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Abstract

We propose a multiplicity-robust estimation method for (static or dynamic) games.
The method allows for distinct behaviors and strategies across markets by treating mar-
ket specific behaviors as correlated latent variables, with their conditional probabil-
ity measure treated as an infinite-dimensional nuisance parameter. Instead of solving
the intermediate problem which requires optimization over the infinite dimensional set,
we consider the equivalent dual problem which entails optimization over only a finite-
dimensional Euclidean space. This property allows for a practically feasible character-
ization of the identified region for the structural parameters. We apply the estimation
method to newspaper market previously studied in Gentzkow et al. (2014) to characterize
the identified region of marginal costs.

1 Introduction

This paper explores inference under equilibrium multiplicity. A multiplicity-robust estimation

method is proposed and illustrated for a class of economic models that can be written as a

fixed point problem. The class includes static games and dynamic Markov games. Actions

can be discrete or continuous. Unlike the traditional two-step methods, researchers are not

required to assume a single equilibrium is played in the cross-section. Equilibrium multiplicity

and unobserved market heterogeneity are accommodated. Our method allows a researcher to

identify and estimate the structural parameters of interest even if data of long-time series are

not available.

In the literature, partial identification of games with multiple equilibria has been limited to

static contexts, e.g. Ciliberto and Tamer (2009). Our method provides a practically attractive
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computational procedure to estimate the identified region which applies to dynamic games

and also static games.

A number of papers proposed two-step estimation methods for games under varying as-

sumptions including Guerre et al. (2000) and Hortacsu and Kastl (2012) for static games and

Jofre-Bonet and Pesendorfer (2003), Aguirregabiria and Mira (2007), Bajari et al. (2007), Pe-

sendorfer and Schmidt-Dengler (2008), and Arcidiacono and Miller (2011) for dynamic games.

These methods led to numerous empirical papers that analyze interactions among multiple

players. Two-step methods assume that the first-stage estimators of players’ policies are con-

sistent. In typical microeconomic applications where a long time-series data set may not be

available, researchers often pool data from different markets to construct first-stage estimates.

However, unless the data are generated from a single (or identical) equilibrium in every market

(or auction), the first-stage estimate of players’ policies is not consistent for true policies, and

hence the second-stage estimate of structural parameters generally fails to be consistent. The

assumption of single equilibrium is indeed restrictive as multiplicity of equilibria is an innate

feature of games, but many research papers effectively make this restrictive assumption for

empirical analysis. Otsu et al. (2016) proposed several tests to examine the null hypothesis

that a single equilibrium is played in a cross section of markets. They find that the assumption

of a single equilibrium is not satisfied in the empirical application of Ryan (2012).

Our proposed estimator for identified regions allows for distinct behaviors and strategies

across markets. We treat market specific behaviors as correlated latent variables, with their

conditional probability measure treated as an infinite-dimensional nuisance parameter. Based

on Schennach (2014), instead of solving the intermediate problem which requires optimization

over the infinite-dimensional set, we consider the equivalent dual problem which entails opti-

mization over only a finite-dimensional Euclidean space. This property allows for a practically

feasible characterization of the identified region for the structural parameters.

Our application studies dynamic competition in the US newspaper market, which has been

rigorously studied in Gentzkow et al. (2014). Equilibrium multiplicity is likely to arise due

to a number of features inherent to this market. Most notably, the market is two-sided with

revenues coming potentially from two sides: readers and advertisers. Newspapers strategically

price their product in these two dimensions. We conduct statistical tests for equilibrium

multiplicity and find that multiplicity is indeed a concern.

We formulate a dynamic Markovian game which shares key features of the static model of

Gentzkow et al. (2014) but additionally allows for (i) entry and exit and (ii) dynamic forward

looking behavior by newspapers. We restrict attention to a parametric class of strategies,

which simplifies the computational burden substantially, and use the estimation method to

estimate the identified region of structural parameters.

This paper is organized as follows. Section 2 introduces notations and definitions for

the games considered. Section 3 illustrates the multiplicity concerns in examples. Section

4 provides the econometric results. Section 5 formulates a dynamic game in the newspaper

industry and describes our estimation approach. Section 6 discusses our estimates, and Section

7 concludes.
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2 Framework

This section describes our framework. We consider economic situations that can be charac-

terized by a fixed point problem in an unobservable variable q:

q = Ψ(q; θ), (1)

where Ψ is a mapping from a bounded set Q ⊆ Rl to Q and parameterized by a vector of

parameters θ ∈ Rr.

The fixed point restriction (1) arises naturally in a number of economic settings. A leading

example is Nash equilibria of game theoretic models. In game theoretic models, Q can be

interpreted as the strategy set and the mapping Ψ gives the strategy profile in which each

player maximizes their payoff given the rivals strategies. A fixed point of this mapping Ψ

is a Nash equilibrium. Our application considers a dynamic pricing game in the newspaper

market in which the profit function is the discounted sum of future newspaper profits. The

data consist of newspaper subscription price, advertising price and the newspaper circulation

information.

The strategies q are usually not observed in the data. Instead, the econometrician observes

variables (Zj)
M
j=1 for a cross section of M markets. The observable Zj = (atj, s

t
j)
T
t=1 consist of a

sequence of action profiles atj ∈ A, state and market variables stj ∈ S for periods t = 1, . . . , T

generated by the equilibrium play of some underlying economic model. We assume that the

same model applies to distinct markets but allow for observed and unobserved heterogeneity

across markets which we shall illustrate below. The action profiles a can be viewed as the

realization of the unknown strategy profiles q evaluated at the state and market variables s. A

key difficulty in the estimation arises as there can be multiple equilibria that could rationalize

observed actions. In terms of our equation (1), this corresponds to multiple solutions to the

fixed point problem. We do not constrain the set of solutions to the fixed point problem.

In particular, we allow that qj 6= qj′ for j 6= j′. For a large-T setting the strategies qj
can be estimated with the root-T convergence rate for each market j, and these preliminary

estimates can be plugged in to estimate θ in the second step. This procedure parallels the

large-T nonlinear panel methods, where individual fixed effects are estimated with the root-T

convergence rate and asymptotic biases are corrected by analytic expansions (e.g., Hahn and

Newey (2004)).

We focus on the asymptotic setting where T is fixed at a small number but M →∞. We

denote this setting as short panels of a large number of markets. Because T does not grow

in this asymptotic setting, the market-specific choice probabilities qj cannot be consistently

estimated by a frequency estimator q̂j in the first step, and hence the two-step methods are

not guaranteed to work. Furthermore, we relax point identification as such, and pursue set

identification of the structural parameters θ and propose to estimate the identified region by

the feasible computational method based on the approach proposed by Schennach (2014).

Let µ denote the probability measure of the observable data Z. Let λ denote the conditional

probability measure of the latent variables q conditional on the observables Z. The joint

distribution λ× µ is defined as the product of the conditional probability λ and the marginal

µ. We assume that (qj, Zj)
M
j=1 is an iid sequence, although we do not specify or estimate the

conditional distribution λ of the latent variable. This implies the observables (Zj)
M
j=1 are an
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iid sample from a cross-section of M markets. Our sampling assumption follows Assumption 1

in Tamer (2003) and Ciliberto and Tamer (2009) and requires the existence of an equilibrium

selection function. We leave the equilibrium selection function unspecified and it could differ

across markets. We examine the question of what can be learned when researchers remain

agnostic about this selection function. One could condition this function on the various

equilibria as a function of observables in which the statistical model becomes one of a mixture.

Without assumptions on equilibrium selection, the model is partially identified as is shown in

Tamer (2003). Bjorn and Vuong (1984) and Bajari et al. (2010) adopt a related approach in

which the equilibrium selection rule is parameterized and estimated.

Let N denote the set of N players, S denote the state space with the cardinality S,

Ai denote the action space of player i ∈ N with the cardinality Ai, A = ×Ni=1Ai denotes

the set of action profiles and the strategy specifies a probability of every action ai ∈ Ai at

every state s ∈ S for every player i ∈ N. The cardinality of the strategy set Q is given

by l = Ai · S · N . Let q(ai,s,i) denote the element of the vector q corresponding to action-

state-player element (ai, s, i), and Ψ(ai,s,i) is the corresponding element of Ψ. We combine the

equilibrium restrictions with the restrictions placed on the strategies by the empirical data.

Let d = 2 · Ai · S ·N . In particular, we consider the following d dimensional function

g(q, Z; θ) =

[ [
q(ai,s,i) −Ψ(ai,s,i)(q; θ)

]
ai∈Ai,s∈S,i∈N[

f (s)q(ai,s,i) − f (ai,s,i)
]
ai∈Ai,s∈S,i∈N

]
, (2)

consisting of the equilibrium and the restrictions placed on the choice probabilities by the

empirical data. Here f (ai,s,i) =
∑T

t=1 1{ati = ai, s
t = s} is the frequency of action-state profile

(ai, s), and f (s) =
∑T

t=1 1{st = s} is the frequency of state s. Note that the function g takes

on values in Rd.

