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International initiatives for reducing carbon emissions from
deforestation and forest degradation (REDD+) could make critical,
cost-effective contributions to tropical countries’ nationally
determined contributions (NDCs). Norway, a key donor of such
initiatives, had a REDD+ partnership with Indonesia, offering
results-based payments in exchange for emissions reductions
calculated against a historical baseline. Central to this partnership
was an area-based moratorium on new oil palm, timber, and
logging concessions in primary and peatland forests. We evaluate
the effectiveness of the moratorium between 2011 and 2018
by applying a matched triple difference strategy to a unique
panel dataset. Treated dryland forest inside moratorium areas
retained, at most, an average of 0.65% higher forest cover
compared to untreated dryland forest outside the moratorium.
By contrast, carbon-rich peatland forest was unaffected by the
moratorium. Cumulative avoided dryland deforestation from
2011 until 2018 translates into 67.8 million to 86.9 million tons of
emissions reductions, implying an effective carbon price below
Norway’s US$5 per ton price. Based on Norway’s price, our
estimated cumulative emissions reductions are equivalent to a
payment of US$339 million to US$434.5 million. Annually, our
estimates suggest a 3 to 4% contribution to Indonesia’s NDC
commitment of a 29% emissions reduction by 2030. Despite
the Indonesia–Norway partnership ending in 2021, reducing
emissions from deforestation remains critical for meeting this
commitment. Future area-based REDD+ initiatives could build
on the moratorium’s outcomes by reforming its incentives and
institutional arrangements, particularly in peatland forest areas.
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Deforestation and forest degradation account for ∼10% of
global greenhouse gas emissions (1). Recognizing the im-

portance of slowing deforestation in efforts to mitigate global
warming, an international framework for Reducing Emissions
from Deforestation and Forest Degradation (REDD+) was es-
tablished in 2007 at the 13th Conference of the Parties (COP) (2).
At this COP, Norway’s government announced its International
Climate and Forest Initiative, pledging up to $300 million every
year toward REDD+. Norway’s funds have been channeled
through a number of negotiated, bilateral deals with coun-
tries hosting tropical forests. Countries include Brazil, Guyana,
Tanzania, and the setting for our study, Indonesia, where, between
2000 and 2010, lowland evergreen forests and peat swamp forests
were deforested by 1.2% and 2.2% per year, respectively (3).

Indonesia is one of the world’s largest greenhouse gas (GHG)
emitters. Between 2000 and 2016, ∼50% of Indonesia’s annual
emissions were generated from deforestation, forest degrada-
tion, peatland decomposition, and peat fires, accounting for
around a quarter of global emissions from these sources (4, 5).
The country’s partnership with Norway, established in 2010, in-
cluded a pledge of US$1 billion to fund “results-based” REDD+

payments (6). Central to this partnership was a moratorium on
the granting of new concession licenses by district governments
for the conversion of primary dryland and peatland forest into
new palm oil, timber, and logging concessions (7, 8). Such con-
cessions, operating across the archipelago (SI Appendix, Fig. S1),
have been estimated to be responsible for almost half of Indone-
sia’s forest loss (9, 10). Implemented in 2011, the moratorium
initially covered 69 million hectares of forest across the country
(11), most of Indonesia’s forest estate (SI Appendix, Fig. S2).
Additional restrictions on the conversion of peatland forest, af-
fecting all concession types, were implemented across Indonesia
in 2017 (12), and, in late 2018, a new 3-y moratorium on new palm
oil concessions was also imposed nationally (13).

In 2017, Indonesia reportedly reduced emissions from defor-
estation and forest degradation by 11.2 MtCO2-eq (14). Norway
subsequently announced that it would pay Indonesia US$56.2
million (15) based on a carbon price of US$5/tCO2-eq. In this
article, we ask whether Norway is getting carbon value for its
money, that is, whether this payment is actually based on results.
The extent to which the moratorium has had any meaningful
impact on deforestation has been the subject of intense debate in
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Indonesia, particularly after it became permanent in 2019 (14).
Although the REDD+ partnership was terminated by Indone-
sia’s government in 2021 (16), an effective moratorium since 2011
could contribute to meeting Indonesia’s nationally determined
contribution (NDC) commitment of reducing GHG emissions by
29% unconditionally (and up to 41% conditionally) by 2030 (4).
Indeed, large-scale REDD+ initiatives play a potentially critical
role in global climate change mitigation efforts (17, 18), and,
more than a decade after the 13th COP, Indonesia is among a
number of countries that have begun moving toward REDD+
implementation and accessing results-based payments (19).

Norway’s US$1 billion pledge to Indonesia emphasizes the
global role of Norway in the design and funding of international
REDD+ strategies (20). This pledge acted as an incentive to
Indonesia’s national government to enforce the moratorium. A
measurement, reporting, and verification system was developed,
and, although district governments had an enforcement role
(13), there was little evidence of coordination, or of a plan to
share benefits, between the national and district governments
(11, 21). Effective coordination might have prevented, or at
least influenced, changes in the moratorium’s boundaries due to
the redesignation of forestland by district governments (13, 22).
That redesignated forestland was often subsequently licensed
out to concessionaires has raised concerns about corruption
among government officials (13). Long endemic in Indonesia’s
forest sector (22–24), corruption exacerbates the country’s weak
capacity to monitor and enforce forest regulations, characterized
by, for example, limited budgets and personnel (25, 26). In sum,
we anticipate little or no impact of the moratorium on defor-
estation. A best-case scenario from previous research, an ex ante
simulation of the moratorium as the counterfactual to actual land
uses between 2000 and 2010 (prior to the implementation of the
moratorium) and assuming 100% compliance (or effectiveness)
(27), indicates a maximum 3.5% reduction in deforestation and
a 7.2% reduction in emissions.

While this best-case scenario was based on econometric
analysis, the payment for the emissions reduction in 2017 was
estimated by comparing, for the whole country, the amount
of deforestation observed in 2017 against a historical baseline
based on the average annual level of deforestation observed
between 2006 and 2016 (28). The use of a historical baseline as a
counterfactual provides weak evidence that the moratorium has
had a causal effect on REDD+ outcomes, because deforestation
in any given year will vary due to stochastic natural processes
(e.g., weather and fires) and economic factors (e.g., demand for
commodities). Thus, it is highly unlikely that observed deviations
from the average deforestation rate can be meaningfully related
to the performance of the moratorium, and, instead, such
deviations could be overestimated or underestimated by chance.

