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We investigate the causal effect of education on spousal education using a sample of couples from the Health and 

Retirement Study. We estimate reduced-form linear matching functions derived from a parsimonious matching 

model which links spouses’ education. Using OLS we find that an additional year in husband’s (resp. wife’s) 

education is associated with an average increase in wife’s (resp. husband’s) education of 0.41 years —95% CI: 

0.37, 0.45 (resp. 0.63 years —95% CI: 0.57, 0.68). To deal with endogeneity issues due to measurement error 

and omitted variables, we use a measure of genetic propensity (polygenic score) for educational attainment as an 

instrumental variable. Assuming that our instrument is valid, our 2SLS estimate suggests that an additional year 

in husband’s (resp. wife’s) education increases wife’s (resp. husband’s) education by about 0.49 years —95% CI: 

0.35, 0.62 (resp. 0.76 —95% CI: 0.56, 0.96). Since greater genetic propensity for educational attainment has been 

linked to a range of personality and cognitive skills, we allow for the possibility that the exclusion restriction is 

violated using the plausible exogenous approach by Conley et al. (2012). A positive causal effect of education on 

spousal education cannot be ruled out, as long as one standard deviation increase in husband’s (wife’s) genetic 

propensity for education directly increases wife’s (husband’s) education by less than 0.2 (0.3) years. 
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. Introduction 

Assortative mating on education —that individuals with similar edu-

ation match with one another more frequently than would be expected

nder a random mating pattern or that partners’ educational attain-

ents are positively correlated — has been studied in economics since

he seminal work by Becker (1973) . Many social scientists have docu-

ented a strong and increasing educational homogamy 1 (e.g., Bruze,

011; Chiappori et al., 2009; Greenwood et al., 2014; Schwartz and

are, 2005 ). More recently, Gihleb and Lang (2016) have warned

bout the use of inappropriate statistical techniques when studying the

volution of assortative mating over time, and concluded that there

s little evidence supporting an increase in educational homogamy.

ogstad et al. (2019) have shown that assortative mating has been de-

lining over time among college graduates, whereas the low-educated

ave been increasingly sorting into internally homogeneous marriages. 
∗ Corresponding author. 

E-mail address: c.quintana-domeque@exeter.ac.uk (C. Quintana-Domeque). 
1 Education homogamy refers to the tendency of spouses being similar to each 

ther in terms of educational attainment, educational qualification or field of 

tudy. 
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In this paper, we focus on the impact of education on spousal edu-

ation. We estimate linear matching functions derived from a parsimo-

ious matching model where individuals match on human capital. The

odel allows us to derive linear matching functions which link wife’s

resp. husband’s) human capital to husband’s (resp. wife’s) human cap-

tal. In practice, human capital is not observed by the econometrician,

nd instead we use years of education. Under classical measurement er-

or, it is well-known that the OLS regression estimate of the slope of

ife’s (resp. husband’s) education on husband’s (resp. wife’s) education

ill be biased towards zero. A valid instrumental variable can fix this,

nd help us in dealing with other endogeneity concerns such as omitted

ariables bias (e.g., if individuals match on other characteristics corre-

ated with human capital). We use genetic data to obtain potentially

alid instrumental variables and infer the causal effect of education on

pousal education using a sample of couples from the Health and Retire-

ent Study (HRS). 

We use a polygenic score for educational attainment as an instrumen-

al variable for educational attainment. The polygenic score —a single

uantitative measure of genetic predisposition based on genetic variants

resent in the entire genome (see Plomin et al., 2009 ) — is constructed to

redict educational attainment of married individuals using data from
021 
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he HRS, building upon the recent findings from a large scale GWAS of

ducational attainment ( Lee et al., 2018 ), and following recent work in

conomics ( Barth et al., 2020; Papageorge and Thom, 2020 ). 2 

We are the first to rely on molecular data to exploit potential ex-

genous variation in educational attainment, allowing for the possibil-

ty that our instrument violates the exogeneity condition using the ap-

roach by Conley et al. (2012) , in a marriage market application. Our

LS estimates of the matching functions show that an additional year in

usband’s (resp. wife’s) education is associated with an average increase

f 0.41 years in wife’s education (resp. 0.63 years in husband’s educa-

ion). We also find that a one standard deviation increase in husband’s

ducational attainment polygenic score (EA PGS) increases husband’s

ducation by about 0.64 years and wife’s education by about half of

his magnitude, 0.31. Our IV (2SLS) estimates, using husband’s EA PGS

s the (excluded) instrument for wife’s education, suggest that an addi-

ional year in husband’s education increases wife’s education by about

.49 years. Using wife’s EA PGS as the excluded instrument for hus-

and’s education, we find that an additional year in wife’s education

ncreases husband’s education by about 0.76 years. 

While the educational attainment polygenic score (EA PGS) is a rele-

ant instrument for education and is considered to be randomly assigned

t conception (Mendelian randomization), at least after accounting for

opulation stratification, this is a necessary but not a sufficient condition

o use the EA PGS as a valid instrumental variable. 3 Polygenic scores for

pousal education may affect own education above and beyond their ef-

ects on spousal education, and hence violate the exclusion restriction. 4 

Greater polygenic propensity for educational attainment has been

inked to higher cognitive aptitude, self-control, and interpersonal skills

n childhood ( Belsky et al., 2016; Rabinowitz et al., 2019 ), and more

ecently, to larger brains ( Elliott et al., 2018 ), 5 but also to lower

cores on the ADHD (attention deficit hyperactivity disorder) index

 de Zeeuw et al., 2014 ). Since intelligence and personality, amongst

ther attributes, are relevant in the marriage market ( Dupuy and Gali-

hon, 2014; Lundberg, 2012 ), it is important to assess the consequences

f departing from the exclusion restriction. 

To allow for the possibility that the exogeneity condition is vi-

lated, we relax the exclusion restriction following the approach in

onley et al. (2012) whose implementation is carefully discussed by

larke and Matta (2018) . 6 In particular, we allow for the own EA PGS

o have a direct effect on spousal education. We cannot rule out a posi-

ive causal effect of husband’s education on wife’s education so long as a

ne standard deviation increase in husband’s EA PGS directly increases

ife’s education by less than 0.2 years. Similarly, we cannot rule out a

ositive causal effect of wife’s education on husband’s education so long

s a one standard deviation increase in wife’s EA PGS directly increases

usband’s education by less than 0.3 years. 

There is an extensive literature on education in the marriage market,

hich studies empirical matching patterns or the effect of education, via

djusting for observable characteristics ( Chiappori et al., 2016; Oreffice

nd Quintana-Domeque, 2010 ), using within-siblings or within-twins
2 Rather than focusing on a limited number of genetic variants, the polygenic 

cores (PGSs) use the entire information in the DNA (or a large proportion of 

t) to construct a measure of genetic predisposition to higher educational attain- 

ent ( Conley et al., 2015; Domingue et al., 2014; Plomin et al., 2009; Ward 

t al., 2014 ). 
3 As discussed by Beauchamp et al. (2011) , the use of genetic markers as in- 

trumental variables was anticipated by Davey Smith and Ebrahim (2003) and 

ioneered in economic research by Ding et al. (2009) , who used genes as in- 

trumental variables for health in studying the impact of health on academic 

utcomes. 
4 Many researchers argue that it is very unlikely (if not impossible) that any 

arkers satisfying the exclusion restriction will ever be found in many economic 

pplications ( Cawley et al., 2011; Conley, 2009 ). 
5 Brain size is positively related with cognitive scores ( Elliott et al., 2018 ). 
6 plausexog in Stata: https://ideas.repec.org/c/boc/bocode/s457832.html 
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2 
ariation ( Huang et al., 2009 ) or instrumental variables ( Lefgren and

cIntyre, 2006 ). 

Larsen et al. (2015) claim that using the variation in male educa-

ional attainment induced by the WWII G.I. Bill may provide the most

ransparent identification strategy to date: their findings suggest that

he additional education received by returning veterans caused them

o “sort ” into wives with significantly higher levels of education. While

heirs is an interesting identification strategy, it only exploits cohort vari-

tion. 

Earlier work had studied the impact of male scarcity on marital as-

ortative mating using the large shock that WWI caused to the number of

rench men ( Abramitzky et al., 2011 ), used quarter of birth as a (weak)

nstrument for female education ( Lefgren and McIntyre, 2006 ), or data

n twins to assess assortative mating and how education is productive

n marriage ( Huang et al., 2009 ). 7 

Our work is also related to studies on genetic assortativeness. 8 These

rticles use genetic information from large scale GWASs that are also the

ore of our analysis. While they are instrumental for our analysis, our

ork departs from them, if only because our focus is on the causal ef-

ect of education on spousal education, and not spousal resemblance

t the genotypic level. 9 Moreover, we find that genetic assortativeness

n education polygenic scores is much smaller than assortativeness on

ducation, and that it essentially disappears after controlling for ed-

cation and population stratification, consistent with recent work by

arth et al. (2020) . 

