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1. INTRODUCTION
This paper focuses on the convergence rate of non- and semiparametric estimators, a rate
which is instrumental for stochastic expansions, limit processes and limit moments. The
original Nagar expansions (Nagar, 1959, Nagar and Ullah, 1970) were specific to parametric
econometric estimators, such as the k-class and 3SLS estimator, that can be written as√
N
(
δ̂n − δ0

)
= A−1a with A = Ā+ ∆A, where Ā is a finite matrix and ∆A = O(n−1/2).

A general form of Nagar’s expansion was provided in Sargan (1974). To further generalize
stochastic expansions to non- and semiparametric estimators we can define an expansion
for the estimator δ̂N of δ0 in the following way

N τo
(
δ̂n − δ0

)
= e1 + Σm

s=2es/N
τs + rm/N

τm+1 , (1)

where τ 0 > 0 (originally considered to be 1/2), {τ s}m+1
s=2 a strictly increasing positive

deterministic sequence, with es, s = 1, ...,m, and rm being Op (1) . Nagar’s approach was
to approximate the moments of the estimator δ̂n by moments of terms in the expansion.
In particular, assuming that the expectations of es and rm are O (1), the suitable bias

expansion would be given by N τoE
(
δ̂n − δ0

)
= E (e1) + Σm

s=2Ees/N
τs +O (N−τm+1) . The

variance of the distribution can similarly be approximated; ignoring rm requires furthermore
E(rmes) = O(1) for all s ≤ m and E(rmr

′
m) = O(1), with Srinivasan (1970) providing

cautionary arguments about the conditions.
A crucial aspect of Nagar’s and similar expansions is that the rate of convergence, N τo ,

is known. In fact, to our knowledge, there are no contributions where it is not paramet-
ric. Nagar-type expansions for semiparametric kernel estimators in Linton (1995) (partial
linear regression model) and Ichimura and Linton (2005) (semiparametric programme eval-
uation estimator) enjoyed the parametric rate under additional regularity conditions such
as smoothness and behavior of tails of rm. The parametric rate, though, could only be
obtained with appropriate smoothness, and for kernel estimators requires the bandwidth
to be chosen over a very restrictive range. Insuffi cient smoothness or incorrect choice of
the bandwidth would jeopardize τ 0 equalling 1/2 and could result in lower than parametric
rates of convergence even when a stochastic expansion of the form (1) may exist. A discus-
sion of potentially nonparametric rates for semiparametric kernel estimators, which depend
on smoothness and bandwidth choice, is provided e.g. in Schafgans and Zinde-Walsh (2010)
(henceforth SZW, 2010) for the density weighted average derivative estimator and in Kotl-
yarova et al. (2016) (henceforth KSZW, 2016) for the general class of semiparametric
estimators. The fragility of the leading rate for semiparametric estimators has implications
not only for the existence of Nagar-type stochastic expansions, but also for the limiting
moments and asymptotic distribution. In this paper, our focus is on the convergence
rates of kernel based estimators and the impact associated with insuffi cient smoothness,
possibly unknown smoothness, and possibly even non-existence of density. We provide an
overview of available theoretical results for kernel-based estimators and discuss the impor-
tance of suitably evaluating their finite sample validity accounting for possibly deficient
smoothness and uncertainty. While the focus of this paper is on kernel estimators, limit
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properties for many functional estimators, such as series estimators are affected by the
smoothness (Holder) class of functions (see, e.g, Ichimura and Newey, 2017). Similarly,
rates for adaptive estimators (which may rely on kernels) such as Lepski and Spokoiny
(1997) and Mukherjee et al., (2016) reflect the order of the smoothness class. Some of
these estimators may improve on the properties of kernel estimators, e.g., sieve estima-
tors (Ai and Chen, 2003) can achieve root-n consistency for the parameter estimators in
a semiparametric context without requiring higher differentiability for the unknown func-
tion; they assume that the unknown function is in a Holder class and require a uniform
approximation rate over the sequence of sieve spaces.
In general, some of the terms in the expansion of δ̂N − δ0 and its moments for non- and

semiparametric estimators can only be obtained by relying on smoothness of the density
(and other functions). Such smoothness assumptions are nonparametrically non-testable
(see e.g. Lalley and Nobel, 2003), they are arbitrary and often not easy to justify. Indeed,
there is a lot of uncertainty about the true degree of smoothness of density of such variables
as income or labor supply, where "bunching" is well documented; see Kleven (2016) for an
interesting review on bunching.
We introduce a degree of smoothness parameter, v̄, that captures insuffi cient smooth-

ness settings, where, say, the parametric rate of convergence for semiparametric kernel es-
timators is not possible. The main issue in relation to the expansion (1) is that only when
the degree of smoothness is known, is it possible to specify the rate N τo with the value
of τ 0 reflecting the degree of smoothness. As it may not be realistic to assume the level
of smoothness is known, we analyze the uncertainty associated with the true degree of
smoothness. Following Woodroofe (1970), SZW (2010) and KSZW (2016) explored meth-
ods of estimating the degree of smoothness. To obtain the limit process for the kernel
estimator of the density in the absence of smoothness of the distribution function, Zinde-
Walsh (2008, 2017) (henceforth ZW, 2008 and ZW, 2017) employ the space of generalized
functions, where the differentiation operator can be defined. Tuvaandorj and Zinde-Walsh
(2014) (henceforth TZW, 2014), extend these results to the kernel estimator of conditional
distribution and conditional density function.
Acknowledging lack of smoothness and uncertainty about smoothness requires develop-

