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Abstract: The Selkov system, which is typically employed to model glycolysis phenomena, unveils
some rich dynamics and some other complex formations in biochemical reactions. In the present work,
the synchronization problem of the glycolysis reaction-diffusion model is handled and examined.
In addition, a novel convenient control law is designed in a linear form and, on the other hand,
the stability of the associated error system is demonstrated through utilizing a suitable Lyapunov
function. To illustrate the applicability of the proposed schemes, several numerical simulations are
performed in one- and two-spatial dimensions.

Keywords: synchronization; linear control; asymptotic stability; reaction-diffusion model; lyapunov
function; Selkov system; glycolysis system

1. Introduction

The development of control laws to achieve synchronization is one of the most valuable
aspects in the analysis of the different behaviors of natural systems. Synchronization is
necessary to increase our knowledge of a wide variety of naturalistic problems designed to
meet the needs of biological processes associated, for instance, with living cells and the
neuronal network technology. Such schemes can also be efficiently employed to improve
the power of lasers, to encode and decode electronic messages, and to establish secure
methods of communication [1]. In recent years, the synchronization of one-dimensional
equations has been extensively examined and is broadly well-understood. In this regard,
many methods and schemes have been developed to achieve the synchronization of
ordinary differential equations (ODEs) and discrete maps, including the linear or nonlinear
control scheme, the adaptive control approach, the active control scheme, the feedback
control method [2–15], and various other types of synchronization, which can be found
in [16–31]. However, the research dealing with synchronizing spatially extended systems
described by reaction-diffusion systems (RDSs) is still limited.

Differential equations have wide applications in various engineering and science
disciplines [32,33]. In chemistry, several chemical reaction models are described in the form
of differential equations. Glycolysis, a basic chemical reaction occurring in the cytosol, is
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considered to be the typical example of a metabolic pathway for cellular energy [34]. The
abundance of glycolysis makes it one of the ancient metabolic pathways for providing
energy via the breakdown of glucose C6H12O6, into pyruvate, CH3COCOO− + H+ [35].
The overall reaction of glycolysis is represented as follows [36]:

C6H12O6 + 2NAD+ + 2ADP + 2P→ 2pyruvicacid,

(CH3(C = O)COOH + 2ATP + 2NADH + 2H+).

Thus, glycolysis is a source of protons, and under increased oxygen-independent
energy demands (during the exercise of muscles or cell proliferation), glycolysis may
generate more protons and decrease the cytoplasmic pH. Selkov [37] presented a basic
system that makes it possible to explain most experimental data on single-frequency
oscillations in glycolysis qualitatively and which contains coupled first-order differential
equations [38]. This system was then solved numerically by Mickens with the nonstandard
finite difference scheme which preserves the property of positivity [39]. In the meantime,
RDSs are usually used to describe certain realistic natural phenomena that can be involved
in various processes such as neural networks, image processing, chemical reactions, and
ecosystems. The presence of spatial variable means that such systems are frequently used in
order to understand some irregular patterns such as self-replicating spikes, self-excitation,
and spatio-temporal chaos. From this point of view and to further realize a wide variety
of real-world problems, the importance of studying synchronization is highlighted for
this model. In recent times, several considerable efforts have been made to examine the
synchronization of RDSs, for example, in the bacterial cultures model [40], multi-layered
natural networks [41], the FitzHugh–Nagumo system [42], and the Newton–Leipnik spatial-
temporal chaotic system [43]. Moreover, appropriate controls have also been proposed for
synchronizing different classes of partial differential equations (PDEs); see [44–49].

The present study concerns the analysis of the synchronization and control of the
glycolysis model, which has the following general form:{

∂u1
∂t = d1∆u1 + f (t, u1, u2) x ∈ Ω, t > 0

∂u1
∂t = d2∆u2 + g(t, u1, u2)

(1)

where
f (t, u1, u2) = bu2 − u1 + u2

1u2

g(t, u1, u2) = a− bu2 − u2
1u2

and where a, b, d1, d2 are positive constants, and Ω ⊂ Rn is a smoothly bounded domain
with boundary ∂Ω, n ≥ 1.

The free-diffusion model was the first original glycolysis model proposed by E.E.
Selkov to describe the metabolic pathway that converts a type of sugar (glucose) into cellu-
lar energy (ATP). For a detailed background on the derivation and biochemical significance
of model (1), we encourage the interested reader to consult the excellent overviews given
in [50].

