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Abstract

A fluid queuing network constitutes one of the simplest models in
which to study flow dynamics over a network. In this model we have a
single source-sink pair and each link has a per-time-unit capacity and
a transit time. A dynamic equilibrium (or equilibrium flow over time)
is a flow pattern over time such that no flow particle has incentives to
unilaterally change its path. Although the model has been around for
almost fifty years, only recently results regarding existence and charac-
terization of equilibria have been obtained. In particular the long term
behavior remains poorly understood. Our main result in this paper
is to show that, under a natural (and obviously necessary) condition
on the queuing capacity, a dynamic equilibrium reaches a steady state
(after which queue lengths remain constant) in finite time. Previously,
it was not even known that queue lengths would remain bounded. The
proof is based on the analysis of a rather non-obvious potential function
that turns out to be monotone along the evolution of the equilibrium.
Furthermore, we show that the steady state is characterized as an op-
timal solution of a certain linear program. When this program has
a unique solution, which occurs generically, the long term behavior
is completely predictable. On the contrary, if the linear program has
multiple solutions the steady state is more difficult to identify as it
depends on the whole temporal evolution of the equilibrium.

1 Introduction

The theory of flows over time provide a natural and convenient model to
describe the dynamics of a continuous stream of particles traveling from a
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source to a sink in a network, such as urban or Internet traffic. Probably
the most basic model for the propagation of flow is the so-called fluid-queue

model in which each arc in the network consists of a fluid queue with an arc-
specific capacity followed by a link with constant delay. Thus, the time to
traverse an edge is composed of a flow-dependent waiting time in the queue
plus a constant travel time after leaving the queue. This model was initially
studied in the framework of optimization. Ford and Fulkerson (1958, 1962)
considered a fluid queue model in a discrete time setting and designed an
algorithm to compute a flow over time carrying the maximum possible flow
from the source s to the sink t in a given timespan. Gale (1959) then showed
the existence of a flow pattern that achieves this optimum simultaneously
for all time horizons. These results were extended to continuous time by
Anderson and Philpott (1994) and Fleischer and Tardos (1998). We refer to
Skutella (2009) for an excellent survey. However, when network flows suffer
from a lack of coordination among the participating agents, it is natural to
take a game theoretic approach. As first described by Vickrey (1969) for a
simple bottleneck model, in a dynamic network routing game each infinites-
imal particle is interpreted as a player that seeks to complete its journey
in the least possible time. Players are forward-looking and anticipate the
congestion and queuing delays induced by others upon arrival to any edge in
the network. Equilibrium occurs when each particle travels along a shortest
path.

More formally, a fluid queuing network is a directed graph G = (V,E)
where each arc e ∈ E consists of a fluid queue with capacity νe > 0 followed
by a link with constant delay τe ≥ 0 (see Figure 1). A constant inflow rate
u0 > 0 enters the network at a fixed source s ∈ V and travels towards a
terminal node t ∈ V . A dynamic equilibrium models the temporal evolution
of the flows in the network. Loosely speaking, it consists of a flow pattern
in which every particle travels along a shortest path, accounting for the fact
that travel times depend on the instant at which a particle enters the network
as well as the state of the queues that will be encountered along its path by
the time at which they are reached. Intuitively, if the queues are initially
empty, the equilibrium should start by sending all the flow along shortest
paths considering only the free-flow delays τe. These paths are likely to
become overloaded so that queues will grow on some of its edges and at some
point in time new paths will become competitive and will be incorporated
into the equilibrium. These new paths may in turn build queues so that
even longer paths may come into play. Hence one might expect that the
equilibrium proceeds in phases in which the paths used by the equilibrium
remain stable. However, it is unclear if the number of such phases is finite
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Figure 1: An arc in the fluid queuing network.

and whether the equilibrium will eventually reach a steady state in which
the queues and travel times stabilize.

Although dynamic equilibria have been around for almost fifty years (see,
e.g., (Ford and Fulkerson 1958, Friesz et al. 1993, Gale 1959, Merchant and Nemhauser
1978a,b, Peeta and Ziliaskopoulos 2001, Ran and Boyce 1996, Vickrey 1969,
Xu et al. 1999)), their existence has only been proved recently by Zhu and Marcotte
(2000) though in a somewhat different setting, and by Meunier and Wagner
(2010) who gave the first existence result for a model that covers the case
of fluid queuing networks. These proofs, however, rely heavily on functional
analysis techniques and provide little intuition on the combinatorial structure
of dynamic equilibria, their characterization, or feasible approaches to com-
pute them. Substantial progress was recently achieved by Koch and Skutella
(2011) by introducing the concept of thin flows with resetting that character-
ize the time derivatives of a dynamic equilibrium, and which provide in turn
a method to compute an equilibrium by integration. A slightly refined notion
of normalized thin flows with resetting was considered by Cominetti et al.
(2015), who proved existence and uniqueness, and provided a constructive
proof for the existence of a dynamic equilibrium.

In recent work, further extensions and variants of the model have been
studied. In particular, Sering and Skutella (2018) extend some of the known
results about dynamic equilibria to the case in which there are multiple
sources and terminal nodes. However, the multi-commodity case is largely
open. Furthermore, Sering and Vargas Koch (2019) consider spill back ef-
fects to model the fact that in practice the queues cannot grow arbitrarily
large and that their effect propagates back in the network. Graf and Harks
(2019) consider a related model in which particles behave myopically and
make routing decisions based on the current state of the network, without
anticipating its evolution. Finally, we mention the work of Cao et al. (2017)
who considered an atomic model and established that in series-parallel net-
works queues remain bounded in a dynamic equilibrium.