In practice, the dimensionality of the function g can be high which may pose computational

difficulties, or may be not practical for the data at hand. We briefly outline three ways in

which the dimensionality is typically reduced in applied work: First, if the data are not

sufficiently rich to consider a frequency distribution of the vector q for every realisation of the

market-state-action-player set, then the second element in (2) can be replaced with moment

conditions of action variables possibly aggregated across states. In our application, we do so,

and consider first and second moments of the price choice.

Second, to facilitate computation of the d-dimensional strategies q, the strategy function

may be parametrized with a low dimensional parameter vector τ ∈ Q̄ ⊆ Rl̄ with l̄ < l, by

assuming q(ai,s,i) = q(ai, s; τ ). This approach is commonly used for empirical dynamic models

and referred to as a policy function approximation. Equation (1) is then replaced with the

corresponding fixed point equation for τ defined on Q̄.

Finally, for computational reasons it can be useful to aggregate the first element in equa-

tion (2) across action-state-players into a single equation. The equilibrium condition can be

equivalently formulated as a problem of finding zeros of the following one-dimensional equa-

tion: ∑
i∈N

∑
s∈S

∑
ai∈Ai

{q(ai,s,i) −Ψ(ai,s,i)(q; θ)}2 = 0. (3)

We describe our modeling choices for our application in detail in section 5.
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Following Schennach (2014), we define the identified region for the structural parameters

θ as

Θ0 =

{
θ ∈ Θ : inf

λ∈Λ
|Eλ×µ[g(q, Z; θ)]| = 0

}
, (4)

where g is the moment function (2) consisting of the equilibrium and the restrictions placed on

the choice probabilities by the empirical data, and Λ denotes the set of all regular conditional

probability measures supported on the set of choice probabilities. The expectation Eλ×µ[·] is

infeasible to compute, because the true distribution λ of the equilibrium choice probabilities is

unobserved. Instead, we assume that the market-specific choice probabilities q are correlated

latent variables, with their conditional probability measure λ treated as an infinite-dimensional

nuisance parameter. In the empirical method that we plan to pursue as described below, we

will make an inference for the structural parameters θ without having to specify this measure

λ.

Indeed, Schennach (2014) shows that

θ ∈ Θ0 if and only if inf
γ∈Rd
|Eµ[g̃(Z, θ, γ)]| = 0, (5)

for some µ, where

g̃(Z, θ, γ) =

∫
g(q, Z; θ) · exp(γ′g(q, Z; θ))dF (q)∫

exp(γ′g(q, Z; θ))dF (q)
,

with a user-specified probability measure F . We let F be the probability measure of the

random variable uniformly distributed on the set Q, or Q̄ if an approximation is considered.

The following proposition establishes that the conditions in Schennach (2014) apply under the

continuity of Ψ(·; θ) in θ ∈ Θ. A proof is provided in Appendix B.

Proposition S. Suppose that (qj, Zj)
M
j=1 is iid with support Q = [0, 1]l for qj and some finite

set Z for Zj, F is the uniform distribution on Q, and Ψ(·; θ) is continuous at each θ ∈ Θ.

Then the equivalence in (5) holds true.

A similar result can be obtained for the case where q is parametrized by τ ∈ Q̄ (say,

q(τ )), as far as Q̄ is compact and Ψ(q(·); θ) is continuous at each θ ∈ Θ. Note that, while

the intermediate problem (4) requires optimization over the infinite-dimensional set Λ, the

equivalent problem (5) entails optimization over only a finite-dimensional Euclidean space.

This property allows for a practically feasible characterization of the identified region Θ0 for

the structural parameters.

Our exposition focuses on unobservable strategies as nuisance parameters, but readily

accommodates unobserved payoff elements as nuisance parameters as well. Suppose the period

payoff has additionally an additive payoff shock vij, which is time-invariant and market-

specific. The equilibrium equation system (1) becomes q = Ψ(q,v; θ) and the function g

is redefined accordingly. With these modifications in place, the structural parameters can

be partially identified in the presence of unobserved heterogeneity as before. The model in

Tamer (2003) specifies a payoff function for player i of the form Ui(qi,q−i, vi; θ) where the

term vi enters additively, and is known to market participants but not to the econometrician.

Example 2 in Tamer (2003) assumes vi is iid across markets and uniformly distributed on
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the unit interval. Interestingly, in our framework the true distribution of vij need not be

known, which is an important advantage of our method. Furthermore, the distribution can

be a discrete or continuous. This is a notable difference to the approach of Arcidiacono and

Miller (2011) which requires the researcher to use a multinomial distribution for unobserved

heterogeneity.

Next, we illustrate a simple game theoretic example that readily fits to our framework in (1)

and has received considerable attention in the empirical literature. It is a static simultaneous

move game. We shall consider the Cournot model in which output is a choice variable as

it is commonly used in empirical works. Later-on we shall consider a dynamic game of the

newspaper market in Markovian strategies which is also popular in empirical studies. Our

dynamic model includes price as a choice variable.

3 Examples: Equilibrium multiplicity in games

Suppose there are N players. Each player i chooses qi to maximize payoff Ui(q1, . . . , qi, . . . , qN).

The best response function qi = arg maxx Ui(q1, . . . , x, . . . , qN) gives rise to the above fixed

point constraint.

In the Cournot case, firm i produces qi units of output with marginal cost ci(qi) and fixed

cost C. Demand is given by the inverse demand function D(Σjqj). Profit of firm i is given

by Ui(qi,Σj 6=iqj) = [D(Σjqj) − ci(qi)]qi − C. Necessary and sufficient conditions for a unique

equilibrium are given in Gaudet and Salant (1991). Multiplicity of equilibria can arise in the

Cournot model when one or more of these conditions are violated. For example, when there

are externalities in demand or in costs. A cost externality may arise due to learning by doing

with full diffusion, see Fudenberg and Tirole (1983). To illustrate this case briefly, assume

marginal cost is piece-wise constant in which the marginal cost depends additionally (and

fully) on competitors’ output: ci(qi,Σj 6=iqj) = c1, if qi + Σj 6=iqj < Q, and ci(qi,Σj 6=iqj) = c2, if

qi + Σj 6=iqj ≥ Q. For c1 > c2 two types of Cournot equilibria may exist: (i) a high marginal

cost equilibrium in which total industry output is below the learning threshold Q, and (ii) a

low marginal cost equilibrium in which total industry output is above the learning threshold

Q. As before, equilibria can be found using the fixed point equation defined by the best

response mapping.

Multiplicity of equilibria can arise because of firm heterogeneity and fixed costs. The

identity of active firms is then not determined. For example, marginal costs may be such that

in one equilibrium firm 1 is the sole producer, but another equilibrium may have firms 2 and

3 be the sole producers. Observe also that due to firm heterogeneity in marginal costs, the

total output need not be the same across equilibria.

A static model of the newspaper market is studied in Gentzkow et al. (2014). We take

their model and extend it to a dynamic duopoly game of the news paper market explained in

more detail in Section 5. Importantly, we additionally allow for entry and exit, and dynamic

forward-looking behavior by newspapers. The newspaper market has a rich potential for

equilibrium multiplicity for a number of reasons. First, the newspaper market is two-sided,

with revenues coming from subscribers or advertisers. Newspapers can thus position their

product on advertising revenues, on subscriber revenues or something in between.

Second, entry and exit play a key role in the newspaper market which can give rise to
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multiplicity as discussed in Tamer (2003).

Third, newspaper readership is loyal to their favorite newspaper, with readers being re-

luctant to switch their already familiar newspaper. Over time a race to become the leading

newspaper in subscription numbers can emerge which resembles a war of attrition game with

well known multiplicity concerns, see Hendricks et al. (1988). The benefits of being the high

circulation newspaper can be reaped by the winner.

Finally, multiplicity may also arise from unobserved market features. For example, the

proportion of people interested in political news may differ across markets giving rise to

newspapers making distinct pricing and advertising decisions across markets.

4 Econometrics

In this section we discuss inference methods for the identified set Θ0 using the characterization

in (5).

First of all, as described in Appendix F of Schennach (2014), conventional set inference

methods (e.g., Chernozhukov et al. (2007)) may be applied based on a criterion function

constructed from (5). For example, based on an iid sample (Zj)
M
j=1, the GMM-type criterion

can be defined as

Q(θ) = sup
γ∈Rd
−1

2
ḡ(θ, γ)′V̂ (θ, γ)−1ḡ(θ, γ), (6)

where ḡ(θ, γ) = M−1
∑M

j=1 g̃(Zj, θ, γ) and V̂ (θ, γ) is some estimator of V ar(g̃(Z, θ, γ)). From

Appendix F.4 of Schennach (2014), a simple but conservative confidence set is obtained as

Ĉ = {θ ∈ Θ : −2MQ(θ) ≤ χ2
d,α}, (7)

where χ2
d,α is the (1−α)-th quantile of the χ2 distribution with degree of freedom d. Theorem

F.1 of Schennach (2014) showed its asymptotic validity in the sense that limn→∞ Pr{θ /∈ Ĉ} ≤
α for all θ ∈ Θ0.

