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Assessing the Overall Validity of Randomised Controlled
Trials
Alexander Kraussa,b

aLondon School of Economics; bUniversity of Barcelona

ABSTRACT
In the biomedical, behavioural and social sciences, the leading
method used to estimate causal effects is commonly randomised
controlled trials (RCTs) that are generally viewed as both the
source and justification of the most valid evidence. In studying
the foundation and theory behind RCTs, the existing literature
analyses important single issues and biases in isolation that
influence causal outcomes in trials (such as randomisation,
statistical probabilities and placebos). The common account of
biased causal inference is described in a general way in terms of
probabilistic imbalances between trial groups. This paper
expands the common account of causal bias by distinguishing
between the range of biases arising between trial groups but also
within one of the groups or across the entire sample during trial
design, implementation and analysis. This is done by providing
concrete examples from highly influential RCT studies. In going
beyond the existing RCT literature, the paper provides a broader,
practice-based account of causal bias that specifies the between-
group, within-group and across-group biases that affect the
estimated causal results of trials – impacting both the effect size
and statistical significance. Within this expanded framework, we
can better identify the range of different types of biases we face
in practice and address the central question about the overall
validity of the RCT method and its causal claims. A study can face
several smaller biases (related simultaneously to a smaller sample,
smaller estimated effect, greater unblinding etc.) that generally
add up to greater aggregate bias. Though difficult to measure
precisely, it is important to assess and provide information in
studies on how much different sources of bias, combined, can
explain the estimated causal effect. The RCT method is thereby
often the best we have to inform our policy decisions – and the
evidence is strengthened when combined with multiple studies
and other methods. Yet there is room for continually improving
trials and identifying ways to reduce biases they face and to
increase their overall validity. Implications are discussed.
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Introduction

Many of us have likely used some medication, own some technology or supported some
public policy tested in a trial. To be able to assess how effective they may be prior to sup-
porting them – either as patients, consumers or voters – RCTs are often carried out by
randomly splitting up a sample of people into either a treatment group (who receive the
treatment or intervention) or a control group (who do not receive it). The RCT method
has revolutionised the medical sciences in the second half of the twentieth century and
many of the behavioural and social sciences since then. Across the medical sciences1

and behavioural and social sciences,2 RCTs are commonly viewed as the best means to
generate causal knowledge about what works by providing an ‘unbiased estimate of
the average effect’ of a treatment (see, Gorard and Taylor 2004, 94; Kane 2006, 118;
Waters et al. 2010; Kelly, Lesh, and Baek 2014, 29).

Nancy Cartwright thereby outlines that RCTs are based on ‘a deductive method: if
the assumptions of the test are met, a positive result implies the appropriate causal
conclusion’ (Cartwright 2007, 11; cf. 2010). That is, ‘positive results in an ideal RCT
with treatment C and outcome E deductively implies C causes E in the experimental
population’ (Cartwright 2010, 68). This common view of the ideal RCT – that its
causal conclusions can be derived deductively and validly from the evidence to
‘secure internal validity’ (Cartwright 2007, 2010) – can help guide the design of real
RCTs, and help justify experimental choices. Experiments are however always con-
ducted in the real world and fall short of the ideal. That is, the ideal RCT does not
always reflect the complex practice of conducting trials. Causal conclusions in trials
are, in practice, inferred from estimated statistical results that are the outcome of mul-
tiple complex processes including selecting a sample, randomising, blinding, control-
ling, carrying out treatments, monitoring the level of adherence among participants,
etc. And these processes involve many actors making many decisions at different
steps when designing, implementing and analysing trials. The common view of
causal bias in the RCT literature moreover captures one way in which bias can arise
in trials, namely via probabilistic imbalances between trial groups (Cartwright 2007,
2010). Causal bias however not only arises between groups especially during trial
design – but it also arises within one of the groups, or across the entire sample
itself during trial design, implementation and analysis that also influences the esti-
mated causal results. In going beyond and expanding the common view of the RCT
method (cf. Cartwright 2007, 2010), the paper provides a practice-based account of
trials that illustrates – using empirical evidence from the ten most cited RCT
studies – that:

(i) the complex processes involved in trials bring important assumptions that cannot
generally all be fully met in practice,

(ii) the assumptions and biases can constrain the overall validity of trials, and
(iii) a broader view of causal bias in trials is needed that enables us to better identify the

range of possible biases (and thus better improve trials) by incorporating biases
arising not only between trial groups but also within a group or across the
overall sample that are as important in influencing a trial’s causal outcomes and
overall validity.
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Other philosophers, beyond Cartwright, have also studied the foundation and theory
behind the RCT method, and its validity. Worrall (2007, 2007a, 2010) assesses the func-
tion and limitation of randomisation, and reasons about probabilistic causality. Howick
(2017, 2011) analyses the role of the placebo in affecting trial results. Holman and Bruner
(2017) argue that a funder bias can arise through individual researchers and an industry-
funded community that can affect causal claims in trials. Reiss (2019), Favereau and
Nagatsu (2020), and Jiménez-Buedo and Miller (2010) study the relationship between
internal and external validity of experimental studies and the difficulties in securing
causal knowledge. Like Cartwright, these philosophers – while making important contri-
butions in improving our understanding about the RCT method and largely its design –
often focus on one issue at a time.3

No paper in the existing philosophical literature has yet assessed the central question
about the overall validity and causal claims of RCTs, which cannot be evaluated when
studying an individual issue in isolation or just the method’s design. This is only possible
by providing a broad overview of the range of issues and problems that influence the esti-
mated causal results and that arise not only in designing but also implementing and ana-
lysing trials in practice – with each additional issue generally further reducing the level of
overall validity. The paper provides such a broad overview by pulling together a larger
range of important methodological issues and constraints to estimating causal effects
in trials. Some of these issues have not yet been thoroughly discussed in the existing phi-
losophical literature on trials (ibid.), including for example the assumption that back-
ground traits remain constant during trial implementation or the assumption that all
preconditions needed for the treatment to work are fully met – as outlined here. This
paper thereby, on one hand, assesses a wider set of issues influencing causal results in
RCTs simultaneously than in existing philosophical papers that tend to focus on impor-
tant single issues that does not allow for assessing the overall validity of trials. On the
other hand, it outlines the range of issues using a set of real-world studies – the ten
most cited RCT studies4 – that is not a common approach in studying the RCT
method in existing philosophical papers but enables a broader perspective needed to
assess overall validity.