Our analysis begins with the observation that any measurable
policy effect could only have been generated by forest areas
covered by the moratorium. Estimating a policy effect requires
a comparison of forest areas covered by the moratorium with a
counterfactual that mimics what would have happened in those
areas had the moratorium not been implemented. The intention
of the counterfactual is to ensure that all other (nonmoratorium)
factors relevant for determining the economic viability of palm
oil and timber production in forest areas (29–31) are the same.
Similar to networks of protected areas, moratorium areas were
not randomly assigned (32, 33), and the small size of the re-
ductions simulated by ref. 27 imply relatively low returns from
forest conversion in these areas. Estimating the impact of the
moratorium on deforestation is therefore hampered by preexist-
ing differences in levels and the likely trajectory of deforestation
between moratorium and nonmoratorium areas. Furthermore,
district governments could continue to issue licenses for new con-
cessions in forestland outside moratorium areas. One response
to the moratorium might be for licenses planned for moratorium

areas to be granted in nonmoratorium areas instead. Such spatial
spillovers (“leakage”), a common concern in forest conservation
(e.g., refs. 32–36), also confound estimates of moratorium im-
pact, potentially making it look more successful compared to
nonmoratorium areas, when, in fact, activities have just been
displaced. By testing for leakage, much can be learned about
the processes that govern successful—or poor—performances.
None of these confounding effects is specifically accounted for
in the estimates of the payment offered by Norway’s government
(SI Appendix, section 1).

To address confounding factors and isolate the moratorium’s
impacts on deforestation and associated emissions, we under-
take a program evaluation using quasi-experimental methods: a
matched triple difference strategy (37) applied to Global Forest
Change data (38) at the 1.2-km by 1.2-km scale between 2004
and 2018 (Materials and Methods). A matched difference-in-
differences estimator controls for the different levels of forest
cover in moratorium and nonmoratorium areas, and removes the
deforestation trend in nonmoratorium areas matched by 1.2-km2

grid cells. Matching on, for example, proximity to markets and
topography means that moratorium and nonmoratorium grid
cells have similar probabilities of concession-driven forest loss.
The triple difference step removes any remaining deviations in
deforestation trends prior to the moratorium commencing in
2011, which otherwise would be attributed to the moratorium
(39, 40). The impact that remains once these confounding factors
have been addressed can then be attributed to the moratorium.
In principle, only estimates that have taken seriously the nonran-
dom assignment of the moratorium should inform the Norwegian
government’s results-based payments for emissions reductions.
We test the robustness of our estimates in several ways (Materials
and Methods). In particular, the potential for leakage as a re-
sponse to the moratorium is tested with a regression discontinuity
analysis applied to the boundaries of moratorium areas each
year between 2005 and 2018. Thus, we estimate the differences
in deforestation rates between each side of the moratorium’s
boundaries. By comparing these differences from before to after
the start of the moratorium in 2011, our analysis provides sugges-
tive evidence for or against the presence of spillovers.

After evaluating the robustness of model estimates, we convert
the moratorium’s impacts on forest cover change into carbon
dioxide equivalents for comparison with estimates generated by
the Indonesia–Norway partnership. On the basis of our program
evaluation approach, we conclude that Norway’s government
would be getting carbon value for money, but the emissions
reductions generated by the moratorium contribute relatively
little to Indonesia’s NDC commitments.

Results
Forest Cover Trends in Indonesia. Our outcome variable is “for-
est cover,” either dryland or peatland, in hectares. Concessions
established within the moratorium’s 2011 boundaries prior to
the start of the moratorium were legally allowed to continue
operating, business as usual (BAU), after 2011. Thus, in Fig. 1, we
distinguish between forest cover trends observed in forest areas
located outside (Fig. 1 A and B) and inside (Fig. 1 C and D)
concessions. Overall, the proportion of forest cover has declined,
both inside and outside the moratorium’s boundaries, by ∼10
to 15 percentage points between 2000 and 2018. By comparing
trends inside the moratorium to those outside, we observe that
the rate of decline differs.

The extent of forest cover outside concessions is, on average,
higher inside the moratorium compared to outside, and a steeper
decline in forest cover is observed outside the moratorium com-
pared to inside (Fig. 1 A and B). These trends suggest that the
moratorium’s impacts from 2011 onward can only realistically
stem from differences in the negative trends in forest cover be-
tween moratorium and nonmoratorium areas. A similar pattern
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Fig. 1. Forest cover trends inside and outside the moratorium, 2000–2018: nonconcession dryland grid cells (A), nonconcession peatland grid cells (B),
concession dryland grid cells (C), and concession peatland grid cells (D). Shaded areas denote treatment period. Grid cells in A and B also exclude forest in
protected areas.

of decline is also observed in the trends for concessions. The ex-
tent of dryland forest cover is almost the same when we compare
concessions inside the moratorium to those outside (Fig. 1C).
By contrast, the extent of peatland forest cover is higher in
concessions outside the moratorium compared to concessions
inside (Fig. 1D). Unaffected by the moratorium in principle, we
use concessions as a placebo (falsification) test in our empirical
analysis (Materials and Methods).

National-Level Effects of the Moratorium. Cumulative avoided for-
est loss and carbon emissions are estimated separately for dry-
land forest (Fig. 2 A and B) and peatland forest (Fig. 2 C and
D), based on estimates of the average treatment effect on the
treated (ATT). In the spirit of ref. 32, two estimators are pre-
sented to show the range of plausible results: the nonparametric
difference-in-difference (DD: upper-bound estimate) and triple-
difference (DDD: lower-bound estimate) approaches. We prefer
the DDD estimator because it has a correction for nonparallel
trends implied by the partial failure of the DD estimator of our
placebo tests (placebo treatments prior to 2011), suggesting non-
parallel trends even after matching. The differences in estimates
shown in Fig. 2 demonstrate the importance of examining the
parallel trends assumption. Further placebo tests using conces-
sions provide further support for the DDD approach (Materials
and Methods).

Our ATT estimates are equivalent to the amount of forest loss,
in hectares, avoided in each grid cell of 144 ha. The ATT for

dryland forest (SI Appendix, Tables S1 and S2) ranges between
(with P ≤ 0.000 where it is not reported) 0.108 (P = 0.006) and
0.137 in 2011–2012; 0.178 (P = 0.002) and 0.237 in 2011–2013;
0.229 (P = 0.003) and 0.318 in 2011–2014; 0.354 and 0.472 in
2011–2015; 0.571 and 0.718 in 2011–2016; 0.637 and 0.813 in
2011–2017; and 0.732 and 0.938 in 2011–2018. Despite the magni-
tude of impact increasing steadily since 2011, the moratorium was
effective in protecting no more than 1 ha of dryland forest in each
grid cell by 2018, or about 0.651% of a cell. Our ATT estimates
for peatland forest (SI Appendix, Tables S3 and S4) are close to
zero and not statistically significant at conventional levels.