A drawback of the confidence set Ĉ is: when the dimension d of the moment function g̃ (or

Lagrange multiplier γ) is high, the critical value tends to be large. Recall that d = ms·N ·K+1.

Thus, if the number of states, players, or actions is large, the confidence set may be too large

to obtain a meaningful conclusion.

If Q(θ) is a conventional (continuous updating) GMM criterion function, then one may

employ Kleibergen (2005) statistic that takes a quadratic form of the gradient ∂Q(θ)/∂θ.

However, in our setup the criterion Q(θ) involves the supremum over γ ∈ Rd which may be

achieved at |γ| → ∞. As discussed in Schennach (2014), p. 355, the solution “at infinity”

(|γ| → ∞) often happens when the infimum in (4) is achieved by some discrete distribution.

Here we propose an adapted version of Kleibergen (2005) statistic to the moment function

g̃ defined by the entropic latent variable integration. For each θ, let γ̃(θ) be an estimator of

the solution in (6) that satisfies Assumption K (ii) in Appendix B. Then our test statistic is
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written as

K(θ) = Mḡ(θ, γ̃(θ))′V̂ (θ, γ̃(θ))−1D̂(θ)
[
D̂(θ)′V̂ (θ, γ̃(θ))−1D̂(θ)

]−1

×D̂(θ)′V̂ (θ, γ̃(θ))−1ḡ(θ, γ̃(θ)), (8)

where D̂(θ) is a d× q matrix with the l-th column

∂ḡ(θ, γ̃(θ))

∂θl
− Ĝl(θ, γ̃(θ))′V̂ (θ, γ̃(θ))−1ḡ(θ, γ̃(θ)),

and Ĝl(θ, γ) = M−1
∑M

j=1 g̃(Zj, θ, γ)∂g̃(Zj, θ, γ)/∂θl. The limiting distribution of this statistic

is obtained as follows.

Proposition K. Suppose Assumption K in Appendix B and the assumptions of Proposition

S hold. Then K(θ0)
d→ χ2

q for each θ0 ∈ Θ0.

Based on this statistic, the confidence set is obtained as

C̃ = {θ ∈ Θ : K(θ) ≤ χ2
q,α}, (9)

where χ2
q,α is the (1 − α)-th quantile of the χ2 distribution with degree of freedom q. Note

that the critical value χ2
q,α depends only on the dimension of structural parameters θ and is

robust to the dimension of the moment function g̃. While we suggest this concrete approach

to constructing the confidence set, we remark that this is not the only approach – see Andrews

and Mikusheva (2016) for example.

5 Newspaper market

This section describes the newspaper market, tests for equilibrium multiplicity, and presents

an estimable dynamic model.

The US newspaper market has been studied in the influential work by Gentzkow et al.

(2014). We obtained the publicly available data on circulation, annual subscription price and

advertising price for 1,919 local US newspaper markets at four-year intervals between 1869

and 2004.1

We select a subset of all markets, which may be described as ’potential duopoly markets’,

using the following criteria. We drop 1,045 markets which have at most one newspaper active

in any time period. We drop 336 markets with three or more firms at some point in time.

This leaves us with 538 markets, or 28% of the total number of markets, consisting of local

markets which have zero, one, or two newspapers active at some point in time, but never more

than two newspapers.

5.1 Descriptive sample statistics

Table 1 provides summary statistics for selected variables. All dollar values are measured in

constant 1984 dollars. On average 0.84 newspapers are active in a given year. No newspaper

1The data are publicly available at https://people.stanford.edu/gentzkow/data.
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exists on 31% of time periods, one newspaper is circulated on 54% of time periods and two

newspapers exist on 15% of time periods. The average newspaper has a circulation of about

10,000. The average annual subscription price equals $50 per year. The average advertising

price equals $25 which is measured per line or per inch. Accounting for circulation numbers,

the advertising price per circulated newspaper is small and equals $0.0025. Note that the

subscription price is missing on 15% and the advertising price is missing on 47% of occasions.

Table 1: Descriptive Summary Statistics
Variable No of Obs. Mean Std Dev Min Max

Number of Newspapers 18,830 0.84 0.66 0 2
Circulation 14,747 10,030 22,395 100 762,639
Annual Subscription Price 12,575 49.38 16.99 2.39 269.06
Advertising Price 7,664 24.58 142.17 0.27 3,027.25

Entry and exit are common in this industry. There are in total 1,029 occasions of newspaper

entries and 1,448 occasions of newspaper exits. When there is no active newspaper in the

market, there is about a 5% chance that an entry occurs during a time period. The exit rate

when there is only one active newspaper is of the same magnitude with 5%. The entry and

exit rates are higher when there is one respectively two newspapers in the market. The entry

rate increases to 7% and the exit rate to 32%. That is, when two newspapers are active, which

occurs on 15% of time periods, then there is about a one-third chance that at least one of the

papers exits.

5.2 Dynamic game played by newspapers

Our dynamic duopoly game shares key features with the static model of Gentzkow et al. (2014),

but additionally allows for (i) entry and exit and (ii) dynamic forward-looking behavior by

newspapers. We make the following assumptions.

5.2.1 Model assumptions

Time is discrete, t = 1, 2, . . .. Every period t the following stage game is played: Initially,

newspapers (and the econometrician) i = 1, 2 observe publicly a vector of last period market

shares st−1. Then newspapers make decisions about the following actions: entry/exit (ae1t, a
e
2t)

with aeit ∈ {0, 1}, subscription price (ap1t, a
p
2t), and advertising price (aad1t , a

ad
2t ), simultaneously.

Let at = (ae1t, a
e
2t, a

p
1t, a

p
2t, a

ad
1t , a

ad
2t ) denote the action profile in period t. At the end of the

period, current period market shares st = (s1t, s2t) are realized. The circulation of newspaper

i in period t is equal to sit · S̄, where the total market size S̄ is defined as the maximum

circulation achieved in any year. We assume that S̄ is constant over time. The firms then

collect their period payoffs. Following Gentzkow et al. (2014), the period payoff realization of

newspaper i is specified as equal to revenues coming from two sides of the markets, subscribers

and advertisers, minus costs which are described with a constant marginal cost,

Ui(at, st−1, S̄, ξt;θ) = aeit · S̄ · [sit(at, st−1, ξ
n
t ;θ1) · {apit − θ2 + aadit · ϕ(aadit , ξ

ad
t ; θ3)}+ ξmi ],
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where ξt = (ξn1t, ξ
n
2t, ξ

ad
1t , ξ

ad
2t , ξ

m
1 , ξ

m
2 ) is a vector of subscription demand ξnt = (ξn1 , ξ

n
2 ), advertis-

ing demand ξadt = (ξad1 , ξ
ad
2 ), and market shocks ξm = (ξm1 , ξ

m
2 ) for newspapers. The additive

shock ξmi denotes a time-invariant market-specific unobservable element observed by both

firms but not the econometrician, such as operating fixed costs, as in Tamer (2003), which

can be positive or negative. Total revenues consist of the sum of subscription and adver-

tising revenues. Following most of the empirical games literature we assume that all shocks

are independently distributed. The observable market size S̄ and the unobserved operating

fixed costs (ξm1 , ξ
m
2 ) are time-invariant to account for systematic differences across markets.

The functional form of subscription and advertising demand and their respective shocks are

explained below. The production costs exhibit constant marginal costs θ2. Notice that the

period payoff realization of an in-active newspaper i, aeit = 0, is equal to zero. The parameters

of interest are described by the vector θ = (θ′1, θ2,θ
′
3)′.

Following the literature on dynamic game estimation, see Aguirregabiria and Nevo (2013)

for a survey, we assume that every newspaper i maximizes the sum of expected discounted

future period payoffs with the common discount factor β < 1,

E

[
∞∑
t=1

βt−1Ui(at, st−1, S̄, ξt;θ)

∣∣∣∣∣ s0, S̄, ξi

]
,

where the expectation is taken over realizations of future demand shocks, and ξi are the

elements of the period shock ξ which are observable to newspaper i when decisions are made.