Our research also broadly speaks to the increasing “genoeconomics ”

iterature that studies the genetic determinants of socioeconomic out-

omes ( Barban et al., 2021; Beauchamp et al., 2011; Benjamin et al.,

007; Conley et al., 2014 ). While a few studies in economics have

sed genome-wide polygenic score as an instrumental variable (see also

öckerman et al., 2019; von Hinke Kessler Scholder et al., 2016 ), we

re the first to study the causal effect of education on spousal education

sing genetic data as a source of potential plausible exogenous variation

sing the approach by Conley et al. (2012) . 

As we shall see, our IV results are valid for a range of mild viola-

ions of the exclusion restriction, directly tackling the issue of pleiotropy ,

hich in the context of genome-wide scores leads to concerns about the

umber of potential pathways through which the score could influence

he outcome. 10 Hence, our work complements and expands the eco-

omic literature using genes (or genetic markers) as instrumental vari-

bles (e.g., Cawley et al., 2011; Fletcher and Lehrer, 2011; von Hinke

essler Scholder et al., 2011; 2013; 2016; 2014; Norton and Han, 2008 ).

The rest of the paper is organized as follows. Section 2 derives

educed-form linear matching functions and discusses how to identify

he causal effect of education on spousal education. Section 3 defines

he polygenic score for education and how to handle potential devia-

ions from IV assumptions. Section 4 describes the data sources, the con-

truction of the polygenic score and presents some descriptive statistics.

ection 5 contains the main estimates. Section 6 concludes the paper. 
7 More generally an IV approach to instrument for market conditions, such as 

ex ratios, had been used by Angrist (2002) and Charles and Luoh (2010) , for 

nstance. 
8 Using data from the HRS, Domingue et al. (2014) find that spouses are more 

enetically similar than two people chosen at random. Guo et al. (2014) also 

nd a positive similarity in genomic assortment in married couples by using 

he HRS and the Framingham Heart study. Conley et al. (2016) , however, show 

hat the increased level of assortative mating in education observed across birth 

ohorts from 1920 to 1955 does not correspond to an increase in similarity at 

he genotypic level. 
9 On the genetic similarity of spouses see also Zou et al. (2015) . 

10 Recent work by van Kippersluis and Rietveld (2018a) and van Kipper- 

luis and Rietveld (2018b) expands the plausible exogenous approach in 

onley et al. (2012) in a world with heterogeneous first-stage effects but with 

onstant reduced-form effects. 

https://ideas.repec.org/c/boc/bocode/s457832.html
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𝑧  
. Reduced-Form linear matching functions 

While several studies have used (and estimated) linear matching

unctions linking spouses incomes, occupations and/or human capital

easures ( Chiappori et al., 2016; Ermisch et al., 2006; Lam and Schoeni,

993; 1994; Oreffice and Quintana-Domeque, 2010 ), these were based

n implicit or explicit statistical (linear) decomposition exercises rather

han derived from equilibrium matching models. In this section, we de-

ive reduced-form linear matching functions from a parsimonious model

f the marriage market. The main purpose of this section is to show that

 linear matching function —to estimate the causal effect of education

n spousal education — can be obtained from a very simple equilibrium

odel of the marriage market. 

Our model is based on Browning et al. (2014) 11 and we follow their

ssumptions quite closely. First, human capital is the only marital trait

𝑥 is the human capital of women, 𝑦 is the human capital of men — and

he marital surplus —the difference in the utility generated by a couple

ormed by a woman with human capital 𝑥 and a man with human capital

 and their utility levels when single — is produced according to the func-

ion ℎ ( 𝑥, 𝑦 ) . Second, ℎ is twice continuously differentiable, strictly in-

reasing in both 𝑥 and 𝑦 (i.e., ℎ 𝑥 > 0 , ℎ 𝑦 > 0 ) and strictly super-modular

i.e., ℎ 𝑥𝑦 > 0 ). Third, there is a continuum of men and women with a

otal mass each normalized to 1. Fourth, there are no search frictions:

ach woman (resp. man) has free access to the pool of all potential male

resp. female) spouses, with perfect knowledge of the marital traits of

ach other. Finally, 𝑥 and 𝑦 are independently and normally distributed

efore the matching takes place: 𝑥 ∼ 𝑁( 𝜇𝑥 , 𝜎2 𝑥 ) and 𝑦 ∼ 𝑁( 𝜇𝑦 , 𝜎2 𝑦 ) . 
12 

Deterministic matching function. Given that there are no search fric-

ions (fourth assumption), matching arises due to preferences (i.e., mar-

tal surplus). Moreover, the property of the marital surplus function (by

he second assumption) guarantees positive assortative mating on hu-

an capital. 13 Therefore, if a woman with human capital 𝑥 is married to

 man with human capital 𝑦 , then the set of women with human capital

evels above 𝑥 must be the same measure as the set of men with human

apital levels above 𝑦 . Thus, given the third and fifth assumptions, for

ll 𝑥 and 𝑦 in the set of married couples, 

 − Φ
( 

𝑥 − 𝜇𝑥 
𝜎𝑥 

) 

= 1 − Φ
( 

𝑦 − 𝜇𝑦 

𝜎𝑦 

) 

, 

here Φ is the standard normal cumulative distribution function. Thus,

he matching function that determines the human capital of the wife for

ach man with human capital 𝑦 is given by 

 = 

( 

𝜇𝑥 − 

𝜎𝑥 
𝜎𝑦 
𝜇𝑦 

) 

+ 

𝜎𝑥 
𝜎𝑦 
𝑦, 

r in compact notation, 

 = 𝛼 + 𝛽𝑦, (1) 

here 𝛼 ≡

( 

𝜇𝑥 − 

𝜎𝑥 
𝜎𝑦 
𝜇𝑦 

) 

and 𝛽 ≡
𝜎𝑥 
𝜎𝑦 

. Similarly, the matching function

hat determines the human capital of the husband for each woman with

uman capital 𝑥 is given by 

 = 

( 

𝜇𝑦 − 

𝜎𝑦 

𝜎
𝜇𝑥 

) 

+ 

𝜎𝑦 

𝜎
𝑥. 
𝑥 𝑥 

11 See section 7.2.3. 
12 Browning et al. (2014) refer to 𝑥 and 𝑦 as income, focus on the transferable 

tility case, allow for different masses of men and women, and assume that 𝑥 and 

 are uniformly distributed to solve for the closed-form solution of the matching 

unction. 
13 The assumption that marital surplus is strictly increasing in both arguments 

uarantees positive assortative mating in a non-transferable utility context. The 

ssumption that the cross-derivative is strictly positive guarantees positive as- 

ortative mating in a transferable utility context. 
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This simple model predicts perfect positive assortative mating in hu-

an capital: 

 𝑜𝑟𝑟 ( 𝑥, 𝑦 ) = 

𝐶 𝑜𝑣 ( 𝑥, 𝑦 ) 
𝜎𝑥 𝜎𝑦 

= 

𝐶 𝑜𝑣 ( 𝛼 + 𝛽𝑦, 𝑦 ) 
𝑆 𝐷( 𝛼 + 𝛽𝑦 ) 𝑆 𝐷( 𝑦 ) 

= 𝛽
𝐶 𝑜𝑣 ( 𝑦, 𝑦 ) 
𝛽𝜎𝑦 𝜎𝑦 

= 

𝜎2 𝑦 

𝜎2 𝑦 
= 1 . 

n addition, and as highlighted by Gihleb and Lang (2016) , a regression

f 𝑥 on 𝑦 will identify 𝛽, i.e. 
𝜎𝑥 
𝜎𝑦 

: 

𝐶𝑜𝑣 ( 𝑥, 𝑦 ) 
𝑉 ( 𝑦 ) 

= 

𝐶𝑜𝑣 ( 𝛼 + 𝛽𝑦, 𝑦 ) 
𝑉 ( 𝑦 ) 

= 𝛽
𝐶𝑜𝑣 ( 𝑦, 𝑦 ) 
𝑉 ( 𝑦 ) 

= 𝛽
𝜎2 𝑦 

𝜎2 𝑦 
= 𝛽 = 

𝜎𝑥 
𝜎𝑦 
, 

hile a regression of 𝑦 on 𝑥 will identify 1 
𝛽
, i.e. 

𝜎𝑦 

𝜎𝑥 
: 

𝐶𝑜𝑣 ( 𝑥, 𝑦 ) 
𝑉 ( 𝑥 ) 

= 

𝜎𝑦 

𝜎𝑥 
. 

