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ABSTRACT
In epidemicsmany interesting quantities, like the reproduction num-
ber, depend on the incubation period (time from infection to symp-
tom onset) and/or the generation time (time until a new person
is infected from another infected person). Therefore, estimation of
the distribution of these two quantities is of distinct interest. How-
ever, this is a challenging problem since it is normally not possible
to obtain precise observations of these two variables. Instead, in the
beginning of a pandemic, it is possible to observe for transmission
pairs the time of symptomonset for both people as well as a window
for infection of the first person (e.g. because of travel to a risk area).
In this paper we suggest a simple semi-parametric sieve-estimation
method based on Laguerre-Polynomials for estimation of these dis-
tributions. We provide detailed theory for consistency and illustrate
the finite sample performance for small datasets via a simulation
study.
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1. Introduction

A dominating question in the public evaluation of the COVID-19 situation during the
2020 pandemic is the estimation of the basic reproduction number R0, the number of new
infectionswhich are caused (on average) from a single infected individual.While this num-
ber is prominently discussed in the news about COVID-19, it is an important variable for
disease transmission in general (Wallinga and Lipsitch 2007; Leavitt et al. 2020). In order
to estimate the reproduction number of a disease the so-called generation time G plays
an important role (see Euler–Lotka-Equation e.g. in Britton and Scalia Tomba 2019). The
generation time G is defined as the time difference between the infection time of a ran-
domly chosen infected individual and his or her infector. Let ϕG denote the density of
the generation time G and let i(t) be the expected incidence at time t assuming a cer-
tain model of transmission (‘the average community rate of new infections’, Britton and
Scalia Tomba 2019, p. 2). By formulating a renewal equation for i(t) and assuming an expo-
nential growth i(t) = Cert , one obtains R−1

0 = FR0(G) (the Euler–Lotka-Equation, see e.g.
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2 A. KREISS AND I. VAN KEILEGOM

Wallinga and Lipsitch 2007; Britton and Scalia Tomba 2019), where

FR0(G) := E

(
e−rG
)

=
∫ ∞

0
e−rtϕG(t) dt. (1)

Hence, the basic reproduction number R0 is a function of ϕG.
We suppose to observe transmission pairs, i.e. two infected people A and B where it is

known that A, the index case, infected B, the secondary case. We observe for A and B their
times of symptom onset and we observe, in addition, that the infection of the index case
happened in a certain interval. We do not assume information about the infection of the
secondary case through the index case. Such data can arise e.g. if the index case got infected
during a travel to a region where the virus is circulating and infected the secondary case
back home where the virus is not spreading yet (see Bi et al. 2020; Lauer et al. 2020; Xia
et al. 2020 for examples related to travel to and from Wuhan in the early days of the pan-
demic). This leads to observations of the infection times with measurement error. Hence,
the generation time and the incubation times I1, I2 (the time from infection to symptom
onset) are not directly observed. The serial interval S (the time between the two symp-
tom onsets), in contrast, can be observed. Coming back to the example of estimation of
FR0(G) (and hence R0), the most natural estimator, i.e. replacing the expectation by the
sample average, is not feasible from our observations because the exact infection times are
not observed. In reality it is rarely possible to make observations of G directly for the same
reason (cf. Nishiura, Kakehashi, and Inaba 2009). However, the urgency of the situation
requires estimation with imperfect data (Ferretti et al. 2020b).

We can write down a likelihood for observing the symptom onset times and the expo-
sure interval. This likelihood can be written in terms of ϕG and other quantities. If it was
possible to formulate a family of generation time densities which is indexed by R0 we could
simplymaximise the likelihood overR0. In view of (1) this seems difficult.We follow there-
fore a different idea: Find a nonparametric estimate ϕ̂G,n of ϕG and study FR0(ϕ̂G,n)−1

as an estimator of R0. Such plug-in estimators have been studied e.g. in Shen (1997) and
it was argued there that smoothness of FR0 can compensate for typical drawbacks of
nonparametric estimators like a slow convergence rate.

This approach is not limited to R0 but can be applied to other interesting functions F of
ϕG, we call them features of G. One example are tests: Some methods for estimation of R0
make implicit assumptions about the generation time (cf. Wallinga and Lipsitch 2007).
Testing for such assumptions can be realised within this framework if the test statistic
T(ϕ̂G,n) can be written as a function of an estimate ϕ̂G,n of ϕG, e.g. similarly to Härdle
and Mammen (1993) who use an L2 type test-statistic. Further interesting features of ϕG
are for instance variances, mean values, quantiles or the probability of pre-symptomatic
infection P(G ≤ I)where I denotes the incubation time (the time from infection to symp-
tom onset). This is a feature of the joint variable (G, I). It is therefore interesting to study
efficient estimation of general features of G or of (G, I). We will focus in the following on
features of G. More precisely, we will estimate F(G) by firstly finding a semi-parametric
sieve-estimator ϕ̂G,n of ϕG based on Laguerre polynomials and consider then the plug-in
estimator which estimates F(G) through replacing ϕG by ϕ̂G,n in the definition of F.

In the beginning of a pandemic it is important to estimate its transmission character-
istics (Bi et al. 2020) and it is common to replace the unobserved generation time G by
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the serial interval S (cf. Wallinga and Lipsitch 2007; Britton and Scalia Tomba 2019; Fer-
retti et al. 2020b), because this can be observed in clinical studies. In certain situations this
can be a promising approach, cf. Remark 2.2. However, this practice can also yield biased
estimates (cf. Britton and Scalia Tomba 2019). In this paper, we avoid this issue by estimat-
ing ϕG directly. Moreover, since the interest lies in a function of ϕG rather than ϕG itself,
it might be desirable for researchers to not impose parametric assumptions on ϕG but to
consider a nonparametric approach instead. In addition, a nonparametric approach avoids
issues like selecting a parametric family or important aspects being hidden through this
choice (cf. Groeneboom 2021).

The main contribution of this paper is to provide the first step towards efficient, semi-
parametric estimation of features of the generation time: Consistent density estimation.
Based on such an estimator the theory for efficient, semi-parametric inference methods
about features of ϕG can be developed. To this end we extend the methodology of Ferretti
et al. (2020b) and Ganyani et al. (2020) in two ways: Firstly, we estimate the densities of
the incubation period and the generation time jointly in one step with the same data and,
secondly, we provide a semi-parametric framework which makes no a-priori assumptions
about the incubation and generation times. We pursue this by constructing a sieve estima-
tor based on Laguerre polynomials highlighting the flexibility of Laguerre polynomials as
approximating functions. In order to identify the model we need to specify a model for the
relation between the exposure window and the infection time but we will not make para-
metric assumptions about the distributions of the incubation period and the generation
time. Thus, we will do semi-parametric estimation.

General background information about data analysis in disease transmission can e.g.
be found in Held, Hens, O’Neill, andWallinga (2019) and Chowell, Hayman, Bettencourt,
andCastolli-Chavez (2009). The estimation ofR0 fromobservations of the serial interval in
particular is discussed in Lipsitch et al. (2003). As an alternative (Ferretti et al. 2020b) sug-
gest the following two step procedure: Firstly, fit a parametricmodel for the incubation time
(cf. Bi et al. 2020; Lauer et al. 2020) and then, secondly, use this to fit a parametric model
to the generation time. Groeneboom (2021) describes how to do nonparametric estima-
tion of the incubation time. Problems related to under-reporting or delays (cf. Azmon,
Faes, and Hens 2014) are not considered here because we have data in mind which was
collected by researchers rather than observational data from self-reporting. In addition to
this type of experimental data, it is also possible to collect larger sets with covariates and
use prediction techniques to identify transmission pairs (cf. Leavitt et al. 2020). Specific
parametric results about the above mentioned quantities for Covid-19 can e.g. be found in
Bi et al. (2020), Ferretti et al. (2020b), Ganyani et al. (2020), Lauer et al. (2020), Tindale
et al. (2020) and in many other places. The exact mathematical setting described below
is close to de-convolution and measurement error settings, classical results about which
can be found for example in Fan (1991), Devroye (1989), and Carroll, Ruppert, Stefanski,
and Crainiceanu (2006). General background about sieve estimators and series estima-
tion can be found in Newey (1997) and Chen (2007) and the references therein. Ai and
Chen (2003) and Newey and Powell (2003) use sieve estimation based on moment condi-
tions while we start from a likelihood. Further reading about plug-in sieve estimates can
be found in Shen (1997) and Chen and Shen (1998).

The structure of this paper is as follows: In Section 2 we introduce the exact mod-
elling framework. Afterwards, in Section 3, we provide a sieve estimator for the incubation
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period and generation time based on Laguerre polynomials. Its properties will be dis-
cussed in Section 4 and we show that our estimator is asymptotically consistent. The
asymptotic distribution of the methodology will be studied in Section 5 by means of
simulations and it will be applied to a real-world dataset consisting of 191 SARS-COV-
2 transmission pairs that has also been used by Hart, Maini, and Thompson (2021) and
Ferretti et al. (2020a). The R-code which is used for these computations is available
on github (https://github.com/akreiss/SemiParametric-Laguerre.git). Finally, we finish the
paper with some concluding remarks in Section 6. Additional simulation results and some
proofs are collected in the Appendix.

2. Model

We study observations of transmission pairs as shown in Figure 1. The first person, the
index case, gets infected at time T1 which is unobserved. However, it is known to lie in
the interval [0,W], the exposure period. The exact conditional distribution of T1 in [0,W]
is allowed to depend on a random variable C which determines for example the location
of the infection. In certain situations, it will turn out that the likelihood will depend only
on min(W, S1), where S1 ≥ T1 denotes the time at which Person 1 shows symptoms. In
that sense, observation of W is only then required if W ≤ S1. Otherwise we do not have
to observe W but we have to observe that W ≥ S1. The incubation period is defined as
I1 := S1 − T1. Moreover, Person 1 is known to have infected Person 2, the secondary case.
Similarly as above, we define S2,T2, I2 for the second person: Person 2 shows symptoms
at the observed time S2. But, of course, the infection time T2 and hence the incubation
time I2 := S2 − T2 are unobserved. The generation time is thus G := T2 − T1 and it is
also unobserved, while the serial interval S := S2 − S1 can be observed. Such data was for
example collected by Ferretti et al. (2020b), Bi et al. (2020), and Lauer et al. (2020).

The following relations can be directly read off from the definitions and Figure 1.

S1 = T1 + I1, (2)

S2 = T1 + I2 + G, (3)

S = G + I2 − I1. (4)

Let (Wi,T1,i,Ci, S1,i, S2,i,Gi)i=1,...,n be iid copies of (W,T1,C, S1, S2,G). However, we
suppose that our observations are only given by (S1,i, S2,i, W̃i,Ci)i=1,...,n, where W̃i :=

Figure 1. Schematic depiction of the important quantities and their relation.

https://github.com/akreiss/SemiParametric-Laguerre.git
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min(S1,i,Wi). Based on our observations, we can onlymake direct inference about the joint
distribution of (S1, S2) and the serial interval S := S2 − S1. But we have only indirect infor-
mation about I,G and T1 bymeans of (2)–(3) (note that (4) is the difference of (2) and (3)).
Informally speaking, we have three unknown densities and two equations. In other words,
identification of the joint-distribution of the three random variables (I,G,T1) from a joint
distribution of the two variables (S1, S2) is impossible without additional assumptions.
Throughout we will assume the following to be true:

Assumption (M) Model: I1, I2 and G are non-negative and C takes values in {1, . . . ,KC}.
Their distributions have the following densities (with respect to the Lebesgue measure) or
count measures and relate as follows

W ∼ ϕW

C ∼ pC, independent ofW

T1 ∼ ϕT1(· | W,C) cond. on (W,C)

I1, I2
iid∼ ϕI , independent of (T1,W,C)

G ∼ ϕG, independent of (I1, I2,T1,W,C).

