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Abstract. By utilizing intermediate Gaussian approximations, this paper establishes asymptotic lin-

ear representations of nonparametric deconvolution estimators for the classical measurement error

model with repeated measurements. Our result is applied to derive confidence bands for the density

and distribution functions of the error-free variable of interest and to establish faster convergence rates

of the estimators than the ones obtained in the existing literature. Due to slower decay rates of the

linearization errors, however, our bootstrap counterparts for confidence bands need to be constructed

by subsamples.

1. Introduction

This paper establishes asymptotic linear representations of nonparametric deconvolution estimators
for the classical measurement error model, where repeated noisy measurements on the error-free variable
of interest are available. For this problem, a seminal work by Li and Vuong (1998, hereafter LV)
developed a nonparametric estimator for the densities of the error-free variable of interest and the
measurement errors, which are identified via Kotlarski’s (1967) identity. A large body of the existing
literature on nonparametric deconvolution methods (see Meister, 2009, for a review) requires perfect
knowledge of the measurement error distribution, which is hardly available in practice. In contrast, the
LV estimator circumvents such a requirement by utilizing information from repeated measurements.
Another attractive feature of the LV estimator is that it does not require prior information on the
shape of the measurement error density, such as symmetry (as in Delaigle, Hall and Meister, 2008) or
auxiliary data drawn from the measurement error densities (as in Neumann, 2007).

Given this background, there is growing interest in the LV estimator and related methods. LV derived
the uniform convergence rates for their estimators under bounded support conditions. Comte and
Kappus (2015) studied a regularized version the LV estimator and established the L2-convergence rates
under weaker assumptions than the ones in LV, which allow unbounded data support. Bonhomme and
Robin (2010) considered a general latent multi-factor model, which covers the repeated measurements
model as a special case, and established the uniform convergence rate without assuming bounded
support. Kurisu and Otsu (2021) derived faster uniform convergence rates than LV and Bonhomme
and Robin (2010) under even weaker assumptions by utilizing a maximal inequality for the multivariate
normalized empirical characteristic function process.

It should be noted that the existing literature mostly focuses on characterizing convergence rates of
the LV-type estimators, and their further theoretical properties are largely unknown. For example, it is
not clear how to construct confidence bands for the densities of the error-free variable of interest and the
measurement errors based on those estimators. Also optimal convergence rates, adaptive bandwidth
selection methods, and limit theorems for functionals of the LV-type estimators are open questions in
this setup. A recent paper by Kato, Sasaki and Ura (2021) developed confidence bands for the densities
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in the repeated measurements model by exploring the implied moment conditions approximated by
Hermite polynomial sieves. In contrast, this paper constructs confidence bands based on the LV
estimator.

As an initial step toward filling this gap, this paper establishes (uniform) asymptotic linear approxi-
mations for the LV estimators for the densities of the error-free variable of interest and the measurement
errors. Due to complicated structures of the LV estimators, there are at least two reasons that make
our asymptotic analysis non-trivial. First, it is involving to characterize the empirical processes for
the dominant terms of the characteristic function estimators by using intermediate Gaussian approx-
imations (e.g., Chernozhukov, Chetverikov and Kato, 2016). Second, we need to apply intermediate
Gaussian approximations again for the (regularized) Fourier inversions to establish the asymptotic
linear forms for the resulting LV density estimators. To the best of our knowledge, our applications of
intermediate Gaussian approximations seem new in the studies of the LV-type estimators.

Our asymptotic linear approximations immediately yield several important implications. First, our
intermediate Gaussian approximation approach allows to derive faster uniform convergence rates than
the existing ones, such as LV, Bonhomme and Robin (2010), and Kurisu and Otsu (2021). Second, by
perturbing the obtained linear forms, we can develop Gaussian multiplier bootstrap confidence bands
for the density and cumulative distribution functions of the error-free variable and measurement errors.
Although this is the first paper establishing the confidence bands based on the LV estimators, a draw-
back of the proposed confidence bands is that our bootstrap counterparts need to be constructed based
on subsamples because of the slower decay rates of the linearization errors. Finally, our intermediate
Gaussian approximation approach provides bootstrap pointwise confidence intervals without knowing
the limiting distributions of the LV-type estimators. Also we conjecture our linear approximations can
serve as building blocks for further theoretical analyses on the LV-type estimators, such as optimal
convergence rates.

In the context of constructing confidence bands for nonparametric measurement error problems,
Bissantz et al. (2007) considered the case where the measurement error density is known to researchers,
and developed confidence bands by showing that the supremum deviation of the deconvolution kernel
density estimator converges in distribution to a Gumbel distribution. Kato and Sasaki (2018, 2019)
studied the case where the measurement error density is unknown but auxiliary observations from
the measurement error density are available so that the deconvolution kernel can be constructed by
plugging in the empirical characteristic function of the measurement error distribution based on the
auxiliary data. In this setup, Kato and Sasaki (2018, 2019) considered nonparametric density and
regression estimation problems, respectively, established Gaussian intermediate approximations to their
estimators with suitable normalizations, and proposed multiplier bootstrap confidence bands. Their
setup covers repeated measurement models when the measurement error density is typically symmetric
around zero (see also Delaigle, Hall and Meister, 2008). The major difference of the present work with
Kato and Sasaki (2018, 2019) is that we do not impose such a shape constraint on the measurement
error density and construct confidence bands based on the LV estimator, which takes a substantially
different form from Kato and Sasaki’s (2018) estimator so that theoretical developments are very
different from theirs. See Remark 2 below for a further detail.

We also note that several empirical studies indicate asymmetric shapes of measurement error den-
sities, which motivate the LV-type estimation methods. For example, Li, Perrigne and Vuong (2000)
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and Krasnokutskaya (2011) applied the LV estimator to auction data and reported asymmetric density
estimates for the measurement errors. Bonhomme and Robin (2010) applied the LV-type estimator for
multi-factor models to study earning dynamics in the US. Although their estimated densities (for the
objects corresponding to the measurement error densities) are overall symmetric, such information on
the shape of densities is typically unavaiable a priori. In this case, the LV-type estimator would be
useful to motivate the symmetry or other shape restrictions on the measurement error densities and
to proceed to more efficient estimation methods, such as Kato and Sasaki (2018).

This paper is organized as follows. Section 2 presents our main results, asymptotic linear approx-
imations for the LV estimators. In Section 3, we discuss applications of our main results for refined
convergence rates of the LV estimators (Section 3.1), confidence bands of the density functions of
the error-free variable of interest and the measurement errors (Section 3.2), and confidence bands of
the cumulative distribution functions of the error-free variable of interest and the measurement errors
(Section 3.3).
Notation. Hereafter, we use the following notation. For any a, b ∈ R, let a ∨ b = max{a, b} and

a ∧ b = min{a, b}. For any positive sequences {an} and {bn}, we write an . bn if there is a positive
constant C independent of n such that an ≤ Cbn for all n, an ∼ bn if an . bn and bn . an, and
an � bn if an/bn → 0 as n → ∞. For random variables X and Y , we write X d

= Y if they have the
same distribution.

2. Linearization lemmas

2.1. Setup and estimators. We first introduce our basic setup and define the density deconvolution
estimators. Consider a bivariate i.i.d. sample {Y1,j , Y2,j}nj=1 of (Y1, Y2) generated by

Y1 = X + ε1, (1)

Y2 = X + ε2,

where (X, ε1, ε2) are unobservables. This setup is called the repeated measurements model, where X
is an error-free variable of interest, (ε1, ε2) are measurement errors for X, and (Y1, Y2) are repeated
noisy measurements on X. We are interested in estimating the densities of X, ε1, and ε2. For sake
of simplicity and clarity, we hereafter concentrate on the bivariate case. It is possible to extend our
method to the case where more than two noisy measurements on X are available.

Let i =
√
−1. We impose the following assumptions on the model (1).

Assumption M. (ε1, ε2) are independent copies of a random variable ε, X is independent of (ε1, ε2),
X and ε have square integrable Lebesgue densities fX and fε, respectively, the characteristic functions
ϕX(u) = E[eiuX ] and ϕε(u) = E[eiuε] vanish nowhere, E[ε] = 0, and E|Y1|4 <∞.

Although these assumptions are standard for the classical measurement error model (e.g., Comte
and Kappus, 2015), they are weaker than some existing papers on the repeated measurements model,
such as LV (which impose bounded supports of fX and fε), Delaigle, Hall and Meister (2008) (which
require fε to be symmetric around zero), and Bonhomme and Robin (2010) (which require the existence
of the moment generating functions of Y 2

1 and Y1Y2). See also Remark 2 below for a comparison with
Kato and Sasaki (2018, 2019). The condition E[ε] = 0 is a normalization to identify the densities fX
and fε.
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This paper develops uniform confidence bands for the densities fX and fε. To this end, we first
introduce the LV estimator for fX and fε. Define the characteristic function for the observables
(Y1, Y2) as

ψ(u1, u2) = E[ei(u1Y1+u2Y2)] = ϕX(u1 + u2)ϕε(u1)ϕε(u2),

and let ψ1(u1, u2) = ∂ψ(u1, u2)/∂u1 = iE[Y1e
i(u1Y1+u2Y2)] be its derivative with respect to the first

argument. Since E|Y1| <∞ under Assumption M, Kotlarski’s identity gives us an explicit identification
formula of ϕX , that is

ϕX(u) = exp

∫ u

0

ψ1(0, u2)

ψ(0, u2)
du2.