Stochastic matching function. In practice, we do not observe human

apital, but a proxy of it, say years of education, or we are interested in

ears of education but our measure of education contains error. Hence,

ur proxies for human capital or education for wives and husbands are

iven by: 

̃ = 𝑥 + 𝜖𝑥 , 

 ̃= 𝑦 + 𝜖𝑦 , 

here measurement error for each measure is white noise: 𝜖𝑥 ∼ 𝑁(0 , 𝜎2 𝜖𝑥 )
nd 𝜖𝑦 ∼ 𝑁(0 , 𝜎2 𝜖𝑦 ) . Thus, equation (1) with measurement error be-

omes: 

̃ = 𝛼 + 𝛽𝑦 + 𝑢, (2) 

here 𝑢 = 𝜖𝑥 − 𝛽𝜖𝑦 , and hence 𝐶𝑜𝑣 ( ̃𝑦 , 𝑢 ) ≠ 0 . 
Now, the correlation between the human capital proxies among

pouses is given by: 

𝑜𝑟𝑟 ( ̃𝑥 , ̃𝑦 ) = 

𝐶𝑜𝑣 ( ̃𝑥 , ̃𝑦 ) 
𝑆 𝐷( ̃𝑥 ) 𝑆 𝐷( ̃𝑦 ) 

= 

𝐶𝑜𝑣 ( 𝑥, 𝑦 ) 
𝜎𝑥 𝜎𝑦 

𝜎𝑥 𝜎𝑦 

𝑆𝐷( 𝑥 + 𝜖𝑥 ) 𝑆𝐷( 𝑦 + 𝜖𝑦 ) 

= 

𝜎𝑥 𝜎𝑦 

𝑆𝐷( 𝑥 + 𝜖𝑥 ) 𝑆𝐷( 𝑦 + 𝜖𝑦 ) 
< 1 . 

In addition, the regression of ̃𝑥 on ̃𝑦 will not identify 𝛽, i.e. 
𝜎𝑥 
𝜎𝑦 

, but: 

𝐶𝑜𝑣 ( ̃𝑥 , ̃𝑦 ) 
𝑉 ( ̃𝑦 ) 

= 𝛽
𝜎2 𝑦 

𝜎2 𝜖𝑦 
+ 𝜎2 𝑦 

= 

𝜎𝑥 
𝜎𝑦 

𝜎2 𝑦 

𝜎2 𝜖𝑦 
+ 𝜎2 𝑦 

. 

imilarly, the regression of ̃𝑦 on ̃𝑥 will not identify 1 
𝛽
, i.e. 

𝜎𝑦 

𝜎𝑥 
, but: 

𝐶𝑜𝑣 ( ̃𝑥 , ̃𝑦 ) 
𝑉 ( ̃𝑥 ) 

= 

1 
𝛽

𝜎2 𝑥 

𝜎2 𝜖𝑥 
+ 𝜎2 𝑥 

= 

𝜎𝑦 

𝜎𝑥 

𝜎2 𝑥 

𝜎2 𝜖𝑥 
+ 𝜎2 𝑥 

. 

 well-known method to deal with attenuation bias due to classical

easurement error is instrumental variables. In general, instrumental

ariables can also help us to deal with other sources of endogeneity

 Angrist and Krueger, 1999 ). 

IV to the rescue. Assume that we have a potential valid instrument

 𝑦 for 𝑦 . In particular, suppose that 𝑧 𝑦 is a measure of genetic predis-

osition to higher educational attainment ( Lee et al., 2018 ). The two

ell-known conditions for instrument validity are the following: 

V1 : Relevance. The instrument 𝑧 𝑦 must be correlated with the endoge-

ous variable ̃𝑦 : 

𝑜𝑣 ( ̃𝑦 , 𝑧 𝑦 ) ≠ 0 . 

V2 : Exogeneity. The instrument 𝑧 𝑦 must be uncorrelated with the error

erm 𝑢 : 

𝑜𝑣 ( 𝑢, 𝑧 𝑦 ) = 0 . 
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14 An alternative method to estimate weights for a polygenic score consists 

of selecting independent SNPs with a statistical procedure called pruning . The 

selected independent SNPs are then used to calculate the score, avoiding possible 

bias due to oversampling DNA regions that are highly genotyped. The range of 

possible values that a PGS can take depends on the number of SNPs included, 

tending to a normal distribution if the number of independent SNPs included in 

the score is sufficiently high. Simulation studies have shown that LDpred leads 

to more precise estimates for polygenic scores in case of highly polygenic traits 

( Vilhjálmsson et al., 2015 ) 
15 PGSs were standardized at the population level to be as close as possible 

to an indicator of genetic predisposition of the HRS population with European 

ancestry. Our regression sample is slightly positive selected in the PGSs: the 

average husband’s (wife’s) EA PGS is 0.19 (0.15). We then restandardized the 

scores based on the regression sample. While this is obviously immaterial for 

our IV estimates, it facilitates the numerical interpretation of the coefficients on 

the PGSs in terms of standard deviations. 
16 This refers to the incremental (additional) R-squared in a regression of years 

of education on sex, birth year, the interaction between sex and birth year, and 

the first ten principal components of the genetic relatedness matrix. A one stan- 
s long as these two conditions hold, 

𝐶𝑜𝑣 ( ̃𝑥 , 𝑧 𝑦 ) 
𝐶𝑜𝑣 ( ̃𝑦 , 𝑧 𝑦 ) 

= 𝛽. 

n this paper, we will use 𝑧 𝑦 to estimate the causal effect of 𝑦 on 𝑥 , and

 𝑥 to estimate the causal effect of 𝑥 on 𝑦 . 

Of course, the model used to derive the linear reduced-form match-

ng functions has many limitations. In practice, people match on mul-

iple characteristics ( Chiappori et al., 2012; 2018 ) not included in the

odel. Moreover, search frictions may play a role. Thus, our model can-

ot help us in providing a structural interpretation of our causal esti-

ates (e.g., search vs. preferences). Indeed, in our parsimonious model

he causal effect of husband’s education on wife’s education 𝛽 is 
𝜎𝑥 
𝜎𝑦 

,

hile the causal effect of wife’s education on husband’s education is
𝜎𝑦 

𝜎𝑥 
, and this prediction is totally counterfactual. However, the model

akes three valid points: first, it shows that a linear matching function

an be obtained from a simple parsimonious equilibrium model of the

arriage market; second, it shows that assortative mating cannot be

easured in terms of regression coefficients ( Gihleb and Lang, 2016 ),

ecause changes in 𝜎𝑥 (or 𝜎𝑦 ) over time will lead to increases (decreases)

n regression coefficients, which cannot be interpreted as increases (de-

reases) in assortative mating; finally, under this simple model, IV esti-

ates will be larger than the OLS estimates, a prediction which is borne

ut by the data, at least, qualitatively. 

In the next section, we discuss the construction of a genetic IV and

he potential violation of the exclusion restriction, for instance, by the

mission of other characteristics which are relevant in the marriage mar-

et but are not included in our one-dimensional parsimonious model. To

ackle potential violations of the exclusion restriction, we will follow the

lausible exogenous approach by Conley et al. (2012) . 

. Building a potentially valid genetic IV 

.1. Polygenic scores 

Recent advances in molecular genetics have made it possible and

elatively inexpensive to measure millions of genetic variants in a sin-

le study. The most common type of genetic variation among people is

alled single nucleotide polymorphism (SNP). SNPs are genetic markers

hat have two variants called alleles. Since individuals inherit two copies

or each SNP, one from each parent, there are three possible outcomes:

, 1 or 2 copies of a specific allele. SNPs occur normally throughout a

erson’s DNA. Each SNP represents a difference in a single DNA build-

ng block, called a nucleotide. For example, a SNP may indicate that,

n a certain stretch of DNA, a nucleotide cytosine is replaced with the

ucleotide thymine among some individuals. 

SNPs are usually indicated by their position in the DNA, their possi-

le nucleotides and by an identification number. They occur once in ev-

ry 300 nucleotides on average, which means there are roughly 10 mil-

ion SNPs in the human genome. A large part of current genetic research

ims to identify the function of these genetic variants and their relation-

hip to different diseases. Genome-wide association studies (GWASs)

ave been used to identify SNPs associated to particular diseases or

raits. A drawback of GWAS is that, given the polygenic nature of hu-

an diseases and traits, most identified variants confer relatively small

ncrements in risk, and explain only a small proportion of heritability. A

ommon solution is to use the results from a GWAS and compile a poly-

enic score (PGS) for a phenotype aggregating thousands of SNPs across

he genome and weighting them by the strength of their association. 

There are two main reasons to use a PGS to describe the genetic sus-

eptibility to a trait in social sciences ( Belsky and Israel, 2014; Schmitz

nd Conley, 2017 ). First, complex health outcomes or behaviors are usu-

lly highly polygenic, i.e., reflect the influence or aggregate effect of

any different genes ( Visscher et al., 2008 ). PGSs assume that individ-

als fall somewhere on a continuum of genetic predisposition resulting

rom small contributions from many genetic variants. Second, a single
4 
enetic variant has too small of an effect in explaining complex pheno-

ypes, i.e., no single gene produces a symptom or trait at a detectable

evel, unless the sample size is extremely large. 