The paper’s focus and main contribution to the existing literature is assessing the
overall validity of the RCT method and its causal claims, and providing a broader, prac-
tice-based account of causal bias in trials. The hope is that, in assessing an RCT, bias is no
longer thought of as an individual bias (for example only as selection bias or sampling
bias) but generally always as an RCT’s overall (aggregate) bias. Though more difficult
to measure, it is at least as large as any individual bias and better reflects the actual
degree of a trial’s overall bias. Examples from highly influential RCT studies are used
with the aim of supporting this broader epistemological topic. Such breadth (the need
to focus on the range of issues that together affect overall trial validity) inevitably
comes at the cost of less depth on any single issue discussed within the paper. The
paper builds on the existing work discussing methodological biases that can face RCTs
by taking a new epistemological perspective to discuss and assess how these issues,
together, can affect the causal claims and overall validity of trials (Krauss 2018; cf.
Andrew et al. 1994; Black 1996; Sackett et al. 1996; Moher et al. 1998; Rennie 2001;
Chan and Altman 2005; Dwan et al. 2008; Moher et al. 2010; Goldacre 2016; Richards
et al. 2019).
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This question of the overall validity of the causal claims of RCTs is important and at
times a life-or-death matter in philosophy of science and medicine. RCTs, when the set of
issues and problems outlined in the paper are taken together, generally produce a degree
of bias in their estimated causal results that can influence their overall validity. The argu-
ment is that biases such as adherence bias, sampling bias and lack of blinding bias com-
monly affect, to some degree, the estimated causal results of trials, and as the ten most
cited trials face these and other biases, most trials are bound to have some degree of
bias and constrained overall validity. For the type of questions that fit the RCT design,
the method is however often the best we have to inform our decisions and public
policy. Yet given the complexities involved in studying human subjects, we should not
assume that the RCT method always produces valid causal results. Such results cannot
be viewed separately from the combined set of assumptions and biases underlying a
given trial.

After this introduction, a background on trials is provided (Section 1). The common
account of biased causal inference is then presented, and a broader, practice-based
account of causal bias and validity is outlined (Sections 2 and 3). The long and
complex path to causal claims in trials is then outlined – namely, the large set of
issues and constraints are discussed that emerge when designing, implementing and ana-
lysing RCTs and that, together, affect their estimated causal results (Sections 4 and 5).
Only when we assess the range of issues and problems facing trials, together, are we
able to subsequently draw inferences about the overall validity of RCTs and their
causal claims – which has not yet been done in the philosophical literature (Section 6).
The paper then concludes outlining the implications on practice and on improving
trials for the large communities of researchers using this method and for the small com-
munity of philosophers studying this method (Section 7).

1. A Brief Background on Trials

Across the biomedical, clinical, behavioural and social sciences causal relationships have
(since the second half of the twentieth century) been increasingly estimated using the
method of randomised controlled trials.5 To answer the question about the causal
effect of a treatment involves being able to compare what occurred with some treatment
with what would have occurred without that treatment. This is not possible for an indi-
vidual as we cannot assess a causal effect for the same person with and without the treat-
ment at the same point in time. Researchers create a comparison or control group that
would on average experience similar outcomes as those who are treated if they would
not have been treated.

To this end, a randomised controlled trial randomly allocates people in the study
sample into either a treatment group (who receive some medical treatment, technology,
policy intervention or the like) or a control group (who are given a placebo, the common
treatment at present, both or nothing at all). The aim is that the treatment would be the
only causally relevant difference between the groups while other factors would be similar.
Then the evaluator, blindfolded, statistically assesses the effectiveness of the treatment by
comparing the average outcome in the experimental group to the average outcome in the
control group. This allows assessing whether the treatment influenced the given outcome
for at least one or more people (or units) in the experimental group compared to the
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control group. Simply put, the difference between the mean outcomes in the treatment
and control groups is seen as the estimated causal effect of the treatment.

The unique power of RCTs, of creating good counterfactuals and of producing reliable
and valid causal results is commonly viewed to be found in randomisation (Ward and
Johnson 2008; Worrall 2007, 2010; Papineau 1994; Harrison 2011). It is found in the
random probability of being selected to receive a treatment or not – which can be
thought of as the result of flipping a coin or rolling a dice. The division between random-
ised and non-randomised studies is viewed, for many, as the defining trait for scientific
rigour and for deducing valid causal claims.6 A number of the methodological and epis-
temological issues discussed throughout the paper are directly or indirectly related to
randomisation. In the next section, we first clarify what is meant by causal bias and val-
idity in trials, and outline the need for a broader account of causal bias than currently
available in the literature.

2. From the Common Account of Causal Bias (as Bias Arising Between Trial
Groups) Towards a Practice-based Account of Causal Bias (as Arising
Between, Within and Across Trial Groups)

To identify the different aspects of a trial’s design, implementation and analysis that con-
tribute to bias, we need to understand how biases arise in causal inference and prediction.
The leading account of biased causal inference in the RCT literature is grounded in the
probabilistic theory of causality (Suppes 1970). That account of the causal foundations of
RCTs describes bias in the following way: as RCTs ‘allow causal claims about the popu-
lation in the study to be deduced from probability differences between the treatment and
control groups’ (Cartwright 2007, 15; cf. Cartwright 1989; Heckman 2001; Holland and
Rubin 1988), bias in causal inference is viewed as arising as a failure to ensure probabil-
istic independence of the treatment (cf. Cartwright 2010). That is, causal inference is not
biased and ‘an RCT is ideal iff all factors that can produce or eliminate a probabilistic
dependence between C [the cause] and E [the effect] are the same in both wings
except for C’ – according to Cartwright (2010, 64). This is the common view of internal
validity. It refers to the validity of a causal claim, and a causal claim is the average causal
effect of a treatment on the individuals in the trial sample. That account provides impor-
tant insights into the nature of biased causal inference and lays the theoretical foundation
for understanding how probabilistic imbalance between trial groups can affect a trial’s
causal results, as outlined in Sections 4–6.

The common account of causal bias provides a general definition of bias, and does not
aim to reflect the nature of different types of biases (Cartwright 2007, 2010). A broader,
more detailed account of causal bias is provided here that builds on the common account
to specify how the different sources of biases can arise. It helps to better reflect the actual
practice of RCT design, implementation and analysis and is needed to help practitioners
and policymakers know where to look for, identify and reduce diverse types of biases
commonly affecting causal outcomes (Sections 4–6). The more idealised, common
account operates at a higher level of abstraction than the more empirically-driven, prac-
tice-based account provided here that specifies the particular sources of biases and that is
of direct use for practitioners and policymakers.
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Sources of biases influence our estimated causal outcomes that are not made explicit in
the common account of causal bias in terms of imbalances between trial groups (Cart-
wright 2007, 2010) but – as outlined in the practice-based account – arise within one
of the trial groups or across the entire sample itself. For trials in which for example a
share of participants within only one of the trial groups do not fully adhere to treatment
dosages (or placebo dosages) and thus take different amounts, we have a source of biased
causal inference (and thus prediction) not made explicit in that common account in
terms of imbalances between trial groups. Causal bias thus arises when all individuals
in the treatment group are not under the influence of C, so that for example a share
of participants are not taking the full dosage of the given treatment for the full duration
of the trial. This is often the case in practice (as outlined in Section 4). That is, bias arises
in trials in which participants in the placebo group take the full dosage while a share of
participants only within the treatment group do not adhere to taking the full dosage and
differ in some way from those who do take the full dosage (or vice versa with a share of
participants only within the placebo group). Such adherence bias is not covered by the
common account of causal bias that only aims at covering imbalances in confounding
factors – at ensuring that they ‘are the same in both wings except for C’ (Cartwright
2010, 64, emphasis added); but adherence bias instead arises during implementation in
only one wing. So, we can refine and expand the common account of causal bias:
causal inference is not biased and ‘an RCT is ideal iff all factors that can produce or elim-
inate a probabilistic dependence between C [the cause] and E [the effect] are the same in
both wings except for C’ (Cartwright 2010, 64) and, in addition, the treatment group is
homogeneous with respect to C (the treatment) and the placebo group is homogenous
with respect to P (the placebo).7