In this paper we focus on the long term behavior of dynamic equilibria
in fluid queuing networks. Clearly if the inflow u0 is very large compared to
the queuing capacities, the queues will grow without bound, and no steady
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state can be expected. More precisely, let δ+(S) be an st-cut with minimum
queuing capacity ν̄ =

∑

e∈δ+(S) νe; if there are multiple options, choose S

(containing s) to be setwise minimal. If u0 > ν̄ all the arcs in δ+(S) will
grow unbounded queues, whereas for u0 ≤ ν̄, it is natural to expect that
the equilibrium should eventually reach a steady state, where queue lengths
remain constant. This was not known—in fact, it was not even known that
queue lengths remain bounded!

Our main goal in this paper is to show that both these properties do
indeed hold: more precisely, when u0 ≤ ν̄, the dynamic equilibrium reaches
a steady state in finite time. At first glance, these convergence properties
might seem “obvious”, and it might seem surprising that they are at all
difficult to prove. We will present some examples that illustrate why this is
not the case. For instance, it may occur that the flow across the cut δ+(S)
may temporarily exceed its capacity ν̄ by an arbitrarily large factor, forcing
the queues to grow very large. This phenomenon may occur since the inflow
u0 entering the network at different points in time may experience different
delays and eventually superpose at δ+(S) which gets an inflow larger than
u0. In other cases some queues may grow during a period of time after
which they reduce to zero and then grow again later on. In fact, we give a
construction that shows that this can happen an exponential (in the input
size) number of times during the evolution! Along the way to our main result,
we provide a characterization of the steady state as an optimal solution of a
certain linear programming problem and we discuss when this problem has
a unique solution. Despite the fact that convergence to a steady state occurs
in finite time, it remains as an open question whether this state is attained
after finitely many phases.

The paper is structured as follows. Section 2 reviews the model of fluid
queuing networks, including the precise definition of dynamic equilibrium
and the main results known so far. Then, in Section 3 we discuss the notion
of steady state and provide a characterization in terms of a linear program.
Inspired by the objective function of this linear program, in Section 4 we in-
troduce a potential function and we prove that it is a Lyapunov function for
the dynamics. This potential turns out to be piecewise linear in time with
finitely many possible slopes. We then prove that the potential remains
bounded so that there is a finite time at which its slope is zero, and we show
that in that case the system has reached a steady state. Further, we pro-
vide an explicit pseudopolynomial bound on the convergence time. Finally,
in Section 5 we discuss the interesting (and perhaps surprising) examples
alluded to earlier, as well as some remaining open questions.

4



2 Dynamic equilibria in fluid queuing networks

In this section we recall the definition of dynamic equilibria in fluid queuing
networks, and we briefly review the known results on their existence, charac-
terization, and computation. The results are stated without proofs for which
we refer to Koch and Skutella (2011) and Cominetti et al. (2015).

2.1 The model

Consider a fluid queuing network G = (V,E) with arc capacities νe and
delays τe. The network dynamics are described in terms of the inflow rates
f+
e (θ) that enter each arc e ∈ E at time θ, where f+

e : [0,∞) → [0,∞) is
measurable.

Arc dynamics. If the inflow f+
e (θ) exceeds νe a queue ze(θ) will grow at

the entrance of the arc. The queues are assumed to operate at capacity, that

f+
e (θ) f−

e (θ+τe)ze(θ)
νe τe

(inflow) (queue) (link) (outflow)

Figure 2: Dynamics of an arc in the queuing network.

is to say, when ze(θ) > 0 the flow is released at rate νe, whereas when the
queue is empty the outflow is the minimum between f+

e (θ) and the capacity
νe. Hence the queue evolves from its initial state ze(0)=0 according to

że(θ) =

{

f+
e (θ)− νe if ze(θ) > 0

[f+
e (θ)− νe]+ if ze(θ) = 0.

(1)

These dynamics uniquely determine the queue lengths ze(θ) as well as the
arc outflows

f−
e (θ+τe) =

{

νe if ze(θ) > 0
min{f+

e (θ), νe} if ze(θ) = 0.
(2)

Flow conservation. A flow over time is a family (f+
e )e∈E of arc inflows

such that flow is conserved at every node v ∈ V \ {t}, namely for a.e. θ ≥ 0

∑

e∈δ+(v)

f+
e (θ) −

∑

e∈δ−(v)

f−
e (θ) =

{

u0 if v = s
0 if v 6= s, t.

(3)
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Dynamic shortest paths. A particle entering an arc e at time θ experi-
ences a queuing delay ze(θ)/νe plus a free-flow delay τe to traverse the arc
after leaving the queue, so that it will exit the arc at time

Te(θ) = θ +
ze(θ)

νe
+ τe. (4)

Consider a particle entering the source node s at time θ. If this particle
follows a path p = e1e2 · · · ek, it will reach the end of the path at time

Tp(θ) = Tek ◦ · · · ◦ Te2 ◦ Te1(θ). (5)

Denoting Pv the set of all sv-paths, the minimal time at which node v can
be reached is

ℓv(θ) = min
p∈Pv

Tp(θ). (6)

The paths attaining these minima are called dynamic shortest paths. The
arcs in these paths are said to be active at time θ and we denote them by
E′

θ. Observe that ℓv(θ) can also be defined through the dynamic Bellman’s
equations







ℓs(θ) = θ

ℓw(θ) = min
e=vw∈E

Te(ℓv(θ))
(7)

so that e = vw is active precisely if ℓw(θ) = Te(ℓv(θ)).

Dynamic equilibrium. A dynamic equilibrium is a flow pattern that uses
only dynamic shortest paths. More precisely, let Θe = {θ : e ∈ E′

θ} be
the set of entrance times θ at which the arc e is active, and Ξe = ℓv(Θe)
the set of local times ξ = ℓv(θ) at which e will be active. A flow over time
(f+

e )e∈E is called a dynamic equilibrium iff for almost every ξ ≥ 0 we have
f+
e (ξ) > 0 ⇒ ξ ∈ Ξe.