The moratorium has had a relatively small cumulative impact
in preventing deforestation in dryland forest covered by the
moratorium relative to comparable forest areas outside the
moratorium (Fig. 2 A and B and SI Appendix, Tables S5 and S6):
17,248 ha to 21,967 ha in 2011–2012; 28,533 ha to 37,972 ha
in 2011–2013; 36,672 ha to 50,830 ha in 2011–2014; 56,725 ha
to 75,603 ha in 2011–2015; 91,303 ha to 114,901 ha in 2011–
2016; 101,851 ha to 130,168 ha in 2011–2017; and 117,053 ha
to 150,089 ha in 2011–2018. Put in context, avoided dryland
forest loss represents, at most, 0.03% of all land covered by
the moratorium in 2012, rising over sevenfold to 0.22% by
2018. Our estimates of avoided dryland forest loss translate into
cumulative carbon emission reductions of 10.0 MtCO2-eq to
12.7 MtCO2-eq in 2011–2012; 16.5 MtCO2-eq to 22.0 MtCO2-
eq in 2011–2013; 21.2 MtCO2-eq to 29.4 MtCO2-eq in 2011–
2014; 32.9 MtCO2-eq to 43.8 MtCO2-eq in 2011–2015; 52.9
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Fig. 2. Cumulative avoided forest loss (thousand hectares) and avoided carbon dioxide emissions (MtCO2-eq): dryland forest DD, 2012–2018 (A); dryland
forest DDD, 2012–2018 (B); peatland forest DD, 2012–2017 (C); and peatland DDD, 2012–2017 (D). The blue columns and left-hand y axis in each panel
show the quantity of avoided forest loss, while the red columns and right-hand y axis show the quantity of carbon emissions avoided. All quantities are
aggregated up to the level of the whole moratorium. Error bars denote the 95% CI.

MtCO2-eq to 66.6 MtCO2-eq in 2011–2016; 59.0 MtCO2-eq
to 75.4 MtCO2-eq in 2011–2017; and 67.8 MtCO2-eq to 86.9
MtCO2-eq in 2011–2018 (SI Appendix, Tables S5 and S6). By
contrast, the moratorium had null effects on peatland forest
(Fig. 2 C and D and SI Appendix, Tables S7 and S8), implying a
high likelihood of few if any carbon emissions savings, including
those from peat drainage and peat fires.

Our results in Fig. 2 are checked for their robustness (Materials
and Methods). First, we trim the sample on the basis of forest
cover extent at the grid cell scale (DD and DDD; SI Appendix,
Tables S9–S12). Second, we apply coarsened exact matching
(CEM) models (DDD only; SI Appendix, Tables S13 and S14).
Third, we apply a wider caliper (0.001) (DDD only; SI Appendix,
Tables S15 and S16) and 1:2, 1:3, and 1:5 nearest-neighbor
matching (DDD only; SI Appendix, Tables S17 and S18). Fourth,
we estimate the ATT using only observations above an
elevation of 1,000 m, followed by all elevations (DDD only;
SI Appendix, Tables S17 and S18). These four checks are shown
for 2011–2017 only, although the results for other years are
also consistent with those in Fig. 2. Our estimates of forest
loss and carbon emissions avoided above an elevation of 1,000
m are either very low (peatland) or not statistically significant
(dryland) (SI Appendix, Fig. S3). Finally, using forest cover
data based on a tighter definition of forest—“intact primary”
forests with no detectable signs of human-caused alteration or
fragmentation (41, 42)—we find patterns of avoided forest loss
and carbon emissions that are consistent with those in Fig. 2
(SI Appendix, Tables S19–S26). Unsurprisingly, estimates of the
extent of cumulative avoided dryland forest loss and carbon
emissions are lower, around 25 to 35% of our 2018 estimates
in Fig. 2 (see also SI Appendix, Fig. S4).

Testing for Leakage. Our estimated effects in Fig. 2 are relatively
small, implying a low probability of upward bias due to leakage.
We report the results of a regression discontinuity analysis along
the moratorium’s boundaries, including the treatment effects at
the discontinuity each year, between 2005 and 2018 (Fig. 3). The
point estimate of this local average treatment effect (LATE) is
always positive after 2013, implying higher deforestation outside
the moratorium. Yet, the point estimates are also positive in
2008, 2009, and 2011, and hover around zero for the entire
sample period, excluding an upward deviation in trend after
the moratorium was implemented. The 95% CIs for the LATE
always include zero, thus failing to identify significant leakage
from the moratorium to the surrounding areas, either before
or after 2011. Our analysis over various bandwidths suggests no
evidence of leakage even within some considerable distance from
the moratorium (SI Appendix, section 4).

Meeting Indonesia’s NDC Commitments and the Effective Carbon
Price. We put our results into perspective by comparing our
estimates of emissions reductions between 2011 and 2017 with In-
donesia’s aggregate emissions and its NDC emissions reduction
commitments (Table 1). Our estimated average annual emissions
reductions, of around 10.4 MtCO2-eq to 13.0 MtCO2-eq (includ-
ing our peatland forest estimates and factoring in belowground
carbon), at most, comprise only 0.38 to 0.47% of annual aggre-
gate emissions (all sectors), and 0.83 to 1.05% of emissions from
the forest sector. The emissions avoided due to the moratorium
comprise 10.3 to 12.9% and 3.1 to 3.8% of the 29% (uncondi-
tional) NDC target in 2020 and 2030, respectively. These shares
fall to 7.8 to 9.8% (2020) and 2.0 to 2.5% (2030) when we consider
the 41% (conditional) NDC target.
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Fig. 3. Regression discontinuity LATE [with Calonico et al. (43) bandwidth], 2005–2018. Scatterplots of all the observations within and outside the
moratorium’s boundaries are shown in SI Appendix, section 4. Error bars denote the 95% CI.