For trials in which researchers or biopharmaceutical companies select the data points
for the baseline and endline and thus choose to calculate one causal estimate instead of
another, we can have another source of biased causal inference (and thus prediction) not
made explicit in the common account in terms of imbalances between trial groups. This is
because the unique time points selected may reflect the average, highest, lowest, no or
another causal effect. A trial’s estimated causal effects are biased if for example the base-
line and endline data points, say after the treatment of a two-week exercise programme,
illustrates limited causal effect, but the causal estimate is in fact high after six weeks that
would be reflected if the baseline and endline data points would have been selected for say
a three month period that collected data at multiple midline data points in order to assess
variation in the causal estimates over time. This is an instance in which the causal esti-
mate is biased across the entire sample as the treatment’s estimated causal effect cannot
be properly assessed and would not be of much, if any, use even for the participants in the
sample. Multiple time points need to thus generally be collected and reported, over a
proper period of time, to reduce bias in the particular causal estimate and to understand
the trajectory of the causal estimate over time. So, we can further refine and expand the
common account of causal bias: causal inference is not biased and ‘an RCT is ideal iff all
factors that can produce or eliminate a probabilistic dependence between C [the cause]
and E [the effect] are the same in both wings except for C’ (Cartwright 2010, 64) and, in
addition, C is tested at multiple time points (and not at one potentially skewed time
point). That is, what are called ‘internally valid’ trial results would, when such biases
to the estimated causal results are strong, not always be useful even for understanding

6 A. KRAUSS



the estimated effects for the subjects within the sample itself (let alone for the target popu-
lation) (Section 3). For trials in which a share of participants within the control group
visit a medical practitioner outside of the trial for example to try and establish
whether they are receiving the placebo or the actual treatment, such as a cholesterol-low-
ering drug, and begin taking an over-the-counter cholesterol-reducing drug to alleviate
their conditions, then estimated causal results face a source of within-group bias not
made explicit in the common account of causal bias. Such sources of within-group
and across-group bias, including a range of others, arise commonly when conducting
trials in practice – as discussed in Sections 4–6.

The common account of RCT inference and bias reflects how bias can arise due to
imbalances between groups (Cartwright 2007, 2010, 64) but, in practice, biases come
about through different means at various steps when conducting trials including, more
specifically, arising also within a group, and across the overall sample itself that affect
the estimated causal outcomes. Causal bias is defined here in a more specific and
nuanced way relevant for practice:

Causal inference in an RCT is not biased if all confounding factors are equally distributed
between the treatment and control groups, if all subjects receive the identical treatment
within the treatment group and the identical placebo within the control group, and if all
study design, implementation and analysis features across the entire sample are properly
selected and carried out to produce an undistorted estimated average effect of the treatment
(that is of use in practice).

The common account of causal bias (Cartwright 2010, 2007) can appear, for prac-
titioners, particularly focused on trial design, and especially randomisation, in ensuring
balance between groups at the beginning of a trial – as applies to trials in fields like econ-
omics, psychology, agriculture etc. It is thus not as helpful in providing guidance on iden-
tifying the different types of biases we face during trial design, implementation and
analysis in practice and identifying how to mitigate them. The broader, practice-based
account of causal bias offered here aims to help improve trials by directing our attention
to the range of biases at play. It aims to better reflect complex experimental practice,
looking specifically at the different aspects in carrying out trials that affect the estimated
causal results (Sections 4–6). The ultimate purpose of evaluating the effectiveness of trials
is to improve the lives of people in the real world. This is why researchers and prac-
titioners need a broad understanding of how the range of various biases facing trials
can arise.

Overall, conceiving bias in terms of differences between a trial’s groups can distract
from the broader and more important question of whether the overall causal estimate
and overall trial is biased (due to distortions arising between, within or across groups)
and whether it is of use in practice. A consequence of the practice-based account of
causal bias offered here is the need for a broader view of overall validity.

3. A Broader View of Overall Validity in RCTs

The methodological debate around the validity of experimental studies is often struc-
tured in terms of a dichotomy between validity of the estimated results within the exper-
imental setting (internal validity) and validity of the estimated results holding or
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generalising outside of the experimental setting (external validity) (Campbell 1957;
Campbell and Stanley 1963; Cook and Campbell 1979; Heukelom 2009; Jiménez-
Buedo and Miller 2010; Reiss 2019; Favereau and Nagatsu 2020). Campbell (1957,
297) coined the terms and laid the foundation for distinguishing and assessing internal
and external validity. He first defined internal validity as whether the experiment made a
difference in the experimental context, and external validity as whether the difference
(effect) can be extrapolated to other contexts and populations (ibid.; cf. Campbell and
Stanley 1963). When a causal relationship between two variables is experimentally ident-
ified, the results are then often generalised beyond the experimental context (ibid.). This
internal-external distinction is common across the economic, social and psychological
sciences, while the efficacy-effectiveness distinction is common across the medical
sciences. This is framed in terms of experimental trials estimating results under highly
controlled conditions or under more real world conditions. In this context, Cartwright
(2007a, 220; 2010) argues that ‘in almost all cases there will be a trade off between internal
validity and external validity […] The usual complaint here is about the artificiality of the
circumstances required to secure internal validity’ – with artificial meaning ideal (or
highly controlled) conditions. The distinction is thus commonly viewed as a trade-off.
The better we attempt to isolate the intervention from confounding factors and ensure
it is driving the estimated causal effects, the less likely the results are representative of
the intervention’s effects in the target population (beyond the trial) in which conditions
are not controlled for and other intervening factors (causes) can also operate (ibid;
Campbell 1957; Campbell and Stanley 1963). Yet the distinction is not always to be
viewed as a trade-off (cf. Heukelom 2009; Jiménez-Buedo and Miller 2010; Reiss 2019).