2.2 Characterization of dynamic equilibria

Since the inflows f+
e (·) are measurable the same holds for f−

e (·) and we may
define the cumulative inflows and cumulative outflows as

F+
e (θ) =

∫ θ
0 f+

e (z) dz

F−
e (θ) =

∫ θ
0 f−

e (z) dz.

These cumulative flows allow to express the queues as ze(θ) = F+
e (θ) −

F−
e (θ + τe). It turns out that a dynamic equilibrium can be equivalently

characterized by the fact that for each arc e = vw ∈ E we have

F+
e (ℓv(θ)) = F−

e (ℓw(θ)) ∀ θ ≥ 0. (8)

6



In this case, the functions xe(θ) , F+
e (ℓv(θ)) are static flows with

∑

e∈δ+(v)

xe(θ)−
∑

e∈δ−(v)

xe(θ) =







u0θ if v = s
−u0θ if v = t

0 if v 6= s, t.
(9)

2.3 Derivatives of a dynamic equilibrium

The labels ℓv(θ) and the static flows xe(θ) are nondecreasing functions which
are also absolutely continuous so that they can be reconstructed from their
derivatives by integration.1 Moreover, from these functions one can recover
the equilibrium inflows f+

e (·) using the relation x′e(θ) = f+
e (ℓv(θ))ℓ

′
v(θ).

Hence, finding a dynamic equilibrium reduces essentially to computing the
derivatives ℓ′v(θ), x

′
e(θ).

Let θ be a point of differentiability and set ℓ′v = ℓ′v(θ) ≥ 0 and x′e =
x′e(θ) ≥ 0. From (9) we see that x′ is a static st-flow of size u0, namely,

∑

e∈δ+(v)

x′e −
∑

e∈δ−(v)

x′e =







u0 if v = s
−u0 if v = s

0 if v 6= s, t
(10)

while using (7), (4), (1) and the differentiation rule for a minimum we get







ℓ′s = 1

ℓ′w = min
e=vw∈E′

θ

ρe(ℓ
′
v , x

′
e)

(11)

where

ρe(ℓ
′
v, x

′
e) =

{

x′e/νe if e ∈ E∗
θ

max{ℓ′v, x
′
e/νe} if e 6∈ E∗

θ

(12)

with E∗
θ the set of arcs e = vw with positive queue ze(ℓv(θ)) > 0. In addition

to this, the conditions for dynamic equilibria imply E∗
θ ⊂ E′

θ as well as

(∀ e ∈ E′
θ) x′e > 0 ⇒ ℓ′w = ρe(ℓ

′
v, x

′
e)

(∀ e 6∈ E′
θ) x′e = 0.

(13)

These equations fully characterize the derivatives of a dynamic equilib-
rium. In fact, for all subsets E∗ ⊆ E′ ⊆ E the system (10)-(13) admits at
least one solution (ℓ′, x′) and moreover the ℓ′ component is unique. These
solutions are called normalized thin flows with resetting (ntfr) and can be

1These derivatives exist almost everywhere and are locally integrable.
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used to reconstruct a dynamic equilibrium by integration, proving the exis-
tence of equilibria. We refer to Cominetti et al. (2015) for the existence and
uniqueness of ntfr’s and to Koch and Skutella (2011) for a description of
the integration algorithm and how to find the equilibrium inflows f+

e (·).
Observe that there are only finitely many options for E∗ and E′. Since the

corresponding ℓ′ is unique, it follows that the functions ℓv(θ) will be uniquely
defined and piecewise linear with finitely many options for the derivatives.
Although the static flows xe(θ) are not unique in general, one can still find
an equilibrium in which these functions are also piecewise linear by fixing a
specific x′ in the ntfr for each pair E∗, E′.

2.4 A detailed example

We now work out the details of a small example that already provides some
intuition on how the dynamic equilibria behaves. In particular this example
exhibits an unexpected property, namely that the flow coming into the sink
can be larger than the network inflow.

Example 1. Consider the network consisting of the vertices {s, v, t} with
edges e = (s, t), f = (s, v), g = (v, t), h = (v, t) and inflow u0 = u. Capacities
are νe = u/3, νf = 3u/4, νg = u/3, and νh = u, and delays are τe = τh = τ ,
and τf = τg = 0.

s t

v

ν e
=
u/
3

τe = τ

ν
f
=
3u
/4

τ
f =

0

ν g
=
u/
3

τg
=
0

νh =
u

τ h
=
τ

In a dynamic equilibrium for this instance, flow is initially routed through
the shortest path fg. Then queues grow in both edges until at time τ/2 the
path consisting of e enters the shortest path network. From that point in
time the flow splits in equal proportions between paths e and fg implying
that a queue starts growing on edge e, the queue of f starts decreasing,
while the queue on g continues to increase. Then, at time 0.7τ , the queue
on g has grown enough to make h enter the shortest path network. At this
point all edges except h have a queue and the flow starts splitting as follows:
4u/13 take path e, 4u/13 take path fg, and 5u/13 take path fh. Therefore

8



all queues start decreasing until at time 2τ the queues on edges e and f
deplete simultaneously. When this happens the shortest path network stays
the same but the edges with queue change since only g still has a queue. The
new thin flow is thus computed, and the flow starts splitting evenly between
the paths e, fg, and fh (each gets flow u/3). This last phase constitute
a steady state so it lasts forever. More precisely in this instance one can
compute the derivative of the distance labels at node t as

ℓ′t(θ) =















3 for θ ∈ [0, τ/2)
3/2 for θ ∈ [τ/2, τ/2 + τ/5)

12/13 for θ ∈ [τ/2 + τ/5, 2τ)
1 for θ ∈ [2τ,∞)

.