A PGS for individual 𝑖 can be calculated as the sum of the allele

ounts 𝑎 𝑖𝑗 (0, 1 or 2) for each SNP 𝑗 = 1 , … , 𝑀 , multiplied by a weight

 𝑗 , that is: 

 𝐺𝑆 𝑖 = 

𝑀 ∑
𝑗=1 
𝑞 𝑗 𝑎 𝑖𝑗 , 

here weights 𝑞 𝑗 are transformations of GWAS coefficients. A polygenic

core is therefore a linear combination of the effects of multiple SNPs on

he trait of interest. SNPs are not independent in the genome but their

ccurrence varies according to a block structure called linkage disequi-

ibrium (LD). Using unadjusted GWAS coefficients as weights could re-

uce the accuracy of PGSs and yield to imprecise estimates ( Barth et al.,

020 ). Different methods have been proposed to account for linkage

isequilibrium in the construction of polygenic scores. 

In this paper, we use a Bayesian method called LDpred

 Vilhjálmsson et al., 2015 ) to derive the weights 𝑞 𝑗 . Weights are based

n the association results from the GWAS on educational attainment by

ee et al. (2018) , where HRS has been removed from the analysis, to

void overfitting. 14 LDpred assumes a point-normal mixture prior for

he distribution of effect sizes and takes into account the correlation

tructure of SNPs by estimating the LD patterns from a reference sample

f unrelated individuals. The weight for each variant is set to be equal to

he mean of the posterior distribution (approximated via MCMC simula-

ion) after accounting for LD. LDpred requires an assumption about the

raction of SNPs which are truly associated with the outcome. A com-

on choice for polygenic traits, followed in this study, is to assume that

ll the SNPs are associated with the outcome of interest ( Barcellos et al.,

018; Barth et al., 2020 ). The scale of PGSs depends on the number of

NPs included in the score. For comparability purposes, we standardize

 score by subtracting its mean and dividing it by its standard devia-

ion. 15 

Using PGSs rather than single genetic markers has several advan-

ages. First, they are “hypothesis-free ” measures that do not require

nowledge about the biological processes involved. This is particularly

mportant when the phenotype of interest is complex, i.e., influenced by

 large number of genes, or when its biological mechanisms are not yet

ully understood ( Belsky and Israel, 2014 ). Second, using a score, rather

han single genes, is a possible solution to overcome the low predictive

ower of single genes, especially for behavioral traits. For example, in

ee et al. (2018) —the most recent GWAS on educational attainment —

he top genome-wide significant SNP explains around 0.01% of the vari-

tion in years of schooling, while a linear polygenic score from all mea-

ured SNPs explains 10.6% of the same variable in the HRS sample. 16 
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hird, complete genome-wide association results are publicly available.

GSs can be calculated from consortia data for a range of phenotypes.

he results published by these consortia are based on a meta-analysis of

 large number of cohort studies. The predictive power of a polygenic

core is inflated if the samples are not independent, i.e., the same sam-

le was used in the original calculation of association results. For this

eason, it is common to use genetic association results from independent

tudies or to rerun the association results excluding the cohort to which

he score is applied, which is exactly how we proceed. 

.2. Genetic IV 

There is a vast literature in statistics and epidemiology that fo-

uses on methodological aspects related to genetic IV (e.g., Burgess

t al., 2015; Davey Smith and Ebrahim, 2003; Davies et al., 2015;

idelez and Sheehan, 2007; Glymour et al., 2012; Kang et al., 2016;

awlor et al., 2008; Sheehan et al., 2008; Windmeijer et al., 2018 ).

on Hinke Kessler Scholder et al. (2016) and van Kippersluis and Ri-

tveld (2018b) carefully examine the conditions needed for genetic vari-

nts to be used as valid instrumental variables. 17 

The reduced-form linear matching function (2) clarifies the neces-

ary requirements, relevance and exogeneity, for a valid instrument. 18 

he relevance assumption ( IV1 ) requires that the husband’s polygenic

core for education, 𝑧 𝑦 , is linearly related with husband’s education, ̃𝑦 .

hile the use of one or few genetic variants can be weakly associated

ith education (weak instrument problem), our polygenic score is rele-

ant and has been shown to robustly affect education ( Lee et al., 2018;

kbay et al., 2016; Rietveld et al., 2013 ). Moreover, the score predicts

ducation differences between siblings ( Rietveld et al., 2014 ). The ex-

geneity assumption ( IV2 ) requires that the husband’s polygenic score,

 𝑦 , is uncorrelated with the error term 𝑢 . 19 
ard deviation increase in the polygenic score is associated with an increase in 

ducational level of 0.84 years (SE = 0.026). See Supplementary Table 38, panel 

, in Lee et al. (2018) . 
17 von Hinke Kessler Scholder et al. (2016) and Böckerman et al. (2019) use 

olygenic scores for body mass index as IV. Previous studies based on candi- 

ate genes have investigated: the effect of obesity or body fat mass on labor 

arket outcomes ( Norton and Han, 2008 ), on medical costs ( Cawley and Mey- 

rhoefer, 2012 ), or on educational attainment ( von Hinke Kessler Scholder et al., 

012 ); the impact of poor health on academic performance ( Ding et al., 2009; 

letcher and Lehrer, 2011 ); the effect of cigarette smoking on BMI ( Wehby et al., 

012 ); the effect of alcohol exposure in utero on child academic achievement 

 von Hinke Kessler Scholder et al., 2014 ); the effects of cigarette quitting dur- 

ng pregnancy on different health behaviors ( Wehby et al., 2013 ); the effect 

f child/adolescent height on different health and human capital outcomes 

 von Hinke Kessler Scholder et al., 2013 ). More recently, Cawley et al. (2019) in- 

estigate whether an individual’s BMI is affected by the polygenic risk score for 

MI of their full sibling when controlling for the individual’s own polygenic risk 

core for BMI. They do not find evidence for such an effect. 
18 The usual motivation for using a genetic instrumental variable (IV) is the 

act that individuals’ genotypes are randomly allocated at conception: such a 

uasi-experimental design is called Mendelian randomization ( Davey Smith and 

brahim, 2003 ). However, randomization is not a sufficient condition to 

se genetic data as valid instrumental variables, as recently emphasized by 

avies et al. (2018) and van Kippersluis and Rietveld (2018b) . 
19 In common genetic IV studies that investigate the effect of one individual’s 

reatment on the same individual’s outcome, by using a genetic variant of his 

s instrument, the exclusion restriction can be violated mainly in four situa- 

ions ( von Hinke Kessler Scholder et al., 2016 ): (i) when parents’ behavior or 

references are affected by the genotype; (ii) when the mechanisms, through 

hich genetic variants affect the exposure variable, imply changes in behaviors 

r preferences that affect directly the outcome; (iii) when the genetic instrument 

s correlated with other genetic variants that affect the outcome ( Linkage Dise- 

uilibrium ); (iv) when disruptive influences of the risk factor on the outcome are 

imited by foetal or post-natal development processes ( Canalization ). 
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5 
.3. IV In practice: Statistical inference and deviating from exogeneity 

While instrument relevance ( IV1 ) is usually assessed by means of

ell-known rules of thumb on the value of the first-stage 𝐹 statis-

ic ( Staiger and Stock, 1997; Stock and Yogo, 2005 ), recent work by

ee et al. (2020) shows that a true 5 percent test requires an 𝐹 greater

han 104.7. Following Lee et al. (2020) , we construct IV confidence in-

ervals which are dependent on the value of the first-stage 𝐹 statistic: If

 > 104 . 7 , the 95% CI is 𝛽𝐼𝑉 ± 1 . 96 × 𝑆𝐸 ( ̂𝛽𝐼𝑉 ) . 20 Otherwise, the 95% CI

s 𝛽𝐼𝑉 ± 𝑡 𝑥,𝑦 × 𝑆𝐸 ( ̂𝛽𝐼𝑉 ) . The critical values 𝑡 𝑥,𝑦 are taken from Table 3 in

ee et al. (2020) , where 𝑥 corresponds to the integer part of 
√
𝐹 , and

 corresponds to the decimal part of 
√
𝐹 . For example, if 𝐹 is 69, then

𝐹 is 8.3, and the critical value 𝑡 8 , 3 at the 5% significance level is 2.06

nstead of 1.96. 