(5)

It holds that ϕT1(t | w, c) = 1(t ∈ [0,w])n(w, c)h(w − t | c) where h : [0,∞) → [0,∞) is
integrable. �

When inspecting the likelihood of Ferretti et al. (2020b) and the assumptions ofGanyani
et al. (2020), we see the same independence assumptions for I1, I2,G andT1. Independence
between I1 and T1 can also be found in Groeneboom (2021). The variable C can be under-
stood as covariate and will be interpreted as the location of the infection. It can be used to
capture heterogeneity in the infection dynamics: In a location with an increasing number
of infections, it is more likely that the infection time T1 lies towards the end of the infec-
tion window [0,W] conditionally on (C,W). In contrast, in locations with a low number
of infections, T1 is possibly uniformly distributed in [0,W]. See Remark 2.1 for further
details and a motivation for certain choices of h. It has been reported (see e.g. Tindale
et al. 2020) that the transmission dynamics, i.e. ϕI and ϕG, can be different in different
scenarios. Thus, we need to restrict to data coming from the same environment. More-
over, the above assumptionmeans that we observe true transmission pairs (see e.g. Tindale
et al. 2020 for a parametric model which allows for an unknown number of intermediate
infectors).

Remark 2.1: All discussion below is conditional onW. The dataset we imagine is recorded
in the beginning of a pandemic, e.g. a person comes home after travelling to a region where
the virus is circulating. Suppose that the time points, at which the person of interest has
an infectious contact (i.e. a contact which definitely leads to an infection), are the jump
points of a counting process N with intensity function λ : [0,W] → [0,∞). It is plausible
that the intensity of infection is proportional to the number of infections in the population.
Since (in most cases) the infection numbers behave exponentially, we also consider λ(r) =
λ0 exp(−α(W − r)) ∼ exp(αr), where α ∈ R describes the exponential growth (or decay)
of the number of infections. In this notation, T1, the time of infection, is the first jump of
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N. In an early stage of the pandemic it is plausible that there is only one infectious contact.
Then, using that counting processes have independent increments and that the number of
jumps in a certain interval is Poisson distributed with parameter equal to the integral of
the intensity over the respective interval, we obtain

P(T1 ≤ s | N(t) = 1) = P(N([0, s]) = 1, N((s, t]) = 0)
P(N([0, t]) = 1)

=
∫ s
0 λ(r) dr∫ t
0 λ(r) dr

= e−α(W−s) − e−αW

e−α(W−t) − e−αW
.

Deriving the distribution function above yields that the density of T1 is proportional to
exp(−α(W − s)). Thus, we will later consider primarily the situation in which h(u | c) =
exp(−r(C)u), where r(C) is the (known) exponential growth of the infection numbers in
location C. Note that taking α → 0, i.e. the case of a constant intensity function, yields
P(T1 ≤ s | N(t) = 1) → s/t (the distribution function of a uniform distribution on [0, t]).

The discussion in Remark 2.1 is then plausible, if it is plausible to assume that the per-
son of interest has infectious contacts with a rate which is so low/the time W is so short
that there is only one infectious contact in [0,W]. In particular in the beginning of a pan-
demic this seems reasonable. Note that for the subsequent infection (within the observed
transmission pair) this assumption is no longer valid: It is, intuitively speaking, more likely
that infections, e.g. in a household happen directly after the infected person has returned,
rather than days after.

Note finally that in the special case r(c0) = 0 for some location c0, i.e. if the infection
level remains constant, we get h(· | c0) = 1 (then n(w, c0) = 1/w), i.e. T1 ∼ U([0,W])
(uniform distribution). From a mathematical standpoint, this case leads to another very
intuitive result: The conditional distribution of S1 given W and C = c0 is given by the
convolution through (2)

P(S1 ≤ x | W,C = c0) = P(T1 + I1 ≤ x | W,C = c0)

= 1
W

∫ ∞

−∞

∫ ∞

−∞
1(t ∈ [0,W])1(t + s ≤ x)ϕI(s) ds dt

= 1
W

∫ W

0

∫ x−t

−∞
ϕI(s) ds dt.

The conditional density of S1 can then be obtained through differentiation of the above
with respect to x and is given by

1
W

∫ W

0
ϕI(x − t) dt = 1

W

∫ x

x−W
ϕI(u) du.

Hence, the likelihood of observing S1 = x is given by the probability of observing an incu-
bation period between x−W and x, the natural lower and upper bounds. This way we can
identify ϕI from observations of S1. Then, in a second step, we can use (4) to identify ϕG
from observing S. Hence, under the assumption that T1 ∼ U([0,W]) conditionally onW,
we can identify the distributions of I and G from the distribution of (S1, S2). We make this
mathematically precise also in the general case in Corollary 4.4.
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Wementioned in the introduction that using the serial interval in place of the generation
time can lead to biases. We discuss in the next remark in which situations this practice is
safe to use and we argue that it does not work for R0.

Remark 2.2 (Serial Interval vs. Generation Time): Consider the set-up from Assump-
tion (M) and letϕS denote the density of S. Our interest lies in estimation of F(G), whereF is
an arbitrary feature ofG. As a first example letF be linear, e.g. F(G) := E(G) = ∫

R
tϕG(t) dt

be the expectation. In that case by (4)

F(G) = F(S)+ F(I1)− F(I2) = F(S) =
∫ ∞

−∞
tϕS(t) dt

and F(G) can probably be well (maybe even optimally) estimated by estimating the inte-
gral on the right based on observations of the serial interval alone. For the case of the basic
reproduction number, however, FR0(G) = E(exp(−rG)) is a moment generating function,
i.e. it is non-linear. Other examples of interesting non-linear features of interest are quan-
tiles, a quadratic test statistic or the probability of pre-symptomatic infection P(G ≤ I1).
For these features, we cannot simply estimate the serial interval in place of the generation
time, but it is necessary to have an estimate of the density ϕG available.

Remark 2.2 together with the unavailability of observations from G shows that esti-
mation of features like R0 is non-trivial and requires more complicated methods. Before
turning to the estimators we make a remark about asymptomatic patients.

Remark 2.3 (Asymptomatic Patients): It is unclear how asymptomatic patients can be
handled in this framework. However, it should be emphasised that asymptomatic means
here infected people who infect others but who never show symptoms. Pre-symptomatic
infections are well allowed, i.e. Person 1 is allowed to infect Person 2 before showing symp-
toms. However, we assume here that Person 1 and Person 2 both will eventually show
symptoms.

3. Methodology

We introduce now our estimator by specifying approximations to ϕI and ϕG. Consider the
following class of densities on the non-negative real line for m ∈ N0 := {0, 1, 2, . . .}

Gm := {ϕθ : θ ∈ R
m+1, ‖θ‖2 = 1

}
,

where ‖ · ‖2 is the Euclidean norm and

ϕθ (x) = 1(x ≥ 0)e−x

( m∑
k=0

θ(k)Lk(x)

)2
(6)

with θ = (θ(0), . . . , θ(m)) and

Lk(x) :=
k∑

i=0

(
k
i

)
(−x)i

i!

being the kth Laguerre polynomial. Since the Laguerre polynomials form an orthonor-
mal system of functions on [0,∞) with respect to the weight function e−x it is simple to
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show that the above construction yields a density under the simple condition ‖θ‖2 = 1, cf.
Lemma 3.1. Moreover, it is well known that a large class of densities can be approximated
by Laguerre polynomials. Define to this end the Hellinger distance of two distributions on
X which have densities ϕ1,ϕ2 with respect to a measure μ via

ρH(ϕ1,ϕ2) :=
(∫

X

(
ϕ1(x)

1
2 − ϕ2(x)

1
2

)2
dμ(x)
) 1

2
.

The following lemma is essentially a rephrasing of Theorem 1 in Chapter II.8 of Nikiforov
and Uvarov (1988) which we state here for the convenience of the reader.

Lemma 3.1: For any m ∈ N0 and any θ ∈ Rm+1 with ‖θ‖2 = 1 we have that ϕθ as defined
in (6) is a density function on [0,∞). Suppose moreover that ϕ is an arbitrary density on
[0,∞) such that p(x) := √

exϕ(x) is continuous on [0,∞) and has a piecewise continuous
derivative p′(x). Suppose that

∫ ∞

0
p′(x)2xe−x dx < +∞. (7)

Then, for any sequence mn → ∞ there are θn ∈ Rmn+1 with ‖θn‖ = 1 such that for n → ∞

ρH(ϕθn ,ϕ)
2 =
∫ ∞

0

(
ϕθn(x)

1/2 − ϕ(x)1/2
)2 dx → 0.

Moreover, ϕθn → ϕ locally uniformly, i.e. supx∈K |ϕθn(x)− ϕ(x)| → 0 for any compact set
K ⊆ (0,∞).

Proof: Let pmn(x; θn) :=
∑mn

k=0 θ
(k)
n Lk(x), where θ

(k)
n denotes the kth entry of θn. Then

ϕθn(x) = 1(x ≥ 0)e−xpmn(x; θn)2. The first part of the lemma is a simple calculation using
the orthonormality of the Laguerre polynomials, i.e. use that

∫ ∞

0
e−xLk(x)Ll(x) dx = 1(k = l).

For the second statement we note∫ ∞

0
e−xp(x)2 dx =

∫ ∞

0
ϕ(x) dx = 1 < ∞.

This and (7) are exactly the conditions of Theorem 1 in Chapter II.8 of Nikiforov and
Uvarov (1988) which we stated in the Appendix as Theorem A.2 for the convenience
of the reader. The theorem states that the sequence p̃n(x) :=

∑mn
k=0 ckLk(x) with ck =
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∫∞
0 p(x)Lk(x)e−x dx converges locally uniformly, i.e. uniformly on compact sets, to p. Let

Cn :=
∫ ∞

0
e−x̃pn(x)2 dx =

mn∑
k=0

c2k

and θ(k)n := ck/C1/2
n for k = 0, . . . ,mn. Clearly, ‖θn‖2 = 1. By Parseval’s Identity Cn →∑∞

k=0 c
2
k = ∫∞

0 e−xp(x)2 dx = 1. Hence, we can conclude that also

pmn(x; θn) =
mn∑
k=0

θ(k)n Lk(x) = C− 1
2

n

mn∑
k=0

ckLk(x) = C− 1
2

n p̃n(x)

converges locally uniformly to p because p is bounded on compact sets K ⊆ (0,∞). From
this we conclude also the locally uniform convergence of ϕθn to ϕ. Moreover, Theorem A.2
states that ∫ ∞

0
e−x(̃pn(x)− p(x))2 dx → 0.