Interestingly, the amount of flow arriving at t at time ℓt(θ) can readily
be computed as u/ℓ′t(θ). So that if we consider the local time at node t this
flow is then

f−
e (θ) + f−

g (θ) + f−
h (θ) =















u/3 for θ ∈ [0, 3τ/2)
2u/3 for θ ∈ [3τ/2, 9τ/5)

13u/12 for θ ∈ [9τ/5, 3τ)
u for θ ∈ [3τ,∞).

This brings us to the surprising fact that for some time interval, the flow
arriving at the sink is larger than the inflow.

3 Steady states

We say that a dynamic equilibrium attains a steady state if for sufficiently
large times all the queues are frozen to a constant ze(θ) ≡ z∗e . This is clearly
equivalent to the fact that the arc travel times become constant equal to
τ∗e = τe + q∗e with q∗e = z∗e/νe the corresponding queuing times.

Lemma 1. A dynamic equilibrium attains a steady state iff there exists some

θ∗ ≥ 0 such that ℓ′v(θ) = 1 for every node v ∈ V and all θ ≥ θ∗.

Proof. In a steady state we clearly have ℓv(θ) = θ + d∗v where d∗v is the
minimum travel time from s to v with arc times τ∗e , so that ℓ′v(θ) = 1.
Conversely, if all these derivatives are equal to 1 then ℓv(θ) = θ + d∗v for
some constant d∗v and θ ≥ θ∗. Moreover, an arc e = vw with nonempty
queue must be active so that ℓw(θ) = Te(ℓv(θ)) which yields

ze(θ + d∗v) = ze(ℓv(θ)) = νe(ℓw(θ)− ℓv(θ)− τe) = νe(d
∗
w − d∗v − τe)

which shows that all queues eventually become constant.

9



Theorem 1. Consider a steady state with queues z∗e ≥ 0 and let d∗v be the

minimum travel time from s to v under arc travel times τ∗e = τe + q∗e , where

q∗e = z∗e/νe. Let (ℓ′, x′) with ℓ′v = 1 for all v ∈ V be a corresponding ntfr
and denote by F0 the set of st-flows of value u0. Then x′ and (d∗, q∗) are

optimal solutions to the following pair of dual linear programs:

min
y′

∑

e∈E

τey
′
e

s.t. y′ ∈ F0

0 ≤ y′e ≤ νe ∀e ∈ E,

(P)

max
d,q

u0dt −
∑

e∈E

νeqe

s.t. ds = 0

dw ≤ dv + τe + qe ∀e = vw ∈ E

qe ≥ 0 ∀e ∈ E.

(D)

Proof. Clearly (d∗, q∗) is feasible for (D). Also (10) gives x′ ∈ F0, while (13)
implies that if x′e > 0 then 1 = ρe(1, x

′
e). This implies that x′e ≤ νe, so x′

is feasible for (P). If x′e > 0 then certainly the arc is active (formally, by
(13)) and hence d∗w = d∗v + τe + q∗e . And if q∗e > 0, also implying that e is
active, then (11) implies that 1 ≤ ρe(1, x

′
e) = x′e/νe, which yields x′e = νe.

This proves that x′ and (d∗, q∗) are complementary solutions, and hence are
optimal for (P) and (D) respectively.

According to this result, if a dynamic equilibrium eventually settles to a
steady state then the corresponding queue lengths must be optimal for (D).
Generically (after perturbing capacities) this linear program has a unique
solution in which case the steady state is fully characterized. Otherwise,
if (D) has multiple solutions it is not evident which queue lengths will be
obtained in steady state. Note that even if the min cost flow for (P) is
unique, this does not mean that only one steady state situation is possible
because there may be flexibility in the queue lengths. For instance, if u0 = 1
and the network has a single link from s to t of unit capacity, if we create
a queue of some length at time 0 this queue will remain in the steady state
solution. This point will be further discussed in Section 5.3.
Remark. It is not difficult to show that when we start with initial conditions
ze(0) = z∗e where z∗e = νeq

∗
e with q∗ optimal for (D), then the dynamic

equilibrium is already at a steady state and the queues remain constant.
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4 Convergence to a steady state

In this section we prove that a steady state exists and that it is actually
reached in finite time. To this end we introduce a Lyapunov potential func-
tion that increases along the evolution of the dynamic equilibrium. The
potential function is inspired from the previous dual program and is given
by

Φ(θ) := u0(ℓt(θ)− ℓs(θ))−
∑

e∈E

ze(ℓv(θ)).

Remark. The potential is the difference between the total travel time expe-
rienced by users leaving at time θ, and the total queue volumes, as seen by
users leaving at time θ. We are not aware of a more insightful interpretation
of it. In fact, none of the more “natural” quantities we tried as candidate
potential functions (total delay, time spent queueing, total delay excluding
queueing delays, . . . ) are monotone.

Theorem 2. For every θ that is a point of differentiability of Φ, Φ′(θ) is

nonnegative, and strictly positive unless the dynamic equilibrium has reached

a steady state.

Proof. The queues can be expressed as ze(ℓv(θ)) = νe [ℓw(θ)− ℓv(θ)− τe]+,
and therefore Φ(θ) = u0(ℓt(θ) − ℓs(θ)) −

∑

e∈E νe [ℓw(θ)− ℓv(θ)− τe]+. To
take the derivative we recall that E′

θ is the set of active edges, i.e., those
for which ℓw(θ)− ℓv(θ) ≥ τe, while in E∗

θ the inequality is strict. Using the
derivative of a max function and taking a ntfr (ℓ′, x′) at time θ, we thus
obtain

Φ′(θ) = u0(ℓ
′
t − ℓ′s) −

∑

e∈E′

θ
\E∗

θ

νe[ℓ
′
w − ℓ′v]+ −

∑

e∈E∗

θ

νe(ℓ
′
w − ℓ′v).

