)
.

Proof. Letting

R−1 =
d∑

h=1
1

{
ρh(1) = 0

}
, R0 =

d∑
h=1

1
{
ρh(1) = 1/2

}
, R1 =

d∑
h=1

1
{
ρh(1) = 1

}
we can write the random walk as

∑
τ∈{±1}τ1{ρh(τ) = 1} = R1 −R−1. Hence,

d∏
h=1

(
1− (1−e−β)ρh(1)

)y = exp(−βyR1)

(
1+e−β

2

)yR0

, (6.6)

d∏
h=1

(
1− (1−e−β)ρh(−1)

)y = exp(−βyR−1)

(
1+e−β

2

)yR0

. (6.7)

Since y =−β−1 log z, for any integers R1,R−1,R0 ≥ 0 such that R1 +R0 +R−1 = d we have

lim
β→∞

(exp(−βyR1)+exp(−βyR−1))

(
1+e−β

2

)yR0

= zR1∧R−1 . (6.8)

Thus, combining (6.6)–(6.8), we obtain

lim
β→∞

logE[X y
1 ] = logE

[
zR1∧R−1

]
. (6.9)

To calculate the mean on the r.h.s. consider a d-step symmetric random walk on {0,1, . . . ,d} with a reflective
barrier at 0. The walk starts at 0 and the available moves are +1, −1 or 0, with probabilities α, α and 1− 2α
respectively. We couple this random walk with the probability space (ρ1, . . . ,ρd ) such that R1 and R−1 count
the ±1 moves of the random walk, respectively. Thus, R0 = d −R1 −R−1 equals the number of 0-moves and
|R1 −R−1| is the final position of the walk. To study this random walk we remember the matrix M from (1.7)
and introduce

A= (1−2α)id+2αtM ,
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where t is a formal variable that we introduce to track the walk’s movements. Specifically, for any i ∈ [d ] the
(1, i )-entry of the d-th power of A works out to be

Ad
1 i =

d∑
k=i−1

t kP [R1 +R−1 = k and |R1 −R−1| = i −1] (6.10)

Finally, we introduce the vector
x= (1, t−1, t−2, t−3, · · · )T ∈R(d+1)×1.

Then recalling the definition of vector ζ from (1.10), we readily find

ζAd x=
d∑

k=0
t kP [R1 +R−1 −|R1 −R−1| = k] = E

[
t R1+R−1−|R1−R−1|] . (6.11)

Let us shed light on the combinatorial meaning of (6.11). ζAd is a (d + 1)-dimensional vector where the i th
entry captures the probability of all random walks that end up at position i −1 and where the exponent of t
measures the number of non-stationary steps performed to reach position i − 1. Thus, using the definition
from (6.10) we have

ζAd =
(
Ad

11,Ad
12,Ad

13, . . .
)

.

The multiplication with vector x then deducts the final position |R1 −R−1| of the random walk from the ex-
ponent of t . In effect, the exponent now captures the total number of offsetting non-stationary steps of the
random walk which is precisely twice the minimum of R1 and R−1. This relationship can be compactly written
in the basic identity

R1 +R−1 −|R1 −R−1| = 2(R1 ∧R−1) .

We are now in a position to relate (6.8) to (6.11) by writing

lim
β→∞

logE[X y
1 ] = logE

[
zR1∧R−1

]= E
[p

z
R1+R−1−|R1−R−1|]= log

(
ζAd x|t=pz

)
.

Since A from (1.9) and ξ from (1.11) were defined in terms of
p

z rather than t we conclude that

lim
β→∞

logE
[

X y
1

]= log
(
ζAd x|t=pz

)
= log

(
ζA dξ

)
as claimed. □
Proof of Proposition 2.10. The proposition is an immediate consequence of Lemmas 6.1 and 6.2. □
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