ing methods of safeguarding against this uncertainty. One approach to deal with lack of
smoothness is bias reduction via various methods that has been favored in the literature.
The other is a model-averaging procedure that could be better suited for dealing with
uncertainty about smoothness.
Similar to parametric regression analysis, model averaging approaches for nonparamet-

ric regression analysis have been developed under uncertain covariates to deal with the
bias and inconsistency in estimation and testing associated with model selection. Typically
convex weights are applied, which can be selected based on minimizing a least squares
cross-validation criterion (Breiman, 1996), least squares weights (Li, Linton and Lu, 2015),
information criteria or jackknife model averaging approaches (see, e.g., Hansen and Racine,
2012, and Ullah and Wang, 2013, for a review). Here we consider the model-averaging pro-
cedure as a means to deal with the uncertainty about how to select user-defined choices
like bandwidth and kernel. Henderson and Parmeter (2016), also, consider such model-
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averaging procedure for nonparametric regression analysis. They reveal the potential ben-
efits of such an approach, where they consider weights based on minimizing a least squares
cross-validation criterion (as in Liu, 2018) and using least squares weights (as in Li et al.,
2015).
While it is common to use convex weights when averaging estimators, non-convex com-

binations may offer an advantage when bias plays a prominent role and using negative
weights could permit trade-offs between large biases to reduce the overall impact of bias.
This was accomplished by the use of jackknife-type estimator in Schucany and Sommers
(1977), and similar trade-offs are considered in Bierens (1987), Powell et al. (1989) (hence-
forth PSS, 1989), and Cattaneo et al. (2013). Crucially, the degree of smoothness and
thus the rates for different bandwidths would have to be known to implement each of these
approaches. Kotlyarova and Zinde-Walsh (2006) (henceforth KZW, 2006) examined the
problem of uncertainty about the smoothness and proposed model averaging by demon-
strating the existence of (possibly non-convex) linear combinations of several estimators
corresponding to different bandwidth-kernel combinations that would give the best avail-
able, but unknown a priori, convergence rate. This theoretical result shows the possibility
of improved performance of averaged estimators, also referred to as combined estimators.
Kotlyarova and Zinde-Walsh, 2007 (henceforth KZW, 2007) and SZW (2010) construct
robust estimators of densities and density weighted average derivatives using estimated
weights that minimize the asymptotic MSE (AMSE) and KSZW (2016) generalize the
results to local and general averaged kernel based estimators.
The possibility of a lack of smoothness needs to be reflected when evaluating the finite

sample performance of the estimators. In the econometrics literature, typically, distribu-
tions used in simulations are very smooth: the use of uniform and normal distributions are
commonplace, occasionally chi-squared, in Cattaneo et al. (2014a, 2014b) or a mixture of
two normals in Newey, Hsieh & Robins (2004, 1998) and Henderson and Parmeter (2016),
and a mixture of three normals in Stoker (1993) are considered. None of these distributions
is capable of capturing the effect of non-smoothness, or even of smooth functions in the
presence of very large derivatives. Marron and Wand (1992) and Härdle et al. (1998) in
the statistics literature investigated the estimation of density for cases with large deriv-
atives, but such distributions are rarely considered elsewhere. This has prompted KZW
(2007), SZW (2010), KSZW (2016) as well as Kankanala and Zinde-Walsh (2020) to explore
performance of kernel estimators and kernel-based statistics in cases of normal mixture
with peaked normals where derivatives could vastly exceed those for the standard cases.
Simulations with such mixtures produce dramatically different results from those in the
literature.
Section 2 gives an overview of non- and semiparametric estimators with known (but

possibly insuffi cient) degree of smoothness. Section 3 examines the more realistic setting
where the degree of smoothness is unknown and where the density may not even exist. In
3.1 some smoothness is satisfied but the degree itself is not known; we provide convergence
results about estimated degree of smoothness and estimated optimal bandwidth rates. In
3.2, the possible absence of smoothness is addressed, e.g. density may not exist, and we
provide theoretical results where a parametric rate in the space of stochastic generalized
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functions is achieved. Results for several widely used non- and semiparametric estimators
under different smoothness conditions are provided in Table 1. Section 4 reviews approaches
to improved estimation: bias reduction and model averaging. Section 5 demonstrates the
impact of distributions used in simulations on claims regarding finite sample performance.

2. RATES WITH KNOWN SMOOTHNESS
We consider non- and semiparametric kernel based estimators, generically denoted as
δ̂N(K,h), with K specifying the kernel function and h the bandwidth parameter. Depend-
ing on the type of functional of interest, this may represent a local kernel based estimator,
where the interest is the value of a function, e.g., density, at a particular point, or an average
kernel based estimator, where the interest is an expectation. We use standard assumptions
on the kernel function K (x) for x ∈ Rk (see, e.g. Li and Racine, 2007, Pagan and Ullah,
1999) and denote by v (K) the order of the kernel. The kernel does not need to be symmet-
ric; as argued in KZW (2007) asymmetric functions may pick up some irregularities that
will be discarded by symmetric smoothing functions (see also Abadir and Lawford, 2004).
The bandwidth is assumed to be dependent on the sample size, N, such that h → 0, and
hkN → ∞ as N → ∞. With h = (h1, ..., hk) denoting a vector of bandwidths, here, for
simplicity, we assume that h = max {hi} and hi/hj = O (1) for all i, j = 1, ..., k.
Smoothness requirements for kernel-based estimation typically refer to smoothness of

the density function in nonparametric estimation, but smoothness assumptions relate to
other functions, such as conditional means, as well. To streamline the exposition we focus
here on smoothness (and existence) of density, assuming that the other functions satisfy
suffi cient smoothness requirements. We use v as a measure that describes the smoothness
of the density f(x). Suppose f (x) is not differentiable over some domain Ω ⊆ Rk but for
some 0 < α ≤ 1 satisfies a Holder condition at every x, x+ ∆x ∈ Ω :

|f(x+ ∆x)− f(x)| ≤ ωf (x) ‖∆x‖α .