The proof of the Lemma is complete since the above implies∫ ∞

0

(
ϕ
1/2
θn

− ϕ1/2
)2

dx

=
∫ ∞

0
e−x (p(x)− pmn(x; θn)

)2 dx
=
∫ ∞

0
e−x
(
p(x)− p̃n(x)+ p̃n(x)

(
1 − C− 1

2
n

))2
dx

≤ 2
∫ ∞

0
e−x (p(x)− p̃n(x)

)2 dx + 2
∫ ∞

0
e−x̃pn(x)2dx

(
1 − C− 1

2
n

)2
→ 0. �

The conditions of Lemma 3.1 cover a wide class of piecewise continuously differ-
entiable densities like any sub-Gaussian density, densities with compact support and
sub-exponential densities. We consider condition (7) therefore as not-restrictive. Before
we can write down the likelihood, we have to find the conditional density of (S1, S2,W)

given C.

Lemma 3.2: Suppose that the random variables W,C,T1, I1, I2,G are related as in Assump-
tion (M). The conditional joint density of (S1, S2,W) given C, where S1 := I1 + T1 and
S2 := T1 + I2 + G, is given by

f (x1, x2,ω | c)

= n(ω, c)ϕW(ω)
∫ x2

0
ϕG(y)
∫ min(x1,ω)

0
h(ω − t | c)ϕI(x1 − t)ϕI(x2 − t − y) dt dy.

for x1, x2,ω ≥ 0 and 0 otherwise.
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Proof: Let x1, x2,ω ≥ 0 be arbitrary. Note firstly that, by Assumption (M), the conditional
density of (W,T1) given C is given by

ϕT1(t | w, c)ϕW(w) = 1(t ∈ [0,ω])n(w, c)h(w − t | c)ϕW(w).

Below integrals of the type
∫ a
0 are to be understood over the set (min(0, a), max(0, a)).

Since all integrands are supported in [0,∞), integrals are zero when a<0. We have by the
independence assumptions in (M)

P(S1 ≤ x1, S2 ≤ x2,W ≤ ω | C)
= P(T1 + I1 ≤ x1, T1 + G + I2 ≤ x2,W ≤ ω | C)
= E (1(W ≤ ω)P(T1 + I1 ≤ x1, T1 + G + I2 ≤ x2 | T1,W,C) | C)
= E (1(W ≤ ω)P(I1 ≤ x1 − T1 | T1,C) · P(G + I2 ≤ x2 − T1 | T1,C) | C)

= E

(
1(W ≤ ω)

∫ x1−T1

0
ϕI(a) da ·

∫ x2−T1

0

∫ ∞

0
ϕG(y)ϕI(b − y) dy db

∣∣∣∣C)
=
∫ ω

0

∫ v

0
n(v, c)h(v − t | c)ϕW(v)

×
∫ x1−t

0
ϕI(a) da ·

∫ x2−t

0

∫ ∞

0
ϕG(y)ϕI(b − y) dy db dt dv.

We obtain furthermore by differentiating under the integral and using that ϕI and ϕG are
supported on the non-negative real line

f (x1, x2,ω | c)

= d3

dx1 dx2 dω
P(S1 ≤ x1, S2 ≤ x2,W ≤ ω | C = c)

= d2

dx1 dx2
n(ω, c)ϕW(ω)

∫ ω

0
h(ω − t | c)

×
∫ x1−t

0
ϕI(a) da ·

∫ x2−t

0

∫ ∞

0
ϕG(y)ϕI(b − y) dy db dt

= n(ω, c)ϕW(ω)
∫ ω

0
h(ω − t | c)ϕI(x1 − t) ·

∫ ∞

0
ϕG(y)ϕI(x2 − t − y) dy dt

= n(ω, c)ϕW(ω)
∫ ∞

0
ϕG(y)
∫ ω
0

h(ω − t | c)ϕI(x1 − t)ϕI(x2 − t − y) dt dy

= n(ω, c)ϕW(ω)
∫ x2

0
ϕG(y)
∫ min(x1,ω)

0
h(ω − t | c)ϕI(x1 − t)ϕI(x2 − t − y) dt dy.

In the last line above we can replace the upper integration bound of the outer integral by
x2 because for y > x2, we have x2 − t − y < 0 and hence ϕI(x2 − t − y) = 0. �

By using the density from above, we obtain an expression for the likelihood for
estimation of ϕI and ϕG.
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Lemma 3.3: Let the observations (S1,i, S2,i,Wi,Ci)i=1,...,n be iid copies of (S1, S2,W,C)
which are related as in Assumption (M). Let m1,m2 ∈ N and θ1 ∈ Rm1+1, θ2 ∈ Rm2+1.
Consider the candidate densities ϕI,θ1 ∈ Gm1 and ϕG,θ2 ∈ Gm2 . The likelihood for this con-
figuration is given by, denote W̃i := min(Wi, S1,i)

Ln(ϕI,θ1 ,ϕG,θ2)

=
n∑

i=1
log

(∫ S2,i

0
ϕG,θ2(y)

∫ W̃i

0
h(Wi − t | Ci)ϕI,θ1(S1,i − t)ϕI,θ1(S2,i − t − y) dt dy

)
+ Cn, (8)

where Cn is a random constant which does not depend on ϕI,θ1 and ϕG,θ2 . In the specific case
of h(u | c) = exp(−r(c)u) for some exponential parameter r(c) ∈ R we even get that

Ln =
n∑
i=1

log
(∫ S2,i

0
ϕG,θ2(y)

×
∫ W̃i

0
exp (r(Ci)t) ϕI,θ1(S1,i − t)ϕI,θ1(S2,i − t − y) dt dy

)
+ C̃n (9)

depends on Wi only through W̃i. Above C̃n is a random constant which does not depend on
ϕI,θ1 and ϕG,θ2 .

Proof: Let fϕI,θ1 ,ϕG,θ2 (x1, x2,ω | c) denote the conditional density of (S1, S2,W) given C as
defined in Lemma 3.2 when I has density ϕI,θ1 and G has density ϕG,θ2 . By independence,
we have

Ln =
n∑
i=1

log
(
fϕI,θ1 ,ϕG,θ2 (S1,i, S2,i,Wi | Ci)pC(Ci)

)

=
n∑
i=1

log
(∫ S2,i

0
ϕG,θ2(y)

×
∫ min(S1,i,Wi)

0
h(Wi − t | Ci)ϕI,θ1(S1,i − t)ϕI,θ1(S2,i − t − y) dt dy

)

+
n∑
i=1

log
(
n(Wi,Ci)ϕW(Wi)pC(Ci)

)
,

where the latter term is independent of ϕI,θ1 and ϕG,θ2 . This finishes the proof of (8). For
the specific choice h(u | c) = exp(−r(c)u) we get

Ln =
n∑

i=1
log
(∫ S2,i

0
ϕG,θ2(y)

×
∫ min(S1,i,Wi)

0
exp (r(Ci)t) ϕI,θ1(S1,i − t)ϕI,θ1(S2,i − t − y) dt dy

)
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+
n∑

i=1

(
log
(
n(Wi,Ci)ϕW(Wi)pC(Ci)

)− r(Ci)Wi
)

which finishes the proof of (9) since the second line does not depend on ϕI,θ1 or ϕG,θ2 . �

Note that Lemma 3.3 implies that for given ϕW and pC, the likelihood to be optimised is,
conveniently, independent of ϕW and pC. Thus, we can treat ϕW and pC as known without
loosing any practicality and, therefore, we may define the following estimators for ϕI and
ϕG: For given sequences (m1,n)n∈N, (m2,n)n∈N ⊆ N0, we study

(
ϕ̂I,n, ϕ̂G,n

)
: = argmax

φI,θ1∈Gm1,n ,φG,θ2∈Gm2,n

n∑
i=1

log

(∫ S2,i

0
ϕG,θ2(y)

∫ W̃i

0
h(Wi − t | Ci)

× ϕI,θ1(S1,i − t)ϕI,θ1(S2,i − t − y) dt dy
)
.

At this point it is not clear that we can identify the parameters θ1,θ2. Later, in Corollary 4.4,
we will see that consistent estimation of the distribution functions of ϕI and ϕG is possible
if a mild assumption on the characteristic functions holds. Under the same assumption, a
similar proof-technique can be applied to show that two different sets of parameters lead
to different likelihoods.

4. Theory

In this section we will prove and discuss a consistency result. For ϕI and ϕG being arbi-
trary densities of I1, I2 and G, respectively, we denote by fϕI ,ϕG the conditional density
of (S1, S2,W) given C as defined in Lemma 3.2. Then, fϕI ,ϕGpC denotes the joint density
of (S1, S2,W,C). When ϕI and ϕG are chosen from the approximating spaces Gm1 and
Gm2 , the following set denotes the set of all possible approximations to the joint density
of (S1, S2,W,C)

Fm1,m2 :=
{
fϕI ,ϕGpC : ϕI ∈ Gm1 , ϕG ∈ Gm2

}
.

In the following we will always assume that we are in the setting presented in Section 2.

Theorem 4.1: Suppose (M) holds true and let m1,n,m2,n = nβ and εn = n−γ for some
β , γ > 0 such that γ < 1/2 and β < 1 − 2γ . Suppose that the true densities ϕI and ϕG
fulfil the assumptions of Lemma 3.1 and let ϕI,n and ϕG,n be the sequences from Lemma 3.1
such that ρH(ϕI ,ϕI,n) → 0 and ρH(ϕG,ϕG,n) → 0. Suppose that there is α ∈ (0, 1/2) such
that for some N0 ∈ N0

sup
n≥N0

Cα(fϕI ,ϕG , fϕI,n,ϕG,n) < ∞, (10)

where

Cα(f1, f2) :=
( KC∑

c=1

∫
[0,∞)3

(
f1(x1, x2,ω | c)
f2(x1, x2,ω | c)

) α
1−α

f1(x1, x2,ω | c)pC(c) d(x1, x2,ω)
)1−α

.

(11)
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Then, we have that

ρH(fϕI ,ϕGpC, fϕ̂I,n,ϕ̂G,npC) = OP
(
max
(
εn, max

(
ρH(ϕI ,ϕI,n), ρH(ϕG,ϕG,n)

)α)) = oP(1).

The proof of this result will be given later in Section 4.2.We will begin with a discussion
of the result and its assumptions in the next subsection.

4.1. Discussion of Theorem 4.1

Before turning to the assumptions of Theorem4.1wemake a remark about the convergence
rate.

Remark 4.2: Note that the requirements on β and γ in Theorem 4.1 allow in the limit for
the choice β = 1/5 and γ = 2/5 < 1/2. This yields the classical convergence rate n−2/5 for
series estimationwith polynomials if the true density is sufficiently smooth (cf. Newey 1997
and Proposition 3.6 in Chen 2007).

We continue with a discussion of the condition (10) above. This can be under-
stood as a tail condition: For any compact set K ⊆ (0,∞)3 we have by Lemma 3.1 that
fϕI,n,ϕG,n converges uniformly to fϕI ,ϕG . Thus, if we restrict the integral in the definition of
Cα(fϕI ,ϕG , fϕI,n,ϕG,n) to K, the restricted integral remains bounded. Note also that by choos-
ing α > 0 small, possible singularities of f2 are integrable. Hence, (10) is only restrictive for
the integral over Kc. Thus, if fϕI ,ϕG is compactly supported (10) follows. Note furthermore
that fϕI ,ϕG is compactly supported if ϕI ,ϕG and ϕW are compactly supported. In our spe-
cific epidemics setting for COVID-19, this is a highly plausible assumption because people
stop being infectious at some point. However, for other diseases people can stay infectious
for an extended period of time, e.g. for Hepatitis C, the mean generation time is about 20
years (cf. Wallinga and Lipsitch 2007).