The exogeneity assumption ( IV2 ) has two components: indepen-

ence and exclusion ( Angrist and Pischke, 2014 ). As recently empha-

ized by van Kippersluis and Rietveld (2018a) and van Kippersluis and

ietveld (2018b) in the context of using polygenic scores as instru-

ental variables, independence is naturally satisfied when genetic vari-

nts are used as IV due to Mendelian randomization ( Davey Smith and

brahim, 2003 ). However, the exclusion restriction is more difficult to

ssess. Consider the following equation: 

̃ = 𝛼 + 𝛽𝑦 + 𝛾𝑧 𝑦 + 𝑢. (3) 

The exclusion restriction is satisfied when 𝛾 = 0 , however, this can-

ot be directly assessed. 21 

To allow for the possibility that the exogeneity condition is vio-

ated, 𝛾 ≠ 0 , and that the husband’s polygenic score for education af-

ects wife’s education above and beyond husband’s education, we follow

onley et al. (2012) and implement “plausibly exogenous ” estimation as

arefully explained by Clarke and Matta (2018) . The standard exogene-

ty assumption ( IV2 ) requires 𝛾 to be zero in equation (3). However,

hen invoking “plausible exogeneity ” we replace this assumption with

he assumption that 𝛾 is close to, but not necessarily equal to, 0. 22 We

an then compute 𝛽( 𝛾) as follows: 

( 𝛾) = 

𝐶 𝑜𝑣 ( ̃𝑥 , 𝑧 𝑦 ) 
𝐶 𝑜𝑣 ( ̃𝑦 , 𝑧 𝑦 ) 

− 

𝛾
𝐶𝑜𝑣 ( ̃𝑦 ,𝑧 𝑦 ) 
𝑉 ( 𝑧 𝑦 ) 

, 

o that 𝛽( 𝛾) equals the IV estimand minus 𝛾 divided by the first-stage co-

fficient. We follow the “union of confidence interval ” (UCI) approach,

hich consists in finding bounds for the IV when the exclusion restric-

ion is violated for a range of values of 𝛾. We apply the same method

o find bounds for the causal effect of wife’s education on husband’s

ducation. 

. Data description 

The data used in this paper come from the Health and Retirement

tudy (HRS), a national panel survey representative of Americans over
20 𝑆𝐸 ( ̂𝛽𝐼𝑉 ) is the robust standard error of 𝛽𝐼𝑉 . 
21 Note that running a regression of 𝑥 on a constant, 𝑦 and 𝑧 𝑦 will not help 

s in testing whether 𝛾 = 0 , since these regression estimates will suffer from 

ollider bias. Rohrer (2018) and Cunningham (2021) offer excellent discussions 

nd examples of collider bias. 
22 van Kippersluis and Rietveld (2018a) and van Kippersluis and Ri- 

tveld (2018b) suggests finding an estimate of the direct effect 𝛾 based on the 

educed-form effect of the instrument for a sample with a zero first-stage. Their 

pproach allows to exploit Mendelian randomization which is pleiotropy-robust. 

he approach consists in using the estimate of 𝛾 (if we reject that 𝛾 = 0 ) as an 

nput for the plausibly exogenous approach. Their ‘beyond plausible exogenous’ 

pproach relies on two assumptions: (1) the coexistence of heterogeneous first- 

tage effects with homogeneous direct effects across the zero-first-stage group 

nd the full sample, and (2) the selection into the zero-first-stage subgroup 

hould not be driven by the husband’s (resp. wife’s) EA PGS and wife’s (resp. 

usband’s) education. 
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Table 1 

Descriptive statistics. 

Mean SD Min Max 

Husband’s Year of Birth 1937.892 9.043 1920 1959 

Husband’s Years of Education 13.618 2.686 2 17 

Husband’s EA PGS 0.000 1.000 − 3.172 3.418 

Wife’s Year of Birth 1940.12 8.92 1920 1959 

Wife’s Years of Education 13.321 2.195 3 17 

Wife’s EA PGS − 0.000 1.000 − 3.181 2.875 

Note: The number of observations is 1,562. The descriptive statistics 

are based on white non-Hispanic couples in their first marriage, with 

at most 10 years of age difference and born in the US. Individuals born 

between 1920 and 1959. Both spouses have been interviewed at least 

once and provided DNA sample. 

Fig. 1. Scatterplot of years of education among married individuals. Note: The 

size of each circle is proportional to the number of married couples by years of 

education of each spouse. The horizontal line denotes the median education for 

wives. The vertical line denotes the median education for husbands. 
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he age of 50 and their spouses, interviewed every two years since

992. 23 The survey contains detailed socio-demographic information. It

onsists of six cohorts: initial HRS cohort, born between 1931 and 1941

first interviewed in 1992); the Study of Assets and Health Dynamics

mong the Oldest Old (AHEAD) cohort, born before 1924 (first inter-

iewed in 1993); Children of Depression (CODA) cohort, born between

924 and 1930 (first interviewed in 1998); War Baby (WB) cohort, born

etween 1942 and 1947 (first interviewed in 1998); Early Baby Boomer

EBB) cohort, born between 1948 and 1953 (first interviewed in 2004);

nd Mid Baby Boomer (MBB) cohort, born between 1954 and 1959 (first

nterviewed in 2010). 

Between 2006 and 2012, the HRS genotyped about 20,000 respon-

ents who provided DNA samples and signed consent. DNA samples

ere genotyped using the Illumina Human Omni-2.5 Quad BeadChip,

ith coverage of approximately 2.5 million single nucleotide polymor-

hisms (SNPs). Current genetic data available for research also in-

lude imputation of approximately 21 million DNA variants from the

000Genomes Project. 24 Following recommendations of the genotyp-

ng center, we removed individuals with a genotyping rate < 95% and

NPs with minor allele frequency (MAF) less than 1%, with 𝑝 -value <

.0001 on the test for Hardy-Weinberg equilibrium, and with missing

all rate greater than 5%. The resulting genetic sample includes 15,445

ndividuals and information for 8,391,857 genetic variants. 

The survey interviews the respondents of eligible birth years repeat-

dly, as well as their married spouses or partners regardless of age. Since

e are interested in couples rather than in the longitudinal structure

f the data, we build a cross-section. We include any individual inter-

iewed at least once. The original sample (RAND HRS Data) contains

7,319 individuals: We focus on individuals for which the genetic data

re available after the quality control described above, 15,445 in total,

xcluding 21,874 respondents from the original survey. We restrict the

ample to only White respondents, also excluding Hispanics. We con-

ider only heterosexual couples at their first marriage. In particular, we

xclude never married partners, people who are divorced or widowed at

he time of the first interview, and people who have been already mar-

ied or widowed more than once when entering the survey. We also drop

espondents whose spouse has never been interviewed, couples where

he spousal age gap is ten years or more, couples in which at least one

f the two spouses has zero years of education, and those in which at

east one of the two spouses was born outside the US or born in the

S but with missing census division of origin. 25 We also exclude indi-

iduals born before 1920 who might have been exposed to the Spanish

lu and born after 1959 which is the end of the last HRS cohort (Mid

aby Boomer). This yields a working sample of 1,562 couples (3,124

ndividuals). 

The main variables used in our empirical analysis are education

measured as the number of completed years of schooling) and the poly-

enic scores for education (EA PGSs). As previously discussed, we gen-

rated a polygenic score based on the most recent GWAS results on edu-

ational attainment available ( Lee et al., 2018 ). Since the HRS was part

f the educational attainment consortium, we obtained the list of as-

ociation results calculated excluding the HRS from the meta-analysis

rom the Social Science Genetic Association Consortium. 26 Using these
23 For the non-genetic data, we used the RAND HRS Data files, Version N. 
24 For details on quality control of the HRS genetic data, please see here . Data 

re available for research via the database of Genotypes and Phenotypes . 
25 Census Divisions are groupings of states and the District of Columbia that are 

ubdivisions of the four census regions (Northeast, Midwest, South, and West). 

here are nine Census divisions: New England, Mid Atlantic, East North Central, 

est North Central, South Atlantic, East South Central, West South Central, 

ountain, Pacific. 
26 Because of data sharing agreements, results are calculated from association 

esults that exclude also 23andMe from the meta-analysis. Complete genetic 

ssociation results on educational attainment are available here , see acknowl- 

dgments for data conditions. 
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6 
ummary statistics, we constructed linear polygenic scores weighted for

heir effect sizes in the meta-analysis. We constructed the scores using

he software LDpred and PLINK ( Vilhjálmsson et al., 2015 ). 27 

Table 1 provides the basic descriptive statistics for our sample of

usbands and wives. These individuals were born between 1920 and

959. On average, husbands –with 13.6 years of education– are more

ducated than their wives –with 13.3 years of education. If we compare

ur sample of husbands and wives with its non-genotyped counterpart

N = 2,468), i.e., where at least one of the spouses has not been geno-

yped, we find that our sample is on average about three years younger,

nd more educated (0.51 years more for wives, 0.79 years more for hus-

ands). This is consistent with Barth et al. (2020) . See Tables A1 and A2

n the online appendix. 

Fig. 1 presents a scatter plot of years of education for both spouses,

ith both the conditional mean function of wife’s education given hus-

and’s education and the linear prediction of wife’s education given hus-

and’s education. Except for the 7 couples (0.45% of the sample) where

he husband has 5 years of education or fewer, the linear regression

losely matches the conditional mean function. 

In Table 2 , panel A, we present some correlates of years of educa-

ion and educational attainment polygenic scores (EA PGSs). There is a

trong positive linear relationship between spousal years of education

0.5647, 𝑝 -value < 0.0001), consistent with positive assortative mating in

ducation, and confirming the relationship displayed in Fig. 1 . We also
27 Genetic data are based on best call genotypes imputed to 1000 Genome. 