In practice, biases arise in trials that often affect, simultaneously, aspects related to
both causal inference and prediction (aspects internal and external to an experiment).
These include biases in trial implementation (such as selection bias, lack of blinding
bias, adherence bias) and in research design (such as small and insufficient sample
sizes) etc. (Sections 4–6). In light of the practice-based account of causal bias, ulti-
mately all biases affecting a trial’s validity, internally, will constrain us in extrapolating
results, externally. When trials face such biases to their causal estimates, then causal
inference (that refers to internal validity) and thus inevitably also causal prediction
(that refers to external validity) are affected. Problems for internal validity are thus
inevitably also problems for external validity. Think of trials for example in which
baseline and endline data points are poorly selected, or the sample is collected in
one particular clinic with only a small share of people willing to participate who
have a particular background trait in common. In general, when a sample faces
such biases within or across groups then regardless of how precise results may be esti-
mated, the trial study is itself not always of much value in practice, even for studying
and understanding the estimated effects on the select participants within the particular
sample. Achieving internal validity, in such cases, can mean little by itself. Ultimately
we do not run trials for their own statistical sake – i.e. with the aim of just measuring a
causal estimate – independent of trial design, implementation and analysis. Clinical
trials are run in order to use the results for individuals in the real world. Labelling
such biases (like adherence bias, selection bias, lack of blinding bias, sampling bias
etc.) as problems just of internal validity or just of external validity may often miss
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the point for why trials are run in real-world practice. Bias arising in the design,
implementation or analysis of a trial means biased results.8

The debate on distinguishing between mechanisms and correlations provides further
evidence that it is not always possible to maintain a clear distinction between internal and
external validity of RCTs, especially in medicine. Clarke et al. (2014, 347), who provide an
important critique of evidence hierarchies in medicine, argue that ‘The statistical ‘set up’
of an RCT is such that it maximises internal validity […] However, there is no a priori
reason why the results of an RCT should be straightforwardly applicable to another
population’ – i.e. have external validity. These authors’ main approach and claim is
the following: ‘we have divided evidence into evidence of correlation, such as is obtained
from RCTs, observational studies and so on, and evidence of mechanisms, which is often
obtained from laboratory experiments. We have argued that to evaluate a causal claim in
medicine, evidence of mechanisms should be considered alongside evidence of corre-
lation’ – but also in order to ‘address the problem of exporting the results of an RCT’
(ibid.). However, despite their main claim, most of the about 2 million RCTs in medicine
– indexed in the Cochrane Library (2021) – test a drug treatment, in which the mechan-
ism is already embedded and thus how the effect comes about can be explained. For most
cases in medicine a clear dichotomy between internal and external validity is not feasible.
This is because phase 0, I and II trials are themselves small-scale experiments conducted
in laboratories and clinics to test how the chemical property or substance of a medical
drug works (the mechanism) among a smaller group of people. Phase III and IV trials
are in turn larger scale experiments to test the effectiveness of that given medical drug
(the average treatment effect) and long-term benefits. The mechanism is thus to some
extent generally known and already embedded in the RCT design within the drug treat-
ment.9 It is precisely for this reason that trialists can acquire research funding for medical
trials by indicating the chemical compound of the drug they are to test – and expected
results – that requires an understanding of the mechanism at play. This important fact
about trials is overlooked or not well understood in much of the philosophical RCT lit-
erature about mechanisms (cf. Clarke et al. 2014).

Validity is thus defined here in a more holistic way:

The overall validity of an RCT and its causal claim is maximised if the range of causal biases
that arise between, within and across trial groups (and generally affect validity both intern-
ally and externally simultaneously) are reduced as far as possible, if the RCT provides evi-
dence of a mechanism and statistical correlation, and if the overall sample itself is generated
randomly (and not just participants within an unrepresentative sample).

Such an integrated and practice-based view of causal bias and overall validity in trials
aims to help improve the conditions of people to the greatest extent possible.

4. Issues Affecting Causal Claims and Overall Validity of Trials that
Commonly Arise: Adherence Bias, Sampling Bias and Lack of Blinding Bias

Various assumptions and biases underlying RCTs cannot always be avoided – statistical
and non-statistical techniques cannot fully eliminate them. In the following, three such
examples are provided – adherence bias, sampling bias and lack of blinding bias – that
affect the estimated causal results of trials, and are directly reflected in the broader, prac-
tice-based account of causal bias presented here.
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In conducting any trial in practice, participants generally take the prescribed treatment
for different lengths of time and different dosages that leads to adherence bias within one of
the trial groups and affects the estimated causal results and overall validity. The length of
follow-up for example was two or three times longer for some participants within half of
the ten most cited RCTs discussed here – though only the average causal effect was esti-
mated despite the different amounts of treatment received among different participants
(DCC 1993; SSSSG 1994; Turner 1998; Knowler et al. 2002; Rossouw et al. 2002). More-
over, some share of participants generally do not take the intended dosage of the treat-
ment – for example 27% did not take the intended dosage in the trial by Hurwitz et al.
(2004) and 28% did not take at least 80% of the dosage in the trial by Knowler et al.
(2002). This influences the estimated average causal results. Other statistical biases that
influence our causal outcomes can also arise while implementing trials due to missing
data for participants, participants switching between treatment and control groups and
the like. In general, the more frequent such issues take place in each trial, the more pro-
blematic the causal and epistemic claims become. Some of these issues are difficult to
fully detect while others become part of the statistical deviations. An example is that
in the trial on estrogen by Rossouw et al. (2002), 42% of treated participants later discon-
tinued the study drug, the vital status for 4% of participants was unknown (that is, data
was missing) and 3% of participants passed away. Another difficulty in interpreting this
trial’s reported causal outcomes is that 11% of participants in the placebo arm switched to
the active treatment arm. The individual choice made by participants to switch groups,
once they become aware of which group they are in, must also be taken into consider-
ation, especially participants’ direct wellbeing, despite the fact that it can give rise to stat-
istical bias. Beyond idealisations of the RCT method, such difficult to avoid
methodological issues affect the top ten cited trial studies that do not provide details
on the extent to which these issues bias their causal results and influence their overall
validity.

In conducting any trial in practice, some share of recruited people refuse to participate
that leads to sampling bias through an overrepresentation of certain study participants
and affects the estimated causal results and overall validity (Banerjee and Duflo 2009;
Kannisto et al. 2017; Heckman 2020). Seven of the ten most cited trials do not report
the share of people recruited who refuse to take part in the trial but, when reported for
the remaining three trials, the share is high. In the trial by Shepherd et al. (1995), only
51% of those recruited for the trial showed up to the initial screening, of whom only
4% were then randomised into the trial. In the trial by SSSSG (1994), 8% of recruited
people did not consent to take part. And in the trial by Rossouw et al. (2002), only 5%
of all women initially screened consented to participate in the trial (and indicated not
having had a hysterectomy), after which 88% of those who consented were then ran-
domised into the study. The ideal view of trials is thereby that sampling bias can be
eliminated but, in practice, only those participate who have time, expect to benefit,
view minimal risk in taking the treatment and possibly have greater need for it (cf.
Kannisto et al. 2017). An RCT does not capture these and other psychological
factors that influence trials’ estimated causal outcomes. That is, as people refuse to par-
ticipate and thus the trial sample becomes smaller it is likely not ‘average people’ being
lost but rather those who likely differ strongly (ibid.). Intention-to-treat analysis
cannot fix such issues – or issues related to missing data etc. – that can lead to a
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degree of causal bias across the entire sample. Average estimated causal effects in trials
are thus likely generally biased upwards.