In those cases of non-compactly supported distributions, (10) is a restriction: It is
required that the approximations do not decrease much faster to zero than the actual den-
sity. The meaning ofmuch faster is to be understood relative to fϕI ,ϕG and it can be adjusted
by choosing α > 0 small. Any polynomial difference can therefore be handled.

Theorem 4.1 shows, strictly speaking, that we can consistently estimate the joint dis-
tribution of (S1, S2,W,C). However, from a practical point of view, the estimation of ϕI
and ϕG is of interest. In order to ensure identifiability of ϕI and ϕG, we need the following
additional assumption:

Assumption 1 (Characteristic Functions): Let�I denote the characteristic function of I.
There are functions z1 : R → R and z2 : R → R such that for almost all x ∈ R

�I(x) �= 0 and E

(
eiz1(x)W+iz2(x)CE

(
eixT1 |W,C

))
�= 0.

In particular the second requirement above looks cryptic in full generality. In the fol-
lowing remark we show that in specific scenarios it simplifies to simpler conditions which
are more interpretable.
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Remark 4.3: The condition

E

(
eiz1(x)W+iz2(x)CE

(
eixT1 |W,C

))
�= 0 (12)

above can be rewritten in more specific scenarios.

(1) If�T1(x) := E(exp(ixT1)) �= 0 almost everywhere, (12) holds because wemay simply
choose z1 ≡ z2 ≡ 0.

(2) If C ≡ 1 and T1 is uniformly distributed in [0,W], i.e. h(w − t | c) ≡ 1 and n(w, c) =
1/w, we obtain with z2 ≡ 0 and z1(x) = −x/2 that (note that sin(x)/x → 1 for x → 0
such that the below inequality chain can be used also for x = 0)

E

(
eiz1(x)W+iz2(x)CE

(
eixT1 |W,C

))
= E

(
e−i x2W

1
W

∫ W

0
eixt dt
)

= E

(
1

ixW

(
ei

x
2W − e−i x2W

))
= E

(
1

x
2W

sin
(x
2
W
))

= E

(∫ 1

0
cos
(x
2
Wt
)
dt
)

=
∫ 1

0
Re
(
E

(
ei

x
2Wt
))

dt =
∫ 1

0
Re
(
�W

(x
2
t
))

dt,

where�W is the characteristic function ofW. The above is non-zero for almost all x ∈
R (implying (12)) for many standard distributions like the exponential distribution
which characteristic function has a strictly positive real part.

Our setting is very similar to the de-convolution set-up: In (2) the signal I1 is perturbed
by the noise T1 (the distribution of which is determined by (W,C)) and in (3) the signal G
is perturbed by the noise I2 + T1. Thus it is clear that assumptions onW, C and I1 similar
to those for the de-convolution set-up are necessary for identification. The assumption of
almost everywhere non-vanishing characteristic functions has already been mentioned in
Devroye (1989) (see the Remark below Theorem 1 therein) to be necessary to guarantee
consistent estimation.

Let FI and FG denote the distribution functions corresponding to the densities ϕI and
ϕG, respectively. Similarly, define F̂I,n and F̂G,n to be the distribution functions of ϕ̂I,n and
ϕ̂G,n, respectively. The following corollary ensures under Assumption (C) that F̂I,n and F̂G,n
are consistent estimators for FI and FG, respectively.

Corollary 4.4: Suppose that, in addition to the assumptions of Theorem 4.1, Assumption (C)
holds true. We then have∥∥∥F̂I,n − FI

∥∥∥∞ = oP(1) and
∥∥∥F̂G,n − FG

∥∥∥∞ = oP(1).

The detailed proof is given in Section A.3 in the Appendix.
Wefinally come back to estimating the basic reproduction numberR0. The above frame-

work provides us with a methodology to consistently estimate the reproduction number
withoutmaking parametric statements about the incubation period or the generation time.
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From (1) it is evident that we require next to an estimator for ϕG also an estimate r̂n of the
growth rate of the expected incidence. In Ferretti et al. (2020b) the exponential growth rate
of the reported numbers is estimated to be r = 0.14. But, strictly speaking, what we need
here is the growth rate of the infection numbers which is (intuitively speaking) very simi-
lar but can be different due to under-reporting and delays. The estimator is specified in the
following corollary, the proof of which can also be found in Section A.3 in the Appendix.

Corollary 4.5: Let r̂n denote a consistent estimate of the exponential growth rate of the
expected incidence r>0, i.e. let r̂n − r = oP(1). Under the conditions of Theorem 4.1 and
Assumption (C), we have ∫ ∞

0
e−r̂ntϕ̂G,n(t) dt

P→ FR0(G).

4.2. Proof of Theorem 4.1

In order to prove Theorem 4.1 we need to introduce the same distance relation which was
used also by Wong and Shen (1995). Define for any two densities f1, f2 with respect to a
measure μ on a space X and α �= 0 the distance relation

ρα(f1, f2) := 1
α

∫
X
f1(x)
((

f1(x)
f2(x)

)α
− 1
)
dμ(x).

Note that

ρ−1/2(f1, f2) = −2
∫
X

(√
f1(x)f2(x)− f1(x)

)
dμ(x) = 2 − 2

∫
X

√
f1(x)f2(x) dμ(x)

=
∫
X

(
f1(x)+ f2(x)− 2

√
f1(x)f2(x)

)
dμ(x)

=
∫
X

(√
f1(x)−

√
f2(x)
)2

dμ(x)

= ρH(f1, f2)2.

A second property of ρα wemention here, is non-negativity for α ≥ −1: Let gα : (0,∞) →
R be given by gα(x) := 1

α
(x−α − 1). Then g′′

α(x) = (α + 1)x−α−2 ≥ 0 because α ≥ −1.
Hence, gα is a convex function. We hence obtain by Jensen’s Inequality (for the measure
with density f1 with respect to μ)

ρα(f1, f2) =
∫
X
gα
(
f2(x)
f1(x)

)
f1(x) dμ(x) ≥ gα

(∫
X

f2(x)
f1(x)

f1(x)μ(x)
)

= 0.

Lemma 3.1 shows that the sieve spaces Gm lie dense in a large class of densities with
respect to the Hellinger distance. However, for our consistency result, we require that the
sieve spaces provide also good approximations with respect to ρα for α > 0. The following
lemma provides the main tool.

Lemma 4.6: Let ϕI,1,ϕI,2 be two densities of incubation periods and let ϕG,1,ϕG,2 be two
densities of generation times and consider f1(x1, x2,ω | c) and f2(x1, x2,ω | c) defined as in
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Lemma 3.2 using (ϕI,1,ϕG,1) and (ϕI,2,ϕG,2), respectively. Define Cα(f1, f2) as in (11). Then,
for any α ∈ (0, 1/2),

ρα(f1pC, f2pC) ≤ 1
α
Cα(f1, f2)

(
2ρH(ϕG,1,ϕG,2)2 + 8ρH(ϕI,1,ϕI,2)2

)α . (13)

The proof of the above Lemma is presented in Section A.4 in the Appendix. Before we
can prove the consistency result, we need as a last preparation a bound on the bracketing
entropy of the spaces Fm1,m2 .

Definition 4.7: Let ε > 0,F0 ⊆ F classes of functions and ρ : F × F → [0,∞) ametric
on F be given. The bracketing number N[](ε,F0, ρ) is defined as the smallest number of
pairs (li, ui) ∈ F2 of functions such that ρ(li, ui) ≤ ε for all pairs and such that for any
f ∈ F0 there is a pair (li, ui) with li(x) ≤ f (x) ≤ ui(x). The pairs (li, ui) are called brackets.

Lemma 4.8: For m1,m2 ≥ 1 and any ε > 0 with ε ≤ (15m1m2
2/4)

1/2 we have

logN[](ε,Fm1,m2 , ρH) ≤ (m1 + m2) log

⎛⎝π
√
15m1m2

2

ε

⎞⎠
This Lemma is also proven in Section A.4 in the Appendix. We have now all ingredients

together to prove the main result of this paper.

Proof of Theorem 4.1: This theorem is a consequence of Theorem 4 from Wong and
Shen (1995). For the convenience of the reader, we have stated the result in Section A.1
in the Appendix as Theorem A.1. Since we are interested in an asymptotic result we may
assume below that n ≥ N0.

We apply Theorem A.1 with Yi = (S1,i, S2,i,Wi,Ci) and Fn = Fm1,n,m2,n . We show next
that the entropy condition is fulfilled: We note firstly that (15m1,nm2

2,n)
1
2 → ∞ and εn →

0. Hence, the condition εn ≤ (15m1,nm2
2,n)

1/2 is eventually fulfilled and we may apply
Lemma 4.8. Thus, we obtain for a suitable c2 < ∞

1√
nε2n

∫ √
2εn

ε2n
28

√
logN[]

(
u
c1
,Fm1,n,m2,n , ρH

)
du

≤ 1√
nε2n

∫ √
2εn

ε2n
28

√√√√√(m1,n + m2,n) log

⎛⎝c1π
√
15m1,nm2

2,n

u

⎞⎠ du

≤
√
2εn√
nε2n

√√√√√(m1,n + m2,n) log

⎛⎝28c1π
√
15m1,nm2

2,n

ε2n

⎞⎠
≤ 2n− 1

2+γ+ 1
2β

√
log
(
28c1π

√
15n

3
2β+2γ
)

≤ c2,
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because − 1
2 + γ + 1

2β > 0. Hence, the entropy condition of Theorem A.1 is fulfilled.
Moreover, by the assumptions and Lemma 4.6 we find that

δn(α) ≤ ρα(fϕI ,ϕGpC, fϕI,n,ϕG,npC) → 0.

Hence, we eventually have δn(α) < 1/α. Under these conditions, we have that ε∗n(α) → 0
and nε∗n(α)2 ≥ nε2n = n1−2γ → ∞ since γ < 1/2.Hence, we conclude fromTheoremA.1
that ρH(fϕI ,ϕGpC, fϕ̂I,n,ϕ̂G,npC) = OP(ε

∗
n(α)) and the proof of the theorem is complete since

ε∗n(α) = O(max(εn, max(ρH(ϕI ,ϕI,n), ρH(ϕG,ϕG,n))α)

by Lemma 4.6. �

5. Empirical studies

The analytic evaluation of the likelihood presented in Lemma 3.3 is very tedious. There-
fore, the following results were obtained by numerically approximating the integrals. As
illustrated by the simulations below this approximation does not cause problems in the esti-
mation. However, we believe that a speed-up of the method is possible if the integrals are
analytically computed. In order to efficiently enforce the constraint that ‖θ1‖2 = ‖θ2‖2 =
1, we optimise the angles of the polar-coordinates of θ1 and θ2 and fix their radii to 1. The
angles can then be optimised under the box constraint [0,π] (note that θ and −θ yield
the same model). Finally, we note that the likelihood can have singularities because the
Laguerre densities (6) can be zero. We overcome the resulting problems in the optimisa-
tion, similar to Zhang andDavidian (2008), by repeating the optimisation of the likelihood
with several randomly chosen starting values. Below we always considered 10 different,
random starting values.