Norway agreed to pay Indonesia US$56.2 million for the
Indonesia–Norway partnership’s estimate of 11.2 MtCO2-eq of
avoided emissions in 2017, including emissions from avoided
peat fires and peat decomposition. Dividing this payment
by our estimated average annual emissions reduction during
the 2011–2017 period gives effective carbon price ranges of,
respectively, US$4.3/tCO2-eq to US$5.4/tCO2-eq and US$1.8/
tCO2-eq to US$2.3/tCO2-eq, with and without the share of

Table 1. The moratorium’s contribution to Indonesia’s NDC com-
mitments and the effective carbon price, 2011–2017

Estimator DD DDD

Avoided emissions (aboveground carbon only, MtCO2-eq)
Dryland 75.4 59.0
Peatland −2.0 −0.6

Total 73.4 58.4
Annual average (2011–2017) 10.5 8.3

Avoided emissions (aboveground and belowground carbon,
MtCO2-eq)

Total 91.1 72.5
Annual average (2011–2017) 13.0 10.4

Percent of Indonesia’s emissions (aboveground carbon only)
Percent all emissions (2.2GtCO2/y) 0.47 0.38
Percent forest emissions (1.0GtCO2/y) 1.05 0.83

Percent of Indonesia’s emissions (aboveground and belowground
carbon)
Percent all emissions (2.2GtCO2/y) 0.59 0.47
Percent forest emissions (1.0GtCO2/y) 1.30 1.04

Comparison with Indonesia’s NDC 2030 commitments (%)
Percent unconditional (29%, 2020) 12.9 10.3
Percent conditional (41%, 2020) 9.8 7.8
Percent unconditional (29%, 2030) 3.8 3.1
Percent conditional (41%, 2030) 2.5 2.0

Effective carbon price (US$/tCO2)
With peatland payments (US$56m/total) $0.6 $0.8
With peatland payments (US$56m/annual average) $4.3 $5.4
No peatland payments (US$24m/total) $0.3 $0.3
No peatland payments (US$24m/annual average) $1.8 $2.3

DD denotes that the results are derived from the ATT estimated using
the nonparametric difference-in-difference approach. DDD denotes that the
results are derived from the ATT estimated using the nonparametric triple
difference approach. Underlying ATT estimates are for 2011–2017; those for
peatland are not significantly different from zero. Details of all calculations
in the table are in Materials and Methods.

the payment for avoided peat fires and decomposition. All of
these estimates are within range of Norway’s proposed carbon
price, US$5/tCO2-eq. Applied to our estimates of cumulative
emissions reductions over the entire 2011–2017 period, Norway’s
payment has effectively bought emissions reductions at less
than US$1/tCO2-eq, thus representing value for money from
Norway’s perspective. Indeed, from a global perspective, these
are very cost-effective emissions reductions.

Discussion

Impacts of Indonesia’s Moratorium on Forest Loss and Emissions.
The centerpiece of one of Norway’s pioneering REDD+
partnerships, Indonesia’s moratorium and the associated US$1
billion pledge, represented an ambitious scaling up of tropical
forest conservation efforts. We found a relatively small effect
of the moratorium in slowing deforestation. Our cumula-
tive estimates to 2018, using a quasi-experimental program
evaluation approach, are at the lower bound of estimates in
previous research (27). We also found evidence of a positive
impact on dryland forest that materialized earlier, between
2012 and 2016 (Fig. 2), a period that has not been assessed
for emissions reductions by the Indonesia–Norway partnership.
The magnitude of our estimated impacts, and our regression
discontinuity results, suggests either that moratorium areas were
mostly economically marginal and, compared to matched control
areas, unlikely to experience a large effect from the moratorium,
or that deforestation has continued largely unchecked by the
moratorium. The general secular decline in forest cover in all
areas (Fig. 1) suggests the latter explanation is more likely.

What matters for REDD+ is how these positive impacts on
forest cover translate into carbon emissions reductions. Our esti-
mates in Table 1 are in line with a projection that the moratorium
had the potential to cumulatively reduce emissions by nearly
200 MtCO2-eq by 2030 (44), at an estimated annual average
of 9.4 MtCO2-eq. Note, however, that our impact estimates
stem from differences between two declining paths of forest
cover over time. While straightforward to measure against a
BAU target, this just delays emissions from deforestation. To
stop emissions permanently, deforestation needs to be halted,
not slowed. With this in mind, our estimates accounted for,
at most, around 13% and 4% of Indonesia’s NDC (uncondi-
tional) commitment to reduce GHG emissions by 29% in 2020
and 2030, respectively. Our estimates suggest that Indonesia is
unlikely to meet this commitment given that most of it (17.2
percentage points, or three-fifths of the 29% target) is supposed
to be met via the country’s forest sector (4). Peatland forest
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loss and peat fires are key contributors to Indonesia’s share of
global, forest-based emissions, yet our results suggest that the
moratorium has had no meaningful impact on peatland forests.
Norway’s proposed payment of US$56.2 million included emis-
sions reductions from avoided peat decomposition and fires in
2017. Our peatland results imply that, viewed purely in terms
of performance, this share of the payment could be justifiably
withheld.

Comparing Estimates of Impact. That our estimates of impact dif-
fer from those calculated by the Indonesia–Norway partnership is
primarily due to the choice of baseline, or counterfactual, against
which impact was measured. For emissions reductions between
2018 and 2020, the Indonesia–Norway partnership planned to
adopt a historical baseline similar to the one the partnership
used for estimating reductions in 2017 (28). How this baseline
is estimated originates from the calculation of Indonesia’s ar-
guably more generous forest reference emission level (FREL).
Submitted to the United Nations Framework Convention on
Climate Change in 2016, the FREL is based on the average
annual deforestation rate between 1990 and 2012 (4, 45). Indone-
sia’s FREL provided the basis for a proposed US$103.8 million
payment from the Green Climate Fund (GCF) for an estimated
20.3 MtCO2-eq reduction in carbon emissions between 2014 and
2016 (46).

Although both the Norwegian and GCF payments are sup-
posed to be “results based,” the baselines used to estimate these
emissions reductions emerged as a consequence of political ne-
gotiations and are subject to precisely the biases that we at-
tempted to eliminate in our program evaluation approach. Thus,
they are arguably independent of performance (47); that is, the
counterfactuals constructed by the Indonesia–Norway partner-
ship and the GCF could be driven entirely by stochastic shocks
and economic factors unrelated to REDD+ efforts. Our causal
framework explicitly attempted to balance these biases. On the
basis of historical performance, our results suggest that Indonesia
could legitimately claim an even larger payment from Norway,
up to US$339 million to US$434.5 million on the basis of a
US$5/tCO2-eq carbon price, for cumulative emissions reductions
between 2011 and 2018. Fig. 2 shows a predominantly steady
cumulative effect of the moratorium over time, particularly from
2016 onward. The moratorium seems to have had a causal impact
on avoided deforestation.

Beyond the Moratorium. The partnership underlying the morato-
rium was unilaterally terminated by Indonesia in 2021, apparently
due, in part, to delays in release of the payment by Norway
(16). Even though this implies that the moratorium is unlikely
to continue, at least not in its current form, large-scale, area-
based initiatives, in the form of jurisdictional REDD+ schemes,
are likely in the future. For example, the Lowering Emissions by
Accelerating Forest finance (LEAF) private–public coalition was
established in 2021 to mobilize at least US$1 billion for area-
based tropical forest conservation (46). Such initiatives could
usefully learn from how the moratorium performed with respect
to emissions reductions.