D structure is estimated from the HRS genotypic data (only individuals with 

uropean ancestry) using a LD window of 𝑀 ∕3000 , where 𝑀 is the number of 

ncluded SNPs. The prior used to construct the score assumes that there is a 

robability 𝑝 = 1 that a SNP has a non-zero association. 

http://hrsonline.isr.umich.edu/sitedocs/genetics/HRS_QC_REPORT_MAR2012.pdf
http://www.ncbi.nlm.nih.gov/gap
http://thessgac.org
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Table 2 

Correlations and contingency tables for education and educational attainment polygenic scores. 

Panel A. Correlations Husband’s Education Wife’s Education Husband’s EA PGS Wife’s EA PGS 

Husband’s Education 1 

Wife’s Education 0.5647 1 

[ < 0.0001] 

Husband’s EA PGS 0.2648 0.1867 1 

[ < 0.0001] [ < 0.0001] 

Wife’s EA PGS 0.1986 0.2881 0.1319 1 

[ < 0.0001] [ < 0.0001] [ < 0.0001] 

Correlation between Adjusted Wife’s EA PGS and Adjusted Husband’s EA PGS 0.0496 

[0.0498] 

Panel B. Contingency table for education, conditional probability of husband’s education 

Wife’s Low Education Wife’s High Education 

Husband’s Low Education 82.17 17.83 

Husband’s High Education 36.96 63.04 

Pearson test 𝜒2 (1) = 332.1 

[ < 0.001] 

Panel C. Contingency table for EA PGSs, conditional probability of husband’s EA PGSs 

Unadjusted Adjusted 

Wife’s Low EA PGS Wife’s High EA PGS Wife’s Low EA PGS Wife’s High EA PGS 

Husband’s Low EA PGS 54.03 45.97 50.83 49.17 

Husband’s High EA PGS 45.97 54.03 49.17 50.83 

Pearson test 𝜒2 (1) = 10.2 𝜒2 (1) = 0.4328 

[0.001] [0.511] 

Note: In Panel A adjusted husband’s (wife’s) EA PGS is the residual from a regression of the husband’s (wife’s) EA PGS on 

husband’s (wife’s) years of education and 10 principal components of the husband’s (wife’s) genetic data. In Panels B and C: low 

is defined as below the median and high is defined as above the median; Each cell reports the conditional probability of husband’s 

education (EA PGS) given his wife’s education (EA PGS). The row probabilities sum to 100. Adjusted conditional probabilities 

are based on the residual EA PGSs. p-values are reported in brackets. 
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nd some evidence, albeit weaker, of assortative mating on the EA PGS

0.1319, 𝑝 -value < 0.0001). The correlation in EA PGSs is less than one

uarter of the correlation in years of education. Moreover, the correla-

ion between adjusted EA PGSs, obtained after regressing the spousal

A PGS on spousal years of education, and the 10 principal compo-

ents of the spousal genetic data to account for population stratification

 Beauchamp et al., 2011 ) 28 , is much smaller (0.0496, 𝑝 -value = 0.0498).

he motivation for this statistical decomposition is the following: If the

orrelation between polygenic scores of spouses reflects the correlation

etween educational attainment of spouses rather than the correlation

etween other spousal characteristics uncorrelated with education, we

hould expect this correlation to be zero except for sampling variation.

hile the correlation is not zero, it is substantially smaller than 0.1319.

In panel B, we present some tabulations to explore assortative mat-

ng in both years of education and EA PGSs, both above and below the

edian. The tabulations for education in the first row indicate that the

robability of a husband being low educated if the wife is low educated

s 82.2%, while the probability of a husband being low educated if the

ife is high educated is 17.8%. The second row reveals that the proba-

ility of a husband being highly educated if the wife is highly educated

s 63% while the probability of him being high educated if the wife is
28 Population stratification refers to the situation in which there is a systematic 

elationship between the allele frequency and the outcome of interest in differ- 

nt subgroups of the population. Genetic similarity is often correlated with geo- 

raphical proximity. It is possible to control for the non-random distribution of 

enes across populations and account for differences in genetic structures within 

opulations in three ways. First, genome-wide analysis should be based on eth- 

ic homogeneous populations, for example restricting the analysis to individuals 

f European ancestry or controlling for geographical origin. Second, only unre- 

ated individuals should be included in the analysis to avoid family structure or 

ryptic relatedness. Last, population structure can be approximated by running 

 principal components analysis (PCA) on the entire genotype and using the prin- 

ipal components as control variables in the analysis ( Beauchamp et al., 2011; 

rice et al., 2006 ). PCA is the most common method used to control for popula- 

ion stratification in a GWAS. In our application, the first ten genetic principal 

omponents for each spouse using genome-wide principal components function 

s ancestry markers. 
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7 
ow educated is 37%. This again reveals the presence of positive assorta-

ive mating on education ( 𝜒2 (1) = 332.1, 𝑝 -value < 0.0001). Indeed, the

ain diagonal (low-low, high-high) contains 73% of couples, while un-

er random educational matching we would expect 50% of couples in

he main diagonal. 

Finally, in Panel C, the tabulations for (unadjusted) EA PGSs reveal

ome degree of assortative mating ( 𝜒2 (1) = 10.2, 𝑝 -value = 0.001), but

uch lower than that for education. Indeed, the probability of a hus-

and having a low (high) EA PGS if the wife has a low (high) EA PGS is

4%, while the probability of a husband having a high (low) EA PGS if

he wife has a low (high) EA PGS is 46%. The main diagonal (low-low,

igh-high) contains 54% of couples, while under random score match-

ng we would expect 50% of couples in the main diagonal. Focusing on

he adjusted EA PGSs, the tabulation reveals that the main diagonal con-

ains 51% of couples, and that we cannot reject that spousal EA PGSs

re independent ( 𝜒2 (1) = 0.4328, 𝑝 -value = 0.511). Our findings are con-

istent with Barth et al. (2020) , who fail to reject the null hypothesis of

andom sorting in EA PGSs. Once again, this finding is consistent with

he idea that the spousal genetic relationship should disappear once we

ocus on the part of the polygenic scores uncorrelated with educational

ttainment, if the relationship between spousal polygenic scores reflects

he relationship between spousal educational attainments. 

Interestingly, we find similar correlations and contingency tables

or education among the non-genotyped respondents. The correlation

s 0.6140 ( 𝑝 -value < 0.0001) and the entries in the contingency table are

lso very similar or essentially the same for the conditional probability

f husband’s low education. See Table A3 in the online appendix. 

. OLS And IV estimates 

.1. OLS Estimates of the matching equation 

We first present our OLS estimates of equation (2) in Table 3 , in col-

mn 1, and additional versions of it with control variables, in columns

–5. Column 1 shows that an additional year in husband’s education is

ositively associated with an average increase of 0.461 (95% CI: 0.422,

.501) in the number of years of wife’s education, and that 32% of the
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Table 3 

OLS estimates of the matching function. 

Dependent variable: Wife’s Education 

(1) (2) (3) (4) (5) 

Husband’s Education 0.461 0.448 0.432 0.422 0.407 

(0.422, 0.501) (0.407, 0.489) (0.391, 0.472) (0.382, 0.463) (0.366, 0.449) 

Wife’s EA PGS 0.402 0.367 0.383 

(0.313, 0.491) (0.277, 0.458) (0.292, 0.475) 

Observations 1,562 1,562 1,562 1,562 1,562 

R-squared 0.319 0.337 0.351 0.368 0.387 

PCAs No No No Yes Yes 

Demographics No Yes No No Yes 

Note: 95% confidence intervals based on robust standard errors in parentheses. PCAs: 10 first principal 

components of the husband’s and the wife’s genetic data. Demographics: year of birth of the wife, year of 

birth of the husband, 8 indicators of the wife’s region (Census division) of birth and 8 indicators of the 

husband’s region (Census division) of birth. 
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29 Note that Table 3 in Lee et al. (2020) reports critical values up to an 𝐹 of 

99.99, with a corresponding critical value of 1.98. Thus, we use 1.98 as the 

critical value for any 𝐹 between 100 and 104.7. 
ariation in wife’s education is explained by husband’s education. This

ositive correlation is consistent with previous research (e.g., see Table

 in Chiappori et al., 2018 ). In column 2 we add demographic controls

i.e., year of birth of each spouse, and 8 indicators for each spouse region

Census division) of birth). The estimated coefficient remains very simi-

ar, 0.448 (95% CI: 0.407, 0.489), and the explanatory power increases

rom 32% to 34%. 

From column 3 to column 5 we use genetic information. In column 3

e add the wife’s EA PGS for education, without any other control vari-

bles, and obtain a similar coefficient for husband’s education, 0.432

95% CI: 0.391, 0.472), and a higher explanatory power, 35%. A one

tandard deviation increase in the wife’s EA PGS is associated with an

ncrease in the wife’s educational attainment of 0.402 years (95% CI:

.313, 0.491). In column 4 we account for population stratification

dding the wife’s and husband’s ten first principal components of the

rincipal component analysis to genotypic data: the coefficient on hus-

and’s education is estimated at 0.422 (95% CI: 0.382, 0.463), and the

ne on the wife’s EA PGS at 0.367 (95% CI: 0.277, 0.458). Finally, in

olumn 5, we look at the relationship between wife’s and husband’s

ducation netting out the influence of the wife’s EA PGS, population

tratification and demographic controls. Our results indicate that an ad-

itional year in husband’s education is associated with an average in-

rease of 0.407 (95% CI: 0.366, 0.449) in the number of years of wife’s

ducation. 

