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Abstract—Billions of Internet of Things (IoT) devices deployed
today collect massive amounts of potentially valuable data. To
efficiently utilize this data, markets must be developed where
data can be traded in real time. Blockchain technology offers a
potential platform for these types of markets. However, previous
proposals using blockchain technology either require trusted
third parties such as data brokers, or necessitate a large number
of on-chain transactions to operate, incurring excessive overhead
costs. This paper proposes a trustless data trading system that
minimizes both the risk of fraud and the number of transactions
performed on chain. In this system, data producers and con-
sumers come to binding agreements while trading data off chain
and they only settle on chain when a deposit or withdrawal of
funds is required. A credit mechanism is also developed to further
reduce the incurred fees. Additionally, the proposed marketplace
is benchmarked on a private Ethereum network running on a
lab-scale testbed and the proposed credit system is simulated so
to analyze its risks and benefits.

Index Terms—IoT, blockchain, data marketplace, mechanism
design

I. INTRODUCTION

Internet of Things (IoT) devices and the data they collect
have a huge impact on society today. Billions of devices
have been deployed, impacting large sectors of the economy,
such as health care, automotives, manufacturing, and other
infrastructure [1]. These devices produce vast amounts of
potentially valuable data. However, as many of the devices
operate in closed systems, this data is often unavailable to
agents who may be able to use it [2]. This data hoarding
can have a negative impact. Most obviously, it can stifle
competition and innovation as it limits the number of people
who can utilize the data. Additionally, the data owners forgo
potential revenue from selling it. These issues can be avoided
by giving data producers appropriate economic incentives to
sell their data through efficient, fair, and secure marketplaces.

Selling IoT data has its own issues. IoT sensors generate
data in real time and many applications must receive it as
quickly as possible. Inevitably, as time passes its value may
decrease and, therefore, there are incentives to deliver it in real
time. MQTT [3] is a widely used protocol for the transfer of
IoT data in real time. However, it does not include payment
mechanisms and novel tools/methodologies are needed to
enable efficient payment transmission channels over it.

Another issue with IoT data is that, depending on what data
is being purchased, the producer or consumer of these transac-
tions may not be fully “trusted”. For example, a company that
wishes to measure traffic flow in a city may wish to purchase
location data from the users of phones moving around the city.
The company may not wish to prepay for a large amount of

data for fear that the phone users will accept the payment
and then breach the agreement by withholding their data. On
the other hand, users selling data may not wish to send large
amounts of data at once without any prepayment for fear that
the receiving party may eventually refuse to pay.

IoT data marketplaces do exist today [4], but require a
trusted third party to mediate the data exchange. This intro-
duces cost/privacy concerns, as the trusted third party generally
has access to the data traded and may illicitly benefit from
it. Further, similar concerns may prevent small players from
being part of an IoT marketplace. Blockchain technology,
and specifically smart contracts such as those that run on
the Ethereum blockchain, can solve some of these problems.
Smart contracts allow participants to enter into agreements
secured by blockchain validators with no trusted third party
required [5]. However, blockchains also introduce their own
issues. First, it is impossible for smart contracts to directly
track the flow of data over MQTT connections, making
fair enforcement of the contract difficult. Second, blockchain
transaction fees can be prohibitively expensive, e.g., gas costs
for Ethereum transactions occassionally amount to several
dollars [6]. Such excessive fees can be a roadblock to “small”
payments such as those often required by IoT data trades.

In this work, we propose a blockchain based data trading
mechanism that allows the safe trading of real time data while
still limiting the number of on-chain transactions required, thus
reducing the associated fees. This is done through the use
of binding off-chain agreements between data producers and
consumers, secured through on-chain deposits. We show that
the trading mechansim meets our objectives for fairness, pri-
vacy, and cost. We also propose a credit mechanism designed
to further lower the fees incurred during data trades. Using
this mechanism, producers estimate users’ future behaviour
based on the time the user has spent on the system in order
to assign them credit that benefits both parties. We test our
data trading mechanism by developing an implementation of
the smart contract that is required and by analyzing the smart
contract’s performance. Our mechanism is shown to achieve
significantly reduced transaction costs in comparison with the
state-of-the-art. Further, simulation of the credit mechanism
shows that producers and consumers can reduce fees by up to
an additional 20% when compared to our base solution.