We then say that f has the smoothness order α (fractional) and set v = α. If for some
integer m it can be assumed that all partial derivatives of order m given by ∂mf(x)/
(∂m1x1...∂

mkxk), with m1 + ...+mk = m, are (Holder) continuous, then f has smoothness
order no less than m and we set v = m.

The degree of smoothness parameter, v̄, which determines the convergence rate for
the estimator δ̂N(K,h), can be described by a function of density smoothness and kernel
order:

v̄ = v̄ (v, v (K)) (2)

and is often defined as the minimum of the density smoothness and the kernel order,
v̄ = min(v, v(K)). Indeed, in general, assume that v is the minimal degree of smoothness
of the functions that are relevant for bias expansion of the estimator (such as the density
f(x) or its derivative f ′(x) and the conditional moment g(x) = E(y|x)). For some widely
used estimators δ̂(K,h) (listed in Table 1) |B(K,h)| ≤ ωhmin(v,v(K)), where B(K,h) denotes
the bias of the estimator E(δ̂N(K,h) − δ0). With insuffi cient smoothness: v < v (K), the



Rates of expansions for functional estimators p. 6

rate at which the bias of the estimator goes to zero is not determined by the choice of the
order of the kernel but by the degree of smoothness of appropriate functions. For example,
for a second-order kernel density estimator it is known that if the second derivative of the
density is continuous at x, the bias expansion provides the leading term h2B2(K), with
B2(K) = 0.5f ′′ (x)

∫
w2K (w) dw. Similarly, for a fourth-order kernel density estimator if

the fourth derivative of the density is continuous at x the leading term in the expansion is
h4B4(K), with B4(K) = 1

4!
f (4) (x)

∫
w4K (w) dw. However, if the density function is only

twice continuously differentiable, the leading term in the bias expansion of the fourth-order
kernel density estimator could be of order no better than O(h2+δ) for some small δ > 0.
We follow KSZW (2016) in assuming that the bias is stabilized at the rate v̄; this is the

assumption made by Woodroofe (1970) for density estimation and is also made in SZW
(2010) for density weighted average derivative (henceforth PSS-ADE). This is given by
Assumption 1, where the bound ε̄ > 0 may be needed to ensure that the rest of the bias
expansion converges to zero suffi ciently fast.

Assumption 1. As N →∞, h→ 0 and h = O(N−ε), with ε > ε̄ > 0,

h−v̄bias(δ̂N(K,h))→ B(K), (3)

for some v̄ > 0, where the vector B(K) = (B1(K), ...BL(K))′ is such that 0 < |B`(K)| <∞
for ` = 1, ..., L with L = dim (δ0) .

The rate of convergence of the variance, V ar(δ̂N(K,h)), which differs for local and
averaged kernel based estimators, is characterized in Assumption 2 from KSZW (2016):

Assumption 2. As Nωhd(k) →∞, h→ 0, for some ω ≥ 0, d(k) ≥ 1,
(a) for local kernel based estimators: there is a finite positive definite matrix Σ(K) such
that

Nωhd(k)var(δ̂N(K,h))→ Σ(K);

(b) for average kernel based estimators: there exist finite positive definite matrices Σ1(K)
and Σ2 and r > 0 such that an expansion for the variance is

var(δ̂N(K,h)) = N−ωh−d(k) [Σ1(K) + o(hr)] +N−1 [Σ2 + o(hr)] .

Specifics for different widely used estimators are provided in Table 1. The rates are
usually associated with limiting computations for the moments. The results typically apply
to a random sample setting, but some are valid in the presence of heteroskedasticity and
weak dependence (e.g. mixing).

Assumptions 1 and 2 imply δ̂N − δ0 = Op(h
v̄ +

(
N−ωh−d(k)

)1/2
) for local kernel based

estimators, while for averaged kernel based estimators δ̂N − δ0 = Op(h
v̄ +
(
N−ωh−d(k)

)1/2
+

N−1/2). For the estimators considered in Table 1, ω could be 1 or 2 and d(k) could be either
k or k + 2. For kernel density and conditional mean estimators, ω = 1 and d(k) = k (for
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Table 1: Kernel based estimators: Smooth and Nonsmooth results

Estimator δ̂N(K,h) Results
Density

1
Nhk

N∑
i=1

K(Xi−x
h

) := f̂(K,h)(x)

Parzen (1962), Rosenblatt (1956)
KZW (2007) (non-smooth)
ZW (2008, 2017) (gen fun)

AMSE terms:
h2v̄B(K)B(K)T + (Nhk)−1Σ(K)

optimal bandwidth rate: N−
1

2v̄+k

MSE rate:

N−
2v(K)