First, the small size of the moratorium’s impact suggests lim-
ited compliance. Improving compliance might increase impact,
yet patronage linkages, between large-scale industrial plantation
companies and local politicians, ensured weak monitoring and
enforcement (48). Future REDD+ initiatives could help bolster
local monitoring and enforcement capabilities. The ongoing One
Map process, to resolve inconsistencies resulting from the use of
different data and maps by creating a national standard of land
cover and usage, could further help strengthen transparency and
improve forest governance (11).

Second, future initiatives could also help incentivize reductions
in emissions from deforestation by local forest users not originally
targeted by the moratorium, such as smallholders engaged in

logging and palm oil production (49, 50), who reportedly con-
tributed one-fifth of nationwide forest loss between 2001 and
2016 (10) The forestland claims of local forest users have been
strengthened by the Village Law (Law No. 6/2014) (51), which,
combined with the millions of hectares of forest pledged for
“social forestry” initiatives, suggests new conservation opportu-
nities (52). These opportunities could be aligned with the goals
of future initiatives, although there remains a risk that continued
policy layering could exacerbate ambiguity with respect to forest
regulations and enforcement (53). Also, given ongoing uncer-
tainties over forest users’ land rights, new initiatives should pay
careful attention to representation and recognition notions of
justice as a means of legitimizing REDD+ at the local scale (54).

Third, the moratorium lacked formal allocation and distribu-
tional mechanisms. Our results are based on the aggregate ATT,
but the district-level ATT indicates where the positive effects
were likely generated (SI Appendix, Fig. S5). Consistent with
calls from forest-rich districts for an “ecological fiscal transfer”
scheme based on ecological performance (55), payments
from future initiatives could be distributed to districts that
demonstrate emissions reductions. The Regional Governance
Law (Law No. 23/2014), however, shifted control over forests
from district to provincial governments and established a greater
administrative role for forest management units (56). Thus, both
provincial and district governments are likely to play a role in any
benefits transfer system, perhaps via intergovernmental fiscal
transfers (IFT) (57). Presently focused on timber production
revenues, Indonesia’s forest sector IFT could, in theory, be used
to transfer REDD+ funds (58).

Delivering Carbon Value for Money and Meeting the NDC Commit-
ments. The value of estimated cumulative emissions reductions,
even on the basis of a relatively low carbon price of US$5/tCO2-
eq, comfortably exceeds the amount Norway agreed to pay for
emissions reductions in 2017. From the perspective of Norway’s
government, and the global community, Norway’s payment could
be characterized in terms of abatement costs, that is, the sum
that Indonesia’s government is willing to accept (WTA) to reduce
emissions from deforestation. However, the global benefit, and in
principle the willingness to pay (WTP) for emissions reductions,
is the social cost of carbon (SCC). The SCC is estimated to range
between approximately US$40/tCO2-eq and US$200/tCO2-eq
(e.g., ref. 59). The question of how the discrepancy between WTP
and WTA is shared between donor and recipient countries was
resolved by the Indonesia–Norway partnership, moving far closer
to the WTA than to the WTP. Thus, Norway, and indeed the
global community, would be getting “good value” for emissions
reductions in Indonesia. The moratorium appeared to be cost-
effective but with a very skewed share of the global surplus
transferred to a carbon-rich yet poor country. Although Indone-
sia accepted the US$5/tCO2-eq price offered by Norway, this is
arguably an unfair distribution of the surplus, given estimates of
the SCC. With the ending of the Indonesia–Norway partnership,
Indonesia could negotiate a higher price with, for example, an
initiative like LEAF, which is offering a minimum of US$10/
tCO2-eq (60).

Our analysis emphasizes that emissions reductions, although
cost-effective, still require large transfers, even at low carbon
prices. Much steeper emissions reductions are clearly needed to
reach the NDC targets, but the cost of these reductions is unlikely
to be met by a single country or initiative. Indeed, Indonesia
estimates that, to meet its NDC commitments, around US$5.5
billion is required between 2018 and 2030 for the country’s forest
sector alone (4). When REDD+ first emerged in the 2000s, there
were initial calls for US$10 billion to US$15 billion of funding per
year to cut global deforestation by half (61). These funding needs
were based on opportunity cost calculations, which will be higher
for high-value agricultural commodities such as palm oil. Yet, by
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the 2010s, pledges to the value of only US$10 billion had been
made for REDD+ (62).

It was hoped that a global climate agreement, incorporating a
cap-and-trade system, would generate sufficient and sustainable
sources of finance for the protection of tropical forest carbon
stocks. Given that such a system has yet to materialize, it has
fallen upon individual countries to voluntarily finance REDD+
initiatives around the world. Norway’s contribution, to date,
exceeds that of all other countries but is insufficient to protect
tropical forest carbon stocks at a scale necessary to meaningfully
contribute to global climate change mitigation efforts. As the
world’s attention moves beyond COP26 in Glasgow, where an
ambitious global commitment was made to halt deforestation by
2030, the critical climate role of forests needs to be matched by a
global willingness to pay for it.

Materials and Methods
Data. Our outcome variable is forest cover in hectares, with data spanning
the period 2000–2018 drawn from the Global Forest Change dataset (38).
The 2004–2018 period is selected for matching data in our analysis, while
data for the 2000–2004 period are used in separate placebo tests that
determine whether there are violations in the parallel trends assumption
(see below). The forest cover data, obtained for the whole of Indonesia,
are spatially explicit and not defined according to different forest classes.
Our units of analysis are grid cells of 1.2 km by 1.2 km (144 ha), which
accommodate 1,600 pixels at a resolution of 30 m by 30 m (i.e., Landsat8
pixel size). A scale of 1.2 km by 1.2 km is chosen because it allows for a
similar scale across the different sources of data used in our analysis and
minimizes the risk of grid cells overlapping treatment and control areas. For
each grid cell and for each year of our study period, we count the number
of pixels where forest loss is recorded and then convert pixels to hectares by
multiplying by 0.09. We account for the precise fraction of a pixel that falls
within a grid cell.

Tree cover in the year 2000, the base year of the Global Forest Change
dataset (38), is defined as canopy closure for all vegetation taller than 5 m
in height, and is encoded as a percentage per pixel, in the range 0 to 100.
Forest loss during the period 2001–2018 is defined as a stand-replacement
disturbance, or a change from a forest to nonforest state at the pixel scale,
encoded as either 0 (no loss) or else a value in the range 1 to 18, representing
loss detected in the year 2001–2018, respectively. A pixel is categorized as
forested if its canopy cover is greater or equal to 25%, below which a pixel
changes its state from forest to nonforest (63). We obtain peat depth data
from ref. 64, which are used to subdivide grid cells into peatland and dryland
forest types. These two types are analyzed separately due to their different
ecological characteristics that are relevant to changes in forest cover and
carbon emissions.