Table A4 in the online appendix contains the same OLS analysis for

he regressions of husband’s education on wife’s education: the OLS

oint estimates range from 0.691 (95% CI: 0.640, 0.742), in column

, to 0.626 (95% CI: 0.573, 0.679), in column 5. 

.2. OLS Estimates of first-stage and reduced-form equations 

Table 4 contains the estimates of the first-stage regression equation,

here husband’s education is regressed against husband’s EA PGS (our

lausible exogenous instrument). In the first three columns, we do not

djust for the wife’s EA PGS. Column 1, which does not include any

ontrols, shows that a one standard deviation increase in the husband’s

A PGS is associated with an average increase in husband’s education

f 0.711 years (95% CI: 0.585, 0.837). When accounting for population

tratification (column 2), the magnitude decreases to 0.661 (95% CI:

.532, 0.790), and after adding demographic characteristics to the pop-

lation stratification controls (column 3), our point estimate is 0.678

95% CI: 0.551, 0.805). 

When focusing on columns 4–6, which adjust for the wife’s EA PGS,

e find that a one standard deviation increase in the husband’s EA

GS is associated with an average increase in husband’s education of

.652 years (95% CI: 0.527, 0.777), column 4. Assuming that polygenic

cores are as good as randomly assigned, at least after accounting for

opulation stratification, column 5 shows a substantial causal effect of
8 
olygenic scores on educational attainment: a one standard deviation

ncrease in husband’s EA PGS (resp. wife’s EA PGS) increases average

usband’s education by 0.622 years — 95% CI: 0.494, 0.750 (resp. 0.407

95% CI: 0.280, 0.534). Finally, column 6 shows similar magnitudes,

.642 — 95% CI: 0.516, 0.768 (resp. 0.418 — 95% CI: 0.293, 0.543)

etting out the influence of demographic characteristics. 

The last row in Table 4 reports the first-stage 𝐹 statistic on the instru-

ent. They are well above and beyond the critical values in Stock and

ogo (2005) . Moreover, following Lee et al. (2020) , IV inference will be

ependent on the first-stage 𝐹 statistic. In particular, while the critical

alue for a 95% IV confidence interval is 1.96 for columns (1), (3) and

4), since each has an 𝐹 greater than 104.7, the critical values are 1.98

or columns (2) and (6), and 1.99 for column (5), based on Table 3 in

ee et al. (2020) . 29 

Table A5 in the online appendix contains the OLS first-stage regres-

ions of wife’s education on wife’s EA PGS. If anything, the instrument

ppears to be stronger. Indeed, based on Lee et al. (2020) , all the critical

alues for a 95% IV confidence interval are 1.96, except for column (5),

hich is 1.98. 

In Table 5 we turn to the reduced-form estimates, where wife’s edu-

ation is regressed against husband’s EA PGS (our plausible exogenous

nstrument). As in Table 4 , we present two set of estimates, without

djusting (columns 1–3) and adjusting for the wife’s EA PGS (columns

–6). Column 1, which does not include any controls, shows that a one

tandard deviation increase in the husband’s EA PGS is associated with

n average increase in wife’s education of 0.410 years (95% CI: 0.306,

.513). After adding population stratification controls (column 2), our

oint estimate decreases to 0.345 (95% CI: 0.240, 0.450), and after in-

luding demographic characteristics in addition to the controls for popu-

ation stratification (column 3), our point estimate becomes 0.360 (95%

I: 0.257, 0.464). 

We then shift our attention to reduced-form estimates adjusted for

he wife’s EA PGS (columns 4–6). Column 4 shows that a one standard

eviation increase in husband’s EA PGS (resp. wife’s EA PGS) is associ-

ted with an average increase in wife’s education of 0.332 years — 95%

I: 0.232, 0.432 — (resp. 0.588 — 95% CI: 0.486, 0.691). In column

 we assume conditional random assignment of polygenic scores, after

ccounting for population stratification, and find that a one standard de-

iation increase in husband’s (resp. wife’s) EA PGS increases wife’s ed-

cation by 0.294 years — 95% CI: 0.191, 0.397 (resp. 0.536 — 95% CI:

.432, 0.640). Similar effects are found after netting out the influence

f demographic characteristics, 0.313 — 95% CI: 0.213, 0.414 (resp.

.549 — 95% CI: 0.446, 0.652). 
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Table 4 

OLS estimates of the first stage. 

Dependent variable: Husband’s Education 

(1) (2) (3) (4) (5) (6) 

Husband’s EA PGS 0.711 0.661 0.678 0.652 0.622 0.642 

(0.585, 0.837) (0.532, 0.790) (0.551, 0.805) (0.527, 0.777) (0.494, 0.750) (0.516, 0.768) 

Wife’s EA PGS 0.447 0.407 0.418 

(0.324, 0.571) (0.280, 0.534) (0.293, 0.543) 

Observations 1,562 1,562 1,562 1,562 1,562 1,562 

R-squared 0.070 0.106 0.144 0.097 0.128 0.166 

PCAs No Yes Yes No Yes Yes 

Demographics No No Yes No No Yes 

First-stage F statistic 122.816 100.857 109.241 105.226 91.265 99.920 

Note: 95% confidence intervals based on robust standard errors in parentheses. PCAs: 10 first principal components of the 

husband’s and the wife’s genetic data. Demographics: year of birth of the wife, year of birth of the husband, 8 indicators of 

the wife’s region (Census division) of birth and 8 indicators of the husband’s region (Census division) of birth. First-stage 

F statistic is the statistic of the test of the coefficient on Husband’s EA PGS being zero. 

Table 5 

OLS estimates of the reduced form. 

Dependent variable: Wife’s Education 

(1) (2) (3) (4) (5) (6) 

Husband’s EA PGS 0.410 0.345 0.360 0.332 0.294 0.313 

(0.306, 0.513) (0.240, 0.450) (0.257, 0.464) (0.232, 0.432) (0.191, 0.397) (0.213, 0.414) 

Wife’s EA PGS 0.588 0.536 0.549 

(0.486, 0.691) (0.432, 0.640) (0.446, 0.652) 

Observations 1,562 1,562 1,562 1,562 1,562 1,562 

R-squared 0.035 0.083 0.127 0.106 0.139 0.185 

PCAs No Yes Yes No Yes Yes 

Demographics No No Yes No No Yes 

Note: 95% confidence intervals based on robust standard errors in parentheses. PCAs: 10 first principal components of the 

husband’s and the wife’s genetic data. Demographics: year of birth of the wife, year of birth of the husband, 8 indicators 

of the wife’s region (Census division) of birth and 8 indicators of the husband’s region (Census division) of birth. 

Table 6 

IV (2SLS) estimates of the matching function. 

Dependent variable: Wife’s Education 

(1) (2) (3) (4) (5) (6) 

Husband’s Education 0.576 0.522 0.531 0.509 0.473 0.488 

(0.452, 0.700) (0.388, 0.656) (0.402, 0.661) (0.378, 0.640) (0.332, 0.613) (0.352, 0.624) 

[1.98] [1.99] [1.98] 

Wife’s EA PGS 0.361 0.344 0.345 

(0.249, 0.472) (0.234, 0.454) (0.236, 0.455) 

Observations 1,562 1,562 1,562 1,562 1,562 1,562 

PCAs No Yes Yes No Yes Yes 

Demographics No No Yes No No Yes 

Note: 95% confidence intervals based on robust standard errors in parentheses. The confidence intervals in italics are 

constructed using either 1.96 or the critical values in Table 3 of Lee et al. (2020). When using the critical values in Lee et al. 

(2020), these are reported in brackets. PCAs: 10 first principal components of the husband’s and the wife’s genetic data. 

Demographics: year of birth of the wife, year of birth of the husband, 8 indicators of the wife’s region (Census division) of 

birth and 8 indicators of the husband’s region (Census division) of birth. 
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Table A6 in the online appendix contains the reduced-form estimates

f the effects of the polygenic scores on husband’s years of education. 