2v(K)+k if v̄ = v(K) (smooth)
h2v̄ if v̄ < v(K) (non-smooth)

as random generalized function:
bias rate: hν(K)

undersmoothed convergence rate: N−1/2

Conditional mean

1
Nhk

N∑
i=1

K(Xi−x
h

)Yi / f̂(K,h)(x)

Nadaraya (1964), Watson (1964)
KSZW (2016) (non-smooth)
ZW (2008, 2017) (gen fun)

AMSE terms:
h2v̄B(K)B(K)T + (Nhk)−1Σ(K)

optimal bandwidth rate: N−
1

2v̄+k

MSE rate:

N−
2v(K)

2v(K)+k if v̄ = v(K) (smooth)
h2v̄ if v̄ < v(K) (non-smooth)

numerator as random generalized function:
bias rate: hν(K)

undersmoothed convergence rate: N−1/2

Conditional density

1

Nhkxh
ky
0

N∑
i=1

K(Xi−x
h

)K0(Yi−y
h0

) / f̂(K,h)(x)

Chen, Linton, Robinson (2001)∗∗,
Racine, Li, Zhu (2004) (smooth)
ZW (2013), TZW (2014)∗∗ (gen fun)

AMSE terms∗:
h2v̄B(K,K0)B(K,K0)T + (Nhkx+ky)−1Σ(K,K0)

optimal bandwidth rate: N−
1

kx+ky+2v̄

MSE rate:

N
− v(K)
kx+ky+v(K) (smooth)

as random generalized function:
undersmoothed convergence rate: N−1/2

∗ with v̄ = v(K) = 2.
∗∗ under mixing conditions
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Table 1 (Cont’d): Kernel based estimators: Smooth and Nonsmooth results

Estimator δ̂N(K,h) Results
Average density

1
N

∑N
i=1 f̂(K,h)(Xi)

Newey et al. (1998)
KSZW (2016) (non-smooth)

AMSE terms:
h2v̄B(K)B(K)T +N−2h−kΣ1(K) +N−1Σ2

optimal bandwidth rate: N−
2

2v̄+k

MSE rate:
N−1 if v̄ = v(K) (smooth)
h2v̄ or N−2h−k if v̄ < v(K) (non-smooth)

Density weighted average derivative estimator (PSS-ADE)

− 2
N

∑N
i=1

∂f̂(K,h)(Xi)

∂x
Yi

PSS (1989), Powell and Stoker (1996)
SZW (2010), KSZW (2016)
(non-smooth)

AMSE terms:
h2v̄B(K)B(K)T +N−2h−kΣ1(K) +N−1Σ2

optimal bandwidth rate: N−
2

2v̄+k+2

MSE rate:
N−1 if v̄ = v(K) (smooth)
h2v̄ or N−2h−(k+2) if v̄ < v(K) (non-smooth)

Smoothed maximum score

b̂ = arg max 1
n

∑
yi · Φ(

x′ib
h

)
subject to |b1| = 1
Φ() is an integral of K()

Horowitz (1992)
Pollard (1993), KZW (2010)
(non-smooth)

AMSE terms:
h2v̄B(K)B(K)T + (Nh)−1Σ(K)

optimal bandwidth rate: N−
1

2v̄+1

MSE rate:

N−
2v(K)

2v(K)+1 if v̄ = v(K) (smooth)
h2v̄ if v̄ < v(K) (non-smooth)
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the mth partial derivative of kernel density, not listed, we would have d(k) = k +m). The
average density and the average derivative kernel based estimators have ω = 2; parameter
d(k) equals k for the average density and k+2 for the PSS-ADE. For averaged kernel based
estimators, with h = cN−ζ , Assumptions 1 and 2 result in the following expansion

δ̂N − δ0 = Op

(
N−ζv̄

)
+Op

(
N−ω+d(k)ζ

)1/2
+Op

(
N−1/2

)
. (4)

Estimators not listed in Table 1 include Linton (1995) and Ichimura and Linton (2005),
where Nagar expansions with terms corresponding to the rates in (4) were derived un-
der smoothness assumptions, and other two-step semiparametric estimators such as the
weighted average derivative estimator (Cattaneo et al., 2013). For Robinson’s (1989) two-
step semiparametric estimator for the partial linear regression model, Linton (1995) de-
veloped a Nagar expansion (under suffi cient smoothness for the nonparametric regression
function) to obtain a second-order optimal bandwidth. Ichimura and Linton (2005) develop
a Nagar expansion for a popular two-step treatment effect estimator (of Hirano et al., 2003).
Bias representations typically include terms in addition to those associated with the stan-
dard (asymptotic) bias rate based on kernel order (also called smoothing bias terms) and
may include degrees of freedom bias, leave-in bias or nonlinearity bias (see also Cattaneo
et al., 2018). These expansions permit to exploit the trade-offs between first-order and
second-order bandwidth-dependent terms even in settings where parametric rate of conver-
gence is attainable. As a result, improved finite sample performance can be achieved. For
two-step semiparametric estimators, where the interest is in finite dimensional parameters
in the presence of infinite dimensional nuisance parameters, it is well established (e.g., An-
drews, 1994) that parametric rates of convergence are permitted in smooth settings when
the rate of convergence of the nuisance parameters exceeds N1/4. Cattaneo et al. (2018)
exploit a leave-one-out kernel estimator to weaken this requirement somewhat by relying on
a high level assumption of asymptotic separability in place of the usual stochastic equicon-
tinuity assumption; the resulting rate requirement is O