Decisions are made in pure type-symmetric Markovian strategies. A pure type-symmetric

Markovian strategy for newspaper i is a tuple of functions qi = (aei , a
p
i , a

ad
i ), where aei (s, S̄, ξi)

denotes the entry/exit strategy, api (s, S̄, ξi) the price choice, and aadi (s, S̄, ξi) the advertising

choice of newspaper i when markets shares equal s, the observable market attribute is S̄, and

the information available ξi = (ξadi , ξ
m
1 , ξ

m
2 ). The time subscript is omitted for simplicity of

exposition. Let σi denote player i’s belief about the probability distribution of actions and

state transitions. For example, σi(a|s, S̄, ξi) denotes newspaper i’s conditional ex ante belief

that action profile a = (a1, a2) is taken when the information available to newspaper i is given

by (s, S̄, ξi).

A Markov Perfect Equilibrium (MPE) is a pair of strategies and beliefs (q,σ) = (q1,q2, σ1, σ2)

that satisfies two conditions: (i) each player’s strategy qi is a best response to q−i given beliefs

σi, and (ii) each player’s beliefs σi are consistent with strategies q and the underlying shocks

ξ.

5.2.2 Law of motion for states and demand specification

The law of motion of the market shares is stochastic and governed by consumers’ demand

decisions. Newspaper demand is a standard differentiated products logit model while incor-

porating a key feature that readers can be loyal to their favorite newspaper, which is a new

and empirically important feature. Let i′ denote the newspaper purchased by a household b

in period t−1. We model the indirect utility of household b purchasing newspaper i in period

t at price apit as

ub(i, i
′, apit) = θ10 + θ11 · 1{i = i′} − θ1p · apit + ξnit + εitb,

10



where the random utility component ξnit + εitb captures unobserved newspaper demand shock

ξnit, such as the quality shocks to the editorial team which affects all households jointly, and

household specific preference shocks εib. The demand shock ξni is drawn from a mean zero

normal pdf φ(·|σ2
p) and observed after period pricing decisions have been made, and εib is a

log Weibull distributed random shock observed by household b. The parameters of interest

are θ1 = (θ10, θ11, θ1p, σ
2
p)
′, where θ10 is an intercept, θ11 denotes the loyalty or satisfaction

parameter, θ1p is the subscription price sensitivity parameter, and σ2
p is the variance of the

unobserved newspaper shocks ξni . We normalize the utility of not buying a newspaper to

zero, ub(�, i′) = 0. The choice set for household b is determined by newspaper availability ae,

as newspaper i is available for purchase for household b in period t only if the newspaper is

active, aei = 1. With many households per market the purchase probability is given by the

usual logit form

Pr{i, i′|qt, ξnt ;θ1} =
aeit · exp(θ10 + θ11 · 1{i = i′} − θ1p · apit + ξnit

1 +
∑

i′′∈{1,2} a
e
i′′t · exp(θ10 + θ11 · 1{i′′ = i′} − θ1p · api′′t + ξni′′t)

.

The loyalty parameter θ11 reflects the utility increment of buying a newspaper that is already

familiar to the consumers. Notice that consumers make a static (myopic) choice every period

and do not take the effect of their choices on the future into account. We believe that the

assumption of myopic behavior by consumers is reasonable for this market. Inter-temporal

demand linkages arise because of the loyalty effect.

The logit choice probabilities enable us to derive the law of motion of market shares by

taking into account the demand shocks ξn and last period market shares st−1. The market

share realization is given by

si(st−1,q, ξ
n
t ;θ1) =

∑
i′∈{0,1,2}

Pr{i, i′|q, ξnt ;θ1} · si′,t−1.

The expected market share si, with expectations taken over the unobserved newspaper shocks,

equals

si(st−1,q) =

∫∫
si(st−1,q, ξ

n
t ;θ1)φ(ξn1t|σ2

p)φ(ξn2t|σ2
p)dξ

n
1tdξ

n
2t.

The advertisers’ demand is static and given by the following reduced-form linear demand

function:

ϕ(aadit , ξ
ad
t ;θ3) = δad0 · {2 exp(ξadit )− aadit },

where ξadit is a random intercept variable observed prior to the choice of advertising price aadit
and, due to the lack of data on advertising quantities, we assume a slope coefficient of minus

one. The random variable ξadit is drawn from a normal pdf φ(·|θ30, σ
2
ad) with mean θ30 and

variance σ2
ad. The advertising parameter vector is given by θ3 = (θ30, σ

2
ad)
′. Advertising prof-

its, which are measured per inch, per copy and per subscriber, are multiplied by a factor δad0

to obtain advertising profits for the newspaper per subscriber and per year. The traditional

size of US newspapers is half a broadsheet or 15 by 223
4

inches. We assume a maximum of 32

advertising pages per newspaper copy and calibrate δad0 to be about 3.3 million 1 inch adver-

tisements a reader could see per year.2 Gentzkow et al. (2014) consider a related specification

2The maximum number appears in line with estimates. E.S. Turner, The Shocking History of Advertising
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in which the mass of advertisers per newspaper equals one.

With the payoffs and the law of motion for the state variables defined we can now examine

the equilibrium conditions.

5.3 Equilibrium conditions

In equilibrium players follow Markovian strategies (qi)
2
i=1, which maximize the sum of expected

discounted future period payoffs given the beliefs. The strategies determine the following ac-

tions: entry/exit ae, subscription price ap, and advertising price aad. The decisions are made

after observing the own advertising demand ξadi and the market characteristics ξm, but before

demand shocks ξn are observed. The law of motion of the state variables depends on the

choices made by newspapers, consumers and the demand shocks ξn. The informational envi-

ronment is a ’private information’ setting in which newspaper i observes the own advertising

shock but not competitor’s shock. Although not the focus of our analysis, our estimation

approach can be readily extended to encompass flexibility in the underlying informational

environments as in Bergemann et al. (2017). What newspapers known about the advertis-

ing demand shocks ξad when making decisions can be captured by an additional nuisance

parameter.

Following the dynamic model estimation literature we impose a parametric functional form

on price and entry strategies, commonly referred to as a policy function. The parameters for

the strategies are denoted with τ = (τ1, τ2, τ3, τ4, τ5) ∈ Q̄ ⊆ R5 for a compact set Q̄. Using

a parametric functional form facilitates numerical calculations and thus estimation consider-

ably. The unrestricted (non-parametric) case is discussed in Appendix A. The specified policy

function assumes price is non-negative, and when positive, linear in marginal costs plus an

advertising intercept,

api (s, ξ
ad;θ, τ ) = max{(τ1 + τ2si + τ3s3−i) · θ2 + τ4 exp(ξadi )2, 0},

where the parameters (τ1, τ2, τ3) describe the markup over costs attributable to a constant,

own and rival market shares, and the parameter τ4 measures variations due to the advertising

intercept. We specify Q̄ such that τ1 ∈ [0.9, 1.5], τ2 ∈ [−0.2, 0.2], τ3 ∈ [−0.2, 0.2], τ4 ∈
[−0.1, 1]. The own cost mark-up τ1 ranges from slightly below covering marginal cost, to

allow the firm to potentially give up profit today in order to gain market shares and profit in

the future, to a substantial 50% mark-up at the other extreme. This range encompasses the

range of values expected by economic models. Similarly the ranges for τ2, τ3, τ4 are chosen to

encompass a range of possible values predictable by economic models.

The entry/exit strategy is postulated as

aei (s, ξ
ad, ξm;θ, τ ) = 1{si · {api (s, ξ

ad;θ, τ )− θ2 + exp(ξadi )2} − τ5ξ
m
i ≥ 0},

where the parameter τ5 measures the proportional factor of fixed costs that variable profits

need to cover for the newspaper to remain active. We postulate that shut down occurs, and

thus no price is observed, when variable profits do not cover τ5 times fixed costs at the optimal

1965, page 124) calculates that in the mid 19th century New York’s newspapers published 1,456,416 ads in a
year.
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price. We specify τ5 ∈ [0, 2] and ξm ∈ [−1, 1] to account for a wide range of possible values.

Our model assumes that the potential market size S̄ enters multiplicatively, multiplying both

variable profit and cost terms, and thus does not affect strategies.

The advertising price does not have dynamic linkages and can be solved by using a static

first order condition

2 exp(ξadi )− 2aadi = 0, or aadi (s, ξi) = exp(ξadi ).

The parametric class of strategies can be viewed as a linear approximation to the unrestricted

class over the relevant range. Observe that the class could readily made richer, say by including

more parameters capturing higher order terms of state variables, and thus eventually allowing

accurate approximation to the unrestricted class.

Strategies are in equilibrium if strategy q(ai, st; τ ) maximizes newspaper i’s sum of ex-

pected future payoffs taken given the rival’s strategy q(a3−i, st; τ̄ ). As expected payoffs are

differentiable with respect to τj, a necessary condition for a local maximum in terms of the

policy function parameter vector τ is given by the following first order condition

∂Eσi
[∑∞

t=1 β
t−1πi(q(ai, st; τ ),q(a3−i, st; τ̄ ), st−1, S̄, ξt;θ)

∣∣ s0, S̄, ξi
]

∂τj
= 0 for all i, j, (s0, S̄, ξi).