By taking the sample counterpart, LV proposed to estimate ϕX by

ϕ̂X(u) = exp

∫ u

0

ψ̂1(0, u2)

ψ̂(0, u2)
du2, (2)

where ψ̂(u1, u2) = 1
n

∑n
j=1 e

i(u1Y1,j+u2Y2,j) and ψ̂1(u1, u2) = i
n

∑n
j=1 Y1,je

i(u1Y1,j+u2Y2,j). Also based on
the expression ϕε(u) = ψ(0, u)/ϕX(u), the characteristic function ϕε of ε can be estimated by

ϕ̂ε(u) =
ψ̂(0, u)

ϕ̂X(u)
. (3)

By taking the Fourier inversions with regularizations, the densities fX and fε can be estimated by

f̂X(t) =
1

2π

∫
R
e−iutϕ̂X(u)ϕK(hu)du, (4)

f̂ε(t) =
1

2π

∫
R
e−iutϕ̂ε(u)ϕK(hu)du,

respectively, where ϕK(u) is the Fourier transform of a kernel function K and h = hn is a sequence of
positive numbers (bandwidths) such that h → 0 as n → ∞. We impose the following assumption on
the kernel function.

Assumption K. The kernel function K satisfies
∫
RK(x)dx = 1,

∫
R x

`K(x)dx = 0 for ` = 1, . . . , p−1,
and

∫
R |x|

pK(x)dx < ∞ with a positive even integer p. Also, its Fourier transform ϕK satisfies
ϕK(u) = 0 for any |u| > 1.

This assumption requires the kernel function K to be a p-th order kernel, and its construction
is typically done by specifying the Fourier transform ϕK . Let ζ : R → R be an even function,
which is supported on [−1, 1], (p + 2)-times continuously differentiable, and ζ(`)(0) = 1 for ` = 0

and 0 for ` = 1, . . . , p − 1. Then the function K(x) = 1
2π

∫
R e
−iuxζ(u)du is real-valued and satisfies

|K(x)| = o(|x|−p−2) as |x| → ∞ (which follows from a change of variables) so that (1 ∨ |x|p)K is
integrable and ∫

R
x`K(x)dx = i−`ζ(`)(0) =

1 ` = 0,

0 ` = 1, . . . , p− 1.

Since K is even, we have
∫
R x

pK(x)dx = 0 for even p. Examples of ζ include ζ(u) = (1 − u2)kI{u ∈
[−1, 1]} for k ≥ p+ 3, and

ζ(u) =


1 if |u| ≤ c0,

exp
{
−b exp(−b/(|u|−c0)2)

(|u|−1)2

}
if c0 < |u| < 1,

0 if 1 ≤ |u|,
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for 0 < c0 < 1 and b > 0. For the latter case, ζ is infinitely differentiable with ζ(`)(0) = 0 for
all ` ≥ 1, so that its inverse Fourier transform K, called a flat-top kernel, is of infinite order, i.e.,∫
R x

`K(x)dx = 0 for all integers ` ≥ 1 (McMurry and Politis, 2004). We also remark that the sinc
kernel K(x) = sin(x)/x is another example of an infinite-order kernel and its Fourier transform is given
by ϕK(u) = I{u ∈ [−1, 1]}

To study the asymptotic properties of the estimators in (4) and develop confidence bands for fX
and fε, we split into two cases based on the density of fX , i.e., the ordinary smooth (Section 2.2)
and supersmooth (Section 2.3) cases. As we show below, the estimators in (4) exhibit rather different
asymptotic behaviors.

2.2. Ordinary smooth case. In this subsection, we consider the case where the densities fX and fε
are ordinary smooth. In particular, we impose the following assumption.

Assumption OS. For some constants βx, βε > 1, ωx, ωε, ω1x, δ > 0, Cx ≥ cx > 0, C1x ≥ c1x > 0, and
Cε ≥ cε > 0, it holds

cx|u|−βx ≤ |ϕX(u)| ≤ Cx|u|−βx for all |u| ≥ ωx,

c1x|u|−δ ≤
∣∣∣∣d logϕX(u)

du

∣∣∣∣ ≤ C1x|u|−δ for all |u| ≥ ω1x,

cε|u|−βε ≤ |ϕε(u)| ≤ Cε|u|−βε for all |u| ≥ ωε.

The conditions on ϕX and ϕε are common in the literature of nonparametric deconvolution (see,
e.g., Meister, 2009). The conditions βx, βε > 1 are introduced to guarantee consistency of the density
estimators. Since the estimators of the characteristic functions in (2) and (3) are defined by the ratios
of the (regularized) empirical averages, we need to use the lower and upper bounds of the characteristic
functions to obtain suitable bounds of the stochastic and deterministic bias terms of the estimators. A
popular example of an ordinary smooth density is the Laplace density. However, it should be noted that
our assumption allows the (unknown) measurement error density fε to be asymmetric. The assumption
on d logϕX(u)/du is very mild. For example, Comte and Kappus (2015) assumed square integrability
of |d logϕX(u)/du|.

Our goal is to develop confidence bands for the densities fX and fε over a given compact set T based
on Gaussian approximations for the density estimators f̂X and f̂ε. To this end, we first establish the
asymptotic linear representations for f̂X and f̂ε.

Lemma 1. [Asymptotic linear forms of f̂X and f̂ε for ordinary smooth case] Suppose Assumptions M,
K, and OS hold true.

(i): If

n−
1
6 (log n)

3
2 ∨

(
n

log n

)− 1
2βε+3

∨
(

n

(log n)3

)− 1
2βx+2βε

� h� (n log n)
− 1

2βx+2βε+1 ,

then it holds

f̂X(t)− fX(t) =
1

n

n∑
j=1

{LX,j(t)− E[LX,1(t)]}+ op(n
− 1

2h−βε−
3
2 (log n)−

1
2 ),
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uniformly over t ∈ T , where

LX,j(t) =
i

2π

∫
R
e−iutϕX(u)

{∫ u

0

Y1,je
iu2Y2,j

ψ(0, u2)
du2

}
ϕK(hu)du. (5)

(ii): If

n−
1
6 (log n)

3
2 ∨

(
n

log n

)− 1
2βx+3

∨
(

n

(log n)3

)− 1
2βx+2βε

� h� (n log n)
− 1

2βx+2βε+1 ,

then it holds

f̂ε(t)− fε(t) =
1

n

n∑
j=1

{Lε,j(t)− E[Lε,1(t)]}+ op(n
− 1

2h−βx−
3
2 (log n)−

1
2 ),

uniformly over t ∈ T , where

Lε,j(t) =
1

2π

∫
R
e−iut

{
eiuY2,j

ϕX(u)
− iϕε(u)

∫ u

0

Y1,je
iu2Y2,j

ψ(0, u2)
du2

}
ϕK(hu)du. (6)

Remark 1. In contrast to LX,j(t), the term Lε,j(t) involves two components due to the influences
from the denominator and numerator of ϕ̂ε in (3). The conditions on the bandwidth h are to control
for the bias terms (by the upper bounds) and stochastic errors (by the lower bounds). In particular,
the component n−

1
6 (log n)

3
2 in the lower bounds of h is to control errors for the Gaussian coupling by

Chernozhukov, Chetverikov and Kato (2016, Theorem 2.1).

Remark 2. Kato and Sasaki (2018, 2019) developed bootstrap confidence bands for the density and
regression functions of nonparametric measurement error models, respectively, for the case where the
measurement error density is unknown but auxiliary observations from the measurement error density
are available. Their method is applicable to the repeated measurements model in (1) as far as

ε1 + ε2 and ε1 − ε2 have the same distribution, (7)

which basically requires symmetry of the distribution of ε2 (given ε1). In this scenario, the transformed
data (Y1 − Y2)/2 can be regarded as the ones generated from fε so that the characteristic function ϕε
can be estimated by ϕ̂KSε (u) = 1

n

∑n
j=1 e

iu(Y1,j−Y2,j)/2. Kato and Sasaki (2018, 2019) plugged in ϕ̂KSε to
the conventional deconvolution kernel density and regression estimators, respectively, provided inter-
mediate Gaussian approximations for suitably normalized processes of their estimators, and developed
valid multiplier bootstrap confidence bands.

In contrast to Kato and Sasaki (2018, 2019), this paper considers the LV estimator which is free
from the assumption in (7). Therefore, our confidence bootstrap bands proposed in Section 3.2 below
are more robust to the unknown form of fε. On the other hand, the estimators by Kato and Sasaki
(2018, 2019) are more efficient than the LV-type estimators because they exploit the restriction in
(7). For example, when both fX and fε are ordinary smooth, the uniform convergence rate of Kato
and Sasaki’s (2018) estimator for fX (obtained in their Corollary 2) is faster than the one of the LV
estimator derived in Corollary 1 (i) below.

Furthermore, due to the different forms of the estimators, the theoretical developments of this paper
are very different from Kato and Sasaki (2018, 2019). For example, even for establishing linear forms
in the above lemma, we need to invoke strong approximation results as mentioned in Remark 1. Such
technical arguments are not necessary for the estimators considered by Kato and Sasaki (2018, 2019)
which take simpler forms.
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Remark 3. We note that LX,j(t) and Lε,j(t) are real-valued functions. For example, let L̄X,j(t) be
the complex conjugate of LX,j(t). Then a change of variables yields

L̄X,j(t) =

∫
R
eiutϕX(−u)

{
−i

∫ u

0

Y1,je
−iu2Y2,j

ψ(0,−u2)
du2

}
ϕK(−hu)du

=

∫
R
eiutϕX(−u)

{
i

∫ −u
0

Y1,je
iu2Y2,j

ψ(0, u2)
du2

}
ϕK(−hu)du = LX,j(t).

2.3. Supersmooth case. In this subsection, we consider the case where the densities fX and fε are
supersmooth. In particular, we impose the following assumption.

Assumption SS. For constants βx, βε ∈ R, ρx, ωx, ωε, ω1x, δ1 > 0, ρε ≥ 0, Cx ≥ cx > 0, C1x ≥ c1x >

0, and Cε ≥ cε > 0, it holds

cx|u|βx exp(−|u|ρx/µx) ≤ |ϕX(u)| ≤ Cx|u|βx exp(−|u|ρx/µx), for all |u| ≥ ωx,

c1x|u|δ1 ≤
∣∣∣∣d logϕX(u)

du

∣∣∣∣ ≤ C1x|u|δ1 for all |u| ≥ ω1x,

cε|u|βε exp(−|u|ρε/µε) ≤ |ϕε(u)| ≤ Cε|u|βε exp(−|u|ρε/µε), for all |u| ≥ ωε.