(
N1/6

)
. Nevertheless, even with

insuffi cient smoothness the expansion (4), with possibly additional terms derived for the
two-step estimators, could still hold, where the bias rate in the above expansion could be
derived from the terms of order Op

(
N−ζv̄

)
and O

((
N−ω+d(k)ζ

)1/2
)
, with either one or the

other possibly dominating and possibly overshadowing the parametric rate.
The following theorem provides the optimal bandwidth and rate under possibly insuf-

ficient but known smoothness. The rate balances the bandwidth dependent part in the
variance O

((
N−ω+d(k)ζ

)1/2
)
with the bias Op

(
N−ζv̄

)
:

Theorem 1. Under Assumptions 1 and 2 a bandwidth with the rate N−η(v̄) where

η(v̄) =
ω

2v̄ + d(k)
(5)

provides the best rate for the mean squared error of δ̂N .



Rates of expansions for functional estimators p. 10

Theorem 1 provides the known optimal rate results for the bandwidth when the usual
smoothness assumptions hold, but the rate determined by (5) would be the best even
without suffi cient smoothness. Details for various estimators are provided in Table 1.

3. RATES WITH UNKNOWN SMOOTHNESS
3.1. Unknown degree of smoothness with v̄ > 0. We focus here on the uncertainty
about the true degree of smoothness and thus the rate of the bias. The density is assumed
to exist and to satisfy some degree of smoothness, so that v̄ > 0.
KSZW (2016) explored the relation between smoothness and the bias and provided

estimators for the rate of the bias, v̄, which depends on the unknown degree of smoothness
(of the underlying functions) and the asymptotic bias of kernel estimators. This, to some
extent, followed the approach of Woodroofe (1970) for density estimation.
To estimate the rate of the bias, it is assumed that an oversmoothed bandwidth ho can be

obtained. For example, it would be provided by an “optimal”plug-in bandwidth computed
on the basis of v(K) rather than v̄; such a bandwidth would provide oversmoothing if
v̄ < v(k); to cover the smooth case as well, it could be magnified by some N ε for a small
ε > 0. In SZW (2010) the generalized cross-validation bandwidth was used for average
derivative estimation, as it is known to oversmooth in that case.
The consistent estimation of the rate of the bias then requires a sequence of bandwidths

{ht}Ht=1 that satisfy ht = cthoN
γt with ct > 0, where γt ≥ 0 is a strict increasing determin-

istic sequence such that hH = cHhoN
γH → 0. For PSS-ADE, for example, if ho is given by

cross-validation that has the rate N−
1

2v̄+k , we should select γH < 1
2v̄+k

. The estimator is
based on a set T which comprises all pairs {(ht, ht′), t, t′ = 1, ...H with t′ < t} and has a
cardinality Q: 2 ≤ Q ≤ H(H+1)

2
. The estimator for v̄ can then be obtained easily as

̂̄v =

∑
(t,t′)∈T

ln
[
(δ̂N (K,ht)−δ̂N (K,ht′ ))

2
]
·
(

lnht2− 1
Q

∑
(t,t′)∈T

lnht2

)
∑

(t,t′)∈T

(
lnht2− 1

Q

∑
(t,t′)∈T

lnht2

)2 . (6)

The convergence and associated optimality result is established in the following theorem,
see also Theorem 1 in KSZW (2016).

Theorem 2. Under Assumptions 1 and 2 the estimator for v̄, ̂̄v, given by (6) satisfieŝ̄v − v̄ = op((lnN)−1). A bandwidth vector with the optimal rate is consistently estimated
by ĥopt = cN−η(̂̄v), with η(v̄) specified in (5).

While the theorem provides a consistency result for the degree of smoothness, the
convergence rate is slow.1

Next we turn to the setting where the density may not even exist, in which case the
standard non- and semiparametric kernel estimators may diverge point-wise.

1As a referee pointed out the estimation of the degree of smoothness bears similarity to the test for
smoothness in Mukherjee et al. (2016) in the context of adaptive Lepski estimation of nonlinear functionals
of density.
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3.2. Unknown degree of smoothness; density may not exist. As is shown in
ZW (2008), if the distribution is not absolutely continuous and the density at a point does
not exist, then the kernel estimator at that point may diverge to infinity. Other non-
and semiparametric estimators similarly lose their convergence properties when there is no
smoothness. A way to examine the limit processes for such estimators is to consider the
estimator and its functional object of interest as a generalized function: a functional on
the space Dm of well behaved suffi ciently (m times) continuously differentiable functions
with either bounded support or strict tail conditions. So, e.g. while density does not
exist pointwise because the distribution function is not absolutely continuous, in the dual
space, D∗m, of continuous linear functionals on Dm density is always defined as a generalized
derivative of the (locally integrable) distribution function, F ∈ D∗m. In the univariate case,
the value of the functional of the density is given by (f, ψ) = − (F, ψ′) = −

∫
F (x)ψ′ (x) dx

for ψ ∈ Dm(R) with m ≥ 1.
Denote by F̃ the kernel estimator of the distribution function so that the kernel density

estimator, f̂ , is such that
∫ x

f̂ (w) dw = F̃ (x) , x ∈ Rk. The theorem below (a version of

Theorem 1, ZW, 2017) shows that
√
N
(
f̃ − f, ψ

)
is distributed as a Gaussian generalized

process with a (generalized) bias functional hv(K)B(h,K), where v(K) denotes the order
of the kernel K, a result also presented in Table 1.