Notice that the dependency of the τe’s in the previous derivative is somewhat
hidden in the set of active edges E′

θ. Now, for e ∈ E′
θ \E

∗
θ we have ℓ′w ≤

ρe(ℓ
′
v, x

′
e) = ℓ′v if x′e = 0 and ℓ′w = ρe(ℓ

′
v, x

′
e) ≥ ℓ′v if x′e > 0, so that letting

E+
θ = E∗

θ ∪ {e ∈ E′
θ \ E

∗
θ : x′e > 0} we may write

Φ′(θ) = u0(ℓ
′
t − ℓ′s)−

∑

e∈E+

θ

νe(ℓ
′
w − ℓ′v).

Let us introduce a return arc ts with capacity νts = u0 and flow x′ts = u0
so that x′ is a circulation. Let Er

θ = E+
θ ∪ {ts} and for each e = vw ∈ Er

θ

11



define the function

He(z) =











1 if ℓ′v ≤ z < ℓ′w
−1 if ℓ′w ≤ z < ℓ′v
0 otherwise.

Then the derivative Φ′(θ) can be expressed as

Φ′(θ) = −

∫ ∞

0

∑

e∈Er

θ

νeHe(z) dz.

For the remainder of the proof, let δ+(S) (respectively δ−(S)) denote
the arcs in Er

θ leaving (respectively entering) S. Let Vz = {v : ℓ′v ≤ z} and
consider an arc e = vw ∈ E+

θ . If e ∈ δ+(Vz) then ℓ′v ≤ z < ℓ′w and therefore
ℓ′w = x′e/νe. Similarly, if e ∈ δ−(Vz) then ℓ′w ≤ z < ℓ′v which implies e ∈ E∗

θ

and again ℓ′w = x′e/νe. Hence x′e = νeℓ
′
w for all e ∈ E+

θ ∩δ(Vz). This equality
also holds for the return arc ts, while in the remaining arcs x′e = 0. Hence

∑

e∈δ+(Vz)

νez ≤
∑

e=vw∈δ+(Vz)

νeℓ
′
w =

∑

e∈δ+(Vz)

x′e =
∑

e∈δ−(Vz)

x′e =
∑

e=vw∈δ−(Vz)

νeℓ
′
w ≤

∑

e∈δ−(Vz)

νez

(14)
with strict inequality if δ+(Vz) is nonempty. It follows that for all z > 0 we
have

∑

e∈Er

θ

νeHe(z) =
∑

e∈δ+(Vz)

νe −
∑

e∈δ−(Vz)

νe ≤ 0

and therefore Φ′(θ) ≥ 0 with strict inequality unless δ+(Vz) is empty for
almost all z ≥ 0. Since for δ+(Vz) to be empty we need that it either
contains all vertices in V or none of them, we have that Φ′(θ) = 0 if and
only if all ℓ′v are equal, and hence (since ℓ′s = 1) all equal to 1. By Lemma 1,
this exactly characterizes a steady state.

Theorem 3. Let ν̄ =
∑

e∈C νe be the minimal queuing capacity among all

st-cuts C. If u0 ≤ ν̄ then the dynamic equilibrium attains a steady state in

finite time.

Proof. From Theorem 2 it follows that there is some κ > 0 such that Φ′(θ) ≥
κ for every phase other than the steady state. This is simply because the
thin flow depends only on the current shortest path network E′

θ and the set
of queuing edges E∗

θ , and so there are only finitely many possible derivatives.
Thus, in order to prove that a steady state is reached in finite time it

suffices to show that Φ(θ) remains bounded. To this end we note that the
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condition u0 ≤ ν̄ implies that (P) is feasible and hence it has a finite optimal
value α. The conclusion then follows by noting that the point (d, q) with
dv = ℓv(θ)− ℓs(θ) and qe = ze(ℓv(θ))/νe is feasible for the dual (D) so that
Φ(θ) ≤ α.

Given that convergence to a steady state does happen in finite time, it
is natural to ask for explicit bounds. It is easy to see that a polynomial
bound (in the input size encoding) is impossible; simply consider a network
consisting of two parallel links, one with capacity 1−2−L and length zero, the
other with capacity 1 and length 1. The first phase, where all traffic takes the
shorter edge, lasts until time 2L−1. However, we can give a pseudopolynomial

bound on the convergence time (and hence, queue lengths). The following
results shows this bound. We present it in a slightly more general setting
that allows for rational inflow and capacities and arbitrary initial queues
since we will need it in this form in Section 5.2.

Theorem 4. Consider an instance for which all arc capacities νe as well

as the inflow u0 are multiples of 1/K, K ∈ Z+. We allow for an arbitrary

initial state at time 0 with possibly nonempty queues. Let M =
∑

e∈E νe and

T =
∑

e∈E(τe + qe(0)). Then assuming the dynamic equilibrium attains a

steady state, it is reached by time 2K2M2T , and moreover, the waiting time

in any queue never exceeds 2u0K
3M2T .

Proof. We first remark that it suffices to prove the result for K = 1, i.e.,
integer capacities and inflow. For consider the instance where the inflow as
well as all arc capacities have been scaled up by a factor K. The equilib-
rium flow on this new instance is obtained by scaling the equilibrium flow
on the original one, and so the time to reach steady state, as well as the
queue waiting times at any moment in time, are the same for both instances.
Considering the impact of the scaling on the claimed bounds, the claim on
this new instance thus implies the claim on the original instance, and so we
assume K = 1 for the remainder.