The glycolysis model (1) has been extensively studied in recent decades, but most
research has been dedicated to the dynamics and the behavior of solutions including
steady-state solutions, spatio-temporal periodic solutions, pattern formation, and global
attractors [51–54]. Nevertheless, to the authors’ knowledge, this is the first study dealing
with the synchronization and control of the RDS (1). This has motivated us to develop a
suitable method to deal with the global synchronization of two glycolysis models. The
remainder of this work is arranged in the following manner. In the next section, we discuss
the existence and the uniform boundedness of the system’s solution,which will be surely
useful for the ensuing parts. In Section 3, we design an appropriate control law in its
linear form and furthermore prove the global asymptotic stability of the trivial solution
associated with the error synchronization system, which consequently implies a global
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synchronization of a couple of systems that have the same form of system (1). Section 4
presents some applications and numerical simulations that demonstrate our findings.
Finally, Section 5 is devoted to stating the conclusion of this work.

2. Problem Formulation

This section examines model (1) in view of two main aspects—the existence and the
boundedness of its solution. Our analysis is based on a significant result associated with
this type of system, which was obtained by Selwyn et al. in [55]. First, we assume that
system (1) satisfies the following non-negative and uniformly bounded initial conditions:

0 ≤ u1(x, 0), u2(x, 0) ≤ M0, for all x ∈ Ω, where M0 > 0, (2)

and the following homogeneous Neumann boundary conditions:

∂u1

∂ν
=

∂u2

∂ν
= 0, for all x ∈ ∂Ω, t > 0, (3)

where ν is the unit vector normal to ∂Ω. One might observe that system (1) satisfies the
following properties:

1. Based on proposition 1 in [55] and since f , g : [0, ∞)3 → R are continuous and
differentiable functions in which f (t, 0, η) ≥ 0 and g(t, ξ, 0) ≥ 0, for all t, ξ, η ≥ 0, we
can deduce that system (1) has a local unique solution (u1, u2) on Ω× [0, T∗), and
furthermore there are two continuous functions N1, N2 : [0, T∗)→ [0, ∞) such that:

0 ≤ u1(x, t) ≤ N1(t), 0 ≤ u2(x, t) ≤ N2(t), where (x, t) ∈ Ω× [0, T∗).

2. There is a constant γ ≥ 1 and a continuous function L0 : [0, ∞)2 → [0, ∞) such that
|g(t, ξ, η)| ≤ L0(t, r)(1 + η)γ, for all t, ξ, η ≥ 0 with ξ ≤ r. This, consequently, implies:

|g(t, ξ, η)| ≤ a + bη + ξ2η ≤ (a + b + ξ)(1 + η)2.

3. There is a continuous function µ0 : [0, ∞)2 → [0, ∞) so that f (t, ξ, η) + g(t, ξ, η) ≤
µ0(t, r), ∀t, ξ, η ≥ 0 with ξ ≤ r. This, consequently, implies:

f (t, ξ, η) + g(t, ξ, η) = a− ξ ≤ a.

4. The solution u1(x, t) is still uniformly bounded as a function of t in each bounded
interval. To see this, one can refer to Lemma 2.2 in [54].

In fact, the aforementioned properties (1–4) can lead one to use Theorem 2, given
in [55], and then to prove the next lemma.

Lemma 1. System (1) has a global continuous unique solution (u1, u2), which is uniformly
bounded in Ω× [0, ∞), and ∃M ∈ R+ such that:

0 ≤ u1(x, t), u2(x, t) ≤ M, for all x ∈ Ω and t > 0.

3. Synchronization

This section takes into consideration the drive-response formalism aiming to accom-
plish the synchronization of two coupled glycolysis systems. In this approach, we denote
system (1) as the drive system and the other controlled system as the response system. Then,
an appropriate controller is designed to force the errors of synchronization to converge to
zero. The response system associated with system (1) can be given as follows:

∂v1
∂t = d1∆v1 + f (t, v1, v2) + U1, x ∈ Ω, t > 0

∂v2
∂t = d2∆v2 + g(t, v1, v2) + U2, x ∈ Ω, t > 0

∂v1
∂ν = ∂v2

∂ν = 0 x ∈ Ω, t > 0
(4)
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where vi = vi(x, t), (i = 1, 2) are the states of system (4) and U = (U1, U2) are the target
controls that need to be adjusted immediately.