Theorem 3. If h→ 0 and h2v(K)N = O(1) as N →∞ the sequence of generalized random

processes
√
N
(
f̂ − f − hv(K)B(h,K)

)
converges to a generalized Gaussian process with

mean functional zero and covariance functional C which for any ψ1, ψ2 ∈ Dk+v(K)(R
k)

provides

(C, (ψ1, ψ2)) = E ([ψ1(x)− Eψ1 (x)] [ψ2(x)− Eψ2x)]) = cov (ψ1, ψ2) . (7)

If Nh2v(K) → 0, then f̂−f converges at the parametric rate
√
N to a generalized zero mean

Gaussian process with covariance functional C in (7).

The zero mean generalized Gaussian process can be described as a generalized process
representing the derivative, ∂U, of the Brownian bridge, U (see Gelfand and Vilenkin, 1964,
p.250 for the description of the random process representing the generalized derivative of
a Wiener process). Achieving the parametric rate this way does come at a cost as it does
not permit the evaluation of pointwise behavior.
Similar results are discussed in TZW (2014) for the estimator of a conditional distrib-

ution (for a continuous but not necessarily absolutely continuous marginal distribution) in
terms of its generalized function, see Table 1. It is defined as a generalized derivative of
the joint distribution function (or of the copula) with respect to the marginal distribution
function. Recall the usual kernel estimator of conditional distribution:

F̂y|x (x, y) =

∑n
i=1 Ḡ (y − yi)K

(
xi−x
h

)∑n
i=1K

(
xi−x
h

) , (8)
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where Ḡ is the indicator function I(w > 0) and K is an integral of a 2nd order bounded
product kernel on Rk. TZW (2014) provides a general result for samples under mixing
conditions. The conditioning variable x is represented via the transform into marginals
Fx = (Fx1 , ..., Fxk) , and the function ψ (Fx) has W = [0, 1]k as domain of definition. The
operator ∂k represents the differentiation ∂k

∂Fx1 ...∂Fxk
for functions of Fx.

Theorem 4. Let h = cN−α, where α > 1/4. The estimator F̂y|x (x, y) as a generalized
random function on Dm (W ) , with m ≥ 2k + v(K), converges at the rate N−1/2 to the
conditional distribution generalized function Fy|x; the limit process for

√
N(F̂y|x−Fy|x) on

Dm (W ) is given by a ψ ∈ Dm (W ) indexed random functional, Qy|x with (Qy|x, ψ) =

(−1)k [

∫
Fxy

(
k∑
i=1

∂∂k(ψ(Fx))

∂Fxi
Uxi

)
dFx +

∫
Fxy(∂

kψ)(Fx)dUx +

∫
(∂kψ)(Fx)UxydFx],

Here Ux := (Ux1 , .., Uxk)
′, and Uxy are Brownian bridge processes with dimension k and k+1,

correspondingly; as a generalized random process the limit process Qy|x of
√
N(F̂y|x−Fy|x)

is Gaussian with mean functional zero and covariance bilinear functional C, given for any
ψ1, ψ2 by

(C, (ψ1, ψ2)) = cov[(Qy|x, ψ1), (Qy|x, ψ2).

Because of the continuity of the differentiation operator in generalized functions, similar
theorems about conditional density are also derived in TZW (2014). While the results,
within the space of generalized functions, appear somewhat complicated, the values of the
functionals can be easily computed and are convenient to use for inference as in TZW (2014).
They are reminiscent of statistics based on an infinite number of moment conditions.

4. IMPROVED ESTIMATORS
Whether smoothness levels are known or not, bias terms can dominate the stochastic ex-
pansions asymptotically and even if their asymptotic impact vanishes (i.e., they are not
first order important) these terms can have a serious impact in finite samples. Removal of
asymptotic bias is important for validity of inference on the nonparametric estimators and
estimators that rely on them, and suitable approaches for this critically depend on whether
smoothness levels are known. The finite sample performance, though, may also depend on
the magnitude of derivatives suggesting that more conservative approaches may be called
for.
The number of contributions on bias reduction in the nonparametric literature is large.

An important contribution in this literature is related to the use of higher order kernels,
first introduced by Bartlett (1963), which improve the rate of the asymptotic bias without
affecting the asymptotic variance. Subject to suffi cient smoothness, higher order kernels
play an important role in establishing the parametric rate of convergence of the density
weighted average derivative (PSS-ADE), amongst others, by permitting the removal of
the asymptotic bias of terms of order lower. Undersmoothing and plug-in bias correction
methods, used to ensure that the bias becomes first order negligible, also require knowledge
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about smoothness. Moreover, as argued in Calonico et al. (2018), plug-in bias correction
methods are likely to have a first order impact for inference purposes (and construction
of confidence intervals) for which they propose a suitable robust bias-corrected inference
approach. Compared to the simpler undersmoothing approach, plug-in bias correction
methods do typically require estimation of higher order derivatives and selection of asso-
ciated bandwidths; of course, this holds only when smoothness conditions are satisfied.
Cross fitting (sampling splitting) methods are known to eliminate "own observation" bias
and have been used by Bickel and Ritov (1988) and PSS (1989) amongst others; double ro-
bust (Chernozhukov et al., 2018) and cross fit doubly robust estimators (Newey et al., 2018)
that use separate subsamples to estimate nuisance functions in semiparametric estimation
allow remainder terms to converge at faster rates.
Schucany and Sommers (1977) considered the use of a generalized jackknife approach