The conditions on ϕX and ϕε are common conditions for supersmooth densities in the nonparametric
deconvolution literature. Similar to the ordinary smooth case, we need lower and upper bounds of the
characteristic functions. A popular example of a supersmooth density is the normal density. The
assumption on d logϕX(u)/du is mild and Schennach (2004) imposed a similar condition.

For the supersmooth case, the asymptotic linear representations of f̂X and f̂ε are obtained as follows.

Lemma 2. [Asymptotic linear forms of f̂X and f̂ε for supersmooth case] Suppose Assumptions M, K,
and SS hold true. Additionally, there exists c ∈ (0, 1] such that ϕK(x) = 1 for |x| ≤ c.

(i): If

1√
n log h−1

� h
ρx
q
−βε−βx+ 1

2
+δ1e

− c
ρxh−ρx
µx

−h
−ρε
µε ,√

(log h−1)3

n
� h−βx−βε+δ1e

−h
−ρx
µx
−h
−ρε
µε ,

√
log h−1

n
� h−βε+

3
2

+δ1e
−h
−ρε
µε ,

for some q ≥ 1, then it holds

f̂X(t)− fX(t) =
1

n

n∑
j=1

{MX,j(t)− E[MX,1(t)]}+ op(n
− 1

2hβε−
3
2
−δ1e

h−ρε
µε (log h−1)−

1
2 ),

uniformly over t ∈ T , where

MX,j(t) =
1

2π

∫
R
e−iutϕX(u)

{∫ u

0

ϕ′X(u2)

ϕX(u2)

eiu2Y2,j

ψ(0, u2)
du2

}
ϕK(hu)du. (8)

(ii): If

1√
n log h−1

� h
ρε
q
−βε−βx+ 1

2
+δ1e

−h
−ρx
µx
− c

ρεh−ρε
µε ,√

(log h−1)3

n
� h−βx−βε+δ1e

−h
−ρx
µx
−h
−ρε
µε ,

√
log h−1

n
� h−βx+ 3

2
+δ1e

−h
−ρx
µx ,
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for some q ≥ 1, then it holds

f̂ε(t)− fε(t) =
1

n

n∑
j=1

{Mε,j(t)− E[Mε,1(t)]}+ op(n
− 1

2hβx−
3
2
−δ1e

h−ρx
µx (log h−1)−

1
2 ),

uniformly over t ∈ T , where

Mε,j(t) = − 1

2π

∫
R
e−iutϕε(u)

{∫ u

0

ϕ′X(u2)

ϕX(u2)

eiu2Y2,j

ψ(0, u2)
du2

}
ϕK(hu)du. (9)

Remark 4. The asymptotic linear representations in this lemma are different from the ones for the
ordinary smooth case in Lemma 1. This is due to the fact that the dominant term in the decomposition
in (10) is ∆2(u) for the supersmooth case (instead of ∆1(u) for the ordinary smooth case). Similar
to Remark 3, we can see that MX,j(t) and Mε,j(t) are real-valued functions. The ratio ϕ′X(u2)

ϕX(u2) in the

definitions of MX,j(t) and Mε,j(t) appears due to the equality ϕ′X(u2)

ϕX(u2) = ψ1(0,u2)
ψ(0,u2) .

Remark 5. In this lemma, we can set q = 1 when fX satisfies Assumption SS with βx > 0 (for Part
(i)) and when fε satisfies Assumption SS with βε > 0 (for Part (ii)). See the proof of Theorem in
Kurisu and Otsu (2021) for details.

2.4. Mixed case. We now consider mixed cases, where (a) fX is ordinary smooth and fε is super-
smooth, or (b) fX is supersmooth and fε is ordinary smooth. By adapting the proofs of Lemmas 1
and 2, the linearization results for the mixed cases are obtained as follows.

Lemma 3. [Asymptotic linear forms of f̂X and f̂ε for mixed cases] Suppose Assumptions M and K
hold true. Additionally, there exists c ∈ (0, 1] such that ϕK(x) = 1 for |x| ≤ c.

(a-i): Suppose that fX satisfies Assumption OS and fε satisfies Assumption SS. If

1√
n log h−1

� h−βε+βx+ 1
2 e
−h
−ρε
µε ,√

(log h−1)3

n
� hβx−βεe

−h
−ρε
µε ,

√
log h−1

n
� h−βε+

3
2 e
−h
−ρε
µε ,

for some q ≥ 1, then it holds

f̂X(t)− fX(t) =
1

n

n∑
j=1

{LX,j(t)− E[LX,1(t)]}+ op(n
− 1

2hβε−
3
2 e

h−ρε
µε (log h−1)−

1
2 ),

uniformly over t ∈ T , where LX,j(t) is defined in (5).
(a-ii): Suppose that fX satisfies Assumption OS and fε satisfies Assumption SS. If

1√
n log h−1

� hβε−βx+ 1
2 e
−h
−ρx
µx ,√

(log h−1)3

n
� hβε−βxe

−h
−ρx
µx ,

√
log h−1

n
� h−βx+ 3

2 e
−h
−ρx
µx ,

for some q ≥ 1, then it holds then it holds

f̂ε(t)− fε(t) =
1

n

n∑
j=1

{Lε,j(t)− E[Lε,1(t)]}+ op(n
− 1

2h−βx−
3
2 (log h−1)−

1
2 ),

uniformly over t ∈ T , where where Lε,j(t) is defined in (6).
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(b-i): Suppose that fX satisfies Assumption SS and fε satisfies Assumption OS. If

1√
n log h−1

� h
ρx
q
−βx+βε+

1
2

+δ1e
− c

ρxh−ρx
µx ,√

(log h−1)3

n
� h−βx+βε+δ1e

−h
−ρx
µx ,

√
log h−1

n
� hβε+

3
2

+δ1 ,

for some q ≥ 1, then it holds

f̂X(t)− fX(t) =
1

n

n∑
j=1

{MX,j(t)− E[MX,1(t)]}+ op(n
− 1

2h−βε−
3
2
−δ1(log h−1)−

1
2 ),

uniformly over t ∈ T , where MX,j(t) is defined in (8).
(b-ii): Suppose that fX satisfies Assumption SS and fε satisfies Assumption OS. If

1√
n log h−1

� h
ρε
q

+βx−βε+ 1
2

+δ1e
− c

ρεh−ρε
µε ,√

(log h−1)3

n
� h−βx+βε+δ1e

−h
−ρx
µx ,

√
log h−1

n
� hβx+ 3

2
+δ1 ,

for some q ≥ 1, then it holds

f̂ε(t)− fε(t) =
1

n

n∑
j=1

{Mε,j(t)− E[Mε,1(t)]}+ op(n
− 1

2hβx−
3
2
−δ1e

h−ρx
µx (log h−1)−

1
2 ),

uniformly over t ∈ T , where Mε,j(t) is defined in (9).

Remark 6. Note that the forms of the asymptotic linear terms for both f̂X and f̂ε are determined
by whether fX is ordinary or super-smooth. For the case of ordinary smooth fX and supersmooth
fε, the linear terms of f̂X and f̂ε are same as the ones in Lemma 1. For the case of supersmooth fX
and ordinary smooth fε, the linear terms of f̂X and f̂ε are same as the ones in Lemma 2. Technically,
this is due to the fact that the dominant linear terms are determined by the relative orders of the
terms ∆1(u) and ∆2(u) in (10), which depend only on the tail behaviors of fX . The conditions on the
bandwidth are analogous to the ones in Lemmas 1 and 2.

3. Applications

3.1. Refined convergence rates. As direct applications of our linearization lemmas in the last sec-
tion, we can derive the convergence rates of the density estimators f̂X and f̂ε, which are faster than
the ones obtained in the existing literature. Inspections of the proofs of Lemmas 1 and 2 yield the
following theorem.

Theorem 1. Suppose Assumptions M and K hold true.

(i): Suppose Assumption OS holds true. If

n−
1
6 (log n)

3
2 ∨

(
n

log n

)− 1
2βε+3

∨
(

n

(log n)3

)− 1
2βx+2βε

� h� 1,

then
sup
t∈T
|f̂X(t)− fX(t)| = Op(n

− 1
2h−βε−

3
2 (log n)

1
2 + hβx−1).

9



Moreover, if

n−
1
6 (log n)

3
2 ∨

(
n

log n

)− 1
2βx+3

∨
(

n

(log n)3

)− 1
2βx+2βε

� h� 1,

then
sup
t∈T
|f̂ε(t)− fε(t)| = Op(n

− 1
2h−βx−

3
2 (log n)

1
2 + hβε−1).

(ii): Suppose Assumption SS holds true. If h� 1 and√
(log h−1)3

n
� h−βx−βε+δ1e

−h
−ρx
µx
−h
−ρε
µε ,

√
log h−1

n
� h−βε+

3
2

+δ1e
−h
−ρε
µε ,

then for ςxh,q = h
ρx
q
−βx−1

exp
(
− cρxh−ρx

µx

)
, it holds

sup
t∈T
|f̂X(t)− fX(t)| = Op(n

− 1
2hβε−

3
2
−δ1e

h−ρε
µε (log h−1)

1
2 + ςxh,q).

Moreover, if h� 1 and√
(log h−1)3

n
� h−βx−βε+δ1e

−h
−ρx
µx
−h
−ρε
µε ,

√
log h−1

n
� h−βx+ 3

2
+δ1e

−h
−ρx
µx ,

Then for ςεh,q = h
ρε
q
−βε−1

exp
(
− cρεh−ρε

µε

)
, it holds

sup
t∈T
|f̂ε(t)− fε(t)| = Op(n

− 1
2hβx−

3
2
−δ1e

h−ρx
µx (log h−1)

1
2 + ςεh,q).