In conducting any trial in practice, some degree of partial blinding or unblinding of the
various trial persons generally arises that leads to lack of blinding bias and affects the esti-
mated causal results and overall validity. Blinding is needed throughout the trial because
knowing which group (treatment or control) that participants are assigned to often biases
decisions, intentionally or unintentionally, given different expectations and behaviour
among practitioners and those treated (Teira 2013; Howick 2017). The ideal view of
trials is however that randomisation, while helping to blind trial participants, can be
sufficient to achieve blinded trials. Among the ten most cited trials, some were not
double-blinded (Slamon et al. 2001; Van den Berghe et al. 2001; Hurwitz et al. 2004)
whereas others were but later unblinded participants to allow for instance formanagement
of adverse treatment effects (DCC 1993; Knowler et al. 2002; Rossouw et al. 2002). In the
real world, in some cases it is not possible to carry out a blinded trial – with an example
being the trial by Van den Berghe et al. (2001) in which participants’ blood glucose levels
must be continually monitored to be able to adjust insulin doses. In other cases, trial par-
ticipants can unblind themselves – with an example being the trial by SSSSG (1994) in
which some participants checked their cholesterol levels outside the trial and then discon-
tinued the placebo to begin taking actual cholesterol-lowering drugs themselves. More-
over, these highly cited RCT studies did not provide details about how such issues of
blinding and unblinding influence their reported causal and epistemic conclusions and
overall validity. Yet to reduce such bias within one of the trial groups and increase the
level of precision in the estimated causal results, trials need to be fully blinded (cf.
Howick 2017) – though the top ten cited trials commonly only use (if at all) basic
double-blinding. For relevant trials, full blinding implies that no one would know
before, during or after the trial which participants were in the treatment and control
group (Cartwright 2010), with no onemeaning not only experiment designers and partici-
pants but also data collectors, practitioners, data evaluators or anyone else. RCT studies
generally do not however report whether all these key people were blinded, as is the
case in all top ten cited trials, which can increase uncertainty in the level of validity of
their causal claims. Ultimately, when it comes down to estimating more precise causal
results we need, for relevant studies, to get beyond basic Randomised Controlled Trials
(RCTs) and move to fully Blinded and Randomised Controlled Trials (BRCTs).

In general, the causal claims of RCTs are thus commonly affected by such general
issues of adherence bias, sampling bias and lack of blinding bias that can arise
between, within and across trial groups. But causal claims are often influenced by a
range of other methodological issues (Krauss 2018; cf. Andrew et al. 1994; Black 1996;
Sackett et al. 1996; Moher et al. 1998; Rennie 2001; Chan and Altman 2005; Dwan
et al. 2008; Moher et al. 2010; Goldacre 2016; Richards et al. 2019). These however
need to be discussed, together, to assess overall validity and can also put into question
the practical value of certain idealisations about trials.

5. Other Issues Affecting Causal Claims and Overall Validity of Trials

An assumption in trials is that the wide range of important background influencers needed
for the treatment to work would exist simultaneously (the all-preconditions-are-fully-met
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assumption of trials). We can however, in practice, only meaningfully estimate an inter-
vention’s causal effects (e.g. a medication, an education programme or the like) if reci-
pients are sufficiently healthy and nourished for the intervention to function, if
recipients take a sufficient amount of the prescribed intervention, if practitioners are
qualified in carrying it out effectively, if the capacity of public institutions is adequate
for its overall implementation, among other factors. No estimated causal results are
thus affected solely by the intervention but by many other background attributes and
conditions that can give rise to bias between, within or across trial groups. A number
of these influence a treatment’s estimated causal effects both within and outside a trial
setting. That these and other such demanding preconditions (concauses) would be
entirely satisfied for all participants is a foundational assumption implicit in the epistemic
practice of randomised experimentation. In the real world, we are however not able to
make sure that such concauses are present and evenly distributed among trial groups,
since they are at times either known but we cannot easily collect data on them or may
be unknown (Papineau 1994; Cartwright 2007a, 2010). They can thus contribute to a
further degree of uncertainty in the level of validity of a trial’s reported causal outcomes.
Such background influencers (covariates) furthermore vary across and within different
contexts, and they change over time. Because the degree to which they are met varies,
the average estimated causal results across different samples also vary. Causation in prac-
tice, and the logic of experimental reasoning, need to thus be viewed more broadly than
the particular disease or problem and its treatment.

The achieving-good-randomisation assumption is a fundamental assumption made in
trials and in valuing their estimated causal outcomes and overall validity – which reflects
the idealisation of randomisation and thus of being able to attain an even distribution of
background traits that influence outcomes between trial groups.When trials are poorly ran-
domised and face imbalances in background influencers between trial groups (Cartwright
2007, 2010; cf. Papineau 1994; Worrall 2007; Harrison 2011) it can lead to bias between
groups and uncertainty about the validity of their estimated causal outcomes and episte-
mic conclusions. The common view that ‘The RCT is neat because it allows us to learn
causal conclusions without knowing what the possible confounding factors actually are’
(Cartwright 2010, 64) does not fully reflect empirical practice as most leading journals
require trial studies to provide baseline data with which one can generally observe
some degree of imbalance in potential confounding factors between groups. An
example among the top ten cited RCTs is the trial by Marler (1995) that suggests that
the outcome is explained by the treatment (reflecting a 4 percentage point lower mortality
rate for treated patients after three months of the stroke compared to placebo patients).
When we disentangle the causal claims made in the trial it is not always possible to
claim that this particular outcome is just caused by the treatment. This is because the
trial’s baseline data shows that background traits that shape the outcomes of stroke and
mortality were not evenly distributed between trial groups: treated patients relative to
placebo patients were on average 14% more likely to have taken aspirin therapy, 8%
less likely to have been smoking, 3% less likely to have already had congestive heart
failure, 3% more likely to be of white ethnicity compared to black, and 3% more likely
to have already had (and survived) a stroke. Viewing these large differences in relation
to the outcome of just a 4 percentage point difference in mortality, these alternative
factors (causes) can also be explaining the trial outcomes. We cannot exclude the
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possibility that the effect of the treatment may even have been negative and one or more of
these alternative causes may be driving the outcomes. This poor randomisation and thus
baseline distribution is however not discussed in the study. Another example of poor ran-
domisation is the trial by Slamon et al. (2001) in which those in the treatment group (who
received chemotherapy and the study treatment) were 10 percentage points more likely to
have already had adjuvant chemotherapy prior to entering the trial relative to those in the
control group (who only received chemotherapy). The epistemic practice of making
causal claims in trials is complex because how people react to chemotherapy varies if
they have received it before or not. So it may not be possible to claim that the treatment
is exclusively affecting the trial’s reported causal outcomes. For a given trial, a very
balanced sample is not always easy to achieve because we use a finite sample with finite
randomisations.10 These most cited trials illustrate that randomisation does not guarantee
an even allocation – meaning that the achieving-good-randomisation assumption may
not hold for these RCTs to ‘secure internal validity’ and claim definitive causation
about the treatment. In contrast to Cartwright’s (2010, 63) view of the ideal RCT,
random assignment cannot thus ensure, in real RCTs, ‘that other possible reasons for
dependencies and independencies between cause and effect under test will be distributed
identically in the treatment and control wings’ (emphasis added). Instead randomisation,
when we do not critically assess such important imbalances, can also help shape a trial’s
estimated causal outcomes.11 Observing that important differences in the actual frequen-
cies exist, we cannot always exclude alternative explanations for the reported causal out-
comes. Cartwright (2010), in contrast, theorises that evenly distributed probabilities may
be sufficient independent of knowing the actual frequencies. Yet such a theory of ran-
domisation does not reflect an important aspect of experimental practice because finite
frequencies in trials are at times poorly distributed in practice (cf. Papineau 1994;
Fuller 2018). In my view, the ultimate arbiter on the theoretical debate over whether prob-
abilities or finite frequencies need to be evenly distributed is the real world we live in, i.e.
empirical practice. And empirical practice (as seen above) illustrates that large and impor-
tant imbalances in finite frequencies can arise and we cannot turn an eye to them as we
know they also have an effect.12