for constructing a higher order kernel, an approach which also can be described as a model-
averaging approach. They construct a suitable nonconvex weighting of two univariate 2nd
order kernel density estimators that removes bias terms of order O(h2). In a similar vein,
Bierens (1987) proposed a kernel regression estimator with asymptotic negligible bias by
balancing the bias of two v (K) order kernel based regression estimators with bandwidths
cN−1/(2v(K)+k) and cN−δ/(2(v(K)+k) for some δ ∈ (0, 1); the resulting estimator attained the
optimal rate N v(K)/(2v(K)+k). This rate can be made arbitrarily close to the parametric rate
by increasing the order of the kernel v(K) subject to smoothness requirements. PSS (1989)
constructed a sequence of bandwidths that in a weighted average combination of PSS-ADE
estimators leads to a bias reduction of order v(K). More recently, Cattaneo et al. (2013)
considered the generalized jackknife for kernel weighted average derivatives, where its use
was based on the realization that the nonlinearity bias (not only the smoothing bias) admits
a polynomial expansion in the bandwidth that makes it amenable to elimination by means
of generalized jackknifing as well.
As the bias expansions critically depend on assumed smoothness requirements, the

above bias reduction procedures may no longer be valid when there is insuffi cient smooth-
ness. As shown in KSZW (2016) and discussed in the next section, the finite sample
behavior of estimators shows a significant variability even when formally the smoothness
assumption may be satisfied. This happens when the bounds of integrals of derivatives to
appropriate order are large, and consequently there is a lot of uncertainly about how far to
take the expansion of the bias function to obtain the best approximation in finite samples.
In an attempt to obtain an estimator that is adaptive to the unknown smoothness, while

achieving asymptotically the best available (a priori unknown) rate, KZW (2006) propose
a model average estimator that weights estimators calculated for different bandwidths
and kernels. The choice of the weights is based on minimizing the asymptotic mean squared
error (AMSE). Weights that minimize the estimated AMSE provide consistent estimates
of the weights which would minimize trace of the true AMSE. In Henderson and Parmeter
(2016) alternative weighting methods were proposed that, while suitable for nonparametric
kernel regression, do not easily generalize to all estimators we consider. Specifically, they
use least-squares weighting and cross validation, advocated by Li et al. (2015) and Liu
(2018) respectively, to account for the uncertainty about bandwidth and kernel selection.
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The benefit of choosing the weights based on the trace of the AMSE, is that it provides large
bias-tradeoffs without affecting the variance. KZW (2007) and SZW (2010) studied the use
of the model averaging combined estimator that minimizes the trace of the AMSE for
density and average derivative estimators and KSZW (2016) generalized the results for
local kernel based estimators and average kernel based estimators, see also Kotlyarova et
al. (2011). They reveal that for both local and average kernel based estimators, appropriate
selection of the tuning parameters can outperform the estimator with optimal bandwidth
not only in case of insuffi cient smoothness (as in KZW, 2006) but with suffi cient smoothness
as well. The following theorem from KSZW (2016) provides this important result

Theorem 5. Under the Assumptions 1 and 2 with v̄ ≤ 2, for any kernel K and given
an optimal bandwidth vector hopt there exists a set of S bandwidth vectors h1, .., hS with
hs = csh

opt for cs > 1, and a corresponding set of weights, {as} :
∑S

s=1 as = 1 such that the
linear combination,

∑S
s=1 asδ̂N(K,hs) provides

trAMSE(
∑S

s=1 asδ̂N(K,hs)) < trAMSE
(
δN(K,hopt)

)
. (9)

More flexibility in the choice of bandwidth is permitted when we allow for multiple
kernels, permit unequal bandwidths for the different components of the vector δ̂N , or in-
crease the number of bandwidth vectors S. The proof can be modified to allow for a higher
smoothness parameter v̄. The condition v̄ ≤ 2 in Theorem 5 holds if K is a second order
kernel, and also for higher order kernels when bias goes to zero no faster than O(h2).
The implementation of this robust averaging estimator does require the use of consis-

tent estimators for the asymptotic bias and (co)variances that do not rely on smoothness
assumptions. In particular, the estimation of the asymptotic bias is challenging. A compar-
ison of the performance of the robust averaging estimator with its infeasible counterpart
that utilizes the true bias in KSZW (2016) highlights this. While the infeasible aver-
aged estimator provides clear improvements relative to using estimators based on a single
kernel-bandwidth combination (even with an optimal bandwidth), the results for the fea-
sible averaged estimators are somewhat more mixed. Nevertheless, the results are overall
encouraging in the case of averaged estimators, such as PSS-ADE and smoothed maxi-
mum score, where careful implementation of the bias estimation strategy indeed reduces
sensitivity to the kernel/bandwidth choice and provides more stable results. KSZW (2016)
implemented two approaches for estimating the asymptotic bias. One based on the strategy
of Woodroofe (1970) uses the estimate of the smoothness parameter v̄ given in (6); SZW
(2010) used this approach for the PSS-ADE. The other is based on a heuristic approach
suggested in KZW (2007); it relies on averaging estimators over different kernels using small
(undersmoothed) bandwidths.
For the estimation of the covariances, consistent plug-in estimators for the leading

terms of the asymptotic expansion can be used, or alternatively, the bootstrap. Details for
the asymptotic expansion of the covariance between pairs of estimators based on different
kernel and/or bandwidths for the PSS-ADE, average density and the kernel regression
estimator, are provided in SZW (2010) and KSZW (2016). While bootstrap estimates of
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Table 2: Derivative comparison: Smooth and Nonsmooth results

density f
∫

(f ′′(x))2 dx
∫

(f (3)(x))2dx
N(0, 1) 0.212 0.529

0.5N(−1, 1) + 0.5N(1.75, 0.25) 1.76 17.4 Henderson and
Parmeter (2016)