Remark 7. The uniform convergence rates in this theorem are faster than those given in Kurisu and
Otsu (2021) even though the rates in Kurisu and Otsu (2021) are faster than the ones in LV or Bon-
homme and Robin (2010). For example, under Assumptions M, K, and OS and n−

1
4βx+4βε+2 (log n)�

h � 1 (for fX) or n−
1

6βx+4βε+2 (log n) � h � 1 (for fε), the convergence rates in Kurisu and Otsu
(2021) are

sup
t∈T
|f̂X(t)− fX(t)| = Op(n

− 1
2h−2βx−2βε−2(log n) + hβx−1),

sup
t∈T
|f̂ε(t)− fε(t)| = Op(n

− 1
2h−3βx−2βx−2(log n) + hβε−1).

A main reason for this refinement is that we employ intermediate Gaussian approximations for both
the characteristic and density functions estimators instead of bounding those functions via maximal
inequalities.

Similarly, the uniform convergence rates of the estimators for the mixed cases are obtained as follows.

Theorem 2. Suppose Assumptions M and K hold true. Additionally, there exists c ∈ (0, 1] such that
ϕK(x) = 1 for |x| ≤ c.

(a-i): Suppose that fX satisfies Assumption OS and fε satisfies Assumption SS. If h� 1 and√
(log h−1)3

n
� hβx−βεe

−h
−ρε
µε ,

√
log h−1

n
� h−βε+

3
2 e
−h
−ρε
µε ,

then

sup
t∈T
|f̂X(t)− fX(t)| = Op

(
n−

1
2hβε−

3
2 e

h−ρε
µε (log h−1)

1
2 + hβx−1

)
.

10



(a-ii): Suppose that fX satisfies Assumption OS and fε satisfies Assumption SS. If h� 1 and√
(log h−1)3

n
� hβε−βxe

−h
−ρx
µx ,

√
log h−1

n
� h−βx+ 3

2 e
−h
−ρx
µx ,

then

sup
t∈T
|f̂ε(t)− fε(t)| = Op

(
n−

1
2h−βx−

3
2 (log h−1)

1
2 + ςεh,q

)
.

(b-i): Suppose that fX satisfies Assumption SS and fε satisfies Assumption OS. If h� 1 and√
(log h−1)3

n
� h−βx+βε+δ1e

−h
−ρx
µx ,

√
log h−1

n
� hβε+

3
2

+δ1 ,

then

sup
t∈T
|f̂X(t)− fX(t)| = Op

(
n−

1
2h−βε−

3
2
−δ1(log h−1)

1
2 + ςxh,q

)
.

(b-ii): Suppose that fX satisfies Assumption SS and fε satisfies Assumption OS. If h� 1 and√
(log h−1)3

n
� h−βx+βε+δ1e

−h
−ρx
µx ,

√
log h−1

n
� hβx+ 3

2
+δ1 ,

then

sup
t∈T
|f̂ε(t)− fε(t)| = Op

(
n−

1
2hβx−

3
2
−δ1e

h−ρx
µx (log h−1)

1
2 + hβε−1

)
.

The proof of this theorem is analogous to the one in Theorem 1, and similar comments to Remark 7
apply, i.e., our uniform convergence rates are typically faster than the ones obtained in the literature.
To clarify this point, we choose the bandwidth h to balance the terms in the convergence rates in
Theorems 1 and 2 and derive the uniform convergence rates depending only on n as follows. Let
ln = n/(log n) and `n = n/(log log n).

Corollary 1.

(i): [Both fX and fε are ordinary smooth] Under the assumptions of Theorem 1 (i), it holds

sup
t∈T
|f̂X(t)− fX(t)| = Op

(
l

1−βx
2βx+2βε+1
n

)
by setting h ∼ l

− 1
2βx+2βε+1

n ,

sup
t∈T
|f̂ε(t)− fε(t)| = Op

(
l

1−βε
2βx+2βε+1
n

)
by setting h ∼ l

− 1
2βx+2βε+1

n .

(ii): [Both fX and fε are supersmooth] Under the assumptions of Theorem 1 (ii) with c = 1 and
ρx = ρε = ρ, it holds

sup
t∈T
|f̂X(t)− fX(t)| = Op

(
`
− µε

2µx+2µε
n (log `n)

max
{

3/2+δ1−βε
ρ

,
βx+1−ρx/q

ρ

}
(log log n)1/2

)
,

sup
t∈T
|f̂ε(t)− fε(t)| = Op

(
`
− µx

2µx+2µε
n (log `n)

max
{

3/2+δ1−βx
ρ

,
βε+1−ρε/q

ρ

}
(log log n)1/2

)
,

by setting h ∼ (2−1µ log `n)−1/ρ with µ = µxµε/(µx + µε).
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(iii): [fX is ordinary smooth and fε are supersmooth] Under the assumptions of Theorem 2 (a-i)
(for f̂X) or (a-ii) (for f̂ε) with c = 1, it holds

sup
t∈T
|f̂X(t)− fX(t)| = Op

(
`
− 1

2
+α

2
n (log `n)

3/2−βε
ρε (log log n)1/2 + (log `n)

1−βx
ρε

)
,

sup
t∈T
|f̂ε(t)− fε(t)| = Op

(
`
− 1

2
n (log `n)

3/2+βx
ρε (log log n)1/2 + `

−α
2

n (log `n)
βε+1−ρε/q

ρε

)
,

by setting h ∼ (2−1αµε log `n)−1/ρε for α ∈ (0, 1].
(iv): [fX is supersmooth and fε are ordinary smooth] Under the assumptions of Theorem 2 (b-i)

(for f̂X) or (b-ii) (for f̂ε) with c = 1, it holds

sup
t∈T
|f̂X(t)− fX(t)| = Op

(
`
− 1

2
n (log `n)

3/2+βε+δ1
ρx (log log n)1/2 + `

−α
2

n (log `n)
βx+1−ρx/q

ρx

)
,

sup
t∈T
|f̂ε(t)− fε(t)| = Op

(
`
− 1

2
+α

2
n (log `n)

3/2+δ1−βx
ρx (log log n)1/2 + (log `n)

1−βε
ρx

)
,

by setting h ∼ (2−1αµx log `n)−1/ρx for α ∈ (0, 1].

The additional assumption ρx = ρε = ρ in Part (ii) of this corollary is imposed to simplify the
presentation and may be relaxed. The above uniform convergence rates are faster than those in Li and
Vuong (1998) and Kurisu and Otsu (2021) except for the cases of Part (iii) on f̂X and Part (iv) on f̂ε,
where the rates are same as theirs.

3.2. Confidence bands for density functions. In this subsection, we apply our linearization lem-
mas to construct confidence bands for the densities fX and fε. In particular, we develop Gaussian
multiplier bootstrap approximations by perturbing the sample counterparts of the linear terms in Lem-
mas 1 and 2. Let (ϕ̂X , ϕ̂ε, ψ̂, ψ̂1) be the estimators defined in Section 2 based on the full sample of size
n. Then we define the sample counterparts of the asymptotic linear terms as

L̂X,j(t) =
i

2π

∫
R
e−iutϕ̂X(u)

{∫ u

0

Y1,je
iu2Y2,j

ψ̂(0, u2)
du2

}
ϕK(hu)du,

L̂ε,j(t) =
1

2π

∫
R
e−iut

{
eiu2Y2,j

ϕ̂X(u)
− iϕ̂ε(u)

∫ u

0

Y1,je
iu2Y2,j

ψ̂(0, u2)
du2

}
ϕK(hu)du,

M̂X,j(t) =
1

2π

∫
R
e−iutϕ̂X(u)

{∫ u

0

̂(
ϕ′X(u2)

ϕX(u2)

)
eiu2Y2,j

ψ̂(0, u2)
du2

}
ϕK(hu)du,

M̂ε,j(t) = − 1

2π

∫
R
e−iutϕ̂ε(u)

{∫ u

0

̂(
ϕ′X(u2)

ϕX(u2)

)
eiu2Y2,j

ψ̂(0, u2)
du2

}
ϕK(hu)du,

where
̂(ϕ′X(u2)

ϕX(u2)

)
=

̂(ψ1(0,u2)
ψ(0,u2)

)
= ψ̂1(0,u2)

ψ̂(0,u2)
. Although it is natural to apply the multiplier bootstrap these

sample counterparts, the approximation errors for the linear terms decay too slow to construct the
bootstrap counterparts by using the full sample. Therefore, we propose to approximate the distribu-
tions of (suprema of) f̂X − fX and f̂ε− fε by using the subsample-based bootstrap counterparts of the
linearization terms:

L̂ξX(t) =
1

m

m∑
j=1

ξj

{
L̂X,j(t)−

1

m

m∑
k=1

L̂X,k(t)

}
, L̂ξε(t) =

1

m

m∑
j=1

ξj

{
L̂ε,j(t)−

1

m

m∑
k=1

L̂ε,k(t)

}
,
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for the ordinary smooth case, and

M̂ ξ
X(t) =

1

m

m∑
j=1

ξj

{
M̂X,j(t)−

1

m

m∑
k=1

M̂X,k(t)

}
, M̂ ξ

ε (t) =
1

m

m∑
j=1

ξj

{
M̂ε,j(t)−

1

m

m∑
k=1

M̂ε,k(t)

}
,

for the super smooth case, wherem < n is the subsample size, and ξ1, . . . , ξm ∼ N(0, 1) are independent
from the data Yn = {Y1,j , Y2,j}nj=1.

To show validity of our bootstrap approximations, we impose the following assumptions in this
subsection.

Assumption OSB.

(i): Assumptions in Lemma 1 hold true by replacing n with m.
(ii): [Undersmoothing] Let

σ2
X,m(t) = Var(LX,1(t)), s2

X,m = inf
t∈T

σ2
X,m(t),

σ2
ε,m(t) = Var(Lε,1(t)), s2

ε,m = inf
t∈T

σ2
ε,m(t).

Assume that
√
ms−1

X,mh
βx−1 = o(log−

1
2 m) for fX ,

√
ms−1

ε,mh
βε−1 = o(log−

1
2 m) for fε.