The remainder of this paper is organized as follows. Sec-
tion II overviews existing technologies as well as problem def-
initions and objectives. Section III describes the data trading
mechanism and analyzes it with respect to the underlying prob-
lem objectives. Section IV outlines the credit mechanism that
reduces blockchain fees. Section V presents an implementation
of the data trading methodology and an empirical evaluation978-0-7381-1420-0/21/$31.00 ©2021 IEEE



of the credit mechanism. Finally, Section VI concludes this
work.

II. BACKGROUND

A. Related Work

Many blockchain based systems that facilitate trading of IoT
data have been proposed in prior literature. In [7], Wörner et
al. propose a data marketplace based on Bitcoin where sensors
receive payments for data through a Bitcoin transaction and
respond with the data itself in a subsequent transaction. While
the authors admit the system is limited in that there is no
guarantee that the consumer’s payment will be honored by
the producer, and that the method of communication imposes
significant delays, it does open the possibility of blockchain
based data marketplaces. In [8] the authors present a method
for the sale of digital goods on blockchain that uses deposits
from both the buyer and seller to incentivize honest behaviour.
IDMoB [9] is a blockchain based marketplace specifically
targeting machine learning applications, where obtaining large
amounts of quality data is crucial. In that system, data is
stored in a distributed database and data consumers can use
smart contracts to pay producers for a key to access large
data blocks. In [10], the authors propose a decentralized IoT
data marketplace where two smart contracts, namely rating
and product, play an important role in constructing a trusted,
searchable registry for data owners and buyers to post and find
available data products, which are traded using a Streaming
Data Payment Protocol (SDPP) [11].

In [12], Bajoudah et al. describe a trustless, blockchain
based IoT data marketplace targeting data streams. Their
system requires the data producer to set a batch size. Once
the consumer has received a full batch of data, a checkpoint
is reached and the consumer must send a data receipt to a
smart contract to confirm that they received the data and pay
the producer. This may cause tension between the producer
and consumer because the producer may prefer the smallest
possible batch size to reduce risk of data loss, while the
consumer may prefer the largest possible size to reduce the
number of on-chain transactions required for the trade. A
similar mechanism is described in [11]. The authors of [13]
describe a model where a producer, consumer, and mediator
all agree to a payment model and then continually update a
shared smart-contract to track the data to be traded. When
the producer and consumer disagree about how much data
has been sent, the mediator settles the dispute. This adds
complexity to the model, thus increasing its delay and/or cost.

Another important aspect of data marketplaces is that of
matching consumers (who require a service) to producers (who
supply it). In [14], the authors present a method for device
owners to advertise their services, and potential consumers to
choose between services that meet their requirements.

Ensuring the integrity of data produced by IoT de-
vices is a major concern, and many works have proposed
blockchain based solutions. In [15], the authors describe an ef-
ficient method for securing surveillance camera footage using
blockchain. The work of B-FICA [16] presents a blockchain
based system that records sensor data for use in auto-insurance
claims. As cost is a major concern when it comes to storage
on blockchain, [17] uses multiple low cost blockchains to
temporarily secure data before final commitment on Ethereum.

Scaling blockchain capacity is crucial to reduce transaction
costs and allow more services to run on chain. The Lightning
Network [18] uses payment channels to increase the capacity
of the Bitcoin network. These channels involve two users
depositing coins to a shared wallet using a bitcoin transaction.
Following this, those two users can trade those funds back and
forth off chain in a secure, trustless manner, and only settle
on chain when a user becomes uncooperative or the deposited
funds are required for other uses.

Trust, reputation, and credit is another area of research
that impacts IoT marketplaces. In [19], the authors propose
a review system for IoT devices selling data on blockchains,
allowing consumers to review the quality of the data they have
received. Additionally, [20] presents a trust score system that
rates the trustworthiness of consumers so that producers can
decide whether or not to release their data to them. In [21],
Luecking et al. propose a trust mechanism based on a web of
trust model, which allows users to leverage their existing trust
relationships to obtain the trust of new users.

Our mechanism design builds on prior work by utilizing
deposits from the data consumer to set up a payment channel
and trade real time IoT data. In this design the consumer will
never pay for data they did not receive and the producer can
reduce their potential data loss to be as low as that of a single
sensor reading. This high level of safety is realized while still
reducing the number of required on-chain transactions and
their associated cost.