As we have mentioned before, one of the key objectives of this work is to design an
appropriate control U for the purpose of forcing the error of synchronization e(x, t) =
(e1(x, t), e2(x, t)) to converge to zero, in which this error can be defined via the differences
between the states of system (1) and (4) as follows:

(e1, e2) = (v1 − u1, v2 − u2). (5)

In order to move forward to our next theoretical results, the definition below is stated
for completeness.

Definition 1. The drive and response systems given, respectively, in (1) and (4) are considered to
be globally synchronized if

lim
t→∞
‖e(x, t)‖L2 = 0.

Lemma 2. There exists a positive constant K such that∣∣∣v2v2
1 − u2u2

1

∣∣∣ ≤ K(|v1 − u1|+ |v2 − u2|).

Proof. To begin with this proof, we first estimate the term
∣∣v2v2

1 − u2u2
1

∣∣ as follows:∣∣∣v2v2
1 − u2u2

1

∣∣∣ ≤ ∣∣∣v2v2
1 − u2v2

1

∣∣∣+ ∣∣∣u2v2
1 − u2u2

1

∣∣∣
≤

∣∣∣v2
1

∣∣∣|v2 − u2|+ |u2||v1 − u1||v1 + u1|

≤
∣∣∣v2

1

∣∣∣|v2 − u2|+ |u2|(|u1|+ |v1|)|v1 − u1|.

Du to Lemma 1, we observe that the states u1, u2, and v1 are uniformly bounded. Therefore,
there exist three positive constants K1, K2, and K3 such that:

|u1| ≤ K1, |u2| ≤ K2, |v1| ≤ K3.

Thus, we have ∣∣∣v2v2
1 − u2u2

1

∣∣∣ ≤ K2
3|v2 − u2|+ K2(K1 + K3)|v1 − u1|.

To finish the proof, one can choose a constant K as follows:

K = max{K2
3, K2(K1 + K3)},

and hence the desired result will be held.

Theorem 1. The drive and response systems given, respectively, in (1) and (4) are globally syn-
chronized according to the control law:

U1 = (2K + 1)e1 − be2, (6)

U2 = (2K + b)e2. (7)

Proof. Using notation (5), we can obtain the following error system:{
∂e1
∂t = d1∆e1 + be2 − e1 + v2

1v2 − u2
1u2 + U1, in Ω×R+,

∂e2
∂t = d2∆e2 − be2 − v2

1v2 + u2
1u2 + U2, in Ω×R+.

(8)
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Substituting the control law given in (6) and (7) into the above system yields:{
∂e1
∂t = d1∆e1 − 2Ke1 + v2

1v2 − u2
1u2, in Ω×R+,

∂e2
∂t = d2∆e2 − 2Ke2 − v2

1v2 + u2
1u2, in Ω×R+,

(9)

which satisfies the zero Neumann boundary conditions. Now, we present our Lyapunov
function as follows:

V =
1
2

∫
Ω

(e2
1 + e2

2).

This exactly implies:

∂V
∂t

=
∫
Ω

(e1
∂e1

∂t
+ e2

∂e2

∂t
) =

∫
Ω

(d1e1∆e1 + d2e2∆e2 − 2K(e2
1 + e2

2) +
(

v2
1v2 − u2

1u2

)
(e1 − e2).

Consequently, using Green’s identity leads us to obtain the following assertion:

∂V
∂t
≤−

∫
Ω

d1|∇e1|2dx +
∫

∂Ω
d1e1

∂e1

∂η
dσ−

∫
Ω

d2|∇e2|2dx

+
∫

∂Ω
d2e2

∂e2

∂η
dσ− 2K

∫
Ω

(
e2

1 + e2
2

)
dx +

∫
Ω

∣∣∣v2
1v2 − u2

1u2

∣∣∣|e1 − e2|dx.

With the help of Lemma 2, together with the Neumann boundary conditions, the term ∂V
∂t

will be turned to be in the following estimation:

∂V
∂t
≤ −

∫
Ω

d1|∇e1|2dx−
∫

Ω
d2|∇e2|2dx− 2K

∫
Ω

(
e2

1 + e2
2

)
dx

= K|e1 + e2||e1 − e2|

≤ −
∫

Ω

[
d1|∇e1|2 + d2|∇e2|2)

]
− 2K

∫
Ω

(
|e1|2 + |e2|2

)
dx + K

∫
Ω
(|e1|+ |e2|)2dx

= −
∫

Ω

[
d1|∇e1|2 + d2|∇e2|2)

]
− K

∫
Ω
(|e1| − |e2|)2dx.