Forest areas covered by the moratorium supposedly included all of In-
donesia’s primary and peatland forests, and are determined using morato-
rium shapefiles obtained from ref. 65. Our treatment group includes forest
areas within the moratorium boundaries that were established in 2011
(SI Appendix, Fig. S2). Since 2011, the moratorium’s boundaries have shifted
due to forestland being redesignated by Indonesia’s district governments
and dropped out of the moratorium before typically being licensed out
to concessionaires (22, 66, 67) (SI Appendix, section 1). Although legal, this
redesignation of forestland is effectively a behavioral response to the
moratorium and, hence, should be included in estimates of impact. Thus,
the 2011 moratorium boundaries are assumed constant throughout our
treatment periods. Shapefiles for the location of palm oil, timber, and
logging concessions established before the start of the moratorium were
originally obtained from ref. 68. Digitized by Greenpeace, this was the most
comprehensive source of concessions data available.

We compile a vector of control variables and time-invariant characteristics
at the grid cell level by combining different sources of georeferenced data:
information on altitude, slope, and distance from major roads from the
WorldPop repository (69); grid cell–level travel time to major cities (70); and
a population trend based on counts for the years 2004 and 2010 (71). Grid
cell–level aboveground carbon stock values are estimated by dividing data
on aboveground biomass density, from the Global Forest Watch dataset, by
0.5 (based on ref. 72).

The cumulative impacts of the moratorium on forest cover and carbon
emissions are estimated each year in the periods 2011–2018 and 2011–2017
for dryland and peatland forest, respectively. The latter is estimated only up
until 2017, due to the additional restrictions on peatland forest conversion
implemented in 2017 (12).

Empirical Approach. The moratorium mandated that district governments
stop issuing new concession licenses in forest areas covered by the mora-
torium. Evaluating the causal impact of the moratorium is complicated
by selection bias: Forest areas covered by the moratorium differ in their
observable and unobservable characteristics. Any imbalance in these char-
acteristics implies that simply comparing the extent of forest cover in the
moratorium and nonmoratorium areas will capture preexisting imbalances
in, for example, their suitability for palm oil or timber production, thus
confounding the estimate of the treatment effect. Descriptive statistics
illustrate the differences between the moratorium and nonmoratorium for-
est areas (SI Appendix, Tables S27–S34). The values of several variables that
determine the suitability of grid cells for new concessions differ between
moratorium and nonmoratorium areas. For example, in the unmatched
data, moratorium grid cells have, on average, a higher elevation and are
farther away from roads and cities than nonmoratorium cells, making them
less suitable for concessions, other things being equal. It is necessary to
address the imbalance of these observable characteristics to estimate the
causal effect of the moratorium on forest cover.

We adopt a DD research design to control for observable and unob-
servable confounding characteristics in the estimation of the treatment
effect. Empirical testing leads us to prefer a matched DDD estimator. Via
matching moratorium and nonmoratorium cells on the basis of their observ-
able characteristics, we argue that the confounding effect of unobservable
characteristics is also controlled for, thus generating an unbiased estimate of
the treatment effect (73–75). Prior to estimation, we adjust the moratorium
and nonmoratorium samples by excluding cells which are unlikely to become
concessions for agronomic or jurisdictional reasons. We first exclude cells
which are part of the Indonesian protected area network, both within
and outside the moratorium, as conversion in these cells is already strictly
prohibited. Second, we focus on unconverted dryland and peatland forest
outside of concessions. We then remove all cells outside of concessions with
an elevation of 1,000 m or more above sea level. The likelihood of these
cells being a realistic proposition for a concession in either moratorium
or nonmoratorium areas is close to zero because, above 1,000 m, land is
unsuitable for palm oil cultivation (76) and for Acacia mangium, the main
tree species employed for the production of wood pulp and paper (77).
These adjustments represent our first attempt to balance the sample in terms
of the likelihood of concessions being granted. The resulting dataset has
567,634 cells, of which there are 160,012 treated observations (28.2%). Next,
we deploy a matching procedure to match individual grid cells in morato-
rium areas with counterfactual grid cells in nonmoratorium areas, and vice
versa. Our main results use propensity score, one-to-one caliper matching for
this purpose. After matching, we retain 152,118 treated cells (7,894 dropped
cells), and 198,794 control cells, for a total of 358,806 cells. The dropped
cells represent a reduction of 2.2% (4.9% of the treated group) due to
the exclusion of imprecise (outside of the caliper) matches. This matched
dataset is used for both parametric and nonparametric estimators, to ensure
balanced characteristics between the treatment and control groups and
to facilitate easier comparisons between estimators (73). When analyzing
the moratorium’s impact on different forest types (dryland, peatland), the
propensity score is estimated separately, and different matched samples
arise.

Having balanced the sample in this way, the identification of a causal
estimate of the moratorium’s impact on forest cover stems from a DD re-
search design. It is well known that, under their identifying assumptions, DD
estimators identify the ATT (e.g., ref. 78, chap. 4), which can be understood
as the impact of the moratorium on forest areas covered by the moratorium
and hence, is a policy-relevant treatment effect. With the dropping of cells,
we are no longer identifying the ATT, although dropping fewer than 5% of
treated observations arguably results in a close approximation to the ATT.
Where di indicates whether an individual grid cell i is in the treatment group
(= 1) or not (= 0), and Y1iT1

and Y0iT1
are, respectively, the potential outcomes

(forest cover) in the treated (= 1) and untreated (= 0) states for grid cell i at
posttreatment time T1, the ATT is defined as

ATT = E
[
Y1iT1

− Y0iT1
|di = 1

]
. [1]

Following ref. 78 (p. 101), if the potential outcomes have the separable form
Ykit = μkit + λi + ukit for treatment states k = 0, 1, and individual, grid-level
fixed effect λi , the ATT is identified by a DD estimator of the form

DD = E
[
ΔT1,T0 Yit|di = 1

]
− E

[
ΔT1,T0 Yit|di = 0

]
, [2]

where Yit is the observed data and ΔT1,T0 is the change operator between
the pretreatment period T0 and T1 (see also SI Appendix, section 4). The DD
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estimator controls for individual fixed effects λi by taking differences at the
individual level. A necessary condition to identify the ATT in this way is the
parallel trends assumption,

E[ΔT1,T0 u1it|di = 1] − E
[
ΔT1,T0 u0it|di = 0

]
= 0, [3]

meaning that the unobservable characteristics determining forest cover
must be identical in expectation; otherwise, they will confound the estimate
of impact.