B. Problem Definition

We develop a system for a data producer to sell IoT data
streams to an anonymous consumer using a blockchain to
facilitate the payment(s). We model the consumer as wishing
to purchase D worth of data from the producer over the course
of some time interval. To do this, the consumer is willing to
deposit up to d onto a smart-contract, where d ≤ D. In this
notation, we assume that D and d are measured in fiat money
or some native blockchain tokens. It is also assumed that the
producer and consumer are able to communicate in order to
agree on the data to be sent and its monetary price [22]. We
assume a linear pricing model, where each datum is of the
same value, however the same system could be used for more
complicated pricing models. Periodic sensor readings from IoT
devices where data are delivered individually and are all of the
same priority are well suited to linear pricing models. Once
they come to an agreement, the producer can stream data to the
consumer. We assume the consumer can verify the correctness
and completeness of the data, that both parties can track the
amount of data sent over this stream, and that the producer
can stop the data stream at any time.

The system relies on an underlying blockchain platform for
settlement. This blockchain can be permissioned or permis-
sionless, but it must support smart contracts (e.g., Ethereum,
Hyperledger, etc.). Further, fees charged by the blockchain for
a call to the proposed smart contract are bounded from above
and below by fmax and fmin, respectively. We assume that
the producer monitors the blockchain for calls to their smart
contract. When such a contract call occurs, the producer is able
to post a transaction to the smart contract in response within
at most ttx blocks of the earlier contract call. This assumption
is needed to ensure the producer is able to retrieve funds they



Fig. 1: Diagram of the data trading system.

are owed from the smart contract in response to the consumer
signalling they wish to retrieve their deposit.

This work sets the following underlying objectives (criteria)
for the design of an efficient IoT data trading system:
• Objective 1 (Consumer Fairness): Consumers should not

pay for data they did not receive.
• Objective 2 (Producer Fairness): The risk of data loss

to producers should be minimized.
• Objective 3 (Privacy): Publicly visible data should be

limited to maximize user privacy.
• Objective 4 (Cost): The system should minimize over-

head and operational costs.
Our transaction system builds on the periodic payment system
of [12]. In that design, the producer sends batches of data
to the consumer before getting paid. As such, the producer
risks losing up to a full batch’s worth of data due to a
nonpayment, and thus they are incentivized to set the batch
size to be small. However, this increases the transaction costs
for the consumer. In contrast, our design disentangles the
batch size from the consumer’s transaction costs, allowing the
producer to limit their maximum loss to an arbitrarily low
value without affecting transaction costs. This design provides
a high level of safety without requiring the complexity and
frequent transactions required by some other systems. Further,
it puts a strong emphasis on privacy. The smart contract only
controls the storing of deposits and the transfer of payments
from the consumer to the producer. No information about the
agreement between the producer and consumer, such as the
type and price of data to be delivered, is stored on the smart
contract. This is done to protect the privacy of both parties.

III. DATA TRADING SYSTEM

The setup of our transaction system is outlined in Fig. 1.
Initially, the producer and consumer come to an agreement
on a pricing model and data transfer mechanism off chain,
and the consumer deposits money on the smart contract to
begin trading. Data is sent to the consumer, who then signs
and returns a receipt acknowledging they received the data.
When desired, the consumer can retrieve their deposit from
the smart contract and the producer can send the latest receipt
to the smart contract to retrieve the funds they are owed and
complete the payment. This process is detailed below.

A. Trade Setup
The trading relationship can be set up as follows:

1) The producer publishes a smart contract S on the
blockchain. This contract serves as a trusted mediator
between the producer and consumer.

2) The consumer selects the producer as their data provider
and contacts them in order to negotiate a pricing model
for the data and set a value ε, which is the maximum
amount of data (measured in the unit of exchange) the
producer sends to the consumer without receiving a
signed receipt in return.

3) The consumer sends an initial deposit transaction (see
1 in Fig. 1) which deposits d funds on the smart

contract. A variable on the smart contract, S.balance,
tracks the total amount that the consumer has stored on
the smart contract and is initialized to d. Another smart
contract variable, S.paid, tracks the total value paid to
the producer and is initialized to 0.