In analysing outcomes, a further assumption in ideal trials is that a researcher’s selected
baseline and endline time points would properly reflect the average (or greatest possible)
treatment outcome – yet, in practice, trials can face a unique-time-period-assessment
bias. This is because a treatment’s ‘average’ causal effect depends, for many trials, on
when the time period is defined to gather the particular baseline and endline data.
Making an epistemic claim about the estimated average causal outcome is a function
of when the researcher assesses the treatment, whether every week or month, quarter
or year etc. An example is that the trial by SSSSG (1994) estimates that the effect of
the cholesterol treatment appeared to start after about a year and then it consequently
decreased. Interventions tend to have varying effects at different points in time and
may only work well in the shorter term but no longer, for example, once our body
becomes accustomed to a certain medication. This brings an additional level of complex-
ity to the epistemic practice of estimating causes that move over time. Overall, a treat-
ment’s evaluation will not be the same at different points in time and, for most trials,
conducting assessments at multiple time points helps better understand the variations
in the estimated causal results. Moreover, making an epistemic claim about the estimated
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causal results in trials is a function of how the control group is designed. A placebo-only
or conventional-treatment-only limitation of trials can thereby make it more difficult to
interpret a trial’s reported causal outcomes. Of the ten most cited trials, five evaluated the
tested treatment only against the current treatment, four evaluated only against a
placebo, and one evaluated against both to be able to compare relative causal outcomes
using the two thresholds. One changes the causal question being addressed in each of
these cases. We arrive at different answers to the same question of what is the impact
of the treatment. In practice, such design features thus lead to different causal estimates
across the sample and different epistemic conclusions – an insight not yet discussed in the
philosophical literature, and not generally made explicit in trials.

The background-traits-remain-constant assumption is another assumption not yet dis-
cussed in the existing philosophical literature, though background traits change while a
trial is conducted and they also influence estimated causal outcomes and overall validity
so we need to always evaluate them not only at baseline but also at endline. When for
example 5% of trial participants receiving the actual medication (compared to those
receiving no or the conventional treatment) choose to simultaneously improve their
physical fitness or diet in order to improve their conditions faster but we just gather base-
line and not endline data on levels of physical fitness and diet, then we cannot claim that
the trial’s estimated causal results are just explained by the medication. And in general, as
a trial period becomes longer background influences can often increasingly affect the esti-
mated causal results given more potential confounders – for example related to changes
in practitioners, clinic management, implementation of a national health policy etc. that
take place after the trial begins. For such reasons, even a good baseline distribution does
not eliminate potential bias within one of the trial groups. Randomisation cannot help in
ensuring what happens post-randomisation. If researchers are not able to show that trial
participants have the same background traits and clinics have the same characteristics at
the endline that they had at the baseline, then they cannot know if the estimated causal
outcome is only brought about by the intervention. Most RCTs face this concern (with
none of the ten most cited RCTs having included such endline data) that contributes to a
further degree of epistemic uncertainty in their level of bias and overall validity. The
results of intention-to-treat analysis and per-protocol analysis can, for many trials, be
thus thought of – to a certain extent – as both reflecting intention to treat. This is
because such confounders after randomisation (and during trial implementation) are
not being controlled for and trials are not estimating total treatment effects. This is an
important insight into the actual epistemic practice of trials.

In an ideal RCT all participants would moreover experience the same effect but, in prac-
tice, we face heterogeneity and outliers in data observations that can affect the estimated
causal results in trials (Deaton 2009; Ravallion 2009;Harrison 2011).Outliers and hetero-
geneity of treatment effects always exist because, for instance inmedical trials, people are of
different age, gender and physical health, experience different conditions, treatment needs
and responses, develop different levels of resistance to the treatment etc. They are thus not
a resolvable statistical or epistemic problem. They are a common consequence of studying
dynamic biological, behavioural and social phenomena that involve complex processes.
Such dynamic phenomena like diseases and economic policies are continually changing
– their scope, their intensity, their duration etc. – and are better understood as (what I
call) evolving causes rather than precisely measurable, static causes amenable to statistical

14 A. KRAUSS



analysis. This can contribute to a further degree of uncertainty in the level of accuracy of a
trial’s causal estimates across the entire sample. Issues related to complexity, heterogeneity
and evolving causes are however often not directly assessed as trials are designed specifi-
cally to estimate the average causal effect among the distribution.

Another assumption is that conditions of trial participants (within the controlled trial)
would be the same or similar for those when the treatment may be later adopted in the
general population (without experimental controls) which is widely discussed in the litera-
ture (e.g. Ward and Johnson 2008; Ravallion 2009; Cartwright 2010; Worrall 2010; Clarke
et al. 2014; Marcellesi 2015; Reiss 2019; Favereau and Nagatsu 2020; Section 3). Influen-
cing conditions include restrictive trial eligibility criteria, low participant consent, higher
standards of trial facilities and trial practitioners etc. (Worrall 2007; Cartwright 2010).
Such conditions in trials can at times give rise to bias across the entire sample by
biasing upwards the estimated causal results. In practice, trials do not always evaluate
in detail the central question of how their given causal results may be valid for individuals
beyond the trial setting – as illustrated in most of these ten RCTs. Some however partly
do. In the trial for example by Van den Berghe et al. (2001) conducted in one surgical care
unit, its reported causal results are not applicable to individuals in medical care facilities
or with illnesses different to those in the sample (which the study’s authors recognise) but
also to individuals with different demographic or clinical traits. Extrapolating results
from one surgical care unit can thus raise important medical and epistemological con-
cerns. Another example is that in the trial by Knowler et al. (2002), the authors seem
to claim universal validity about their main reported causal outcome: ‘To prevent one
case of diabetes during a period of three years, 6.9 persons would have to participate
in the lifestyle-intervention program, and 13.9 would have to receive metformin’. The
authors then report that the trial’s conclusions may however only be applicable to
about 3% of the population in the US but also acknowledge that ‘The validity of general-
izing the results of previous prevention studies is uncertain. Interventions that work in
some societies may not work in others, because social, economic, and cultural forces
influence diet and exercise. This is a special concern in the United States, where there
is great regional and ethnic diversity in lifestyle patterns’ (Knowler et al. 2002).
Overall, if trial studies do not elaborate in detail on their trial context and possible
scope of their estimated causal outcomes beyond this context, then practitioners and pol-
icymakers must try and interpret the scope of the estimated causal outcomes themselves.