We begin with an illustration of our methodology with synthetic data in Section 5.1 fol-
lowed by a brief analysis of a real-world dataset in Section 5.2. The R-code which is used for
both parts is available on github (https://github.com/akreiss/SemiParametric-Laguerre.git).

5.1. Simulation study

It appears to be very difficult to obtain data on transmission pairs, e.g. an early dataset
of Ferretti et al. (2020b) contains only 40 transmission pairs (the data is available on the
website of the journal on https://doi.org/10.1126/science.abb6936 in the supplementary
material section). To this end, we regard it useful to illustrate in the simulation experiments
that our methodology works also for small datasets and we choose n = 40 observations as
well. In this simulation study we use as a data generating process the model as in (5) with
the following choices:

ϕW exponential with rate λ = 0.3820225
pC P(C = 0) = 0.65 and P(C = 1) = 0.35

ϕT1 ϕT1(t | w, c) = 1(t ∈ [0,w])

{
re−r(w−t)

1−e−rw , c = 1
1
w , c = 0

.

https://github.com/akreiss/SemiParametric-Laguerre.git
https://doi.org/10.1126/science.abb6936
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r r = log(2)/5
ϕI ϕI,0 = log-normal distribution: meanlog = 1.644, standard dev. = 0.363
ϕG ϕG,0 = Weibull distribution: shape = 2.826, scale = 5.665

Figure 2. Best approximations of ϕI (left) and ϕG (right) through Laguerre densities of the form (6) for
various choices ofm1 andm2.

All quantities above are chosen to imitate the data used in Ferretti et al. (2020b): The
average window length E(Wi) equals roughly the average length of the observed exposure
windows in the dataset of Ferretti et al. (2020b). Likewise, in their dataset the authors dis-
tinguish two locations, thosewith an exponential growth of cases with growth rate log(2)/5
(in roughly 35% of the cases) and those with no exponential growth (in roughly 65% of the
cases). Moreover, the density of the incubation period ϕI = ϕI,0 is the distribution of incu-
bation times fitted by Ferretti et al. (2020b) and Lauer et al. (2020). Lastly, the density of the
generation time is taken from Ferretti et al. (2020b). We show firstly in Figure 2 that these
densities can be well approximated through Laguerre type densities as defined in (6). The
graphs show those Laguerre densities which minimise the Hellinger distance to the true
densities. Not-surprisingly, larger choices of the degreesm1 andm2 lead to better approx-
imations. However, we also see that, in both cases, already degree two yields reasonable
approximations. Note in particular that the flat beginning of the density of the incubation
period can be well captured by the approximating densities.

In order to determine the degree of the approximating Laguerre polynomials, we use
the information criterion BIC. Since the computations are quite intensive we do the model
selection only for one dataset and choose the selected model for all subsequent repetitions.
The resulting values of the BIC are shown in Table 1 and it can be seen that the minimal
value is obtained for m1 = 2 and m2 = 2. For the remainder of this Section, we use these
degrees.

We simulate now N = 1000 datasets according to the above specified data generating
process and fit our model to it. Figure 3 shows the true densities as solid lines and corre-
sponding closest Laguerre densities (6) when choosing degreesm1 = m2 = 2, respectively.
The shaded areas show point-wise confidence bands (constructed based on simulations),
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Table 1. BIC values for one synthetic dataset.

m2

1 2 3 4

m1 1 486.77 421.91 418.82 422.37
2 413.26 395.89 399.58 403.27
3 416.95 397.70 401.10 404.55
4 418.39 401.02 404.71 408.19

Figure 3. Estimation results for simulated data with n = 40 observations. True densities are shown as
solid lines and the dashed lines show the Laguerre densities which come closest to the true densities.
The shaded areas show the point-wise simulated confidence areas from 99% (lightest gray) over 95% in
5%-steps to 60% in black.

e.g. 90% of the estimators lie point-wise in the confidence band of level 90%. Different
confidence levels (99, 95, 90, 85, 80, 75, 70, 65, 60) are indicated by different intensities of
gray (from light gray to black). It can be seen that the estimation works visibly quite well
for the incubation period. The height of the mode is underestimated but this comes from
the fact that fitting an order two Laguerre density cannot do better. The estimation for the
generation time works a bit less good but still the general trend is captured well by most
estimators if we keep inmind that we have here only 40 observations of a heavily convolved
variable. In order to assess the fit of the nonparametric estimator a bit more formally, we
compare the estimators to the true densities in terms of the squared Hellinger-distance
ρ2H . The resulting histogram is shown in Figure 4. Note that squared Hellinger distances
are bounded from above by 2. It can be seen that the estimation of the Incubation Period
works better than the estimation of the Generation Time. This is not surprising because we
observe transmission pairs each of which contains two independent realisations of incu-
bation periods but only one generation time. Overall the fit of the generation time appears
to be fairly good (90% of the distances are smaller than 0.103 and 50% of the distances are
smaller than 0.034).

In order to illustrate that the corresponding plug-in feature estimates enjoy asymptotic
normality properties, we consider estimation of the basic reproduction number of a fic-
tional pandemic and estimation of quantiles. In order to estimate the basic reproduction
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Figure 4. Histograms of squared Hellinger distances of estimates to true densities.

Figure 5. Histograms of estimated basic reproduction numbers of fictional pandemic. The dotted line
indicates the true R0 and the solid line is the density of a normal distribution with the sample mean and
standard deviation.
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Figure 6. Histograms of estimated 30%-quantile for the incubation time (left) and generation time
(right). The dashed lines indicate the respective true values, the dotted lines the quantiles of the best
approximating densities and the solid line is the density of a normal distributionwith the corresponding
sample mean and standard deviation.

number, we plug the true and the estimated generation time densities into Equation (1)
and take the inverse of it (in this fictional pandemic we choose r = log(2)/5 which means
that the case numbers double every five days). The histogram of the estimates is shown in
Figure 5. We emphasise that these are simulated results and we cannot draw any conclu-
sions about COVID-19.We can see that the estimation appears to be almost unbiased even
in finite samples. This is remarkable because the estimator is based on a nonparametric esti-
mator which is biased (we do not control for over- or under-smoothing). Moreover, the
approximation through a normal distribution seems to be reasonably accurate. This moti-
vates further research in establishing a formal asymptotic normality result for this type of
semi-parametric inference. Figure 6 shows the histograms of the estimated 30%-quantiles.
We can see that the estimates appear to have a bias in finite samples (the dashed lines
indicate the true quantiles). This bias seems to stem from the fact that the approxima-
tion through low dimensional Laguerre polynomials is not perfect because the estimates
centralise around the quantiles of the best Laguerre approximations (dotted lines). This
effect remains true for other quantiles which are reported in Appendix A.2.1.

When inspecting the BIC values in Table 1 we see that the next smallest scores are
obtained for the models (m1 = 2,m2 = 3) and (m1 = 3,m2 = 2). In order to check the
robustness of the model selection, we also inspect the next smallest BIC model, i.e. (m1 =
3,m2 = 2). The results are similar and are shown in Appendix A.2.1.

5.2. Real data application

Finally we apply ourmethodology to a dataset containing 191 transmission pairs which has
been studied by Hart et al. (2021) and Ferretti et al. (2020a) and can be downloaded from
https://elifesciences.org/articles/65534/figures#content (see the source data correspond-
ing to Figure 2). The data-set is a compilation of five data-sets: Ferretti et al. (2020b), He

https://elifesciences.org/articles/65534/figurescontent
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Table 2. BIC values for transmission pair data.

m2

1 2 3 4 5 6

m1 1 1572.22 1474.16 1460.14 1455.04 1460.29 1459.01
2 1452.06 1423.16 1408.44 1413.69 1418.70 1417.45
3 1436.92 1409.72 1411.41 1412.70 1417.56 1421.27
4 1424.08 1408.84 1405.98 1410.06 1415.09 1415.36
5 1425.95 1412.56 1408.15 1413.13 1418.06 1420.15
6 1428.97 1414.82 1413.40 1417.10 1422.33 1424.50

et al. (2020), Xia et al. (2020), Cheng et al. (2020), and Zhang et al. (2020). In all data-sets
the authors had access to or collected data on transmission pairs. In all cases the authors
ensure that the transmission pairs are indeed true transmission pairs e.g. by examining
contact and travel histories or quarantines of the involved people. The data was collected
with different targets concerning the transmissibility of SARS-COV-2. Thus we can rea-
sonably illustrate our methodology on this dataset: Semi-parametric estimation of features
of the generation time and the incubation time.

The dataset contains symptom onset dates for all transmission pairs, but the exposure
window is not always reported. In that case we impute the dataset in the same way as Fer-
retti et al. (2020b): The beginning of the exposure window is at the earliest 60 days before
symptom onset of the infector. The end of the infection window is at the latest the symp-
tom onset time of any of the two people in the pair or the end of the exposure window of
the second person which is reported in some cases. Since the data is discrete, i.e. we know
only the days of symptom onset rather than the exact time, we suppose that the exact time
is uniformly distributed throughout the day. Therefore we add a uniform random time
between 0 and 24 hours to the symptom onset times and exposure window end points. We
stress that our interest lies in the theoretical analysis of the methodology and we provide
here an illustration for how our methodology can be used. A complete data analysis would
for example also require a robustness analysis against potential issues like the question
whether the transmission pairs are random samples from the pandemic.

In the following our aim is to use our semi-parametric approach to construct a test
whether the parametric fit suggested by Ferretti et al. (2020b) is appropriate for the data.
Let ϕI,0 and ϕG,0 denote the densities as defined in Section 5.1. More formally, we would
like to test the hypotheses

H(I)0 : ϕI = ϕI,0 and H(G)0 : ϕG = ϕG,0.

As test statistics we consider ρH(ϕ̂I,n, ϕ̃I,0)2 and ρH(ϕ̂G,n, ϕ̃G,0)2, where ϕ̃I,0 and ϕ̃G,0 denote
the best approximations with respect to the Hellinger distance of ϕI,0 and ϕG,0 through
Laguerre polynomials, respectively. In order to choose the degrees of the approximation
we use in the same way as before the BIC. The resulting values are shown in Table 2 and it
can be seen that m1 = 4 and m2 = 3 yields the smallest BIC. Figure 2 shows that m1 = 4
yields already a good approximation to ϕI,0, similarly we see that m2 = 3 allows a good
approximation of ϕG,0. However, in both cases, the representation is not perfect. Therefore,
it is very important that we compare the estimate with the closest Laguerre-type density
ϕ̃G,0 rather than with ϕG,0 directly.
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Figure 7. Histograms of squared Hellinger distances of N = 1000 simulations from the model under
H(I)0 ∩ H(G)0 . Distances are computed between the estimatedmodel and the closest Laguerre typemodel.
The vertical lines indicate the observed values of the test statistic.