4) When the producer observes the initial deposit
transaction on S, they can begin to send data to the
consumer.

The consumer can retrieve their deposited funds at any time
by sending a deposit retrieval transaction (see 4 in Fig. 1) to
the smart contract. This initial message informs the producer
that the consumer wishes to retrieve their funds, but does not
retrieve the funds from the smart contract S. After waiting
a number of blocks specified by S, they can send another
deposit retrieval transaction (see 7 in Fig. 1) to transfer
S.balance funds from the smart contract to their wallet and
set S.balance to 0. The required delay between the deposit
retrieval transactions, tD, must be larger than the time it takes
for the producer to respond to a transaction, ttx, so that the
producer has the chance to retrieve the funds they are owed
before the deposit is removed from the smart contract. This
security measure is referred to as a speed bump [23].

B. Trade Process

Once the trade setup has completed, the producer and
consumer can follow the below process to safely trade data
using off-chain interactions.

1) The producer sends ε worth of data to the consumer
(see 2 in Fig. 1) along with a receipt r with two fields,
r.sent, set to be the total value of data that has been
delivered so far, and a cryptographic signature field,
r.signature, to be filled by the consumer.

2) If the consumer agrees that they have received r.sent
data, they sign and return the receipt (see 3 in Fig. 1).

3) The producer verifies the consumer’s signature and the
r.sent amount on the receipt. Until these values are
verified the producer will not send any further data to
the consumer.

4) Steps 1) through 3) above are repeated, with r.sent
being increased with each receipt. The process continues
until the outstanding payment due to the producer,
determined as the difference between r.sent and S.paid,
is equal to the funds that the consumer has deposited,
S.balance.

At any time, the producer can send the latest receipt r to
the smart contract through a receipt transaction (see 5 and 6

in Fig. 1) in order to transfer funds from the deposit to their



wallet. If r.signature is a valid signature of the consumer,
the following occur on the smart contract:

• The outstanding payment, r.sent−S.paid, is sent to the
producer from the deposit.

• S.balance is reduced by the payment value.
• S.paid is increased by the payment value.

Through this mechanism, the producer can retrieve the funds
they are owed without requiring any further cooperation from
the consumer. Both r.sent and S.paid are cumulative values
and do not reset between receipt transactions. This prevents
the producer from performing a replay attack by sending the
same receipt twice. The producer can retrieve funds as rarely
or as often as they like, however, the more often funds are
retrieved, the more receipt transactions they must send, and
the more they must pay in transaction fees.

C. Trade Completion
The trade process continues until one of the following

events happens:

a) The outstanding payment is equal to the remaining
deposit, S.balance.

b) The consumer refuses to sign a receipt.
c) The producer or consumer wishes to end the trading

relationship.

If the trading process is halted because of case a) above,
but the consumer wishes to acquire more data, they can
make another deposit on the contract through a deposit
transaction, increasing S.balance by the deposit amount in
the transaction. When this occurs, trading can continue as
before. Obviously, to avoid any interruption to the data flow,
the consumer can use the deposit transaction to top up their
balance at any time. If they do not wish to acquire more data,
case a) is no different from case c). If cases b) or c) occur,
then the trading relationship is terminated. In this case, the
producer and consumer can proceed as follows:

1) The consumer sends a deposit retrieval transaction to
signal the end of the relationship.

2) The producer sends a final receipt transaction to retrieve
the funds they are owed, as recorded by the latest signed
receipt.

3) After waiting tD after step 1), the consumer can send
a second deposit retrieval transaction to remove their
remaining balance from the smart contract.

Note that in the case where the consumer is unresponsive, the
producer can send their final receipt transaction before the first
deposit retrieval transaction.

D. System Analysis
We analyze the system described above in terms of each

of the objectives from section II-B, and also argue that the
proposed data trading system adheres to them all.
Objective 1 (Consumer Fairness): The system above meets
the consumer fairness objective because the consumer will
never pay for data they did not receive. The only way for
the producer to retrieve funds from the deposit on the smart
contract is to produce a valid receipt for those funds signed
by the consumer. Therefore, for the consumer to pay for data
they did not receive, the producer would have to possess a

receipt signed by the consumer acknowledging receipt of data
that they did not receive. Of course the consumer would never
sign such a receipt.
Objective 2 (Producer Fairness): The system above meets
the producer fairness objective because the producer will never
lose more than ε worth of data, and ε can be set to be arbitrarily
low. For the producer to not be paid some amount, either the
latest receipt returned to the producer has an r.sent value less
than the total value of data sent, or S.balance is insufficient
to cover the outstanding payment owed to the producer.