In general, in no two contexts are all conditions, needed for a treatment to have a posi-
tive causal effect, met to the same extent. It is unlikely that running the same trial (or
scaling it up) in another context or in the same context at a different point in time
would produce the same average causal effect. Because a trial’s estimated causal results
are relative to particular factors under particular conditions within a particular sample
at a particular point in time, we can generally speak of a singular causal result. We
can generally speak of a one-time causal relationship. Yet results derived from multiple
studies increases the level of reliability and validity in experimental evidence by ‘redu-
cing’ biases in individual trials.

Overall, while Cartwright (2010, 63–64) notes that ‘in the design of real RCTs three
features loom large’ – blinding, random assignment and placebos – Sections 4 and 5
here illustrate that a range of other important features need to however be taken into
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account simultaneously that bring assumptions and biases and influence trials’ estimated
causal results and overall validity (with those outlined above not being exhaustive).

6. Assessing the Overall Validity of Trials

It is, only when taking the large set of issues and problems arising in the design, implemen-
tation and analysis of trials together, then possible to assess the degree of overall validity of
a trial and its causal claims. The question here is not about whether the set of assump-
tions must hold and biases must be eliminated for an RCT to establish causation. It is
instead a question about the degree of validity of an RCT and its causal results being con-
tingent on the degree to which we are able to reduce each bias and satisfy each assump-
tion as far as possible. This central epistemological question about RCTs cannot be
addressed studying just an individual issue in isolation or the method’s design. It is
because the level of validity of a trial can reduce with every additional bias and assump-
tion that assessing overall validity has been constrained in papers focusing on a single
issue. It has also been constrained given the common account of biased causal inference
focused on imbalances between trial groups (Cartwright 2010, 2007). We return here to
the broader, practice-based account of causal bias, outlined in Section 2:

Causal inference in an RCT is not biased if all confounding factors are equally distributed
between the treatment and control groups, if all subjects receive the identical treatment
within the treatment group and the identical placebo within the control group, and if all
study design, implementation and analysis features across the entire sample are properly
selected and carried out to produce an undistorted estimated average effect of the treatment
(that is of use in practice).

With this broader definition of causal bias (outlined in Sections 2 and 3) that better
reflects the evidence of empirical practice of trials (outlined in Sections 4–6) it
becomes evident that RCTs cannot generally reduce all biases which constrains their
overall validity. What do the range of biases exactly affect? They impact the effect size,
that is the strength of the relationship between the two variables that helps measure a
study’s practical significance. They also impact the statistical significance, that is the
probability of the result (the difference measured) not arising due to chance for
example at a significance level of 1 or 5 percent. The effect size in trials is influenced
by adherence bias, lack of blinding bias, poor randomisation bias, a unique time
period assessment bias, a change-in-background-traits bias etc. The statistical signifi-
cance in trials is influenced by sampling bias, poor randomisation bias etc. (as outlined
above). Some biases thus affect both.

Important statistical techniques, such as intention-to-treat analysis or stratified ran-
domisation, have been devised to help mitigate the effects of a number of biases but
cannot eliminate them. These techniques generally only reduce individual biases and
for a number of biases discussed above there is no reliable way to assess how much
they throw off results, and especially how much all combined biases affecting a given
trial throw off results. Some of the studies discussed above face several (smaller)
biases, for example related to adherence bias, sampling bias and lack of blinding bias,
that generally add up to greater aggregate bias. But we face constraints in aggregating
them in a statistically meaningful and precise way. It is nonetheless important to

16 A. KRAUSS



assess and provide information in each trial, to the extent possible, on how much those
different sources of bias, combined, can explain the estimated causal effect. In general,
causal effects can face a greater degree of bias in trials with simultaneously smaller
samples, smaller estimated effects, more unbalanced trial groups, a greater degree of
partial blinding or unblinding etc. Improving our means to evaluate aggregate bias will
be an important area for future research to improve trial methodology and the quality
of research across fields using RCTs.

The response then to the larger question, how realistic is it to meet the set of assump-
tions and reduce the set of biases to establish precise causal results, is that we are generally
dealing with some degree of bias in our causal claims – as illustrated assessing some of the
most influential trials. Causal claims deduced in trials cannot be viewed separately from
these assumptions and biases. The number of assumptions and biases implicit in an
RCT’s causal results and inferences can increase at each step: from selecting a sample,
generating our variables, randomising and blinding, to implementing interventions,
gathering data and dealing with unknown factors, interpreting our causal and epistemic
conclusions, among other steps. Trial epistemology is highly complex. At least as many
assumptions may thus exist in a given study as there are decisions and steps in carrying
out the study. The causal claims we make based on our estimated results cannot be stron-
ger than the weakest link used to arrive at those claims (see also Cartwright 2007) – they
cannot be more valid than the strongest assumption we make or the strongest bias we
face. Establishing which assumptions and biases are most and which least important
in affecting the estimated causal results is not feasible in general terms. We can only
assess their level of importance and the particular level of validity within a specific
trial context and it is contingent on the degree to which the assumptions are met and
the biases reduced. Biases such as adherence bias, sampling bias and lack of blinding
bias commonly affect, to some degree, the estimated causal results of trials, and as the
ten most cited trials face these and other biases, most trials are bound to have some
degree of bias and constrained overall validity. This also applies more generally to
other studies involving human beings that use statistics.