In order to assess the distribution of the test statistic underH(I)0 ,H(G)0 orH(I)0 ∩ H(G)0 , we
suppose that the densities of the incubation period and generation time are given by ϕI,0
and ϕG,0, respectively, and simulate data accordingly including the rounding to complete
days and adding uniform noise (note that when testing forH(I)0 orHG)

0 we suppose that the
respective other density is correctly specified). We do this N = 1000 times and show in
Figure 7 the histograms of the squared Hellinger distances between the estimated densities
and those Laguerre densities of type (6) (withm1 = 4 andm2 = 3) which lie closest to the
true densities. Note, that in Figure 4 we compared the estimates with the true densities,
so both figures cannot be compared. The observed squared Hellinger distances from the
dataset are 0.05408553 for the incubation period and 0.03635778 for the generation time.
These values are shown as vertical lines in Figure 7. In our simulations none of the simu-
lated Hellinger distances for the incubation period are larger than the observed distance.
Consequently, in none of the simulated cases both distances are simultaneously larger than
the observed distances. For the generation time 44.8% of the simulated distances are larger
than the observed distance.We conclude that the data-set we considered here suggests that
the suggested parametric fit for the incubation time might not be correct. For the genera-
tion time, the data-set contains no evidence which suggests that the parametric fit might
be wrong.

In Table 2 we see that the BIC values for all choices ofm1 = 3, 4, 5 andm2 = 2, 3, 4 are
all very similar. In order to check the robustness of the method to the model selection, we
provide in Section A.2.2 in the Appendix a similar analysis for the second smallest BIC:
m1 = 5 andm2 = 3.

We stress that the above analysis should be understood as a recipe for a data analysis
rather than an in-depth analysis of the provided dataset. Other types of semi-parametric
analyses like the ones outlined in Section 5.1 can be implemented in a similar way.
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6. Conclusion and related questions

We have introduced a semi-parametric estimator for the generation time and incubation
period from observational data. We have shown that both distributions can be identified
from the observations and we presented a simple, consistent semi-parametric estimator
which is based on Laguerre polynomials. These results are the first steps for more results
in the general realm of semi-parametric inference for epidemics: As specific examples we
mention the reproduction number R0 and tests for parametric assumptions. But also the
probability of pre-symptomatic infection P(G ≤ I1) can be of interest. All these quanti-
ties are continuous functions of the densities ϕI and ϕG and therefore it can be expected
that asymptotic normality results for estimators based on our estimators ϕ̂I,n and ϕ̂G,n can
be proven. However, it should be mentioned that such results for R0 are possibly more
challenging because they require another estimator r̂n.

This work can be extended in several directions. It might for example not be clear when
symptoms exactly start. Therefore, it might be possible that just a window for symptom
onset can be supplied (Lauer et al. 2020). Moreover, it can be of interest to include asymp-
tomatic patients by including a certain cure-probability, i.e. the probability with which
patients will never show symptoms. As an alternative one could also consider follow up
studies in which the symptom onset time of patients is considered as a censored variable
(inwhich case asymptomatic patients can be interpreted as patients who show symptoms at
∞). Finally, the dataset by Ferretti et al. (2020b) includes also a window for infection of the
second person. It would of course be interesting to include this information in the model.
But we would like to point out that this is not entirely trivial because it is unclear how to
model the time of infection within this window. As we motivated in the discussion after
Remark 2.1 a simple uniformity assumption is possibly difficult to justify. Therefore, we
would suggest to include this distribution in the estimation in a suitable way. In theoretic
terms, the most interesting question would certainly be to establish asymptotic normality
results which allow the researcher tomake quantitative statements. Such statements can for
example be achieved by following the semi-parametric framework as e.g. in Shen (1997).
Another interesting question would be how to adequately incorporate covariates in the
model. It could be the case that, e.g. younger and older people have different incubation
periods or generation times. Finally, in a different branch of literature, one tries to avoid
the assumption of independence between symptom onset and infection and rather models
the infection time relative to the symptom onset (cf. Chun, Baek, and Kim 2020; Ferretti
et al. 2020a; Hart et al. 2021). Our methodology can be applied to this setting as well with
some adjustments of the theory.
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Appendix

A.1 A consistency result and approximation through Laguerre polynomials

In this section we state two results from the literature which are relevant for this paper.
The following Theorem is just a re-formulation for a special case of Theorem 4 in Wong and

Shen (1995) which is stated here for the convenience of the reader: In their paper the authors study
approximate sieve estimation, i.e. they allow that the estimator only approximately maximises the
likelihood. In their notation this means that we assume in the present paper that ηn = 0, this is
already included in the following version of Theorem 4 of Wong and Shen (1995).

Theorem A.1: Let Y1, . . . ,Yn be iid observations which have a density p0. Let moreover Fn be an
arbitrary sequence of sieve spaces for density estimation and let p̂n denote the sieve-MLE. Suppose that
there are constants c1, c2 > 0 and a sequence εn > 0 such that∫ √

2εn

ε2n
28

√
logN[]

(
u
c1
,Fn, ρH

)
du ≤ c2

√
nε2n.

Let δn(α) := infq∈Fn ρα(p0, q) for α ∈ (0, 1]. Suppose that there is α ∈ (0, 1] such that δn(α) < 1/α.
Then, there is a constant c> 0 (which depends on the model) such that for

ε∗n(α) := max

(
εn,
√
4δn(α)

c

)
we have for another constant C> 0

P
(
ρH(p̂n, p0) ≥ ε∗n(α)

) ≤ 5 exp
(−Cnε∗n(α)

2)+ exp
(

−1
4
nαcε∗n(α)

2
)
.

The next result is a statement about approximating functions by using Laguerre polynomials.
The following is a combination of Theorem 1 and Remark 2 in Chapter II.8 of Nikiforov and
Uvarov (1988). We formulate this theorem here in our setting. The original statement is more
general.

Theorem A.2: Let f : [0,∞) → R be continuous and have a piecewise continuous derivative f ′.
Consider the series

fN(x) :=
N∑
k=0

ckLk(x), ck :=
∫ ∞

0
f (x)Lk(x)e−x dx.

If the integrals ∫ ∞

0
f (x)2e−x dx and

∫ ∞

0
f ′(x)2xe−x dx

converge, we have fN → f for N → ∞ uniformly over compact sets [x1, x2] ⊆ (0,∞) and
limN→∞

∫∞
0 [f (x)− fN(x)]2e−x dx → 0.

A.2 Further empirical results

A.2.1 Simulation study
In this Section we present additional simulation results complementing the results from
Section 5.1. Figures A1–A3 show histograms for estimation of the 50%-, 70%- and 90%-
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Figure A1. Histograms of estimated 50%-quantile for the incubation time (left) and generation time
(right). The dashed lines indicate the respective true values, the dotted lines the quantiles of the best
approximating densities and the solid line is the density of a normal distributionwith the corresponding
sample mean and standard deviation.

Figure A2. Histograms of estimated 70%-quantile for the incubation time (left) and generation time
(right). The dashed lines indicate the respective true values, the dotted lines the quantiles of the best
approximating densities and the solid line is the density of a normal distributionwith the corresponding
sample mean and standard deviation.

quantiles. The results are very similar to the results for the 30%-quantile which are discussed in
Section 5.1.

Next, we use the same set-up as in Section 5.1 in the main text, however, here we choose as a
model m1 = 3 and m2 = 2, i.e. the model has now more flexibility for the incubation time. The
estimation results are visualised in Figure A4 and the difference in the squared Hellinger distance is
shown in Figure A5. In Figure A4 it appears that for the incubation time the mode moves closer to
its true location, it is sometimes even overestimated (compared to the casem2 = 2 which was shown
in Section 5.1). Moreover, the estimated incubation time densities seem to fluctuate more, i.e. they
show a higher variance due to the higher flexibility. The estimates for the generation time appear
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Figure A3. Histograms of estimated 90%-quantile for the incubation time (left) and generation time
(right). The dashed lines indicate the respective true values, the dotted lines the quantiles of the best
approximating densities and the solid line is the density of a normal distributionwith the corresponding
sample mean and standard deviation.

Figure A4. Estimation results for simulated data with n = 40 observations. True densities are shown as
solid lines and the dashed lines show the Laguerre densities which come closest to the true densities.
The shaded areas show the point-wise simulated confidence areas from 99% (lightest gray) over 95% in
5%-steps to 60% in black. Model choices:m1 = 2 andm2 = 3.

to be almost identical. In terms of the Hellinger distances, cf. histograms in Figure A5, the results
appear to be very similar to the results obtained in Section 5.1. In general we see that estimation with
n = 40 observations yields reasonable results for both model complexities. However, we expect that
the estimation can be improved if more observations are available enabling the method to choose
better approximations.

A.2.2 Real data application
In this section we show an analysis similar to that from Section 5.2 in the main text, but here we
choosem1 = 5 andm2 = 3. We begin with a simulation: We generateN = 1000 datasets assuming
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Figure A5. Histograms of squared Hellinger distances of estimates to true densities. Model Choices:
m1 = 3 andm2 = 2.

Figure A6. Histogram of squared Hellinger distances of N = 1000 simulations from the model under
H(I)0 ∩ H(G)0 . Distances are computed between the estimatedmodel and the closest Laguerre typemodel
(form1 = 5 andm2 = 3). The vertical lines indicate the observed values of the test statistic.

that the models specified in H(I)0 and H(G)0 are correct. Figure A6 shows the squared Hellinger dis-
tances of the estimates to the closest Laguerre type densities withm1 = 5 andm2 = 3. The vertical
lines show the distances which are obtained from the real data set. In case of the incubation period
only 1% of the simulated distances are larger, for the generation time this percentage is higher, 44.9%.
Finally, both distances are simultaneously larger for both densities in 0.3% of the simulated cases.
Thus, we conclude that also in this largermodel class there is no evidence in the dataset which would
contradict the parametric model for the generation time fitted by Ferretti et al. (2020b). However
the parametric model for the incubation time used by Ferretti et al. (2020b) and Lauer et al. (2020)
might be questionable depending on the desired level of the test.
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A.3 Proofs of Section 4.1
Proof of Corollary 4.4: For the proof we make the following definitions: Let�I ,�G and�S1,S2,W,C
be the characteristic functions of the corresponding random variables, i.e. for real numbers
x, x1, . . . , x4 ∈ R (note that in the definition of ϕI it doesn’t matter whether we take I1 or I2)

�I(x) := E
(
eixI1
)
, �G(x) := E

(
eixG
)
,

�S1,S2,W,C(x1, x2, x3, x4) := E

(
ei(x1S1+x2S2+x3W+x4C)

)
.

As a first step, we compute�S1,S2,W,C. We have by definition of (S1, S2,W,C) and independence

�S1,S2,W,C(x1, x2, x3, x4) = E

(
ei(x1+x2)T1eix1I1eix2I2eix2Geix3Weix4C

)
= E

(
eix3W+ix4CE

(
ei(x1+x2)T1 |W,C

))
�I(x1)�I(x2)�G(x2)

= �(x1 + x2, x3, x4)�I(x1)�I(x2)�G(x2),

where
�(x, z1, z2) := E

(
eiz1W+iz2CE

(
eixT1 |W,C

))
.

Let now z1(x), z2(x) be as in Assumption (C). We obtain the following two equations

�S1,S2,W,C (x, 0, z1(x), z2(x)) = �(x, z1(x), z2(x))�I(x),

�S1,S2,W,C (0, x, z1(x), z2(x)) = �(x, z1(x), z2(x))�I(x)�G(x).