In the first case, the producer must have sent the consumer
data without receiving a receipt in return. However, the pro-
ducer will only ever send up to ε worth data without receiving
a receipt, and so their loss is limited to ε.

In the second case, either the producer sent more data than
the consumer had deposited on the smart contract, which
they will not do if they follow the system guidelines, or the
consumer managed to retrieve their deposit before the producer
was able to send a receipt transaction. However this is not
possible as the consumer must wait at least tD blocks before
retrieving funds from the smart contract, and the producer is
able to submit a transaction to the chain within ttx blocks
of the consumer’s transaction, where ttx < tD. As such, the
consumer would not be able to retrieve their deposit without
the producer first having an opportunity to retrieve the funds
they are owed through a receipt transaction.

It is possible that after receiving ε worth of data, the
consumer will simply retrieve their funds without ever signing
a receipt and create a new identity in order to repeat the attack.
We argue that this is not a likely scenario, because in order
to do this, the consumer would have to send both an initial
deposit transaction and two deposit retrieval transactions. The
minimum cost of the fees for these transactions would be
3 · fmin, where fmin is the minimum possible transaction fee
for a contract call. Therefore, as long as ε ≤ 3·fmin, this attack
would not be in the interest of the consumer, presuming they
are interested in more than ε worth of data. In cases where
they only require ε worth of data, this attack would be in their
interest, however in this case the loss to the producer is still
limited to ε.
Objective 3 (Privacy): We argue the system meets the privacy
objective because the only data visible on chain are deposits
and value transfers. No data specifying the price of data, the
amount of data sent, or the type of data are visible on chain,
except what can be deduced from the total value paid for the
data. Therefore, this effectively limits the information visible
to the public.
Objective 4 (Cost): We argue the system meets the cost
objective because it limits the ongoing transaction fees paid
by the consumer to those incurred from sending deposit
transactions. Therefore, given the average of the transaction
fees f which are charged to the consumer over a time interval,
the consumer’s spending per interval D, and their preferred
deposit size d, we can calculate the average fees incurred per
time interval. We call this the consumer fee and define it as:

F = f · D
d
.

Clearly, the consumer can reduce these fees by increasing
d, and so the fees can be set to be as low as the cost of
a single initial deposit transaction. Likewise, the producer’s



only ongoing costs are those incurred from running receipt
transactions. As they decide how often they wish to receive
funds from the smart contract, their fees can also be reduced
to be as low as the cost of a single receipt transaction.

Compared with [12], our system provides significant im-
provements. In that work, the producer and consumer must
come to an agreement on the batch size, i.e. the amount of
data to be sent between payments. Until the producer gains
trust in the consumer, they run significant risk of losing this
data, incentivizing them to make the batch size as small
as possible. However, when transaction fees are high, this
can have a significant impact on the consumer’s costs. By
adding binding, off-chain transactions, our system allows the
producer to limit their risk to an arbitrarily low amount, while
passing minimal costs and no additional risk to the consumer.
This also improves the speed of transfers, because payment
to the producer is confirmed as soon as they receive the
receipt signed by the consumer. Finally, our system has privacy
advantages as less data is publicly available on chain.

IV. A CREDIT SCHEME

We showed that the consumer’s fees could be set arbitrarily
low by increasing their deposit size. However there may be
some circumstances where the consumer is unable or unwilling
to increase their deposit d. For this situation, we propose
a credit mechanism which allows the consumer to lower
their fees as they spend more time purchasing data from the
producer. This has the potential to benefit both the producer
and the consumer. However, by giving credit the producer
trades-off on risk, thus increasing their potential loss.