.3. IV Estimates of the matching equation 

If our instruments are valid (i.e., relevant and exogenous), the

ausal effect of husband’s education on wife’s education is given by the

educed-form coefficient on the husband’s EA PGS inflated (divided) by

he first-stage coefficient on the husband’s EA PGS. Looking at the re-

ression conditional on the wife’s EA PGS estimates in Tables 4 and 5,

olumns 4–6, these ratios are 0.509 (column 4 divided by column 1),

.473 (column 5 divided by column 2) and 0.488 (column 6 divided by

olumn 3), which are well-known to be numerically equivalent to the IV

oint estimates using 2SLS displayed in Table 6 . An additional year in
9 
usband’s education increases average wife’s educational attainment by

bout 0.5 years: in words, and in our matching context, this means that

f we take two men, who are observationally equivalent in the marriage

arket, and we increase the educational attainment of one of them by

ne more year of education, the one with higher education will be ex-

ected to have a wife with about half a year more of education. Note that

he 95% CIs are based on robust standard errors and the critical value

.96 when 𝐹 > 104 . 7 , or the corresponding critical value in Table 3 of

ee et al. (2020) when 𝐹 < 104 . 7 . 
The IV estimates of the causal effect of wife’s education on husbands’

ducation are reported in Table A7 in the online appendix. Again, as-

uming that our instrument is valid, an additional year in wife’s educa-

ion increases average husband’s educational attainment by about 0.76
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Table 7 

Comparison of estimates of education on spousal education. 

(1) (2) (3) 

Panel A. Causal effect on Wife’s Education 

OLS 95% CI (0.391, 0.472) (0.382, 0.463) (0.366, 0.449) 

IV (2SLS) 95% CI (0.378, 0.640) (0.332, 0.613) (0.352, 0.624) 

IV (UCI) 95% bounds with 𝛾 ∈ [0 , 0 . 2] (0.065, 0.640) (-0.000, 0.613) (0.035, 0.624) 

Panel B. Causal effect on Husband’s Education 

OLS 95% CI (0.601, 0.706) (0.590, 0.697) (0.573, 0.679) 

IV (2SLS) 95% CI (0.579, 0.942) (0.553, 0.966) (0.562, 0.961) 

IV (UCI) 95% bounds with 𝛾 ∈ [0 , 0 . 2] (0.237, 0.942) (0.177, 0.966) (0.197, 0.961) 

PCAs No Yes Yes 

Demographics No No Yes 

Note: In panel A, all regressions adjust for the wife’s EA PGS in panel A. In panel B, all regressions 

adjust for the husband’s EA PGS. IV bounds are based on the approach developed by Conley et al. 

(2012) and estimated using the plausexog Stata command as described by Clarke and Matta 

(2018): IV (UCI: Union of Confidence Interval) approach consists in finding bounds for the IV 

when the exclusion restriction is violated ( 𝛾 ≠ 0 ) by choosing a range of values for 𝛾, in our case, 

with a minimum of 0 and a maximum of 0.2. 5% significance level is obtained using either 1.96 

or the critical values in Table 3 of Lee et al. (2020). 
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Fig. 2. Comparison of estimates of the effect of education on wife’s educa- 

tion. Note: Point estimates and 95% bounds/confidence intervals. UCI with 

𝛾 ∈ [0 , 0 . 2] See footer of Table 7 . The horizontal line denotes a zero causal effect. 

Fig. 3. Comparison of estimates of the effect of education on husband’s educa- 
ears: this means that if we take two women, who are observationally

quivalent in the marriage market, and we increase the educational at-

ainment of one of them by one more year of education, the one with

igher education will be expected to have a husband with about three

uarters of a year more of education. 

.4. Plausible exogenous IV estimates 

As discussed in the introduction, polygenic scores for spousal ed-

cation may affect own education above and beyond their effects on

pousal education, and hence violate the exclusion restriction. In this

ubsection, we relax the exclusion restriction following the “union of

onfidence interval ” (UCI) approach developed by Conley et al. (2012) .

he UCI approach consists in finding bounds for the IV for a range of

alues of 𝛾. 

Table 7 compares the 95% CI intervals/bounds for OLS, IV and UCI

stimates for the causal effects of education on wife’s education (panel

) and husband’s education (panel B). Both OLS and IV estimates gener-

te a similar 95% lower bound in both panels. Since the minimum value

or 𝛾 is set at 0, the 95% upper bounds in the IV and the UCI cases are

xactly the same by construction. The bite of the UCI approach comes

rom the upper bound, 𝛾 = 0 . 2 . In that case, we can see that the 95%

ower bound ranges from - 0.000 (column 2) to 0.065 (column 1), in

anel A, and from 0.177 (column 2) to 0.237 (column 1), in panel B. 

Our interpretation of Table 7 is that we need to have a sufficiently

arge and positive 𝛾, 𝛾 ≥ 0 . 2 , to rule out a positive causal effect of hus-

and’s education on wife’s education. In words, a one standard deviation

n husband’s EA PGS must directly increase wife’s education in 0.2 or

ore years to nullify the causal effect of husband’s education on wife’s

ducation. 30 A similar, even stronger, argument can be made for the

ausal effect of wife’s education on husband’s education. 31 

Figs. 2 and 3 summarize the findings of Table 7 and the key findings

f our paper. 

Figures A1 (resp. Figure A2) in the online appendix displays the UCI

5% range of lower bounds for column 3 and panel A (resp. panel B) in

able 7 . For completeness, we also present Figure A3 (resp. Figure A4)

n the online appendix, which displays the UCI 95% bounds analysis for

olumn 3 in Table 7 and panel A (resp. panel B) when 𝛾 ∈ [−0 . 2 , 0 . 2] . 
30 Note that Table 5 shows that a one standard deviation increase in husband’s 

GS is associated with an increase of 0.313 (95% CI: 0.213, 0.414) in the years 

f schooling of the wife, column 6. Thus, 0.2 seems a relevant magnitude at first 

lance. Moreover, the estimate of 𝛽 when 𝛾 = 0 . 2 is 0.176 ( = 0 . 313 
0 . 642 

− 0 . 2 
0 . 642 

). This 

eans that when 𝛾 = 0 . 2 , 43% of the OLS estimate (0.407) or 36% of the IV 

stimate (0.488) reflects a causal effect. 
31 Note that the lower bounds in panel B are much larger than in panel A. 

tion. Note: See footer of Fig. 2 . 

 

s  

o  

o

10 
Our results are very similar using OLS and IV, and the bounds analy-

is suggests that, for mild violations of the exclusion restriction, 𝛾 < 0 . 2 ,
ur IV findings are able to reveal a positive causal effect of education

n spousal education. 
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.5. Robustness check: Conditional Mendelian randomization 

One concern of our previous IV analysis is that the independence

ssumption is satisfied only within families. For this reason, and inspired

y Ronda et al. (2020) , we also run our IV analysis conditioning on

amily characteristics. In particular, we use education of the mother and

ducation of the father for both spouses. Reassuringly, our IV findings

re robust to controlling for parental education. 

Intuitively, given the addition of parental education of both spouses,

he violation of the exclusion restriction needs to be a bit milder, 𝛾 < 0 . 1 .
owever, the addition of these controls in our matching context can

pen endogeneity channels. Moreover, adding these controls makes our

ample size decrease from 1,562 to 1,286 observations, a reduction in

ample size of almost 20%. For these reasons, these findings are pre-

ented as a robustness check in Table A8 in the online appendix and

ust be interpreted with caution. 

. Conclusions 

This is the first paper to present a genetic-IV strategy to estimate

he causal effect of education on spousal education. Our IV (2SLS) es-

imates suggest that an additional year in husband’s (resp. wife’s) edu-

ation increases wife’s (resp. husband’s) education by about 0.5 (resp.

.75) years. Even if the husband’s (resp. wife’s) educational attainment

olygenic score (EA PGS) has a direct effect on wife’s (resp. husband’s)

ducation over and above husband’s (resp. wife’s) education, we can-

ot rule out a positive effect of husband’s (resp. wife’s) on wife’s (resp.

usband’s) education, so long as one standard deviation increase in hus-

and’s (resp. wife’s) EA PGS directly increases wife’s (resp. husband’s)

ducation by less than 0.2 (resp. 0.3) years. 

Of course, our study has limitations, and it is important to acknowl-

dge them and highlight avenues for future research. We have identi-

ed three main potential drawbacks. The first two relate to the inter-

al validity of our estimates and the external validity of our findings,

espectively. The third one is about the exact mechanism behind the

ocumented positive causal effect of education on spousal education. 

First, while we use a sample from a nationally representative survey

HRS), our results refer to an HRS sample of individuals who are on

verage 70 years old, still alive, who got married on average 40 years

go and have been married to each other ever since. Second, while we

llow for the possibility that the exclusion restriction is violated, we as-

ume that the other requirement buried in the exogeneity assumption

the independence assumption — holds due to Mendelian randomiza-

ion. However, one may argue that Mendelian randomization holds con-

itional on family fixed effects, but not across families. While our results

re robust to controlling for parental education, future work can extend

ur analysis and address these two limitations by using new datasets

here within-sibling variation in polygenic scores can be exploited and

nvestigate whether our results are replicated. 

Finally, future research should try to pin down the exact mechanism

ehind our findings: Do more educated husbands become more likely to

ncounter potential wives that are more educated? And/or do more edu-

ated husbands become more attractive to more educated wives, holding

onstant the likelihood of meeting an educated spouse? In other words,

s the causal effect of education on spousal education documented in

his study mainly due to search or preferences? ( Bruze, 2011 ). 
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