We use the same notions defined in the proof of Theorem 2. Assume that
a steady state is attained; thus (P) has a finite objective value, and this is at
most

∑

e∈E νeτe ≤ M
∑

e∈E τe. Thus Φ(θ) ≤ M
∑

e∈E τe for all θ. Initially,

Φ(0) = u0(ℓt(0)− ℓs(0)) −
∑

e∈E

νeqe(0) ≥ −M
∑

e∈E

qe(0).

So Φ(θ)− Φ(0) ≤ MT for all θ.
Consider some time θ which is a point of differentiability not in the steady

state phase; so Φ′(θ) > 0 by Theorem 2. Our first goal will be to show that
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Φ′(θ) ≥ 1/(2M); this clearly implies the bound on the time to reach steady
state.

Let θ be any time before steady state is reached and for which Φ′(θ) is
defined. Let z1 = minv∈V ℓ′v(θ) and z2 = maxv∈V ℓ′v(θ). From the proof
of Theorem 2, we have

∑

e∈Er

θ

νeHe(z) ≤ −1 for any z ∈ (z1, z2) (it is

strictly negative and integral). And certainly He(z) = 0 for all e ∈ Er
θ and

z /∈ [z1, z2]. Thus

Φ′(θ) = −

∫ z2

z1

∑

e∈Er

θ

νeHe(z)dz ≥ z2 − z1.

To bound this, choose an arbitrary z for which z1 < z < z2 (recall that
z1 < z2 since we have not reached steady state). We have, following the
lines of (14),

z1
∑

e∈δ−(Vz)

νe ≤
∑

e=vw∈δ−(Vz)

νeℓ
′
w =

∑

e∈δ−(Vz)

x′e =
∑

e∈δ+(Vz)

x′e =
∑

e=vw∈δ+(Vz)

νeℓ
′
w ≤ z2

∑

e∈δ+(Vz)

νe.

Thus

z2 − z1 = z2(1−
z1
z2
) ≥ z2

(

1−

∑

e∈δ+(Vz)
νe

∑

e∈δ−(Vz)
νe

)

.

Since z2 > z1,
∑

e∈δ−(Vz)
νe ≤ M + u0 ≤ 2M , and z2 ≥ ℓ′s(θ) = 1, z2 − z1 ≥

1/(2M).
Our next goal is to bound the queue lengths. The only extra ingredient

we need is a bound on the speed at which a queue can grow. There is always a
ntfr which does not route flow along cycles (see Koch 2012, Theorem 6.64),
so that x′e ≤ u0 for all e ∈ E. Therefore, maxv ℓ

′
v = max{ℓ′s,maxe x

′
e/νe} ≤

u0. Hence, for all times θ before steady state is reached,

ℓt(θ)− ℓs(θ) ≤ ℓt(0) − ℓs(0) + (u0 − 1)θ ≤ T + 2(u0 − 1)M2T ≤ 2u0M
2T.

This implies the same bound on all queue waiting times.

5 Some constructions and conjectures

While we have settled the finite-time convergence to a steady state, there
are a number of questions about dynamic equilibria that remain open. In
this section we provide some constructions exhibiting somehow surprising
behavior. First we show that in a dynamic equilibrium the flow across a
cut can be arbitrarily larger than the inflow. Then we build an instance for
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Figure 3: The modified instance.

which the dynamic equilibria has exponentially many phases. We wrap up
the section by discussing the possibility of characterizing the steady state
queues, and some conjectures regarding more general steady state results.

5.1 Flow across a cut

As mentioned in the introduction a first conjecture would be that, similarly
to what happens for static flows, the flow across any cut is always bounded
by the inflow. This would provide a way to estimate the queues and to prove
their boundedness. Unfortunately the property fails in a dynamic equilib-
rium. The reason for this is that flow entering the network at different times
may experience different delays in such a way that they later superpose across
an intermediate cut. In Example 1 we constructed one such instance, where
the peak outflow rate was a factor 13/12 larger than the inflow rate. We
will now show how to construct instances in which the outflow is arbitrarily
larger than the inflow.

The base of the construction, given in Figure 3, consists on appending to
the instance in Example 1 (slightly rescaled for convenience) an extra sink t′

and two arcs, e′ and f ′, connecting t with t′. Since the outflow in Example 1
(with τ = 5ρ/6) is















u/3 for θ ∈ [0, 5ρ/4)
2u/3 for θ ∈ [5ρ/4, 3ρ/2)

13u/12 for θ ∈ [3ρ/2, 5ρ/2)
u for θ ∈ [5ρ/2,∞),

the outflow in the new instance will be






u/3 for θ ∈ [0, 7ρ/4)
13u/12 for θ ∈ [7ρ/4, 11ρ/4)

u for θ ∈ [11ρ/4,∞).
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Indeed, while the flow leaving t is u/3, it will directly take arc f ′ and therefore
immediately reach t′. Then the flow leaving t increases to 2u/3 and it will
continue to choose arc f ′, though a queue will start to build up on that arc.
At time 3ρ/2 (considering the local time at t) the queue in f ′ will be of size
(u/3) · (ρ/4), implying a queuing time of ρ/4. Since this is exactly the delay
of arc e′, at this point e′ enters the shortest path network. From this point
the flow leaving t increases to 13u/12 and thus the flow splits: u/3 flow units
take arc f ′ while the remaining 9u/12 take arc e′. The latter pattern stays
until time 5ρ/2 when the flow leaving t changes to u and thus it splits as u/3
taking arc f ′ and 2u/3 taking arc e′, at which point steady state has been
reached.

Some observations are in order:

- The length of the “pulse” in this construction is exactly ρ, and so this can
be made as large as required.