Note that Assumption (C) implies that �S1,S2,W,C(x, 0, z1(x), z2(x)) �= 0 almost everywhere. All of
this, in turn, implies the relations (almost everywhere by Assumption (C))

�I(x) = �(x, z1(x), z2(x))−1�S1,S2,W,C (x, 0, z1(x), z2(x)) , (A1)

�G(x) = �S1,S2,W,C (x, 0, z1(x), z2(x))−1�S1,S2,W,C (0, x, z1(x), z2(x)) . (A2)

Let Ĉn, Ŵn, T̂1,n, Î1,n, Î2,n and Ĝn be random variables which have the relation as specified in (5)
but where ϕI is replaced by ϕ̂I,n and ϕG is replaced by ϕ̂G,n. Let moreover, Ŝ1,n and Ŝ2,n be defined
analogously to their corresponding quantities S1 and S2 with corresponding characteristic functions
�Ŝ1,n ,Ŝ2,n ,Ŵn ,Ĉn

,�În and�Ĝn
.

Since convergence in probability implies the existence of an almost surely convergent subse-
quence (cf. Lemma 1.9.2 in van der Vaart and Wellner 1996), we find by Theorem 4.1 that there
is an event� of probability 1 and a subsequence which we indicate again by fϕ̂I,n ,ϕ̂G,n such that

ρH
(
fϕI ,ϕGpC, fϕ̂I,n ,ϕ̂G,npC

)→ 0

for all results in�. Theorem 1 in Chapter 3.9 in Shiryaev (2016) implies that then∣∣∣∣∣
KC∑
c=1

∫
r(s1, s2,w, c)

(
fϕI ,ϕG(s1, s2,w | c)− fϕ̂I,n ,ϕ̂G,n(s1, s2,w | c)) pC(c) d(s1, s2,w)

∣∣∣∣∣→ 0,

uniformly over all functions r : R3 × {1, . . . ,KC} → C with ‖r‖∞ ≤ 1. Since the functions
r(s1, s2,w, c) = exp(i(x1s1 + x2s2 + x3w + x4c)) are bounded for all x1, x2, x3, x4 ∈ R, we conclude
that �Ŝ1,n ,Ŝ2,n ,Ŵn ,Ĉn

converges uniformly to �S1,S2,W,C. Hence, for almost any fixed x we eventu-
ally have �Ŝ1,n ,Ŝ2,n ,Ŵn ,Ĉn

(x, 0, z1(x), z2(x)) �= 0 and thus eventually analogue versions of the rela-
tions (A1) and (A2) hold for �În and �Ĝn

. As a consequence, we obtain the following point-wise
almost everywhere convergences

�În(x) = �(x, z1(x), z2(x))−1�Ŝ1,n ,Ŝ2,n ,Ŵn ,Ĉn
(x, 0, z1(x), z2(x))

→ �(x, z1(x), z2(x))−1�S1,S2,W,C (x, 0, z1(x), z2(x)) = �I(x),
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�Ĝn
(x) = �Ŝ1,n ,Ŝ2,n ,Ŵn ,Ĉn

(x, 0, z1(x), z2(x))−1�Ŝ1,n ,Ŝ2,n ,Ŵn ,Ĉn
(0, x, z1(x), z2(x))

→ �S1,S2,W,C (x, 0, z1(x), z2(x))−1�S1,S2,W,C (0, x, z1(x), z2(x)) = �G(x).

Now by Levy’s Theorem (cf. Theorem 1.7.6 Billingsley 1968, an inspection of the proof reveals that
in the univariate case convergence almost everywhere is a sufficient condition), we conclude that
F̂I,n → FI and F̂G,n → FG point-wise for all realisations in �. Since the distribution functions are
continuous, these convergences are also uniform. Recall that the above argument holds for a subse-
quence and all realisations in�. But we can repeat the same argument starting from a subsequence
and showing in that way that every subsequence contains a sub-subsequence for which the corre-
sponding distribution functions converge almost surely. This implies convergence in probability by
Lemma 1.9.2 in van der Vaart and Wellner (1996) and the proof is complete. �

Proof of Corollary 4.5: We make a similar subsequence of a sub-sequence argument as in
Corollary 4.4: Consider sub-sequences of r̂n and F̂G,n (which we again do not indicate in the nota-
tion) such that r̂n → r almost surely and ‖F̂G,n − FG‖∞ → 0 almost surely (the former is possible
by assumption and the latter by Corollary 4.4). The following considerations are made for each real-
isation in a set of probability one on which these two convergences hold. Choose n so large such that
r̂n ≥ r/2. Choose moreover, c> 0 such that t exp(−tr/2) ≤ c for all t ≥ 0. We have∫ ∞

0
e−r̂ntϕ̂G,n dt −

∫ ∞

0
e−rtϕG(t) dt

=
∫ ∞

0

(
e−r̂nt − e−rt

)
ϕ̂G,n dt +

∫ ∞

0
e−rt (ϕ̂G,n − ϕG(t)

)
dt. (A3)

By a Taylor expansion we obtain for the first part of the right-hand side above and for some r∗ ∈
[r, r̂n] (note that by assumption r∗ ≥ r/2 and hence t · exp(−r∗t) ≤ c)∣∣∣∣∫ ∞

0

(
e−r̂nt − e−rt

)
ϕ̂G,n(t) dt

∣∣∣∣ ≤ ∣∣r̂n − r
∣∣ ∫ ∞

0
te−r∗tϕ̂G,n(t) dt ≤ c

∣∣r̂n − r
∣∣→ 0.

For the second term on the right-hand side of (A3) we obtain via integration by parts∫ ∞

0
e−rt (ϕ̂G,n − ϕG(t)

)
dt

= e−rt
(
F̂G,n(t)− FG(t)

) ∣∣∣∞
t=0

+
∫ ∞

0
re−rt
(
F̂G,n(t)− FG(t)

)
dt

which converges to zero since F̂G,n → F uniformly. Now, a subsequence of a subsequence argument
completes the proof. �

A.4 Proofs of Section 4.2

Proof of Lemma 4.6: We firstly apply Hoelder’s Inequality with p = 1/(1 − α) and q = 1/α (use
that α ∈ (0, 1)) to get

ρα(f1pC, f2pC)

= 1
α

KC∑
c=1

∫
[0,∞)3

f1(x1, x2,ω | c)pC(c)
((

f1(x1, x2,ω | c)pC(c)
f2(x1, x2,ω | c)pC(c)

)α
− 1
)
d(x1, x2,ω)

= 1
α

KC∑
c=1

∫
[0,∞)3

(
f1(x1, x2,ω | c)
f2(x1, x2,ω | c)

)α
f1(x1, x2,ω | c)1−α

× (f1(x1, x2,ω | c)α − f2(x1, x2,ω | c)α) pC(c) d(x1, x2,ω)
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≤ 1
α

( KC∑
c=1

∫
[0,∞)3

(
f1(x1, x2,ω | c)
f2(x1, x2,ω | c)

) α
1−α

f1(x1, x2,ω | c)pC(c) d(x1, x2,ω)
)1−α

×
( KC∑

c=1

∫
[0,∞)3

∣∣f1(x1, x2,ω | c)α − f2(x1, x2,ω | c)α∣∣ 1α pC(c) d(x1, x2,ω))α .
By using the definition of Cα(f1, f2), we see that (13) follows from the above if we can prove that

KC∑
c=1

∫
[0,∞)3

∣∣f1(x1, x2,ω | c)α − f2(x1, x2,ω | c)α∣∣ 1α pC(c) d(x1, x2,ω)
≤ 2ρH(ϕG,1,ϕG,2)2 + 8ρH(ϕI,1,ϕI,2)2. (A4)

We begin by applying the reverse triangle inequality for the L1/α norm repeatedly. Define to this end

B1(t; x1, x2, c,ω, y) := ϕG,1(y)h(ω − t | c)ϕI,1(x1 − t)ϕI,1(x2 − t − y),

B2(t; x1, x2, c,ω, y) := ϕG,2(y)h(ω − t | c)ϕI,2(x1 − t)ϕI,2(x2 − t − y),

A1(y; x1, x2, c,ω) :=
∫ min(x1,ω)

0
B1(t; x1, x2, c, y) dt,

A2(y; x1, x2, c,ω) :=
∫ min(x1,ω)

0
B2(t; x1, x2, c, y) dt.

We have now by the reverse triangle inequality for L1/α that for any x1, x2,ω ≥ 0∣∣∣∣(∫ x2

0
A1(y; x1, x2, c,ω) dy

)α
−
(∫ x2

0
A2(y; x1, x2, c,ω) dy

)α∣∣∣∣
1
α

=
∣∣∣∥∥A1(·; x1, x2, c,ω)α

∥∥
L1/α([0,x2])

− ∥∥A2(·; x1, x2, c,ω)α
∥∥
L1/α([0,x2])

∣∣∣ 1α
≤ ∥∥A1(·; x1, x2, c,ω)α − A2(·; x1, x2, c,ω)α

∥∥ 1
α

L1/α([0,x2])

=
∫ x2

0

∣∣A1(y; x1, x2, c,ω)α − A2(y; x1, x2, c,ω)α
∣∣ 1α dy

=
∫ x2

0

∣∣∣∣∣
(∫ min(x1,ω)

0
B1(t; x1, x2, c,ω, y) dt

)α
−
(∫ min(x1,ω)

0
B2(t; x1, x2, c,ω, y) dt

)α∣∣∣∣∣
1
α

dy

=
∫ x2

0

∣∣∣∥∥B1(·; x1, x2, c,ω, y)α∥∥L1/α([0,min(x1,ω)])

− ∥∥B2(·; x1, x2, c,ω, y)α∥∥L1/α([0,min(x1,ω)])

∣∣∣ 1α dy

≤
∫ x2

0

∥∥B1(·; x1, x2, c,ω, y)α − B2(·; x1, x2, c,ω, y)α
∥∥ 1
α

L1/α([0,min(x1,ω)])
dy

=
∫ x2

0

∫ min(x1,ω)

0

∣∣(ϕG,1(y)h(ω − t | c)ϕI,1(x1 − t)ϕI,1(x2 − t − y)
)α

− (ϕG,2(y)h(ω − t | c)ϕI,2(x1 − t)ϕI,2(x2 − t − y)
)α∣∣∣∣

1
α

dt dy.
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By using the above inequality chain, we obtain

KC∑
c=1

∫
[0,∞)3

∣∣f1(x1, x2,ω | c)α − f2(x1, x2,ω | c)α∣∣ 1α pC(c) d(x1, x2,ω)
=

KC∑
c=1

∫
[0,∞)3

ϕW(ω)n(ω, c)pC(c)

×
∣∣∣∣∣
(∫ x2

0
ϕG,1(y)

∫ min(x1,ω)

0
h(ω − t | c)ϕI,1(x1 − t)ϕI,1(x2 − t − y) dt dy

)α

−
(∫ x2

0
ϕG,2(y)

∫ min(x1,ω)

0
h(ω − t | c)ϕI,2(x1 − t)ϕI,2(x2 − t − y) dt dy

)α∣∣∣∣∣
1
α

d(x1, x2,ω)

=
KC∑
c=1

∫
[0,∞)3

ϕW(ω)n(ω, c)pC(c)