(10)

Adding τj on the left and right hand side of equation (10) gives the j-th equation of the fixed

point problem (1) expressed in terms of our policy function approximation as

Ψ(j,i)(τ , s0, S̄, ξ;θ)− τj = 0 for all i, j, (s0, S̄, ξi). (11)

Notice that this equation system is a necessary but not a sufficient condition for an equilibrium.

For example, the set Q̄ may include parameter vectors for which the sum of expected future

payoffs is zero, because the policy function requires all firms to be inactive. Such parameter

vectors constitute a minimum and are not desirable. In our implementation of the estimator,

we adjust the policy parameter space Q̄ by dropping parameter values τ where zeros to the

condition (10) correspond to a point where the sum of expected future payoffs is zero. Also

notice that equation (11) may have multiple solutions because there can be multiple equilibria.

Pesendorfer and Schmidt-Dengler (2008) analyze a simple dynamic entry-exit game with two

players and find five equilibria. Doraszelski and Satterthwaite (2010) also provide several

examples of games with multiple equilibria. Our estimator for the identified region explicitly

allows for equilibrium multiplicity. Also note that we approximate the sum of expected future

payoffs numerically by forward simulation using a finite number of periods. We evaluate the

equilibrium conditions on a grid S′ of selected states.

Before proceeding with estimation, we first test whether the model and data imply equi-

librium multiplicity in the next section.

5.4 Equilibrium multiplicity

Otsu et al. (2016) propose several statistical test for Markov games to examine whether data

from distinct markets can be pooled. We consider the steady state distribution test which is

the most suitable test for our application. The null hypothesis of the test is that the steady
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state distribution of states is identical across markets. The alternative is the negation of the

null. The negation of null suggests behavioral heterogeneity across markets which may arise

due to equilibrium multiplicity.

In the newspaper market, states are measured with market shares which are observed at

four-year intervals. To construct the test statistic we partition the market share data into

ten equal-sized bins. We calculate the relative frequency of observing individual bins for each

market and for all markets combined. The Q-statistic equals the sum of squared deviations

of individual market share frequencies from the overall frequency. The critical value for the

test statistic is obtained by bootstrapping.

We find that the Q-statistic equals 36.83 while the bootstrapped critical value equals 12.18.

We can reject the null hypothesis of identical market share distributions.

We looked at several robustness checks. First, we considered finer partitions consisting of

20 bins. The resulting Q-statistic equals 37.66 while the critical value equals 12.91. Again,

we can reject the null hypothesis of identical market share distributions.

Second, we divided the data into small and large markets based on the maximum circula-

tion achieved in any year. Small markets are those below the median circulation level, while

large markets are the complementary set. The Q-statistic for small markets equals 23.69 while

the critical value equals 5.93. The Q-statistic for large markets equals 12.53 while the critical

value equals 6.22. We can reject the null hypothesis of identical market share distributions

for both, small and large markets.

Where does the equilibrium multiplicity manifest itself? Equilibrium multiplicity may

manifest itself in heterogeneous entry/exit rates, and in differences in pricing strategies.

We examined the data to illustrate potential multiplicity concerns. Our data include

two newspaper markets which are similar in observable attributes but differ substantially

in the average subscription price level and entry/exit rate. Market 1 has a sample average

subscription price of $56 and zero advertising revenues combined with frequent entry/exit

events, with one arising in every 7 periods. Market 2 has an average subscription price of

$41, advertising revenues playing an important role with an average ad price of $2.5 combined

with infrequent entry/exit events, with one in every 35 periods. A test of the null of equal

subscription prices across these two markets yields a t-statistic of 4.5. The null is rejected at

the one percent significance level.

The coexistence of high-price high-entry-rate equilibria and low-price low-entry-rate equi-

libria, as illustrated in the above example, arises more widely in the data. We considered

a reduced form regression of log price on the logarithm of the long-term entry-rate control-

ling for observable covariates including own and rival’s log market share (state variables), log

population, market-share leader indicator and a set of year fixed-effects. To obtain accurate

long-term entry-rate estimates, we consider all markets with at least 20 observations and

at least one entry event. The regression results reveal a statistically significant and sizable

positive association between the log of subscription price and the log of long-term entry-rates

with a parameter estimate of 0.13 and standard deviation of 0.024. We view this reduced-form

evidence as a confirmation that high-price high-entry-rate equilibria co-exist with low-price

low-entry-rate equilibria in the newspaper market.
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5.5 Estimator and moment condition

We use a two step approach to estimate the parameter vector θ = (θ1, θ2,θ3). The first step

recovers the demand parameters (θ1,θ3) from the market share and price data. The second

step characterizes the identified region of marginal cost parameters θ2. We do not estimate

the discount factor β and instead calibrate it at the value of 0.95 corresponding to annual

time periods.

In the first step we estimate the subscription and advertising demand parameters. Notice

that these parameters are unaffected by equilibrium multiplicity and can be estimated in a

prior step. The subscription demand parameter vector θ1 is estimated using the method of

moments by comparing the mean and variance of the observed and predicted market shares

conditional on state variables. The data include information on the market shares (stj)j,t and

subscription prices (aptj )j,t observed every four years. There is a large number of potential

readers and we assume the subscription price is exogenous for readers.

The advertising demand parameter vector θ3 is estimated from the observed advertising

prices (aad,ti )i,t using the method of moments based on the first order condition, exp(ξadi )−aadi =

0. The data do not include information on the number of advertisings per newspaper, and

our formulation of advertising profits is driven by this functional form assumption.

In the second step we characterize the identified region of marginal cost parameter θ2 using

the method described in section 4 based on the dynamic game and allowing for equilibrium

multiplicity across markets. While the moment condition (2) considers the unrestricted (non-

parametric) case, our application and data lead us to introduce a few additional assumptions

to reduce the complexity of the numerical problem and permits estimation in practice. Com-

putational costs are driven by the dimensionality of the policy function and the dimensionality

of the function g as reflected in the dimensionality of the optimization problem in (6). First,

we employ a policy function parametrizationq(ai,s,i) = q(ai, s; τ ), as described in section 5.4,

which leads to a necessary equilibrium equation (11). Second, we aggregate the equilibrium

equation for across parameters into a single equation, as in equation (3). Third, we consider

two empirical moment conditions consisting of the first and second moments of subscription

prices at the market level. We focus on price as the data are most detailed in this dimension.

We have also experimented including the entry/exit decision, but the data appear less reliable

in this dimension as an absent firm may be interpreted as the data were not recorded that

year or indeed a shut-down decision. The function g for the newspaper market is given by,

g(Z,θ, ξ, τ ) =


∑

i,j,s0
{τj −Ψ(j,i)(τ , s0, S̄, ξi;θ)}2∑
i,s{a

p
i (s, ξ

ad;θ, τ )− apis}∑
i,s{a

p
i (s, ξ

ad;θ, τ )2 − (apis)
2}

 . (12)

The first part vanishes when an equilibrium is reached. The second and third part link

the theoretical strategies to the observables. They vanish when the parameter vector (θ, τ )

achieves a good fit.

We employ the GMM criterion function Q(θ), defined in (6), where

g̃(Z,θ, γ) =

∫
g(Z, τ , S̄, ξ;θ, τ ) · exp(γ′g(Z, τ , S̄, ξ;θ, τ ))dF (τ , ξ)∫

exp(γ′g(Z, τ , S̄, ξ;θ, τ ))dF (τ , ξ)
.
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The conservative confidence region Ĉ is calculated by using (7). With three moment conditions,

the 1% critical value equals 11.345. The confidence region C̃ defined in (9) has the critical

value 6.635.

A key element in our estimator is that the policy functions may differ across markets due

to two reasons: (i) market heterogeneity as captured by observable and unobservable elements

in ξm and (ii) equilibrium multiplicity as captured by parameters τ . Notice though that we

assume newspapers within a market use identical strategies. The latter assumption is made

to simplify the problem and could easily be relaxed by allowing the parameters τ to differ

across newspapers.

Before proceeding, we now clarify the connection between the general methodological sec-

tion (Section 2) and the current empirical framework. As in the general methodological

section, the observed random variables Zt = (at, st) in the current empirical framework con-

sist of actions (specifically, at = (ae1t, a
e
2t; a

p
1t, a

p
2t; a

ad
1t , a

ad
2t ) for entry/exist decision, subscription

price and advertising price) and states (specifically, market shares st = (s1t, s2t)). Therefore,

the probability measure µ introduced in Section 2 denotes the joint probability measure of the

market shares and these actions in the current application. On the other hand, the equilibrium

strategies q in the current empirical framework are determined in turn by the primitive random

variables (τ , ξ), and the conditional probability measure λ introduced in Section 2 therefore

denotes the conditional probability measure of these primitive random variables (τ , ξ) in the

current application rather than that of the strategies q per se. Thus, the Lagrange multipliers

γ from the general methodological section accordingly denote the nuisance parameters repre-

senting the conditional distribution of these primitive random variables (τ , ξ) in the current

context.