- The full pulse is produced as long as the inflow is u for a period of 7ρ/4;
if it were to decrease or otherwise vary after this, it would only interfere
with the final steady state phase.

- All arcs in the gadget have capacity at least u/3, meaning that no queues
will form if the inflow is bounded by u/3. This means that the instance
would still produces a pulse if the inflow was at most u/3 for some initial
period, and then equal to u for a period (of length at least 7ρ/4).

Building on these observations, we now construct an instance where the
“pulse” is arbitrarily larger than the inflow. More precisely, we will construct
a gadget pulse(u, k, q), for any k ∈ N and u, q ∈ R+, with the following
properties (we define λ := 13/12 for convenience).

(i) There is some value αk = O((5/3)k) such that, assuming a constant
inflow rate of u in the interval [0, (5/3)kρ], the inflow rate into the sink
is at most u/3 for θ < ραk and exactly λk · u for θ ∈ [ραk, ραk + ρ)
(where θ is the local time at the sink).

(ii) All arcs have capacity at least u/3.

(iii) The gadget has 6k arcs, with all free-flow delays being multiples of 3−kρ
and bounded by O((5/3)kρ), and all arc capacities being multiples of
12−ku and bounded by λku.

We have already seen in Figure 3 the construction of a pulse(u, 1, ρ) gad-
get; all the required properties clearly hold. We construct a pulse(u, k, ρ)
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gadget for k ≥ 1 by chaining together in series a pulse(u, k − 1, 53ρ) gadget
(call it G) followed by a pulse(λk−1u, 1, ρ) gadget (call it H). Properties
(i)–(iii) are then mostly easy to verify inductively. An important observation
is that since the outflow of G before its pulse is at most u/3, which is smaller
than the smallest capacity arc in H, this initial flow does not cause any dis-
turbance. The bound on αk follows easily by making the stronger inductive
claim that αk = 21

8 ((5/3)
k − 1). Now α1 = 7/4, so this is correct for k = 1.

For k ≥ 2, the flow into H increases to λk−1u at time ραk−1 · (5/3), meaning
that the outflow increases to λku at time ραk−1(5/3) + (7/4)ρ = ραk, and
this the inductive claim holds.

5.2 Instances with an exponential number of phases

A natural hope would be that the number of phases is always polynomial in
the input size (ideally as measured by the number of arcs in the instance,
but failing that, as measured by the total encoding length of the instance).
Unfortunately, as we show next, this is not the case and indeed the number of
phases of a dynamic equilibrium may be exponential even is relatively simple
series-parallel networks. This may help explaining why it is so notoriously
difficult to practically compute dynamic equilibria in real-world networks
(Wagner 2012, Friez and Han 2018).

The pulse gadget of the previous section will be a first key ingredient.
The next step of our construction is to use it to build a “damping” gadget.
For any k ∈ Z+, ρ ∈ R+ we construct a gadget damper(k, ρ) with the
following properties (recall that λ := 13/12).

(i) There are values Q = eO(k)ρ and θ1 + 2ρ < θ2 = eO(k)ρ so that the
following holds. Given an inflow of rate 1 in the interval [0, Q), the
gadget produces an outflow that is precisely 1 in the intervals [θ1, θ1+ρ)
and [θ2, θ2 + ρ), and precisely λ−k in the interval [θ2 − ρ, θ2).

(ii) All arc capacities are multiples of 12−k between λ−k/3 and 1.

(iii) Assuming an inflow rate that is always bounded by 1, the sum of queue-
ing delays and free-flow delays within the gadget can never exceed
eO(k)ρ.

(iv) The construction has O(k) arcs, with total encoding length O(k · |ρ|)
(where |ρ| denotes the encoding length of ρ).

The construction of this gadget is shown in Figure 4 (the precise value
of τf is discussed below). Initially, no flow uses arc f ; a queue grows on e,
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s pulse(λ−k, k, ρ) t

ν f
=
1

τf = eO(k)ρ

νe = λ−k τe = 0 νg = 1 τg = 0

Figure 4: Construction of a damper(k, ρ) gadget.

which sends the correct inflow of λ−k into the pulse(λ−k, k, ρ) gadget. After
some time, the pulse gadget generates a pulse of size exactly 1, for a period of
length ρ. We set θ1 to the time that this pulse begins (as measured at t); by
Property (i) of the pulse gadget, θ1 = O((5/3)kρ). Since all free-flow delays
in the gadget are bounded by O((5/3)kρ), and all capacities are multiples of
12−k bounded by 1, Theorem 4 yields a bound of eO(k)ρ, both on the time
to reach steady state, and also on the total delay within the pulse gadget.
Once the pulse gadget has reached steady state, its outflow remains at λ−k;
this will be the outflow of the damper gadget as well, as long as f has not
joined the shortest path network.

We now see how to choose τf ; large enough that f only joins the shortest
path network after the pulse gadget has been sending outflow λ−k for at least
ρ amount of time. Since the queue on arc e grows at rate λk − 1, and the
delay within the pulse gadget itself is at most eO(k)ρ, it is clear that we can
choose τf = eO(k)ρ. Once f does join the shortest path network, the entire
damper gadget reaches steady state, and the flow into t increases to 1. This
determines θ2, and from this we can fix Q, ensuring that both are bounded
by eO(k)ρ. Property (iii) also follows immediately from the choice of τf .

Now we come to the construction of the gadget exponential(d), which
for any d ∈ Z+ will have size quadratic in d, and at least 2d phases. The
construction is recursive. In the following, C will denote a constant chosen
large enough in relation to the hidden implicit constants in the definition
of the damper gadget; the precise requirements on C will become clear.
We construct exponential(1) by simply taking two parallel arcs, one of
capacity 1/3 and length 0, and the other of capacity 2/3 and length 1; this
clearly has two phases. To construct exponential(d) for d ≥ 2, take a
damper(15d,C(d−1)2 ) gadget (call it G), and follow this in series by an
exponential(d− 1) gadget (call it H).