That is;
∂V
∂t

< 0.

From the perspective of Lyapunov’s stability theory, which asserts the global asymptotic
stability of the trivial solution to the error system (9), the drive system (1) and the response
system (4) are globally synchronized, which completes the proof.

4. Numerical Simulations

In this section, we demonstrate some computational examples in one- and two-
dimensional space to exemplify the practicability of the synchronization scheme proposed
in this work. These simulations are carried out using some prepared codes in MAT-
LAB based on the finite difference method (FDM), see [56,57] for a full overview of this
scheme and how it could be implemented in synchronization problems. First of all, let
us take x ∈ Ω = [0, 10] with a step size equal to 0.2, t ∈ [0, 100] with a step size equal
to 4, (d1, d2, a, b) = (0.01, 1, 3.5, 0.25) and the initial conditions associated with the drive
system (1) as follows:

(u1(x, 0), u2(x, 0)) = (3.5 + 0.1 sin(x), 0.28 + 0.1 sin(x)), (10)
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and the initial conditions associated with the response system (4) as follows:

(v1(x, 0), v2(x, 0)) = (1 + 0.5 sin(0.2x), 0.6 + 0.5 sin(0.2x)). (11)

The spatiotemporal solutions of system (1) and system (4) with homogeneous Neumann
boundary conditions are depicted in Figures 1 and 2, whereas Figures 3 and 4 show the
pattern formation associated with the two systems (1) and (4), respectively. In accordance
with Theorem 1, if we choose K = 1

5 , then the two controllers U1 and U2 will be designed
as follows:

U1 =
5
7
(v1 − u1)− b(v2 − u2),

U2 =
5b + 2

5
(v2 − u2),

and then system (1) and system (4) will be globally synchronized. To illustrate this numeri-
cally, the spatiotemporal solutions of the error synchronization system (5) are provided in
Figures 5 and 6 in one- and two-dimensional space. Indeed, this evolution clearly indicates
that the errors converge to 0 as t→ +∞.

Figure 1. Dynamic behavior of the drive system (1) with d1 = 0.01, d2 = 1, a = 3.5, and b = 0.25 in
accordance with the initial conditions given in (10).

Figure 2. Dynamic behavior of the response system (4) with d1 = 0.01, d2 = 1, a = 3.5, and b = 0.25
in accordance with the initial conditions given in (11).
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(a) t = 0 (b) t = 1

(c) t = 3
Figure 3. The solution of the drive system (1) in 2D space at (a) t = 0, (b) t = 1, and (c) t = 3.

(a) t = 0 (b) t = 1

(c) t = 3
Figure 4. The solution of the response system (4) in 2D space at (a) t = 0, (b) t = 1, and (c) t = 3.



Entropy 2020, 23, 1516 8 of 11

Figure 5. Dynamic behavior of the solutions of the spatiotemporal synchronization error system (5)
with d1 = 0.01, d2 = 1, and K = 0.2.

(a) t = 0 (b) t = 1

(c) t = 3
Figure 6. The solution of the spatiotemporal synchronization error system (5) in 2D-space at (a) t = 0,
(b) t = 1, and (c) t = 3.

5. Conclusions

For many years, many researchers have focused on the study of the synchronization of
systems of ordinary differential equations and uni-dimensional maps. In the present work,
we have developed an innovative approach to analyze the control synchronization of the
nonlinear glycolysis spatiotemporal system. We first established the uniform boundedness
of the solution, which was subsequently used in the implementation of the proposed
control law. Then, we proved our findings rigorously using the Lyapunov direct method.
Several numerical simulations have been illustrated to provide evidence of the efficacy
and the performance of the established control approaches. In this regard, the simulation
results have confirmed that the proposed control scheme is efficient for the purpose of
synchronization. As a future research plan, we can focus on the use of optimal control tech-
niques for the stabilization and synchronization of chaotic dynamical attractors employed
in several applications, such as secure communications, applications for encryption, data
sovereignty control, and many others.
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