(iii): [Variance estimation] Define σX,m(t) =
√
σ2
X,m(t) and σε,m(t) =

√
σ2
ε,m(t). There exist

estimators σ̂2
X,m(t) and σ̂2

ε,m(t) such that

sup
t∈T
|σ̂X,m(t)/σX,m(t)− 1| = op(log−1m) for fX ,

sup
t∈T
|σ̂ε,m(t)/σε,m(t)− 1| = op(log−1m) for fε,

where σ̂X,m(t) =
√
σ̂2
X,m(t) and σ̂ε,m(t) =

√
σ̂2
ε,m(t).

(iv): [Bandwidth and subsample size] As n→∞, it holds
√
m/n = o((log n)−

1
2 ),

m−
1
4 s−1
X,mh

−βε−2(logm)
5
4 = o((logm)−

1
2 ),

n−
1
2 s−1
X,mh

−βε−2(log n)(logm)
1
2 = o(1), and(m

n

) 1
2
s−1
X,mh

−βε−2

(
log n

logm

)
= o((logm)−

1
2 ) for fX ,

m−
1
4 s−1
ε,mh

−βx−2(logm)
5
4 = o((logm)−

1
2 ),

n−
1
2 s−1
ε,mh

−βx−2(log n)(logm)
1
2 = o(1), and(m

n

) 1
2
s−1
ε,mh

−βx−2

(
log n

logm

)
= o((logm)−

1
2 ) for fε.

Condition (ii) is an undersmoothing condition. Condition (iii) is on approximation error of σX,m(t)

and σε,m(t) by σ̂X,m(t) and σ̂ε,m(t), respectively. We need the condition to approximate f̂X(t)−fX(t)
σ̂X,m(t)

(or f̂ε(t)−fε(t)
σ̂ε,m(t) ) by f̂X(t)−fX(t)

σX,m(t) (or f̂ε(t)−fε(t)
σε,m(t) ). Condition (iv) is a set of other technical assumptions.

Indeed, for fX , we need the first assumption in Condition (iv) to approximate the supremum of
σ−1
X,m(t)

n

∑n
j=1{LX,j(t)−E[LX,1(t)]} by the supremum of a Gaussian random variable. We also need the
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second and third assumptions to show asymptotic validity of our bootstrap-based uniform confidence
bands. Precisely, we can replace L̂X,j(t) (or L̂ε,j(t)) for j = 1, . . . ,m in the definition of L̂ξX(t) (or
L̂ξε(t)) with LX,j(t) (or Lε,j(t)) for j = 1, . . . ,m under the second and third assumptions in Condition
(iv). The same comment applies to Assumption SSB.

Assumption SSB.

(i): Assumptions in Lemma 2 hold true by replacing n with m.
(ii): [Undersmoothing] Let

σ2
X,m(t) = Var(MX,1(t)), s2

X,m = inf
t∈T

σ2
X,m(t),

σ2
ε,m(t) = Var(Mε,1(t)), s2

ε,m = inf
t∈T

σ2
ε,m(t).

Assume that
√
ms−1

X,mh
ρx
q
−βx−1

exp

(
−c

ρxh−ρx

µx

)
= o(log−

1
2 m) for fX ,

√
ms−1

ε,mh
ρε
q
−βε−1

exp

(
−c

ρεh−ρε

µε

)
= o(log−

1
2 m) for fε.

(iii): [Variance estimation] Define σX,m(t) =
√
σ2
X,m(t) and σε,m(t) =

√
σ2
ε,m(t). There exist

estimators σ̂2
X,m(t) and σ̂2

ε,m(t) such that

sup
t∈T
|σ̂X,m(t)/σX,m(t)− 1| = op(log−1m) for fX ,

sup
t∈T
|σ̂ε,m(t)/σε,m(t)− 1| = op(log−1m) for fε,

where σ̂X,m(t) =
√
σ̂2
X,m(t) and σ̂ε,m(t) =

√
σ̂2
ε,m(t).

(iv): [Bandwidth and subsample size]
√
m/n = o((log n)−

1
2 ),

m−
1
4 s−1
X,mh

βε−2 exp

(
h−ρε

µε

)
(logm)

5
4 = o((logm)−

1
2 ),

n−
1
2 s−1
X,mh

βε−2−δ1 exp

(
h−ρε

µε

)
(log n)(logm)

1
2 = o(1), and(m

n

) 1
2
s−1
X,mh

βε−2−δ1 exp

(
h−ρε

µε

)(
log n

logm

)
= o((logm)−

1
2 ) for fX ,

m−
1
4 s−1
ε,mh

βx−2 exp

(
h−ρx

µx

)
(logm)

5
4 = o((logm)−

1
2 ),

n−
1
2 s−1
ε,mh

βx−2−δ1 exp

(
h−ρx

µx

)
(log n)(logm)

1
2 = o(1), and(m

n

) 1
2
s−1
ε,mh

βx−2−δ1 exp

(
h−ρx

µx

)(
log n

logm

)
= o((logm)−

1
2 ) for fε.

For the variance estimation, one may use

σ̂2
X,m(t) =


1
m

∑m
j=1 L̂

2
X,j(t)−

(
1
m

∑m
k=1 L̂X,k(t)

)2
under Assumption OSB

1
m

∑m
j=1 M̂

2
X,j(t)−

(
1
m

∑m
k=1 M̂X,k(t)

)2
under Assumption SSB

,

σ̂2
ε,m(t) =


1
m

∑m
j=1 L̂

2
ε,j(t)−

(
1
m

∑m
k=1 L̂ε,k(t)

)2
under Assumption OSB

1
m

∑m
j=1 M̂

2
ε,j(t)−

(
1
m

∑m
k=1 M̂ε,k(t)

)2
under Assumption SSB

.
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Theorem 3. [Bootstrap approximations] Suppose Assumptions M, K, and OSB or SSB hold true.
Then as n→∞,

sup
z∈R

∣∣∣∣∣Pr

{
√
m sup

t∈T

∣∣∣∣∣ f̂X(t)− fX(t)

σ̂X,m(t)

∣∣∣∣∣ ≤ z
}
− Pr

{
√
m sup

t∈T

∣∣∣∣∣ B̂ξ
X(t)

σ̂X,m(t)

∣∣∣∣∣ ≤ z
∣∣∣∣∣Yn

}∣∣∣∣∣ p→ 0.

sup
z∈R

∣∣∣∣∣Pr

{
√
m sup

t∈T

∣∣∣∣∣ f̂ε(t)− fε(t)σ̂ε,m(t)

∣∣∣∣∣ ≤ z
}
− Pr

{
√
m sup

t∈T

∣∣∣∣∣ B̂ξ
ε (t)

σ̂ε,m(t)

∣∣∣∣∣ ≤ z
∣∣∣∣∣Yn

}∣∣∣∣∣ p→ 0,

where (B̂ξ
X , B̂

ξ
ε ) = (L̂ξX , L̂

ξ
ε) under Assumption OSB and (B̂ξ

X , B̂
ξ
ε ) = (M̂ ξ

X , M̂
ξ
ε ) under Assumption

SSB.

Let ĉ1−τ
X and ĉ1−τ

ε be the conditional (1− τ)-th quantiles of
√
m supt∈T |L̂

ξ
X(t)/σ̂X,m(t)| (or

√
m supt∈T |M̂

ξ
X(t)/σ̂X,m(t)|) and

√
m supt∈T |L̂

ξ
ε(t)/σ̂ε,m(t)| (or

√
m supt∈T |M̂

ξ
ε (t)/σ̂ε,m(t)|) given the

data Yn, respectively. Then the confidence bands of fX and fε over T are constructed as

ĈX(t) = [f̂X(t)− σ̂X,m(t)ĉ1−τ
X /
√
m, f̂X(t) + σ̂X,m(t)ĉ1−τ

X /
√
m],

Ĉε(t) = [f̂ε(t)− σ̂ε,m(t)ĉ1−τ
ε /
√
m, f̂ε(t) + σ̂ε,m(t)ĉ1−τ

ε /
√
m],

for t ∈ T , respectively. For completeness, we present the asymptotic validity of these confidence bands.

Proposition 1. Suppose Assumptions M, K, and OSB or SSB hold true. Then Pr{fX(t) ∈ ĈX(t) for all t ∈
T } → 1− τ and Pr{fε(t) ∈ Ĉε(t) for all t ∈ T } → 1− τ as n→∞.

3.3. Confidence bands for distribution functions. Adusumilli et al. (2020, Theorem 2) proposed
a bootstrap confidence band for the distribution function of X. Their theoretical development relies
upon the uniform convergence rate in Kurisu and Otsu (2021), which restricts the growth rate of the
subsample size to construct the bootstrap counterpart.

Based on the faster convergence rates obtained in Theorem 1, we can relax the requirements on
the bandwidth in Adusumilli et al. (2020, Theorem 2). In particular, we can replace Assumptions
OS’ (v) and SS’ (iv) in Adusumilli et al. (2020) by n−

1
2 (h−γ−β + h−3 + h−γ−

3
2 )(log h−1)5 → 0 and

n−
1
2

(
hλ0x+λ−δ1 exp(h

−λx
µx

+ h−λ

µ ) + hλ0x−
3
2
−δ1 exp(h

−λx
µx

)
)

(log h−1)
3
2 → 0 as n → ∞, respectively, in

their notations. These weaker conditions on the bandwidth in turn allow faster growth rates for the
subsample size m in their notation.

Appendix A. Proofs

Notation. Hereafter, we use the following notation. For an arbitrary set T , let `∞(T ) denote
the space of all bounded functions T → C, equipped with the uniform norm supt∈T |f(t)|. For a
probability measure Q on a measurable space (S,S) and a class of measurable functions F on S such
that F ⊂ L2(Q), let N(F , ‖ · ‖Q,2, ε) denote the ε-covering number for F with respect to the L2(Q)-
seminorm ‖ · ‖Q,2. See Section 2.1 in van der Vaart and Wellner (1996) for details. Let Gn(f) =

1√
n

∑n
j=1{f(Y1,j , Y2,j)− E[f(Y1, Y2)]} be the empirical process, and

∆(u) = log

(
ϕ̂X(u)

ϕX(u)

)
=

∫ u

0

(
ψ̂1(0, u2)

ψ̂(0, u2)
− ψ1(0, u2)

ψ(0, u2)

)
du2.