The idea behind this construction is that because the outflow λ−15d from
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the damper gadget G during the damped period is smaller than the minimum
arc capacity (of at least λ−15(d−1)/3) in H, queues within the gadget will
decrease. The length of the damped phase has been chosen to be long enough
that all queues in H empty out completely (this is the only really delicate
aspect of this construction). The two high outflow periods of G last long
enough that H runs (inductively) through 2d−1 phases during both periods,
giving a total of at least 2d phases.

The following properties about exponential(d) are then straightfor-
ward to confirm inductively, exploiting also the properties of the damper
gadget.

(i) Given a constant inflow of 1 in the interval [0, Cd2), the gadget goes
through 2d phases.

(ii) All arc capacities are multiples of 12−15d between λ−15d/3 and 1.

(iii) Assuming an inflow rate that is always bounded by 1, the sum of queue-
ing delays and free-flow delays within the gadget can never exceed
Cd2−d.

(iv) The gadget consists of less than (10d)2 arcs, and has encoding length
O(d4).

Property (iii) requires that C is chosen large enough that the bound on the
total delays in G given by Property (iii) of the damper gadget is smaller than
Ck/15−2ρ, which for k = 15d and ρ = C(d−1)2 yields a bound of Cd2−d−1.
Inductively the total delays in H sum to at most C(d−1)2−(d−1) = Cd2−3d.
Overall, we obtain a bound of at most Cd2−d−1 + Cd2−3d ≤ Cd2−d.

Let us now see that all queues in H do empty out during the damped
period. By Properties (ii) and (iii), Theorem 4 tells us that the time to reach
steady state from the beginning of the damped period is at most

2C(d−1)2−(d−1) · (10d)4 · (1215d)2 ≤ Cd2−3d+2 · Cd−1 = C(d−1)2 ,

which is the length of the damped phase. (We assume in the above that C
is large enough that 2(10d)4 · (1215d)2 ≤ Cd−1.) Since the inflow into H in
the damped period, namely λ−15d < λ−15(d−1)/3, is lower than the capacity
of any arc in H, the steady state necessarily has no queues.

While we know that the number of phases may be very large, it is natural
to expect that there are only a finite number of phases. While we conjecture
that this is true, it is not ruled out by our result. Our result does show
that if the length of all phases in the evolution is bounded away from zero,
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then there can only be a finite number. It is not ruled out, however, that
an infinite sequence of phases occurs in a finite amount of time. This is the
same issue discussed in Cominetti et al. (2015). The issue is significant; it is
the one obstacle to showing uniqueness (in an appropriate sense) of dynamic
equilibria.

If such a result could be shown, an even stronger conjecture would be
that the number of phases is pseudopolynomially bounded in the input size.
This would show that the exponential capacities and free-flow delays in the
exponential gadget construction are in fact necessary.

5.3 Steady state queue lengths

Knowing that the dynamic equilibrium always reaches a steady state, a nat-
ural question is whether steady state queues can be characterized without
having to compute the full equilibrium evolution. While we already observe
that this is the case when the dual problem (D) has a unique solution, which
occurs generically, the following example suggests that this is likely not pos-
sible in general.

Example 2. Consider the network of Example 1, setting τ = 2 and u = 1,
with an extra node t̂, which becomes the new sink, and two additional arcs,
a = (t, t̂) and b = (t, t̂). Let νa = 2/3, νb = 1/3, τa = 0, and τb = 1. Clearly,

s t t̂

v
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3
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ν
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up to time 3 + 3/5 all flow will simply take arc a and will not queue at t.
Therefore we can ignore this initial phase, and the queues that will form at
equilibrium in arcs a and b are the same as those that we would have in a
network consisting of just nodes t (the source) and t̂ (the sink) and inflow

u0(θ) =

{

13/12 for θ ∈ [0, 2 + 2/5)
1 for θ ∈ [2 + 2/5,∞).

In this instance all flow will take arc a for time θ ∈ [0, 8/5), forming a queue
ze(8/5) = 2/3. At this point flow will start splitting between arcs a and b
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in proportions 2/3, 1/3, implying that queues will grow on both arcs until
time 2 + 2/5 where the steady state is achieved. The steady state queues
will thus be z∗a = 32/45 and z∗b = 1/45. This example shows that the steady
state queues are not minimal in any reasonable sense and that, furthermore,
slightly changing the instance (e.g. τ4) will change the steady state queues.
Furthermore, if we slightly increase the capacity of arc b, say to 1/3 + ε the
steady state queues jump to z∗a = 2/3 and z∗b = 0.

Additionally, one can observe from a slight variant of this instance,
namely taking τ large and νb = 1/3 + ε, that queues may grow very large in
the transient and then go down to zero at steady state.

5.4 Conjectures on more general steady state results

Suppose that the inflow into the network is not a constant, but a time varying
function u0(θ). Suppose moreover that u0(θ) is always bounded by the min-
cut capacity of the network. Of course, there cannot be convergence to
a steady state in this setting; but it is natural to expect that queues stay
bounded. We conjecture that this is the case. It is not clear how our potential
argument can aid in proving this conjecture. In particular, note that the
boundedness of Φ alone is not helpful, as this does not imply any bounds on
the queue sizes.

Suppose now that the inflow is constant, but larger than the min-cut
capacity. Then again the evolution can of course not converge to a steady
state in the way that we have defined it: queues cannot remain bounded.
However, we conjecture that it is still true that after a finite amount of time,
the equilibrium settles into a final phase that lasts forever.2
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