The DD estimator in Eq. 2 can be estimated parametrically or nonpara-
metrically (e.g., matching). The parametric DD estimator we use takes the
following form, and is estimated using a fixed-effects estimator:

Yit = α +

T∑
s=τ

β1sDsit +

n∑
k=2

βkXit + λi + θt + εit , [4]

where Yit is forest cover in (nonconcession) grid cell i in year t, Dit is the
time-varying moratorium treatment indicator, and Xkit are n potential time-
varying control variables. The β1s coefficients represent the DD estimates of
ATT for each posttreatment year s between 2012 and 2018. This basic model
controls for time-invariant characteristics via the individual, grid-level fixed
effects, λi , and time fixed effects, θt , which capture shocks common to all
grid cells, such as weather shocks.

We select among a number of different parametric and nonparametric
(matched) DD and DDD estimators through a four-step process of model
selection. In the first step, we estimate parametric DD models of the form
described in Eq. 4, including district-by-year trends, pretreatment forest
cover-by-year interactions, and both clustered (at the district level) and
Conley SEs (this accounts for spatial autocorrelation using the “fixest”
package in R), but no further control variables (Xkit), before comparing
these estimates to a propensity score, one-to-one caliper, matched DD
estimator (SI Appendix, Table S35). Clustering and Conley SEs do not affect
the results. To rule out the possibility that the balance in the sample of
observable characteristics between moratorium and nonmoratorium areas
causes differences between the parametric and nonparametric estimates,
we use the same matched sample for the parametric DD estimation as is
used for matched DD estimators (see ref. 73). We then undertake sensitivity
analysis on the nonparametric estimators by relaxing the precision of the
matching procedure in two ways: 1) widening the caliper and 2) sampling
matches without replacement. The sensitivity analysis suggests that the
matching estimates are sensitive only to extreme reductions in precision
of the matching (no replacement or no caliper) (SI Appendix, Table S35).
Extreme sensitivity of the parametric estimator to the inclusion of district-
by-year trends suggests that heterogeneity across grid cells is a potentially
important confounding factor. Matching estimators deal more flexibly with
heterogeneity, and, in matched DD estimators, this can include heteroge-
neous trends (79). There is also empirical evidence to show that the parallel
trends assumption is more likely to hold with matched DD rather than
parametric DD (e.g., ref. 80). To account for heterogeneous trends, our
matching procedure matches moratorium and nonmoratorium grid cells
very precisely, and explicitly, on pretreatment trends. Given the sensitivity
of the parametric estimator and the fact that matching estimators are
better equipped to deal with heterogeneity, we opt for a nonparametric
DD approach, among which we include propensity score matched DD.

Our central estimates use propensity score, one-to-one caliper matching.
The matching variables we use capture important differences between
the moratorium and nonmoratorium grid cells, their dynamics, and suit-
ability for future concessions. We use pretreatment values of distance to
concessions (palm oil, timber, and logging), distance to roads and cities,
population (2005 and 2010), forest cover for each year from 2005 to 2010,
elevation, slope, peat depth, and aboveground carbon stock in the year
2000. Matching on pretreatment outcomes (forest cover) and population
in more than one pretreatment year (2005–2010 for forest cover, 2005 and
2010 for population) attempts to control for heterogeneous pretreatment
trends and levels between moratorium and nonmoratorium areas.

The matched DD estimator takes the following form and estimates
ATTDD,T for time horizon T using forest cover data YM

it from the moratorium
grid cell i matched with data Yj,NM

it in cell j from the nonmoratorium grid
cells:

ÂTTDD,T =
1

NM

∑
i

I0
[[

YM
i,T − YM

i,T1

]
−

[
Yj,NM

i,T − Yj,NM
i,T1

]]
, [5]

where I0 is an indicator variable that is equal to one if a grid cell i in the
moratorium has a counterfactual grid cell j in the nonmoratorium area
whose propensity scores pi and pj fall within the caliper,

∣∣pi − pj
∣∣ < ε,

where ε is a predetermined distance in propensity score space. The caliper
defines the set of one-to-one matches from the nonmoratorium area,
C (i), such that j ∈ C (i). Therefore, I0 = I

(
min

∣∣pi − pj
∣∣ :

∣∣pi − pj
∣∣ < ε

)
. Our

large sample allows us to choose a very precise caliper (0.0001) without
substantially reducing the sample size.

In the second step, we subject this matched DD estimator to two sep-
arate placebo (falsification) tests in time, both of which model a placebo
moratorium implemented in 2004. Placebo test 1 retains the matches from
the real pretreatment phase (2005–2010), while placebo test 2 reestimates
the propensity scores for the pre–placebo treatment phase (2000–2004)
(SI Appendix, Tables S36–S39 and Fig. S6). In some cases, the null hypothesis
is rejected for the matched DD estimator, suggesting a failure of the parallel
trends assumption. For this reason, in the third step, we use a matched
DDD estimator inspired by refs. 37 and 40, which applies a correction for
nonparallel trends. The DDD estimator takes the following form:

ÂTTDDD,T =
1

NM

∑
i

I0
{[[

YM
i,T − YM

i,T1

]
−

[
Yj,NM

i,T − Yj,NM
i,T1

]]

−
[[

YM
i,T′1

− YM
i,T0

]
−

[
Yj,NM

i,T′1
− Yj,NM

i,T0

]] (
T − T1

T′
1 − T0

)}
. [6]

The second line reflects the correction for the nonparallel pretreatment
trends between T0 and T′

1 with a correction
(
T − T1/T′

1 − T0
)

to adjust the
trend correction for potentially different pretreatment and posttreatment
time horizons. The matched DD results come from the estimator in Eq. 5,
and the matched DDD results come from the estimator in Eq. 6. Finally,
we subject the DDD estimator to a placebo in time test of the parallel
trends assumption, placebo test 3 (SI Appendix, Table S40). The years used to
estimate Eqs. 5 and 6 are T0 = 2004, T′

1 = 2010, T1 = 2011 and T = endpoint
year. For the placebo tests, the placebo treatment year is 2005, and the
pretreatment and posttreatment periods considered are, respectively, 2000–
2004 and 2005–2010, with sensitivity using 2005–2011. In each case, we use
the Matching routine in R (81).

Finally, in step four, we undertake a spatial placebo test to evaluate the
robustness of the matched DDD estimator. The spatial placebo test uses
the DDD estimator in Eq. 6 and applies it to concession moratorium and
concession nonmoratorium grid cells for dryland and peatland forest. In
theory, the moratorium has no effect on forest cover in concession grid
cells because conversion is still allowed on concessions in moratorium areas
that were granted premoratorium. This observation forms the basis of
the null hypothesis, with the alternative hypothesis that moratorium and
nonmoratorium concession forest cover is evolving in different ways, hence
falsifying the parallel trends assumption. Results of the spatial placebo test
suggest support for the null hypothesis (SI Appendix, Tables S41 and S42).