R1(u) = ψ̂1(0, u)− ψ1(0, u), R2(u) =
1

ψ(0, u)
− 1

ψ̂(0, u)
.
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We decompose ∆(u) as

∆(u) =

∫ u

0

R1(u2)

ψ(0, u2)
du2 +

∫ u

0
ψ1(0, u2)R2(u2)du2 +

∫ u

0
R1(u2)R2(u2)du2

:= ∆1(u) + ∆2(u) + ∆3(u). (10)

A.1. Proof of Lemma 1.

Proof of (i). Step 1: Linearization of ϕ̂X(u)− ϕX(u).
Observe that

|ϕ̂X(u)− ϕX(u)| = |ϕ̂X(u)− ϕX(u)|I{|∆(u)| ≤ 1}+ |ϕ̂X(u)− ϕX(u)|I{|∆(u)| > 1}

≤ |ϕ̂X(u)− ϕX(u)|I{|∆(u)| ≤ 1}+ |ϕ̂X(u)− ϕX(u)||∆(u)|I{|∆(u)| > 1}

= |ϕX(u)||1− e∆(u)|I{|∆(u)| ≤ 1}+ |ϕ̂X(u)− ϕX(u)||∆(u)|I{|∆(u)| > 1}

≤ 2|ϕX(u)||∆(u)|I{|∆(u)| ≤ 1}+ |ϕ̂X(u)− ϕX(u)||∆(u)|I{|∆(u)| > 1}

≤ 2|ϕX(u)||∆(u)|+ |ϕ̂X(u)− ϕX(u)||∆(u)|p, (11)

for p > 1, where the first inequality follows from the fact that |ϕ̂X(u) − ϕX(u)| ≤ 2, the second
equality follows from the definitions of ϕ̂X(u) and ∆(u), and the second inequality follows from
the fact that |1 − ez| ≤ 2|z| for z ∈ C with |z| ≤ 1. Note that we will show sup|u|≤h−1 |∆(u)| =

Op(n
−1/2h−βx−βε(log n)1/2) = op((log n)−1) below. Then for sufficiently large p > 1, we have

sup
|u|≤h−1

|ϕ̂X(u)− ϕX(u)||∆(u)|p ≤

(
sup
|u|≤h−1

|ϕ̂X(u)− ϕX(u)|

)(
sup
|u|≤h−1

|∆(u)|

)p

=

(
sup
|u|≤h−1

|ϕ̂X(u)− ϕX(u)|

)
× op((log n)−p),

which implies that (ϕ̂X(u)−ϕX(u))I{|∆(u)| > 1} does not contribute to the uniform convergence rate
of ϕ̂X and

sup
|u|≤h−1

|ϕ̂X(u)− ϕX(u)| = Op

(
sup
|u|≤h−1

|ϕX(u)||∆(u)|

)
= Op

(
3∑
`=1

sup
|u|≤h−1

|ϕX(u)||∆`(u)|

)
.

Now we investigate stochastic orders of |ϕX(u)||∆`(u)| for ` = 1, 2, 3. Define

Gh =

{
gu(·) : (y1, y2) 7→ ihβε |ϕX(u)|

∫ u

0

y1e
iu2y2

ψ(0, u2)
du2, u ∈ [−h−1, h−1]

}
.

Then we can write as
n1/2hβε |ϕX(u)|∆1(u) = Gn(f) for f ∈ Gh.

For any gv1(·), gv2(·) ∈ Ghwith v1, v2 ∈ [−h−1, h−1], we can show that |gv1(·) − gv2(·)| . |v1 − v2|.
Therefore, Andrews (1994, Theorem 2) implies that Gh is a Vapnik-Chervonenkis (VC) type class with
envelope function Gh(y1, y2) = D0h

−1|y1| for some positive constant D0, that is, there exist constants
A1, v1 > 0 independent of n such that

sup
Q
N(Gh, ‖ · ‖Q,2, ε‖Gh‖Q,2) ≤ (A1/ε)

v1 , 0 < ∀ε ≤ 1,

where supQ is taken over all finitely discrete distributions on R2. See also Pakes and Pollard (1989,
Lemma 2.13). Furthermore, Gh satisfies Assumptions (A)-(C) in Chernozhukov, Chetverikov and Kato
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(2016) with B(f) = 0, A ∼ 1, v ∼ 1, σ = b ∼ h−1, and Kn ∼ log n. Let Un be a tight Gaussian
random variable in `∞(Gh). Then applying Chernozhukov, Chetverikov and Kato (2016, Theorem 2.1)
with q = 4 and γ = 1/ log n yields that there exists a random variable Un with Un

d
= supf∈Gh |Un(f)|

such that ∣∣∣∣∣ sup
f∈Gh

|Gn(f)| − Un

∣∣∣∣∣ = Op

(
(log n)1+1/4

n1/4h
+

log n

n1/6h

)
= op((log n)−1/2). (12)

Moreover, Dudley’s entropy integral bound (van der Vaart and Wellner (1996, Corollary 2.2.8)) guar-
antees

E

[
sup
f∈Gh

|Un(f)|

]
.
∫ 1

0

√
1 + log(1/εh)dε . (log h−1)1/2 . (log n)1/2. (13)

By (12) and (13), we have supf∈Gh |Gn(f)| = Op(supf∈Gh |Un(f)|) = Op((log n)1/2), and thus

sup
|u|≤h−1

|ϕX(u)||∆1(u)| = n−1/2h−βε sup
f∈Gh

|Gn(f)| = Op(n
−1/2h−βε(log n)1/2). (14)

Similarly, we can show that

sup
|u|≤h−1

|ϕX(u)||∆2(u)| = Op(n
−1/2h−βε+δ(log h−1)1/2) = op(n

−1/2h−βε(log n)−1/2),

sup
|u|≤h−1

|ϕX(u)||∆3(u)| = Op(n
−1h−βx−2βε(log h−1)1/2) = op(n

−1/2h−βε(log n)−1/2).

Combining these results, we obtain

sup
|u|≤h−1

|∆(u)| = Op(n
−1/2h−βx−βε(log n)1/2) = op((log n)−1/2).

Therefore,
ϕ̂X(u)− ϕX(u) = ϕX(u)∆1(u) + op(n

−1/2h−βε(log n)−1/2), (15)

uniformly on u ∈ [−h−1, h−1].
Step 2: Linearization of f̂X(t)− fX(t).
Let f̃X(t) = 1

2π

∫
R e
−iutϕX(u)ϕK(hu)du. Then (15) yields the following asymptotic linear represen-

tation of f̂X(t)− f̃X(t) uniformly on t ∈ T :

1

2π

∫
R
e−iuxϕX(u)∆1(u)ϕK(hu)du

=
1

n

n∑
j=1

1

2π

∫
R
e−iuxϕX(u)

{∫ u

0

Y1,je
iu2Y2,j

ψ(0, u2)
du2 −

∫ u

0

E[Y1e
iu2Y2 ]

ψ(0, u2)
du2

}
ϕK(hu)du. (16)

Let

H =

{
(y1, y2) 7→ hβε+3/2 i

2π

∫
R
e−iutϕX(u)

(∫ u

0

y1e
iu2y2

ψ(0, u2)
du2

)
ϕK(hu)du : t ∈ T

}
.

A similar argument to show (14) yields

sup
t∈T
|f̂X(t)− f̃X(t)| = n−1/2h−βε−3/2 sup

f∈H
|Gn(f)| = Op(n

−1/2h−βε−3/2(log n)1/2).

Note that
sup
t∈T
|f̂X(t)− fX(t)| ≤ sup

t∈T
|f̂X(t)− f̃X(t)|+ sup

t∈T
|f̃X(t)− fX(t)|,
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and

sup
t∈T
|f̃X(t)− fX(t)| ≤ 1

2π

∫
R
|ϕX(u)||1− ϕK(hu)|du . h−1

∫
[−1,1]c

(u/h)−βxdu . hβx−1.

Thus, the conclusion follows.

Proof of (ii). By the definition of ϕ̂ε, we decompose

ϕ̂ε(u)− ϕε(u) =
1

ϕ̂X(u)
(ψ̂(0, u)− ψ(0, u))− ψ(0, u)

ϕ̂X(u)

(
ϕ̂X(u)− ϕX(u)

ϕX(u)

)
:= Θ1(u)−Θ2(u).

From the results in Part (i) of this lemma, we can show that both sup|u|≤h−1 |Θ1(u)| and sup|u|≤h−1 |Θ2(u)|
are of order Op(n−1/2h−βx(log n)1/2). From (15) in Part (i) of this lemma, the asymptotic linear rep-
resentation of ϕ̂X(u)− ϕX(u) is given by ϕX(u)∆1(u), and thus

ϕ̂ε(u)− ϕε(u) =
ψ̂(0, u)− ψ(0, u)

ϕX(u)
− ϕε(u)∆1(u) + op(n

−1/2h−βx(log n)−1/2), (17)

uniformly on u ∈ [−h−1, h−1]. This implies

f̂ε(t)− f̃ε(t) =
1

n

n∑
j=1

1

2π

∫
R
e−iut e

iuY2,j − E[eiuY2 ]

ϕX(u)
ϕK(hu)du

− 1

n

n∑
j=1

i

2π

∫
R
e−iutϕε(u)

{∫ u

0

(
Y1,je

iu2Y2,j

ψ(0, u2)
− E[Y1e

iu2Y2 ]

ψ(0, u2)

)
du2

}
ϕK(hu)du

+op(n
−1/2h−βx−3/2(log n)−1/2),

uniformly on t ∈ T , where f̃ε(t) = 1
2π

∫
R e
−iutϕε(u)ϕK(hu)du, and a similar argument to the proof of

Part (i) of this lemma yields the conclusion.

A.2. Proof of Lemma 2. The proof is similar to that of Lemma 1. The only differences are: (i) the
term sup|u|≤h−1 |ϕX(u)||∆2(u)| will be dominant, and (ii) the bias term for supt∈T |f̃X(t)− fX(t)| will
be evaluated as in Kurisu and Otsu (2021).