Next, we report and illustrate our estimation results.

6 Estimation results

This section reports our estimation results. Our estimation approach explicitly allows for

distinct strategies and unobserved heterogeneity across markets.

In the first step we estimate the demand parameters (θ1,θ3) from the market share and

price data. The following table summarizes our first stage coefficient estimates with standard

errors in parenthesis.

Table 2: Estimates of subscribers and advertisers demand

Parameter θ10 θ11 θ1p σp θ30 σad

Estimate -2.8504 22.586 0.0204 1.3146 -7.5594 0.9644
Standard Deviation (0.021) (6.519) (0.001) (0.008) (0.050) (0.083)

The subscription demand estimates imply a high degree of readership persistence. Readers

are loyal to their newspaper and reluctant to switch. The demand elasticity implied from the

estimates at the average subscription price of 50 at a market share of 1/2 amounts to −0.51.
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Notice that the standard errors are small. In part this is attributable to the fact that the data

are very rich. In practice, it enables us to ignore the first stage estimation error in the second

step.

The second step recovers the underlying cost parameter θ2 by maximizing the GMM-type

criterion function Q(θ), defined in (6), and using moment condition (12). The sum of expected

future payoffs is calculated using 100 sample paths, r = 1, . . . , 100, where each path forward

simulates 80 years using a sequence of independently drawn shocks ξ̃t = (ξn1t, ξ
n
2t, ξ

ad
1t , ξ

ad
2t ) for

t = 1, . . . , 80. The sequences of demand side error draws ξ̃ = ((ξ̃
r

t )
80
t=1)100

r=1 are held fixed

throughout the procedure. The derivative of the value function is calculated numerically by

using a 10% change in the τ parameters. The annual discount factor is calibrated at 0.95.

Computation of the criterion function Q(θ) takes a uniformly and independently drawn

set of parameters τ ∈ Q̄ with Q̄ = [0.9, 1.5] × [−0.2, 0.2] × [−0.2, 0.2] × [−0.1, 1] × [0, 2] and

ξm ∈ [−1, 1] and finds the three-dimensional parameter vector γ that maximizes the right

hand side of (6) for a given value of the parameter θ2. The moment condition g̃ is calculated

by integrating the moment condition g for each market over the parameter values τ , ξ by using

Monte Carlo integration and then summing across all markets. We use 1, 000 uniform draws

to approximate the integral and the draws are held fixed in the procedure. Draws for which

the expected discounted sum of payoffs is zero are omitted. Individual markets have identical

weight in our procedure. We omit data points with missing price or market share data, or

where there are fewer than 10 observations in a market. We assume that the observability of

data is exogenous to our data generating process. In total we use 4, 596 data points for 144

markets.
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Figure 1: Objective function −2MQ(θ2) evaluated at different values of marginal cost
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Figures 1 and 2 plot the value of the criterion function stemming from the statistics (6)

and (8) along with critical values for a grid of marginal cost parameter values θ2. Figure 1

considers the objective function −2MQ(θ2) with critical value c3,α = 11.345. We performed

a grid search over the marginal cost parameter from 0 to 80. Figure 1 illustrates that the

interval [28, 50] constitutes the 99% confidence region for the statistic based on (6).
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Figure 2: Objective function K(θ2) evaluated at different values of marginal cost
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Figure 2 zooms in on the relevant cost range from 30 to 50, and considers the criterion

K(θ2) based on equation and (8) with critical value c1,α = 6.635. The 99% confidence region

for marginal costs is now narrower and becomes the interval [42, 47]. Figure 2 shows that the

adapted criterion, which depends only on the dimension of structural parameters θ and not

on the dimension of the moment function g, gives a much sharper prediction in our case.

Our measure of marginal costs, which excludes operating fixed costs and sunk costs, is

between 84% and 94% of marginal revenue. The implied per-period mark-up estimates are

in line with the ones found in the static model of Gentzkow et al. (2014). A key difference

is that we consider a dynamic framework with loyal readers newspapers in which newspapers

have an additional incentive to price low in order to increase the customer base for the future.

This effect is absent in a static model.
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7 Conclusions

A novel multiplicity-robust inference method has been proposed for a class of economic models

that can be written as a fixed point problem. The class includes static games and dynamic

Markov games. Our proposed method allows for distinct behaviors and strategies across mar-

kets. The main idea is to treat market specific behaviors as correlated latent variables. Instead

of solving the primal problem, we consider the equivalent dual problem which entails opti-

mization over only a finite-dimensional Euclidean space. This property allows for a practically

feasible characterization of the identified region for the structural parameters.

Our application illustrates the feasibility of the inference method by considering dynamic

competition in the US newspaper market. Statistical tests of equilibrium multiplicity confirm

that multiplicity is a concern in these data. In implementing the estimator, we restrict at-

tention to a class of parametric strategies, or policy functions, which allow us to reduce the

complexity of the numerical problem and permits estimation in practice. As was shown in the

static contexts, e.g. Ciliberto and Tamer (2009), multiplicity of equilibria results in partial

identification. We find that the identified region of marginal costs amounts to costs being

between 84% and 94% of the newspaper revenues. Apart from inference on marginal costs,

we also found an evidence of the presence of multiple equilibria.

There is a growing literature emphasizing that marginal costs may not be adequately

inferred based on static equilibrium conditions. See Miller and Weinberg (2017). Correctly

measuring markups is a central issue in applied work and policy applications. Our framework

relaxes the commonly imposed homogeneity assumption by permitting inference of marginal

costs that is robust to equilibrium multiplicity and unobserved heterogeneity across markets.

Additionally, our application explicitly incorporates dynamic forward looking behavior which

due to reader loyalty may enhance mark-up differences across equilibria and markets. Our

application illustrates a practically attractive computational procedure to obtain marginal

cost and mark-up estimates that are robust to behavioral heterogeneity in the cross section.
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A Characterization of equilibrium

This appendix characterizes the equilibrium for the case in which no parametric restrictions

are placed on the equilibrium. The resulting equilibrium equations can be used for a non-

parametric approach. We shall consider entry, advertising, and subscription price choices.

First, observe that it is optimal in state s to be active if doing so achieves the high

continuation value

aei (s0, ξi) =


1

if S̄ ·
[
si(q, s0, ξ

n;θ1) · {api (s0, ξi)− θ2 + aadi (s0, ξi) · ϕ(aadi (s0, ξi), ξ
ad;θ3)}+ ξmi

]
+E

[∑∞
t=2 β

t−1πi(qt, st−1, S̄, ξ;θ)
∣∣ s1, S̄, ξi

]
> 0 + E

[∑∞
t=2 β

t−1πi(qt, st−1, S̄, ξ;θ)
∣∣ (0, s′−i,1), S̄, ξi

]
;

0 otherwise.
(13)

Second, observe that the equilibrium advertising price is characterized by the first order

condition with respect to Ai which implies

aadi (s0, ξi) = exp(ξadi ) (14)

Notice that the continuation value does not enter here as advertising affects only current

period payoffs.

Finally, the equilibrium subscription price is characterized by the necessary first-order

condition consisting of the usual static components plus the change in the future sum of

expected payoffs divided by the change in expected market shares of a one period price change

api (s0, ξi) = θ2 − aadi (s0, ξi)ϕi(a
ad
i (s0, ξi))−

si(q, s0, ξ
n;θ1)

∂si(q, s0, ξ
n;θ1)/∂api

(15)

+
1

∂si(q, s0, ξ
n;θ1)/∂api

∂E
[∑∞

t=2 β
t−1πi(qt, st−1, S, ξ;θ)| s1, S̄, ξi

]
∂api

.

Equations (13)-(15) characterize the set of equilibria. The equations give rise to a fixed

point problem for equilibrium choices. Equation (14) is a static condition which can be solved

separately.

B Mathematical appendix

B.1 Proof of Proposition S

To apply Schennach (2014, Theorem 2.1) in our setup, it is enough to verify that κ(γ, θ) =

E[log
∫

exp(γ′g(q, Z; θ))dF (q)] exists and is twice continuously differentiable with respect to

γ for all γ ∈ Rd.

First, we show existence of κ(γ, θ). Pick any γ ∈ Rd and θ ∈ Θ and denote γ̄ =
∑L

l=1 |γl|.
Since

exp(−γ̄) ≤ exp(γ′g(q, z; θ)) ≤ exp(γ̄),
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for all (q, z) ∈ Q×Z, it holds

−γ̄ ≤ log

∫
exp(γ′g(q, z; θ))F (q) ≤ γ̄,

for all z ∈ Z. Therefore, κ(γ, θ) exists as claimed.

Next, we show that κ(γ, θ) is twice continuously differentiable with respect to γ for

all γ ∈ Rd. Since Ψ(·, θ) is continuous by assumption, so is g(·, z; θ) for each z ∈ Z.