×
∣∣∣∣(∫ x2

0
A1(y; x1, x2, c,ω) dy

)α
−
(∫ x2

0
A2(y; x1, x2, c,ω) dy

)α∣∣∣∣
1
α

d(x1, x2,ω)

≤
KC∑
c=1

∫
[0,∞)3

ϕW(ω)n(ω, c)pC(c)

×
∫ x2

0

∫ min(x1,ω)

0

∣∣(ϕG,1(y)h(ω − t | c)ϕI,1(x1 − t)ϕI,1(x2 − t − y)
)α

− (ϕG,2(y)h(ω − t | c)ϕI,2(x1 − t)ϕI,2(x2 − t − y)
)α∣∣ 1α dt dy d(x1, x2,ω). (A5)

Above we have an iterated integral over a non-negative function, we may thus re-arrange the order
of integration and use substitution. We substitute below a = x1 − t for x1 and b = x2 − t − y for x2.
Note that we implicitly take care of the integration bounds by using the indicator function and the
fact that all densities are zero on the negative real line. Hence, we can continue the above inequality
chain

(A5) =
KC∑
c=1

∫
[0,∞)5

1(y ≤ x2, t ≤ min(x1,ω))ϕW(ω)n(ω, c)pC(c)h(ω − t | c)

× ∣∣(ϕG,1(y)ϕI,1(x1 − t)ϕI,1(x2 − t − y)
)α

− (ϕG,2(y)ϕI,2(x1 − t)ϕI,2(x2 − t − y)
)α∣∣ 1α dx1 dx2 dt dy dω

=
KC∑
c=1

∫
[0,∞)5

1(y ≤ x2, t ≤ min(a + t,ω))ϕW(ω)n(ω, c)pC(c)h(ω − t | c)

× ∣∣(ϕG,1(y)ϕI,1(a)ϕI,1(x2 − t − y)
)α

− (ϕG,2(y)ϕI,2(a)ϕI,2(x2 − t − y)
)α∣∣ 1α da dx2 dt dy dω

=
KC∑
c=1

∫
[0,∞)5

1(0 ≤ b + t, t ≤ min(a + t,ω))ϕW(ω)n(ω, c)pC(c)h(ω − t | c)

× ∣∣(ϕG,1(y)ϕI,1(a)ϕI,1(b))α − (ϕG,2(y)ϕI,2(a)ϕI,2(b))α∣∣ 1α da db dt dy dω. (A6)
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Note next that the indicator equals actually 1(t ∈ [0,ω]). We again interchange the order of inte-
gration, to integrate with respect to t first and then with respect to ω. By doing this, recalling the
form of ϕT1 in Assumption (M), keeping in mind that |x2α − y2α| ≤ |x − y|2α for all x, y ≥ 0 (since
2α ∈ (0, 1)) and that (x − y)2 ≤ 2x2 + 2y2 for all x, y, we continue

(A6) =
KC∑
c=1

∫
[0,∞)5

ϕW(ω)pC(c)ϕT1(t | ω, c) dt dω

× ∣∣(ϕG,1(y)ϕI,1(a)ϕI,1(b))α − (ϕG,2(y)ϕI,2(a)ϕI,2(b))α∣∣ 1α da db dy

=
∫
[0,∞)3

∣∣(ϕG,1(y)ϕI,1(a)ϕI,1(b))α − (ϕG,2(y)ϕI,2(a)ϕI,2(b))α∣∣ 1α da db dy

≤
∫
[0,∞)3

∣∣∣(ϕG,1(y)ϕI,1(a)ϕI,1(b)) 12 − (ϕG,2(y)ϕI,2(a)ϕI,2(b)) 12 ∣∣∣2 da db dy
≤
∫
[0,∞)3

2
(
ϕG,1(y)

1
2 − ϕG,2(y)

1
2

)2
ϕI,1(a)ϕI,1(b) da db dy

+ 2
∫
[0,∞)3

ϕG,2(y)
(
ϕI,2(a)

1
2 ϕI,2(b)

1
2 − ϕI,1(a)

1
2�I,1(b)

1
2

)2
da db dy

= 2ρH(ϕG,1,ϕG,2)2 + 2
∫
[0,∞)2

(
ϕI,2(a)

1
2 ϕI,2(b)

1
2 − ϕI,1(a)

1
2 ϕI,1(b)

1
2

)2
da db

≤ 2ρH(ϕG,1,ϕG,2)2 + 4
∫
[0,∞)2

(
ϕI,2(a)

1
2 − ϕI,1(a)

1
2

)2
ϕI,2(b) d db

+ 4
∫
[0,∞)2

ϕI,1(a)
(
ϕI,1(b)

1
2 − ϕI,2(b)

1
2

)2
da db

= 2ρH(ϕG,1,ϕG,2)2 + 8ρH(ϕI,1,ϕI,2)2. (A7)

This is (A4) and the proof is complete. �

Proof of Lemma 4.8: Denote for any m ∈ N0, �m := {θ ∈ Rm+1 : ‖θ‖2 = 1}. The proof of this
Lemma uses the following strategy which is similar to Lemma 2.1 inOssiander (1987). In the interest
of completenesswe give the detailed proof: Let δ ∈ (0,√3/2/2] be given.Wedefine for any θ1 ∈ �m1
and θ2 ∈ �m2 the δ-ball

Bδ(θ1, θ2) :=
{(
θ̃1, θ̃2
) ∈ �m1 ×�m2 : ‖θ1 − θ̃1‖2 ≤ δ, ‖θ2 − θ̃2‖2 ≤ δ

}
.

Find now a set ((θ1,i, θ2,i))i=1,...,N(δ) ⊆ �m1 ×�m2 such that

N(δ)⋃
i=1

Bδ(θ1,i, θ2,i) ⊇ �m1 ×�m2 .

In order to bound N(δ) we construct a specific collection of pairs: Consider a grid of [0,π]m1 with
side lengthα = 2δ

√
2/3 and construct θ1,i by taking the grid points as polar coordinates (with radius

1). Then, it is clear that for any θ ∈ �m1 , there is a grid point θ1,i such that the difference between any
two angles of the polar representations of θ and θ1,i is smaller than α/2 = δ

√
2/3. By Lemma A.3

below and symmetry of the polar coordinates, we find that ‖θ − θ1,i‖2 ≤ √
3/2α/2 = δ. The size of

this grid can be bounded by (π/α + 1)m1 . We repeat this construction for�m2 and obtain

N(δ) ≤
(√

3π
2
√
2δ

+ 1

)m1+m2

. (A8)
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The brackets are now defined as

li(x1, x2,ω, c) := inf
(θ1,θ2)∈Bδ(θ1,i ,θ2,i)

fϕI,θ1 ,ϕG,θ2 (x1, x2,ω | c)pC(c),

ui(x1, x2,ω, c) := sup
(θ1,θ2)∈Bδ(θ1,i ,θ2,i)

fϕI,θ1 ,ϕG,θ2 (x1, x2,ω | c)pC(c).

For any fϕI,θ1 ,ϕG,θ2 pC ∈ Fm1,m2 we find thus first a pair (θ1,i, θ2,i) such that (θ1, θ2) ∈ Bδ(θ1,i, θ2,i) and
thus also li ≤ fϕI,θ1 ,ϕG,θ2 pC ≤ ui. It remains to compute ρH(li, ui). To this end, we firstly see that the
same arguments which lead to (A7) (for α = 1/2) give us here the following (the sup refers always
to the supremum over all pairs (θ1, θ2), (θ̃1, θ̃2) ∈ �m1 ×�m2 such that ‖θ1 − θ̃1‖2 ≤ δ and ‖θ2 −
θ̃2‖2 ≤ δ)

ρH(li, ui)2 ≤
KC∑
c=1

∫
[0,∞)3

sup
(
fϕI,θ1 ,ϕG,θ2 (x1, x2,ω)

1
2 − fϕI ,̃θ1 ,ϕG,̃θ2 (x1, x2,ω)

1
2

)2
pC(c) d(x1, x2,ω)

≤
∫
[0,∞)3

sup
((
ϕG,θ1(y)ϕI,θ2(a)ϕI,θ2(b)

) 1
2 − (ϕG,̃θ1(y)ϕI ,̃θ2(a)ϕI ,̃θ2(b)) 12 )2 dy da db

≤
∫
[0,∞)3

e−y−a−b sup

( m1∑
k=0

(
θ1,k − θ̃1,k

)
Lk(y)

m2∑
k=0

θ2,kLk(a)
m2∑
k=0

θ2,kLk(b)

−
m1∑
k=0

θ̃1,kLk(y)

( m2∑
k=0

(
θ̃2,k − θ2,k

)
Lk(a)

m2∑
k=0

θ̃2,kLk(b)

−
m2∑
k=0

θ2,kLk(a)
m2∑
k=0

(
θ2,k − θ̃2,k

)
Lk(b)

))2
dy da db

≤
∫
[0,∞)3

e−y−a−b

(
2δ2

m1∑
k=0

Lk(y)2
m2∑
k=0

Lk(a)2
m2∑
k=0

Lk(b)2

+ 2
m1∑
k=0

Lk(y)2
(
2δ2

m2∑
k=0

Lk(a)2
m2∑
k=0

Lk(b)2 + 2δ2
m2∑
k=0

Lk(a)2
m2∑
k=0

Lk(b)2
))

dy da db

= 10δ2m1m2
2,

where we used the Cauchy-Schwarz-Inequality in between and the integral properties of the
Laguerre polynomials at the end. Thus, when putting δ = ε(10m1m2

2)
−1/2 (the condition on δ is

fulfilled by the assumption on ε) we find together with (A8)

N[](ε,Fm1,m2 , ρH) ≤
⎛⎝π
√
15m1m2

2

2ε
+ 1

⎞⎠m1+m2

≤
⎛⎝π
√
15m1m2

2

ε

⎞⎠m1+m2

and the proof is complete. �

Lemma A.3: Let n ≥ 2 and δ ∈ [0, 1/2]. Denote by e1 := (1, 0, . . . , 0)′ the first unit vector of Rn.
Let x ∈ Rn have ‖x‖2 = 1 and angles of polar coordinates ψ1, . . . ,ψn−1 ∈ [0, δ]. Then, ‖e1 − x‖2 ≤
δ
√
3/2.

Proof: By a Taylor expansion, we have for anyψ ∈ [0, 2π] (belowψ∗ denotes different intermediate
values between 0 and ψ)

| sin(ψ)| = | cos(ψ∗)| · |ψ | ≤ |ψ |
| cos(ψ)− 1| = | sin(ψ∗)| · |ψ | ≤ |ψ |2.
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By the definition of polar coordinates, we compute (for n = 2 the sum disappears)

‖e1 − x‖22 = (1 − cos(ψ1))
2 +

n−1∏
k=1

sin(ψk)
2 +

n−1∑
i=2

i−1∏
k=1

sin(ψk)
2 cos(ψi)

2

≤ ψ4
1 +

n−1∏
k=1

ψ2
k +

n−1∑
i=2

i−1∏
k=1

ψ2
k ≤ δ4 + δ2(n−1) +

n−1∑
i=2

δ2(i−1) ≤ δ2
δ2 − δ4 + 1

1 − δ2
.

The statement follows since (δ2 − δ4 + 1)/(1 − δ2) ≤ 3/2 for δ ∈ [0, 1/2]. �
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