A. Effect of Credit
To reduce the fees paid by the consumer, the producer may

consider giving them a credit, c. With this credit, the producer
can continue to send data until the outstanding payment is
equal to S.balance+ c. Therefore, with this credit, and while
still only having d as a deposit on the smart contract, the
consumer fee over a given time interval can be reduced to:

Fc = f · D

d+ c
,

where f is the average of the fees charged to the consumer
over the interval. fig. 2 shows the impact of a credit on the
consumer fee Fc. More specifically, this graph shows that the
reduction of fees achieved by increasing c is most significant
when c is small. Additionally, observe that for a fixed c, the
largest effect is realized when f is high and when the ratio D

d
is large, as expected.

For f, d > 0, we show that both the consumer and producer
are incentivized to use the credit scheme. We define the fee
savings s to be the difference between the consumer fee and
the credit consumer fee. Then we have:

s = F − Fc = f ·D ·
(
1

d
− 1

d+ c

)
= f · D

d
· c

d+ c
.

Observe that s is increasing in c, which implies that we get
higher fee savings if we use the credit scheme with high
values of credit. To incentivize both consumers and producers
to use this scheme, we suggest that s is distributed between
the producer and consumer. In our analysis, without loss of
generality, we assume that s is evenly split between the two.

Fig. 2: Effect of credit on fees.

The producer’s share of s can be periodically paid by the
consumer through the same receipt method used to pay for
the data itself.

B. Credit Risk

By giving credit, the producer risks losing up to c worth
of data. Therefore, we can also refer to c as the cash out
value Vco, where Vco = c . This is the value gained by the
consumer and lost by the producer in the case where the
consumer decides to terminate their trading relationship. The
credit has another possible value, that is the potential savings
for each one of the producer and the consumer which are
realized when both use the credit scheme over an estimated
number of time intervals M ≥ 0. We call this the savings value
Vs and it is defined by Vs = s

2 ·M . Note M is an estimated
(by the producer) number of time intervals that the consumer
remains on the platform and purchases D data per interval.
We determine how the producer estimates M in Section IV-C.

Consider an estimation for M and a universal lower bound
on the fees fmin charged at each interval m ∈ [1, . . . ,M ].
Then we give an upper bound to the credit value that a
producer can allow to minimise their risk. This upper bound
is derived from our proposal that the minimum savings value
Vs of the producer (which equals the savings value of the
consumer in our model design) must be higher than the cash
out value of the credit. Then we get:

Vco < Vs ⇔ c < fmin ·
D

2 · d
·M − d. (1)

There is another factor limiting c. As the consumer can
profit Vco by “cashing out” the credit, we set Vco to be less
than the minimum cost of obtaining the credit. Observe that in
any other case, the consumer is either unincentivized to build
credit or incentivized to build credit in order to “cash it out”
at first opportunity, start with a new identity, and iterate this
process. Therefore, the minimum cost of obtaining credit must
be greater than its “cash out” value.

We define as Cc the cost of obtaining credit (for the first
time), which is given by the difference between the fees paid
by a user since joining the system, before receiving a credit
value, and the fees that would have been paid by the user had
they been given this credit during that time. Let Mp be the
number of time intervals since a consumer entered the system
purchasing D worth of data with a d > 0 deposit and let sm



Fig. 3: Examples of various beta distributions.

be the (total) fee savings that would have been realized by the
consumer at interval m ∈ [1, . . . ,Mp] if they were given credit
c in that interval. Then, the cost to the consumer of obtaining
credit c is equal to:

Cc =
Mp∑
m=1

sm

2
=

Mp∑
m=1

1

2
· fm · D

d
· c

d+ c

≥ 1

2
· fmin ·

D

d
· c

d+ c
·Mp, (2)

which expresses their minimum possible cost of obtaining a
credit of value c. By the desirable property of our model design
minf Cc > Vco and inequality (2), we get that:

1

2
· fmin ·

D

d
· c

d+ c
·Mp > c

⇔ fmin ·
D

2 · d
·Mp − d > c. (3)

From inequalities (1) and (3), we show that a producer can
minimize their potential loss of giving out credit when the
credit offer to the consumer does not exceed the value:

fmin ·
D

2 · d
·min{M,Mp} − d− ε,

where ε a small positive number. Note that the upper bound
(3) depends on the time length that a user has been a data
consumer on the system, while (1) depends on the estimated
time that a current consumer would remain as a consumer on
the system. Observe that bound (1) becomes effective when
the estimated additional time period is less or equal to the
(known) time period since the consumer joined.