The resulting, preferred estimator is the propensity score, one-to-one
caliper matched DDD estimator. Covariate balance tables are reported for
all specifications (SI Appendix, Tables S43–S54). SEs are calculated according
to the consistent Abadie–Imbens procedure for matching (82).

We undertake several robustness checks on our estimates in Fig. 2. These
estimates are based on untrimmed samples, so we first obtain estimates of
the ATT for a sample with a stricter definition of forest cover at the grid
cell level: 30% (or more) and 60% (or more) forested pixels in a grid cell,
in 2005. These samples are obtained by estimating the mean forest cover
of 2005 pixels in the grid cells. Second, we conduct a robustness analysis
on alternative approaches to matching which do not rely on the propensity
score, namely CEM (83, 84). CEM addresses the possibility that propensity
score matching may introduce biases due to the way in which it reduces the
dimensionality of the matching problem to matching on a single dimension:
the propensity score (e.g., ref. 85). We undertake CEM using the same
matching variables as before. As with propensity score matching, sample
sizes are also sensitive to choices of matching variables, the coarseness of
matching, and other implementation decisions in CEM. For this reason,
following refs. 84 and 86, we undertake four separate CEM routines in which
the control variables are used either in the exact matching algorithm or as
control variables in a covariate adjustment step after matching has occurred
(84). The DDD CEM covariate-adjusted estimate of ATT over the period of
the moratorium from period T1 and T is the estimate of β1 in the following:

Δ
DDD
T1,T Yi = α + β1di +

n∑
k=2

βkXki + εi . [7]

The Xki are the pretreatment control variables that provide covariate
adjustment, which we exclude from the matching algorithm. ΔDDD

T1,T Yi is
the individual-level matched triple-difference (corrected for nonparallel
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trends) in forest cover that is constructed by the CEM matching algorithm.
We use the cem routine in R to undertake the matching, and the att routine
in R to obtain this covariate-adjusted estimate of the ATT.

Third, we conduct sensitivity analyses on the assumptions used in the
central nonparametric DDD propensity score matching estimates. These
analyses focus on 1) caliper width choices, where calipers of 0.01 and
0.001 are used in one-to-one nearest neighbor matching, and 2) k > 1
nearest-neighbors analysis, in which we test the sensitivity of our results to
matching on k = 2, 3, 5 nearest neighbors instead of one to one. Fourth,
we test the sensitivity of the sample being limited to grid cells below an
elevation of 1,000 m. We estimate separate ATT for 1) cells at all elevations
and 2) cells only found above 1,000 m (covariate balancing reported in
SI Appendix, Tables S55–S58). Finally, we replicate the analysis in Fig. 2 using
a tighter definition of forest, specifically, “intact primary” forest, with
no detectable signs of human-caused alteration or fragmentation (41, 42)
(covariate balancing reported in SI Appendix, Tables S59 and S60).

A final identification assumption of the DD and DDD estimators is the
stable unit treatment value assumption: The treatment should not cause
leakage to untreated forest areas. Such leakage/spillover effects are a
common confounder in the evaluation of area-based policies (e.g., refs. 32,
33, 87, and 88). If protection via the moratorium induces the displacement of
forest clearing to outside the moratorium’s boundaries, deforestation rates
inside and outside these boundaries are contemporaneously affected in op-
posite directions, resulting in treatment effects of a higher magnitude than
the “true” effects. To check for leakage, we use a regression discontinuity
design (RDD) (43, 89) with a sharp cutoff at the moratorium’s boundaries.
RDD estimates the LATE of the moratorium in the proximity of its boundaries
with nonmoratorium land.

We specify separate linear polynomials on both sides of the boundary
cutoff following (90), and estimate treatment effects via ordinary least
squares regressions with robust SEs clustered at the district administrative
level. Our preferred results are obtained via separate linear polynomials
and optimal bandwidth selection (through the ref. 43 method). We also
examine an alternative bandwidth selection algorithm (91), additional
fixed bandwidths of 5, 10, and 20 km from the moratorium’s bound-
aries, and specifications using separate quadratic polynomials of distance
(SI Appendix, section 4 and Figs. S7–S13). Given the spatial configuration of
the moratorium (SI Appendix, Fig. S2), our bandwidths cover a wide extent
of nonmoratorium cells in which leakage could feasibly occur.

Estimating Carbon Emissions. We obtain grid cell–level CO2-eq estimates by
multiplying the average carbon stock (in tons of carbon per hectare) per grid
cell by our ATT estimates of avoided deforestation (hectares). These results
are then extrapolated to the total number of moratorium grid cells in the
sample, and converted to tons of carbon equivalent, tCO2-eq, by applying
a conversion factor of 3.67 (92). Belowground carbon stocks in Table 1 are
approximated by multiplying aboveground carbon by 1.24 following ref. 27.

In Table 1, total emissions of 2.2 GtCO2-eq per y are based on the
projected BAU emissions for all sectors excluding Land Use, Land-Use Change

and Forestry (LULUCF) plus estimated annual emissions from LULUCF (1.0
GtCO2-eq per y) according to ref. 4 and reported by Climate Action Tracker.
The estimate of 1.0 GtCO2-eq per y is an annual average over 2001–2018.
Indonesia’s NDC commitments involve an emissions reduction path which im-
plies specific reductions against the BAU in 2020: an unconditional (without
overseas assistance) 29% reduction in emissions compared to projected BAU
emissions in 2030, and a 41% conditional (with overseas assistance) emissions
reduction.

We measure our estimated avoided deforestation against the 2030
commitment’s implied emissions reduction for 2020. The BAU emissions
(non-LULUCF) in 2020 are projected to be 1.2 GtCO2-eq. The conditional
(unconditional) emissions reduction in 2020 represents an 8% (11%) reduc-
tion against 2020 BAU emissions. The 2030 29% conditional (unconditional)
NDC implies a target of 1.12 (1.09) GtCO2-eq in 2020, a reduction of
100 (132.9) MtCO2-eq. The impact of the moratorium is calculated as a
percentage of the 100 (132.9) MtCO2-eq reduction. BAU (non-LULUCF) and
unconditional (conditional) pledged emissions in 2030 are 2.2 GtCO2-eq and
1.8 (1.6) GtCO2-eq, implying a reduction of 328 (527) MtCO2-eq in 2030. Our
estimated moratorium impact is calculated as a percentage of these figures.

Norway’s agreed payment of US$56.2 million includes emissions reduc-
tions from peatland forest in 2017. Without this, the payment falls to US$37
million net of the 35% “set-aside factor” (SI Appendix, section 1).

Data Availability. All replication materials, including processed datasets,
regression routines, and R scripts used to generate our results, have been
deposited in Harvard Dataverse (https://doi.org/10.7910/DVN/0EUW82). Pre-
viously published data were used for this work (38, 64, 65, 69–72, 93).
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