A.3. Proof of Theorem 3. We only give the proof of the bootstrap approximation for f̂X when fX
and fε are ordinary smooth (i.e. under Assumption OSB) since the proof of other cases (f̂ε under
Assumption OSB, and f̂X and f̂ε under Assumption SSB) are similar. The same comment applies to
the proof of Proposition 1.

Proof of (i). Define LX(t) = 1
m

∑m
j=1{LX,j(t)− E[LX,1(t)]} for t ∈ T .

Step 1: Gaussian approximation to LX .
Letting

ft(y1, y2) = y1
i

2π

∫
R
e−iutϕX(u)

{∫ u

0

eiu2y2

ψ(0, u2)
du2

}
ϕK(hu)du,

it can be written as
√
m supt∈T |LX(t)/σX,m(t)| = supt∈T |Gm(ft)|. For each t1, t2 ∈ T , we can show

that

|ft1(y1, y2)− ft2(y1, y2)| . h−2

|ϕε(h−1)|
|y1||t1 − t2|,

for all y1 and y2. Therefore, by Andrews (1994, Theorem 2) and a similar argument to Step1 in
the proof of Lemma 1 (i), F̃n = {ft : t ∈ T } is a VC-type class with envelop function Fh(y1, y2) =
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Dh−2|ϕε(h−1)|−1|y1| for a positive constant D. Let Fm = {ft/σX,m(t) : t ∈ T }. Note that the set
{1/σX,m(t) : t ∈ T } is bounded with supt∈T |σ−1

X,m(t)| ≤ s−1
X,m. Then from Chernozhukov, Chetverikov

and Kato (2014, Corollary A.1), there exist constants A′, v′ > 0 independent of n such that

sup
Q
N(Fm, ‖ · ‖Q,2, εDh−2s−1

X,m/|ϕε(h
−1)|) ≤ (A′/ε)v

′
,

for all 0 < ε ≤ 1. Furthermore, Fn satisfies Assumptions (A)-(C) in Chernozhukov, Chetverikov and
Kato (2016) with B(f) = 0, A = A′, v = v′, σ = 1, b = Dh−2s−1

X,m/|ϕε(h−1)|, and Kn ∼ logm.
Let Zm be a tight Gaussian random variable in `∞(Fm) with mean zero and the same covariance
function as Gm. By applying Chernozhukov, Chetverikov and Kato (2016, Theorem 2.1) with q = 4

and γ = 1/ logm, there exists a random variable Vm with Vm
d
= supt∈T |Zm(ft)| such that∣∣∣∣sup

t∈T
|Gm(ft)| − Vm

∣∣∣∣ = Op

 (logm)5/4

m1/4h2sX,m|ϕε(h−1)|
+

logm

m1/6h2/3s
1/3
X,m|ϕε(h−1)|1/3

 = op((logm)−1/2).

Therefore, Chernozhukov, Chetverikov and Kato (2016, Lemma 2.1) guarantees

sup
z∈R

∣∣∣∣Pr

{
sup
t∈T
|Gm(ft)| ≤ z

}
− Pr

{
sup
t∈T
|Zm(ft)| ≤ z

}∣∣∣∣
≤ sup

z∈R
Pr

{∣∣∣∣sup
t∈T
|Zm(ft)| − z

∣∣∣∣ ≤ δm(logm)−1/2

}
+ o(1),

for some sequence δm → 0as m → ∞. Now the anti-concentration inequality for the supremum of a
Gaussian process yields

sup
z∈R,δ>0

1

δ
Pr

{∣∣∣∣sup
t∈T
|Zm(ft)| − z

∣∣∣∣ ≤ δ} . E

[
sup
t∈T
|Zm(ft)|

]
. (logm)1/2, (18)

where the second inequality follows from Dudley’s entropy integral bound. Combining these results,
we obtain

sup
z∈R

∣∣∣∣Pr

{√
m sup

t∈T
|LX(t)/σX,m(t)| ≤ z

}
− Pr

{
sup
t∈T
|Zm(ft)| ≤ z

}∣∣∣∣→ 0. (19)

Step 2: Approximate
√
m supt∈T |L̂

ξ
X(t)/σ̂X,m(t)| by

√
m supt∈T |L

ξ
X(t)/σX,m(t)|.

Define LξX(t) = 1
m

∑m
j=1 ξj

{
LX,j(t)− 1

m

∑m
k=1 LX,k(t)

}
for t ∈ T . In this step, we show

1

σX,m(t)

m∑
j=1

ξj

{
L̂X,j(t)−

1

m

m∑
k=1

L̂X,k(t)

}

=
1

σ̂X,m(t)

m∑
j=1

ξj

{
LX,j(t)−

1

m

m∑
k=1

LX,k(t)

}
+ op(m

1/2(logm)−1/2), (20)

uniformly in t ∈ T . Let

gt =
1

2π

∫
R
e−iutϕX(u)

(∫ u

0

ψ̂1(0, u2)

ψ(0, u2)
du2

)
ϕK(hu)du,

ĝt =
1

2π

∫
R
e−iutϕ̂X(u)

(∫ u

0

ψ̂1(0, u2)

ψ̂(0, u2)
du2

)
ϕK(hu)du.
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Then we have

sup
t∈T

∣∣∣∣∣∣ 1

σX,m(t)

1

m

m∑
j=1

{L̂X,j(t)− LX,j(t)}

∣∣∣∣∣∣ ≤ 1

sX,m
sup
t∈T
|ĝt − gt|.

Note that

ĝt − gt =

{
1

2π

∫
R
e−iutϕ̂X(u)

(∫ u

0

ψ1(0, u2)

ψ̂(0, u2)
du2

)
ϕK(hu)du

− 1

2π

∫
R
e−iutϕX(u)

(∫ u

0

ψ1(0, u2)

ψ(0, u2)
du2

)
ϕK(hu)du

}
+

{
1

2π

∫
R
e−iutϕ̂X(u)

(∫ u

0

ψ̂1(0, u2)− ψ1(0, u2)

ψ̂(0, u2)
du2

)
ϕK(hu)du

− 1

2π

∫
R
e−iutϕX(u)

(∫ u

0

ψ̂1(0, u2)− ψ1(0, u2)

ψ(0, u2)
du2

)
ϕK(hu)du

}
=: In + IIn.

Define RϕX (u) = ϕ̂X(u)−ϕX(u), Rψ(u) = 1/ψ̂(0, u)− 1/ψ(0, u), and R′ψ(u) = ψ̂(0, u)−ψ(0, u). The
term In can be further decomposed as

In =
1

2π

∫
R
e−iutRϕX (u)

(∫ u

0

ψ1(0, u2)

ψ(0, u2)
du2

)
ϕK(hu)du

+
1

2π

∫
R
e−iutϕX(u)

(∫ u

0
ψ1(0, u2)Rψ(u)du2

)
ϕK(hu)du

+
1

2π

∫
R
e−iutRϕX (u)

(∫ u

0
ψ1(0, u2)Rψ(u)du2

)
ϕK(hu)du

=: I1,n + I2,n + I3,n,

and these terms are bounded as

sup
t∈T
|I1,n| . sup

|u|≤h−1

|RϕX (u)|
∫ h−1

−h−1

(∫ |u|
0
|ψ1(0, u2)

ψ(0, u2)
|du2

)
du

= Op(n
−1/2hδ−2|ϕε(h−1)|−1(log n)1/2)

sup
t∈T
|I2,n| . sup

|u|≤h−1

|Rψ(u)|
∫ h−1

−h−1

|ϕX(u)|

(∫ |u|
0
|ψ1(0, u2)

ψ2(0, u2)
|du2

)
du

= Op(n
−1/2hδ−2|ϕε(h−1)|−1 log n)

sup
t∈T
|I3,n| . sup

|u|≤h−1

|RϕX (u)| sup
|u|≤h−1

|R′ψ(u)|
∫ h−1

−h−1

(∫ |u|
0
|ψ1(0, u2)

ψ2(0, u2)
|du2

)
du

= Op(n
−1hδ−2|ϕX(h−1)|−1|ϕε(h−1)|−1(log n)3/2) = op(n

−1/2hδ−2(log n)1/2),
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which implies supt∈T |In| = Op(n
−1/2hδ−2|ϕε(h−1)|−1 log n). Likewise, we can show that supt∈T |IIn| =

Op(n
−1/2h−2|ϕε(h−1)|−1 log n). Combining these results,

sup
t∈T

∣∣∣∣∣∣ 1

σX,m(t)

1

m

m∑
j=1

{L̂X,j(t)− LX,j(t)}

∣∣∣∣∣∣ ≤ 1

sX,m
sup
t∈T
|ĝt − gt| ≤

1

sX,m

(
sup
t∈T
|In|+ sup

t∈T
|IIn|

)
= Op(n

−1/2s−1
X,mh

−2|ϕε(h−1)|−1 log n)

= Op

((m
n

)1/2
m−1/2s−1

X,mh
−2|ϕε(h−1)|−1 log n

)
,

which implies

sup
t∈T

∣∣∣∣∣∣
 m∑
j=1

ξj

 1

σX,m(t)

1

m

m∑
j=1

{L̂X,j(t)− LX,j(t)}

∣∣∣∣∣∣
= Op

((m
n

)1/2
s−1
X,mh

−2|ϕε(h−1)|−1 log n

)
= op(m

1/2(logm)−1/2).

Now define

gt(y) =
1

2π

∫
R
e−iutϕX(u)

(∫ u

0

eiu2y

ψ(0, u2)
du2

)
ϕK(hu)du,

ĝt(y) =
1

2π

∫
R
e−iutϕ̂X(u)

(∫ u

0

eiu2y

ψ̂(0, u2)
du2

)
ϕK(hu)du.