C. Determining Credit
To determine the credit to give to the consumer, the producer

must obtain an estimate for how many intervals the consumer
will continue to purchase D data. We argue for this estimate
to be made using a Bayesian model.

In this approach we model the consumer as performing a
Bernoulli trial at the start of each interval in order to decide
whether to continue purchasing data or leave the system. The
trial returns true with probability θ, and if it does, they will
participate for another interval. If the trial returns failure, they
will drop off of the system and cash out their credit.

Our goal is to estimate θ based on the number of intervals
the consumer has been continuously purchasing data, Mp. To

Fig. 4: Graph of how the probability of a consumer staying
for n periods of time grows the longer they remain on the
platform. Calculated with a beta prior, where α = 0.2, β = 4.

do this, we first define a prior distribution, p(θ) which defines
the prior likelihood of each possible θ value. There are certain
features that we want to have in this distribution. We must
ensure that new users are not given any credit. Therefore p(θ)
must assign its highest probability at θ = 0. Likewise, since
no user will stay on the system indefinitely, the prior should
assign p(1) = 0.

One distribution that is able to model these features is the
beta distribution, defined such that:

p(θ) ∝ θα−1(1− θ)β−1.

In the above, parameters α > 0 and β > 0 are set by the
producer. The desired constraints can be achieved by setting
α < 1, and β > 1. Beyond this, α and β can be further tuned
by the producer to better model observed consumer behaviour.
Fig. 3 shows some examples of beta distributions that meet our
requirements. As seen in that figure, lower α values assign
higher probabilities to low values of θ, and similarly, lower β
values assign higher probabilities to higher values of θ.

Given the prior, p(θ) and Mp for the consumer, the producer
can produce an estimate for θ by choosing it to maximize the
likelihood of the observation. To maximize the likelihood of
the observation, they only need solve the below:

θ∗ = max
θ
p(θ) · p(Mp|θ) = max

θ
p(θ) · θMp ,

where Mp is the number of intervals the consumer has been
purchasing data. With this estimate of θ, the producer can
estimate the probability of the consumer staying at least n
intervals to be θn. Based on these estimates and their personal
tolerance for risk, the producer can determine a final M value
to use in their credit calculation.

Fig. 4 shows how the estimate for the likelihood of a
consumer staying n intervals grows the longer they remain
part of the system, for various values of n. As expected, the
estimates are lower for higher values of n, and they grow the
longer the user is on the system.

V. PERFORMANCE EVALUATION

In this section, we present a quantitative evaluation of our
proposed solution with regard to the performance of the data
trading system on a blockchain testbed and the performance
of the credit system on a data marketplace simulation.
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savings
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Fig. 10: Effect of fmin on producer fee
savings, where fmax = 2fmin

A. Evaluation of the Blockchain Performance

We evaluate our trading model on a private Ethereum
blockchain on a lab-scale testbed consisting of 15 Raspberry
Pis, which mimic IoT nodes and a MacBook Pro that serves
as a miner. All Raspberry Pis and the MacBook Pro computer
run geth v1.9 as an Ethereum client to form the blockchain
network. We simulate interactions between producers and con-
sumers using programming scripts written in bash and Python
v3.7.7. with web3py v5.13 and py-solc v3.2.0 library
for Ethereum connectivity and smart contracts compilation,
respectively.

We execute a trade scenario wherein a consumer is willing
to purchase D worth of data from a producer over a period of
time. Both the consumer and producer agree to set a certain
value for ε, which defines the amount of data that may be
sent before a signed receipt is returned. We presume that the
consumer is honest and adheres to the trading mechanism
by always returning a valid signed receipt upon receiving
the data. As a baseline, we compare our solution against
the trading mechanism in [12], in which the consumers are
obliged to track each batch of data sent by the producer by
logging transactions onto the blockchain. We measure the
resulting overall gas consumption and the total amount of
stored transaction on the blockchain by the consumers. We
vary the value of D and ε to observe the resulting effects in

gas consumption and we plot the results in Figs. 5 and 6.
As seen in Fig. 5, our proposed solution incurs a con-