0.333N(−2.75, 1) + 0.334N(0, 1) 0.05 0.19 Stoker (1993)
+0.333N(2.75, 1)

0.5N (0, 1) + 0.3N (0.8, 0.01) 3045 767× 103 Härdle et al. (1998)
+0.2N (1.2, 0.01)∑2

l=0
2
7
N(12l−15

7
, 22

72 ) 9897 107× 104 Marron and Wand (1992):
+
∑10

l=8
1
21
N(2l

7
, 1

212 ) Discrete Comb
0.49N(−1, 4

9
) + 0.49N(1, 4

9
) 1209× 102 302× 107 Marron and Wand (1992):

+
∑6

l=0
1

350
N( l−3

2
, 0.012) Double Claw

covariances for local kernel based estimators are straightforward to obtain, bias corrections
for estimators that are based on U-statistics, such as average kernel based estimators, may
be required (see Cattaneo et al., 2014b, and Kotlyarova et al., 2011). Sample splitting
could be employed to remove the need to estimate covariances; obviously sample splitting
entails a loss of effi ciency due to the reduced sample size used for each estimator.
Establishing a theoretical framework that accounts for the estimated weights of model

averaging combined estimator is challenging. Limited results in this area are available, see,
e.g. Hjort and Claeskens (2003), Hansen (2014), and Zhang and Liu (2019).

5. EVALUATION OF FINITE SAMPLE RESULTS
Even when asymptotically valid (with suffi cient differentiability), bias expansions of kernel
estimators often exhibit errors which are proportionate to higher-order derivatives, as in
the case of density estimation. The finite-sample mean squared errors (MSE) for kernel-
based estimators will reflect the values of those derivatives; mean integrated squared errors
(MISE) are impacted by the integrals of squares of those derivatives. Consider a uni-
variate kernel density estimator. For a second-order kernel, the asymptotic MISE at the
MISE-minimizing bandwidth is proportional to

(∫
(f ′′(x))2 dx

)1/5
(Rosenblatt, 1956) and

the accuracy of the asymptotic bias approximation depends on the bound L such that∫
(f (3)(x))2dx ≤ L (see the discussion in KSZW, 2016). In Table 2 below we report the
values of the integrals of such derivatives for the standard normal density and a selection
of mixtures of normal variables examined in the literature.
Normal mixtures can be associated with very high values of the bounds for the bias,

while being infinitely differentiable. The typical error bounds for distributions used for
evaluating finite sample performance of econometric estimators in the literature, including
normal mixtures (e.g. in Bierens, 1987, Stoker , 1993, and Newey et al, 2004), do not
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capture the possibility of the more extreme values. Henderson and Parmeter (2016), who
also consider the benefits of model averaging, used a mixture of normals with integrals
that are somewhat larger than that of the standard normal. The examples where the
values of the bounds are particularly high are the trimodal mixture in Härdle et al. (1998)
and the discrete comb and double claw in Marron and Wand (1992); these distributions
are characterized by multimodality, wiggles and high peakedness. Making use of such
distributions in simulations is warranted when evaluating the finite sample performance
of non- and semiparametric estimators, as they may better capture the effect of non-
smoothness and "bunching" present in the data. KZW (2007), SZW (2010), and KSZW
(2016) considered these distributions when evaluating the performance of kernel estimators
and kernel-based statistics.
For many econometric functionals, performance of kernel-based estimators where such

bounds vastly exceed those for the Gaussian could be expected to be much worse than
indicated by results obtained in typical smooth simulations settings. For the trimodal
distribution from Härdle et al. (1998), the root mean integrated squared error of the kernel
density estimator, for instance, is 2-3 times larger than RMISE of the normal density
(KZW, 2007); the RMISE of the kernel density estimator for the trimodal distribution
is comparable to the RMISE of the kernel density estimator for a non-smooth density.
Similarly, the discrete comb and double claw mixtures of Marron and Wand (1992) can
lead to large errors in finite sample performance of kernel estimators. Indeed, SZW (2010)
report that RMSE for the PSS-ADE with regressors drawn from such mixtures are 4 to 10
times larger than for normally distributed regressors. The results in such experiments do
not necessarily produce uniformly larger errors; simulations in SWZ (2010) for the PSS-
ADE and in KSZW (2016) for the density estimator demonstrate a large variability of the
RMSE over different choices of kernel and bandwidth which do not necessarily favor the
theoretically optimal choice and thus undermine the usual methods of bandwidth selection.
These findings indicate the importance of extending finite sample evaluation of kernel-

based estimators to more extreme (in terms of magnitude of derivatives) mixtures of nor-
mals. Such investigations will provide a more realistic evaluation of the estimators. If
performance noticeably deteriorates, this can be taken as an indication for a need to imple-
ment procedures aimed at bias reduction such as model averaging via possibly non-convex
combinations of estimators.
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