We decompose
m∑
j=1

ξjY1,j{ĝt(Y2,j)− gt(Y2,j)}

=
1

2π

∫
R
e−iutRϕX (u)

 m∑
j=1

ξjY1,j

∫ u

0

eiu2Y2,j

ψ(0, u2)
du2

ϕK(hu)du

+
1

2π

∫
R
e−iutϕX(u)

 m∑
j=1

ξjY1,j

∫ u

0
eiu2Y2,jRψ(u)du2

ϕK(hu)du

+
1

2π

∫
R
e−iutRϕX (u)

 m∑
j=1

ξjY1,j

∫ u

0
eiu2Y2,jRψ(u)du2

ϕK(hu)du

=: A1,n +A2,n +A3,n.

For A1,n, the Cauchy-Schwarz inequality yields

|A1,n| . h−1

(∫
|RϕX (u/h)|2|ϕK(u)|du

)1/2
∫ ∣∣∣∣∣∣

m∑
j=1

ξjY1,j

∫ u/h

0

eiu2Y2,j

ψ(0, u2)
du2

∣∣∣∣∣∣
2

|ϕK(u)|du

1/2

.

Since

E

∣∣∣∣∣∣
m∑
j=1

ξjY1,j

∫ u/h

0

eiu2Y2,j

ψ(0, u2)
du2

∣∣∣∣∣∣
2 =

m∑
j=1

E

ξ2
1Y

2
1,1

∣∣∣∣∣
∫ u/h

0

eiu2Y2,j

ψ(0, u2)
du2

∣∣∣∣∣
2


. mh−2|ϕX(h−1)|−2|ϕε(h−1)|−2,
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we obtain

|A1,n| . h−1Op(n
−1/2|ϕε(h−1)|−1(log n)1/2)×Op(m1/2h−1|ϕX(h−1)|−1|ϕε(h−1)|−1)

= Op

((m
n

)1/2
m1/2h−2|ϕε(h−1)|−1

(
(log n)1/2

logm

))
.

Similarly, for A2,n, we have

|A2,n| . h−1

(∫
|ϕX(u/h)||ϕK(u)|du

)1/2

×

∫ |ϕX(u/h)|

∣∣∣∣∣∣
∫ u/h

0

n∑
j=1

ξjY1,je
iu2Y2,jRψ(u2)du2

∣∣∣∣∣∣
2

|ϕK(u)|du

1/2

. h−1

∫ |ϕX(u/h)|

∫ |u|/h
0

∣∣∣∣∣∣
n∑
j=1

ξjY1,je
iu2Y2,j

∣∣∣∣∣∣
2

du2

1/2

×

(∫ |u|/h
0

|Rψ(u2)|2du2

)1/2

|ϕK(u)|du

 .

Since

E

∣∣∣∣∣∣
m∑
j=1

ξjY1,je
iu2Y2,j

∣∣∣∣∣∣
2 =

m∑
j=1

E[ξ2
1Y

2
1,1] . m,

we obtain

|A2,n| . h−1Op(m
1/2h−1/2)×Op(n−1/2h−1/2|ϕX(h−1)|−1|ϕε(h−1)|−2(log n))

= Op

((m
n

)1/2
m1/2h−2|ϕε(h−1)|−1

(
log n

logm

))
.

Likewise, for A3,n, it holds

|A3,n| = Op

((m
n

)
m1/2h−2|ϕε(h−1)|−1

(
(log n)3/2

(logm)2

))
.

Combining these results,

sup
t∈T

∣∣∣∣∣∣σ−1
X,m(t)

m∑
j=1

ξjY1,j{ĝt(Y2,j)− gt(Y2,j)}

∣∣∣∣∣∣ ≤ s−1
X,m

(
sup
t∈T
|A1,n|+ sup

t∈T
|A2,n|+ sup

t∈T
|A2,n|

)

= Op

((m
n

)1/2
m1/2s−1

X,mh
−2|ϕε(h−1)|−1

(
log n

logm

))
.

Since supt∈T |σ̂X,m(t)/σX,m(t)− 1| = op((logm)−1/2), we obtain (20).
Step 3: Conditional approximation of supt∈T |Zm(ft)| by

√
m supt∈T |L

ξ
X(t)/σX,m(t)|.

By applying Chernozhukov, Chetverikov and Kato (2016, Theorem 2.2) with q = 4 and γ = 1/ logm,
there exists a random variable V ξ

m with V ξ
m|Yn

d
= supt∈T |Zm(ft)| such that∣∣∣∣√m sup

t∈T
|LξX(t)/σX,m(t)| − V ξ

m

∣∣∣∣ = op((logm)−1/2).
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Therefore, there exists a sequence δm → 0 such that

Pr

{√
m sup

t∈T
|LξX(t)/σX,m(t)| ≤ z

∣∣∣∣Yn} = Pr
{
V ξ
m ≤ z + δm(logm)−1/2

∣∣∣Yn}+ op(1)

= Pr

{
sup
t∈T
|Zm(ft)| ≤ z + δm(logm)−1/2

}
+ op(1)

≤ Pr

{
sup
t∈T
|Zm(ft)| ≤ z

}
+ op(1),

uniformly in z ∈ R, where the inequality follows from (18). Similarly, we can show that
Pr
{√

m supt∈T |L
ξ
X(t)/σX,m(t)| ≤ z

∣∣∣Yn} ≥ Pr {supt∈T |Zm(ft)| ≤ z} − op(1), and thus

sup
z∈R

∣∣∣∣Pr

{√
m sup

t∈T
|LξX(t)/σX,m(t)| ≤ z

∣∣∣∣Yn}− Pr

{
sup
t∈T
|Zm(ft)| ≤ z

}∣∣∣∣ = op(1). (21)

Step 4: Proof of the theorem and asymptotic validity of the uniform confidence bands.
Observe that
√
m(f̂X(t)− fX(t))/σ̂X,m(t) =

√
m(1 + op((logm)−1))(f̂X(t)− fX(t))/σX,m(t)

= (1 + op((logm)−1))(
√
mLX(t)/σX,m(t) + op((logm)−1/2))

=
√
mLX(t)/σX,m(t) + op((logm)−1/2)

uniformly on t ∈ T . Combining this and the result of Step 1 in the proof of 3, and using the anti-
consentration inequality, we can show that

sup
z∈R

∣∣∣∣Pr

{√
m sup

t∈T
|(f̂X(t)− fX(t))/σ̂X,m(t)| ≤ z

}
− Pr

{
sup
t∈T
|Zm(ft)| ≤ z

}∣∣∣∣→ 0.

Therefore, the conclusion follows from (19) and (21).

Proof of (ii). The proof is similar to Part (i) of this theorem.

A.4. Proof of Proposition 1. We wish to show that Pr{fX(t) ∈ ĈX ∀t ∈ T } → 1− τ . Note that

fX(t) ∈ ĈX ∀x ∈ T ⇔ sup
t∈T
|(f̂X(t)− fX(t))/σ̂X,m(t)| ≤ ĉ1−τ

X .

Together with the result in Step 1 in the proof of Theorem 3 and E[supt∈T |Zm(ft)|] . (logm)1/2, we
have

√
m supt∈T |LX(t)/σX,m(t)| = Op((logm)1/2). Observe that

√
m(f̂X(t)− fX(t))/σ̂X,m(t) =

√
m(1 + op((logm)−1))(f̂X(t)− fX(t))/σX,m(t)

= (1 + op((logm)−1))(
√
mLX(t)/σX,m(t) + op((logm)−1/2))

=
√
mLX(t)/σX,m(t) + op((logm)−1/2),

uniformly on t ∈ T . The result of Step 4 in the proof of Theorem 3 implies that there exists a sequence
of constants εn,1 → 0 such that

sup
z∈R

∣∣∣∣Pr

{√
m sup

t∈T
|(f̂X(t)− fX(t))/σ̂X,m(t)| ≤ z

}
− Pr

{
sup
t∈T
|Zm(ft)| ≤ z

}∣∣∣∣ ≤ εn,1.
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Moreover, the results of Steps 2 and 3 in the proof of Theorem 3 yields that there exists a sequence of
constants εn,2 → 0 such that

sup
z∈R

∣∣∣∣Pr

{√
m sup

t∈T
|L̂ξX(t)/σ̂X,m(t)| ≤ z

∣∣∣∣Yn}− Pr

{
sup
t∈T
|Zm(ft)| ≤ z

}∣∣∣∣ ≤ εn,2.
Let Ωn denote the event on which these inequalities hold and let c(1−τ) denote the (1−τ)-th quantile
of supt∈T |Zm(ft)|. Note that Pr{Ωn} → 1 as n → ∞. Define ε′n = εn,1 ∨ εn,2(→ 0). Then on Ωn, we
have

Pr

{√
m sup

t∈T
|L̂ξX(t)/σ̂X,m(t)| ≤ c(1− τ + ε′n)

∣∣∣∣Yn} ≥ Pr

{
sup
t∈T
|Zm(ft)| ≤ c(1− τ + ε′n)

}
− ε′n = 1− τ.

We used the continuity of the distribution of supt∈T |Zm(ft)| to obtain the last equation (this follows
from the anti-concentration inequality). This yields that on Ωn,

ĉ1−τ
X ≤ c(1− τ + ε′n).

Likewise, we can show that c(1− τ − ε′n) ≤ ĉ1−τ
X on Ωn. Then we have

Pr
{√

m sup
t∈T
|(f̂X(t)− fX(t))/σ̂X,m(t)| ≤ ĉ1−τ

X

}
≤ Pr

{√
m sup

t∈T
|(f̂X(t)− fX(t))/σ̂X,m(t)| ≤ c(1− τ + ε′n)

}
+ o(1)

= Pr
{

sup
t∈T
|Zm(ft)| ≤ c(1− τ + ε′n)

}
+ o(1) = 1− τ + ε′n + o(1) = 1− τ + o(1).

To obtain the third equation, we used the continuity of the distribution of supt∈T |Zm(ft)|. Likewise,
we have

Pr
{√

m sup
t∈T
|(f̂X(t)− fX(t))/σ̂X,m(t)| ≤ ĉ1−τ

X

}
≥ 1− τ − o(1).

Therefore, the conclusion follows.
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