stant gas consumption and required number of blockchain
transactions by the consumer for different values of D and
ε. Recall from section III that our solution only requires
the consumer to deposit the funds at the beginning of the
trade setup and does not require both of the producer and
consumer to submit additional transactions to log the data
transfer process, as the data transfer logging occurs off chain.
Note that this mechanism significantly reduces the resulting
blockchain fees and stored transactions. On the other hand,
different values of D and ε affect the overall gas consumption
and incurred blockchain transactions for the baseline trade
mechanism [12]. As shown in Fig. 6, the overhead costs and
required transactions are proportional to D, while inversely
proportional to ε, as a smaller ε value would require more
frequent payments by the consumer. However, even with a
larger ε (in which case the producer takes a larger risk), our
solution requires fewer transactions and has a lower total gas
cost for the consumer.

In Fig. 7, we also plot the required gas to execute the
core transactions of our trade process. We can see that both
transactions for the consumer to deposit some funds to the
smart contract, i.e., initialDeposit and deposit, incur
relatively similar gas usage of approximately 35, 000 units



of gas. On the other hand, the amount of gas used for
depositRetrieval and receipt transactions are rela-
tively higher than funds deposit transactions, with receipt
being slightly higher as a signature checking is required. Note
that the gas usage in Ethereum depends on the number and
types of EVM opcodes executed when running a particular
transaction [24].

B. Evaluation of the Credit System
To measure the performance of the credit system described

in section IV, we use a simulation of a data marketplace.
In the simulation, 200 consumers are purchasing data from
a producer over the course of 20 time intervals. The system’s
transaction fees are bounded from above and below by fmax

and fmin. Each consumer is assigned a value θ, sampled from
the uniform distribution over the interval (0, 1). Before each
time interval, each consumer runs a Bernoulli trial. The trial
returns true with probability θ. If the trial returns true, the
consumer participates for another interval, if it returns false,
the consumer leaves the system and cashes out any credit
they have been given. If the consumer participates in a time
interval, they will purchase D worth of data. Additionally, each
consumer is willing to deposit d worth of funds at a time to
purchase the data.

The producer determines how much credit to give to each
consumer using the system described in section IV-C. The
producer must decide on a risk value, which measures the
percent chance they are willing to take that a consumer will
remain long enough to make giving them credit pay off. They
also need to decide on parameters α and β for their beta prior
distribution. In our simulation, the producer uses α = 0.5 and
β = 2.0.

Some results from the simulation (averaged over multiple
runs) are shown in Figs. 8, 9, and 10. In Fig. 8 it can be seen
that the producer can maximize savings when a moderate level
of risk is taken. When the producer takes on too much risk,
they lose money as consumers are not staying long enough
to pay back their credit. However, if too little risk is taken,
the producer will not give any credit and not see any savings.
In Fig. 9 it can be seen that the savings realized by giving
credit decrease as the consumer’s deposit size increases. This
is because as the consumer increases their deposit size, their
fees decrease, and so more credit is needed to have an impact.
In Fig. 10 it is seen that as fees increase, so does the percentage
of those fees that can be saved by giving credit.

Under the right circumstances, the credit system can provide
significant fee savings, on top of those already achieved by the
data trading system. It is especially notable that the percent
savings increase as fees do, up to over 20%. This means that if
fees rise the credit mechanism not only becomes more needed,
but also more effective.

VI. CONCLUSION

This paper proposes a blockchain based IoT data trading
mechanism that aims to minimize the number of required on-
chain transactions and overhead blockchain costs, while still
being able to provide secure payment mechanisms for real time
data transfers. A mechanism is presented for the safe trading of
funds and data off chain, secured by cryptographic signatures
and on-chain deposits to a smart contract. Later, a credit
mechanism is introduced to further lower the fees incurred

during the data trading process, bringing benefits to both the
producer and consumer. Simulation results indicate that the
proposed marketplace mechanism incurs a constant overhead
cost and requires limited transactions. The credit mechanism
is also able to reduce the incurred fees by up to an additional
20%. Some interesting directions for future work include
further validation of the proposed solution in a real world data-
trading ecosystem, including more in-depth evaluation of the
scalability and latency analysis; the development of methods
to validate the origin and validity of IoT data; the application
of the system to different data and pricing models; game
theoretic analysis of the credit scheme; and the development
of an additional trust mechanism to deliver a more robust and
rigorous credit scheme.
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