Then the derivatives ∂
∂γ

exp(γ′g(·, z; θ)) = exp(γ′g(·, z; θ))g(·, z; θ) and ∂2

∂γ∂γ′
exp(γ′g(·, z; θ)) =

exp(γ′g(·, z; θ))g(·, z; θ)g(·, z; θ)′ are also continuous for each z ∈ Z. Thus, the following inte-

grals exists for each z ∈ Z

∂

∂γ

∫
exp(γ′g(q, z; θ))dF (q) =

∫
exp(γ′g(q, z; θ))g(q, z; θ)dF (q),

∂2

∂γ∂γ′

∫
exp(γ′g(q, z; θ))dF (q) =

∫
exp(γ′g(q, z; θ))g(q, z; θ)g(q, z; θ)′dF (q).

Now consider the functions δk(z) = ∂
∂γk

log
∫

exp(γ′g(q, z; θ))dF (q) and

δkl(z) = ∂2

∂γl∂γk
log
∫

exp(γ′g(q, z; θ))dF (q) for all k, l = 1, . . . , d. By the above integrals, we

obtain

δk(z) =

∫
gk(q, z; θ) exp(γ′g(q, z; θ))dF (q)∫

exp(γ′g(q, z; θ))dF (q)
,

δkl(z) =

∫
gl(q, z; θ) exp(γ′g(q, z; θ))dF (q)∫

exp(γ′g(q, z; θ))dF (q)
·
∫
gk(q, z; θ) exp(γ′g(q, z; θ))dF (q)∫

exp(γ′g(q, z; θ))dF (q)

−
∫
gl(q, z; θ)gk(q, z; θ) exp(γ′g(q, z; θ))dF (q)[∫

exp(γ′g(q, z; θ))dF (q)
]2 .

Thus, we can deduce |δk(z)| ≤ exp(2γ̄) and |δkl(z)| ≤ exp(4γ̄) + exp(3γ̄) < ∞ for all z ∈ Z
and k, l = 1, · · · , d. Therefore, κ(γ, θ) is twice continuously differentiable and the conclusion

follows.

B.2 Assumptions and proof for Proposition K

Let R̄ = R∪{+∞}∪{−∞} and define γ0 ∈ R̄d such that infγ∈Rd |Eµ[g̃(Z, θ, γ)]| = limγ→γ0 |Eµ[g̃(Z, θ, γ)]|.
Note that elements of γ0 may be infinity. Also let G̃k(z, θ, γ) = ∂

∂θk
g̃(z, θ, γ), G̃(·, θ, γ) =

[G̃1(·, θ, γ), . . . , G̃q(·, θ, γ)], dz be the cardinality of Z, and GMf(·) =
√
M{M−1

∑M
j=1 f(Zj)−

E[f(Z)]} for a function f on Z.

For every θ0 ∈ Θ0, we impose the following assumptions.

Assumption K.

(i) The limits g̃(z, θ0, γ0) = limγ→γ0 g̃(z, θ0, γ) and G̃k(z, θ0, γ0) = limγ→γ0 G̃(z, θ0, γ) exist for

each z ∈ Z and k ∈ {1, . . . , q}.
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(ii) There exist γ̃(θ0) such that as M →∞,

ζM(θ0) =



GM g̃(·, θ0, γ0)

vec(
√
M{g̃(z, θ0, γ̃(θ0))− g̃(z, θ0, γ0)}z∈Z)

vec(GMG̃(·, θ0, γ0))

vec(
√
M{G̃1(·, θ0, γ̃(θ0))− G̃1(·, θ0, γ0)}z∈Z)

...

vec(
√
M{G̃q(·, θ0, γ̃(θ0))− G̃q(·, θ0, γ0)}z∈Z)


d→ N(0,Ω(θ0)),

for some variance matrix Ω(θ0).

(iii) There is a consistent estimator Ω̂(θ0) of Ω(θ0).

(iv) The matrix

[Id, (vecP{Z = z}z∈Z)′]⊗ IdΩ†(θ0)[Id, (vecP{Z = z}z∈Z)′ ⊗ Id]′

has the full rank, where Ω†(θ0) denotes the top left d(1 + dz)-by-d(1 + dz) portion of

Ω(θ0).

Assumption K (i) is on the tail behaviors of the tilted moment function g̃ and its derivatives

G̃ with respect to γ. Assumption K (ii) is a high level condition for the empirical processes

of g̃ and G̃. This can be verified using a central limit theorem under finite higher moments

of g̃ and G̃. Assumption K (iii) is another high level condition for the consistent variance

estimation. Assumption (iv) is a local identification condition.

Under these assumptions and the ones imposed for Proposition S, we can show that K(θ0)

defined in (8) converges in distribution to the χ2
q distribution.

For the rest of this subsection, we suppress θ0 in the arguments of functions. For example,

g̃(·, γ̃) means g̃(·, θ0, γ̃(θ0)). For Proposition K, it is enough to show the following lemmas.

Lemma K1. Suppose Assumption K (i)-(ii) and the assumptions for Proposition S hold.

Then

GM{g̃(·, γ̃)′, G̃1(·, γ̃)′, · · · , G̃q(·, γ̃)′} = GM{g̃(·, γ0)′, G̃1(·, γ0)′, · · · , G̃q(·, γ0)′}+ op(1).

Lemma K2. Suppose Assumption K (i)-(ii) and the assumptions for Proposition S hold.

Then 
1√
M

∑M
j=1{g̃(Zj, γ̃)− E[g̃(Z, γ0)]}

1√
M

∑M
j=1{G̃1(Zj, γ̃)− E[G̃1(Z, γ0)]}

...
1√
M

∑M
j=1{G̃q(Zj, γ̃)− E[G̃q(Z, γ0)]}

 d→ N(0, RΩR′),

where

R =

(
Id (vecP{Z = z}z∈Z)′ ⊗ Idg 0 0

0 0 Iq ⊗ Id Iq ⊗ ((vecP{Z = z}z∈Z)′ ⊗ Id)

)
.
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The above variance matrix RΩR′ can be estimated by R̂Ω̂R̂′, where Ω̂ is given by Assump-

tion K (iii) and R̂ is obtained by replacing P{Z = z} in the definition of R with the sample

frequency M−1
∑M

j=1 I{Zj = z}. Based on the definition, we decompose

RΩR′ =

(
V V gG

V Gg V GG

)
, R̂Ω̂R̂′ =

(
V̂ V̂ gG

V̂ Gg V̂ GG

)
,

where V̂ is a d × d matrix, V̂ Gg = [V̂ G1g′, . . . , V̂ Gqg′]′ is a dq × d matrices, V̂ G1g′ is a d × d
matrix, and so on. Then we define

D =
[
E[G̃1(Z, γ0)]− V G1gV −1E[g̃(Z, γ0)], . . . , E[G̃q(Z, γ0)]− V GqgV −1E[g̃(Z, γ0)]

]
,

D̂ =

[
1

M

M∑
j=1

G̃1(Zj, γ̃)− V̂ G1gV̂ −1 1

M

M∑
j=1

g̃(Zj, γ̃),

. . . ,
1

M

M∑
j=1

G̃q(Zj, γ̃)− V̂ GqgV̂ −1 1

M

M∑
j=1

g̃(Zj, γ̃)

]
.

Note that D is well-defined under Assumption K (iv). We obtain the following orthogonal

decomposition of the joint asymptotic normality result.

Lemma K3. Suppose Assumption K and the assumptions for Proposition S hold. Then

1√
M

M∑
j=1

g̃(Zj, γ̃)
d→ ξ ∼ N(0, V ),

√
Mvec(D̂ −D)

d→ ξD ∼ N(0, VD),

where ξ and ξD are independent and VD = V GG − V GgV −1V gV .

Based on these lemmas, we obtain(
1√
M

M∑
j=1

g̃(Zj, γ̃)′V̂ −1D̂

)
(D̂′V̂ −1D̂)−1/2 d→ N(0, Iq),

and the conclusion of Proposition K follows. Below we provide proof for the above lemmas.

Proof of Lemma K1

Pick any j = 1, . . . , d. Let G̃j = {g̃j(·, γ) : γ ∈ Rd}. Since Z is a finite set yielding the

bracketing number N[](ε, G̃j, L2(µ)) ≤ (2/ε)dz , G̃j is µ-Donsker. Also note that g̃j(·, γ0) ∈
L2(µ) is true because g̃j is bounded on the finite set Z. Furthermore, Assumption K (ii)

implies
[∫
{g̃j(z, γ̃)− g̃j(z, γ0)}2dµ(z)

] 1
2

p→ 0. Therefore, we have GM{g̃j(·, γ̃)− g̃j(·, γ0)} p→ 0

by van der Vaart (1998, Lemma 19.24).

Similarly, Assumption K (ii) implies

[∫ (∂g̃j(z,γ̃)

∂θk
− ∂g̃j(z,γ0)

∂θk

)2

dµ(z)

] 1
2 p→ 0, and we have
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GM

(
∂g̃j(·,γ̃)

∂θk
− ∂g̃j(·,γ0)

∂θk

)
p→ 0 for each k = 1, . . . , q by van der Vaart (1998; Lemma 19.24). The

conclusion therefore follows.

Proof of Lemma K2

By Lemma K1,

1√
M

M∑
j=1

{g̃(Zj, γ̃)− E[g̃(Z, γ0)]} = GM g̃(·, γ0) +
√
ME[g̃(Z, γ̃)− g̃(Z, γ0)] + op(1),

1√
M

M∑
j=1

{G̃1(Zj, γ̃)− E[G̃1(Z, γ0)]} = GMG̃k(·, γ0) +
√
ME[G̃k(·, γ̃)− G̃k(·, γ0)] + op(1),

for each k = 1, . . . , q. Thus, we can write
1√
M

∑M
j=1{g̃(Zj, γ̃)− E[g̃(Z, γ0)]}

1√
M

∑M
j=1{G̃1(Zj, γ̃)− E[G̃1(Z, γ0)]}

...
1√
M

∑M
j=1{G̃q(Zj, γ̃)− E[G̃q(Z, γ0)]}

 = RζM + op(1),

and the conclusion follows by Assumption K (ii).

Proof of Lemma K3

By Assumption K (iii), we have(
Id 0

−V̂ GgV̂ −1 Idq

)
p→
(

Id 0

−V GgV −1 Idq

)
.

Therefore, the claimed result follows from Lemma K2 and Slutsky’s theorem.

B.3 Computation of γ̃(θ)

Take any θ0 ∈ Θ. To implement statistical inference based on the statistic K(θ0) in (8), we

need to compute γ̃(θ0). If the infimum infγ∈Rd |E[g̃(Z, θ0, γ)]| is achieved by an interior point,

we can employ the solution of (6) as γ̃(θ0), which satisfies Assumption K (ii) under mild

regularity conditions. However, in our setup, it is often the case that the infimum is achieved

“at infinity”, i.e., γ0 ∈ R̄d with |γ0| = ∞. In this section, we propose a method to compute

γ̃(θ0) in such a scenario. More precisely, we consider the following setup.

Assumption G.

(i) There exist positive constants α and β such that infγ:|γ|≤r |E[g̃(Z, θ0, γ)]|2 ≥ 1
α+rβ

for all

r > 0.

(ii) There exists a positive constant ϕ such that

|E[g̃l(·, θ0, γ)]| ≥ ϕ
∑
z∈Z

|g̃l(z, θ0, γ)− g̃l(z, θ0, γ0)|
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for all γ ∈ Rd and l = 1, . . . , d.

(iii) There exist positive constants a and b such that for any stochastic sequence {γM} satis-

fying g̃(z, θ0, γM)
p→ g̃(z, θ0, γ0) over z ∈ Z, it holds:

|g̃l(z, θ0, γM)− g̃l(z, θ0, γ0)| ≤ a

|γM |b
w.p.a.1,∣∣∣∣∂g̃l(z, θ0, γM)

∂θk
− ∂g̃l(z, θ0, γ0)

∂θk

∣∣∣∣ ≤ a

|γM |b
w.p.a.1,

for all z ∈ Z, k = 1, . . . , q, and l = 1, . . . , d.

Assumption G (i) requires that γ0 is at infinity in the sense that the objective function is

bounded away from zero for small |γ|. Assumption G (ii) guarantees that γ0 uniquely achieves

the moment equality E[g̃(·, θ0, γ)] = 0. Under this assumption, we propose to choose γ̃(θ0) as

γ̂M(θ0) = arg min
γ:rM≤|γ|≤RM

|ḡ(θ0, γ)|2

|γ|
, (16)

where rM and RM are tuning constants satisfying: M−(1+β−b)/2brM → ∞, M−(1+β)/2bRM →
c ∈ (0,∞), and rM/RM → 0 as M → ∞. For example, one can choose rM ∝ M (1+β−b/2)/2b

and RM ∝M (1+β)/2b.

Under Assumption G, we can show that the following result on γ̂M(θ0).

Proposition G. Under Assumption G,

√
M |g̃l(z, θ0, γ̂M(θ0)− g̃l(z, θ0, γ0)| p→ 0,

√
M

∣∣∣∣∂g̃l(z, θ0, γ̂M(θ0))

∂θk
− ∂g̃l(z, θ0, γ0)

∂θk

∣∣∣∣ p→ 0,

for all z ∈ Z, k = 1, . . . , q, and l = 1, . . . , d.

This proposition implies that the limiting distribution of ζM(θ0) in Assumption K (ii) is

determined by GM g̃(·, θ0, γ0) and vec(GMG̃(·, θ0, γ0)) and Assumption K (ii) is easily satisfied.

Proof of Proposition G

Pick any B > 0, z ∈ Z, and l = 1, . . . , d. By Assumption G (iii) and Lemma G below, we

have

Pr{
√
M |g̃l(z, θ0, γ̂M(θ0))− g̃l(z; θ0, γ0)| ≥ B}

≤ Pr{|γ̂M(θ0)| ≤ B1M
1
2b}+ o(1)

≤ C√
M

RM
d

(
α +Bβ

1M
β
2b

)
B1M

1
2b

rM

[
RM
d
−
(
α +Bβ

1M
β
2b

)
B1M

1
2b

] + o(1),

for some C > 0, where B1 = (a/B)1/b. Since the last expression converges to zero due to

the conditions of rM and RM , we obtain the first statement of this proposition. The second

statement follows by similar arguments.
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It remains to show the following lemma.

Lemma G. Under Assumption G (i)-(ii), there exists a positive constant C such that

Pr{|γ̂M(θ0)| ≤ c} 6 C√
M

RM
d

(α + cβ)c

rM
[
RM
d
− (α + cβ)c

] ,
for all c ∈ (rM , RM), rM > 0, and RM > rM satisfying RM/d > (α+cβ)c, where C is universal

across rM , RM , and r.

Proof of Lemma G

Let ǧM(θ, γ) =
√

rM
|γ| ḡ(θ, γ). Pick any θ0 ∈ Θ0 and c ∈ (rM , RM). Observe that

Pr{|γ̂M(θ0)| ≤ c} ≤ Pr

{
inf

γ:rM≤|γ|≤c
|ǧM(θ0, γ)|2 6 |ǧM(θ0, γc)|2

}
≤ Pr

{
inf

γ:rM≤|γ|≤c
|E[ǧM(θ0, γ)]|2 − |E[ǧM(θ0, γc)]|2 ≤ 2

d∑
l=1

sup
γ:rM≤|γ|

|ǧM,l(θ0, γ)2 − (E[ǧM,l(θ0, γ)])2|

}

≤ Pr

{
inf

γ:rM≤|γ|≤c
|E[ǧM(θ0, γ)]|2 − |E[ǧM(θ0, γc)]|2 ≤ 4

d∑
l=1

sup
γ:rM≤|γ|

|ǧM,l(θ0, γ)− E[ǧM,l(θ0, γ)]|

}

≤ 4√
M

∑d
l=1 E

[
supγ:rM≤|γ|

√
M |ǧM,l(θ0, γ)− E[ǧM,l(θ0, γ)]|

]
infγ:rM≤|γ|≤c |E[ǧM(θ0, γ)]|2 − |E[ǧM(θ0, γc)]|2

,

for any γc satisfying c ≤ |γc| ≤ RM , where the first inequality follows from the definition of

γ̂M(θ0), the second inequality follows from the triangle inequality, the third inequality follows

from |X2 − Y 2| 6 max 2{|X|, |Y |} · |X − Y |, and the last inequality follows from the Markov

inequality. Since it holds for any γc satisfying c ≤ |γc| ≤ RM , we can take γc with |γc| = RM

to satisfy

|E[ǧM(θ0, γc)]|2 ≤ d
rM
RM

.

By Assumption G (ii), we also have

inf
γ:rM≤|γ|≤c

|E[ǧM(θ0, γ)]|2 ≥ rM
(α + cβ)c

.

Furthermore, note that the class Gl =

{√
rM
|γ| g̃l(, ·θ, γ) : |γ| ≥ rM

}
of functions has the uniform

covering number bounded by (1/ε)dz and the envelop function of Gl has a bounded L2(µ)

norm because g̃l(, ·θ, γ) is bounded. Therefore, by van der Vaart and Wellner (1996, Theorem

2.14.1), there exists a positive constant C0 such that

E

[
sup

γ:rM≤|γ|

√
rM
|γ|
√
M |ḡl(θ0, γ)− E[ḡl(θ0, γ)]|

]
≤ C0,

where C0 is universal across rM and RM . Combining these results, we obtain the conclusion.
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