RCTs can moreover appear, in light of the common account of causal bias, at times as a
one-step scientific method – focused on randomisation and creating balance between
groups – to estimate causal relationships and ensure validity. In practice, to estimate its
causal results an RCT rests on hundreds of decisions and steps that can lead to assump-
tions and biases before randomisation (e.g. sampling bias), during randomisation (e.g.
poor randomisation bias) and after randomisation (e.g. lack-of-blinding or adherence
bias) that arise between, within and across groups. Researchers thereby make decisions
such as which particular factors are the most important to stratify for during randomis-
ation. They choose how and in which location to select participants for their initial
sample. They select and define which particular inclusion and exclusion criteria and
outcome variables are appropriate. They choose the particular length of time between
collected baseline and endline data points etc. Each of these decisions influence the par-
ticular causal results estimated in a trial. The single step of using a randomisation algor-
ithm in the process of designing a trial cannot thus ensure causation, scientific objectivity
or validity. It is, in practice, one step within the larger and highly complex process of
designing, implementing and analysing the same trial.
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Trials thus generally face some degree of biases that affect their causal results and overall
validity – it is the character of the trade-off in order for studies to actually be carried out in
the real world. A number of things do not always go according to plan (or design or
theory) because designing, implementing and analysing studies and extrapolating
results from them, in practice, is a long and intricate process involving many actors
(study designers, participants, data collectors, implementing practitioners, statisticians
etc.) making many unique decisions at many different steps over time. Any given
study is prone to bias, limitations and assumptions, no matter how hard the researchers
take measures to minimise them. Researchers conducting a study do not know what they
do not yet know. And by the time a study is carried out and completed, flaws and biases
become increasingly apparent over time. The question, for each study, is then whether
the estimated causal outcomes with some degree of bias are sufficient for policy purposes
and for practitioners? It generally is – though the response, for a particular trial, hinges
on the level of overall validity and usefulness of its estimated outcomes in practice. If
researchers and policymakers require having a gold standard in research or an evidence
hierarchy it thus would not necessarily be tied to a particular method but, in my view, to
the level of validity and reproducibility of research across methods and studies, and the
usefulness of that research in practice. What is key here is conducting multiple studies
that assess the same treatment and can help reduce the level of uncertainty in the esti-
mated results and validity of each of the individual studies. Though, meta-analyses of
trials do bring some of their own difficulties, such as the pooling together of biases
from individual trials, likely overestimating causal effects of treatments and underesti-
mating negative effects, since trials with negative results are less likely to get published.13

Essential to improving the epistemic practice of trials is for researchers to provide much
greater information, in their studies, on the assumptions they make and the methodo-
logical issues they face that influence their estimated causal effects. This is as important
as any other information in allowing the reader to interpret the level of reliability of
results, and derive credible conclusions.14 If this critical information is not provided,
readers cannot evaluate a study’s overall validity.

In this sense, trials in fields like economics, psychology, political science and some areas
of medicine are – in some regards and at times – not just a scientific tool but also a political
tool. And one reason why some researchers in these fields view the experimental method
of RCTs as the best way to improve understanding is because of the dynamic character of
the phenomena studied and the weakness of theory in some of these fields. It is the RCT
design that can provide greater rigour where theory may be lacking, especially in the
behavioural and social sciences. In economics, RCTs are often used to justify public
spending on a given intervention or policy. In medicine, they are often used as a
policy tool to get new medical treatments passed through government regulatory
bodies, and the like.

7. Conclusion

The philosophical literature on the RCT method has to date analysed important individ-
ual issues and biases (though largely in isolation) and it has adopted the common account
of biased causal inference in which bias is described as arising due to probabilistic imbal-
ances between trial groups (cf. Cartwright 2007, 2010). This paper has provided a
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broader, practice-based account of causal bias in RCTs that incorporates the range of
biases arising not only between groups but also within a group, and across the overall
sample itself. Within this expanded framework, all biases are incorporated that arise in
trial design, implementation and analysis that affect the estimated causal outcomes
and overall validity. The paper has assessed a wider range of biases simultaneously, illus-
trating that an RCT generally faces a degree of aggregate bias that can constrain its causal
claims and overall validity, but carrying out and comparing multiple studies helps ‘miti-
gate’ biases in individual studies. Overall validity increases as biases are reduced, and the
robustness of our evidence increases as we conduct multiple studies.

RCTs are generally the best we have for the type of questions they can address. Ran-
domised controlled trials are nonetheless not always as random as thought. For example,
they are not always able to ensure an even distribution of all measurable, non-measurable
and unknown influencers, and in many cases, the initial sample (of where and who to
recruit) is not selected in a randomised way. They are also not always as controlled as
thought. For example, they are not designed well to control for participants refusing
to participate, not fully complying, dropping out etc. or, in the case of longer trials,
for changes in background influencers during the trial. And they are not always trials.
For example, some do not test a new intervention but rather only audit an existing (gov-
ernment) intervention.

Ultimately RCTs are not always assumption-free, bias-free and limitation-free. Yet
we do not run RCTs because they guard against every bias and defect. We do them
because they reduce biases and defects when experimenting. And it is because RCTs
are vital in informing our policy decisions that it is so important for researchers to
continually improve how trials are designed, implemented and analysed and
improve their overall validity by continually identifying ways to reduce the degree
of biases. Researchers can improve epistemic practice and patients’ lives when they
go through bias by bias and assumption by assumption, as outlined above, and try
and minimise each bias and meet each assumption as far as possible when designing,
implementing and analysing trials.

We need to also better combine RCTs with other methods – given that each method has
its strengths – in order to gain a more holistic understanding of some phenomenon or treat-
ment. Methods and research designs include single case studies15 and laboratory methods
(that are first steps needed to ground later experimentation), RCTs (that focus on the
later stage of evaluation), observational studies (that help design and validate trials), con-
sensus among groups of experts (that help resolve conflicting views), and at times ‘his-
torically controlled trials’ (that can offer a historical perspective) especially in cases
when RCTs cannot be conducted (Black 1996; Barbour 1999; Worrall 2007a, 2010;
Ward and Johnson 2008; Clarke et al. 2014; Richards et al. 2019). Each method often pro-
vides different insights that RCTs are not able to and together they increase the robust-
ness of evidence. For many questions we are interested in (from large-scale scientific
topics to complex treatments, conditions, processes and institutions) RCT results
cannot be more valid than results from other methods as we cannot generally apply
them on such topics in practice. To address many topics not amenable to randomisation
we require other methods such as observational studies but also to help in designing trials
and interpreting and verifying their estimated causal outcomes and validity. For insights
on the distribution of treatment effects among a population, why and how a treatment
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can work (not only an average estimated causal effect), and under which conditions it can
work, RCT results cannot generally be more valid (Deaton 2009; Ravallion 2009). This is
because trials are not well designed for these purposes compared to other methods, such
as at times observational studies. While historical and observational studies have at times
been used, without RCTs, to identify important insights – from antibiotics and smoking
inducing cancer, to surgical procedures and smallpox vaccination (Black 1996) – RCTs
are often quicker and more efficient in providing causal knowledge, and together the
different methods provide even stronger knowledge. The topics that fit an RCT design
are largely those assessing, at the level of the individual, a single, simple, small-scale
and quantifiable treatment with few known confounders. The reason why we cannot ran-
domise most phenomena in science is generally because we do not have a comparable
enough counterfactual for them – which draws the line of where and when trials can
and cannot be applied. (Multiple) trials are – when implemented well, biases are
reduced and assumptions are satisfied as far as possible – generally the best we have in
better understanding the average estimated causal effect of a treatment and informing
our decisions. No method is however all-around more valid than another method.
The best all-around method does not exist and neither does a pre-established hierarchy
of evidence (see also Clarke et al. 2014). We need to use RCTs together with other
methods to provide insight into different aspects of a treatment or phenomenon that
the different methods are not designed to do alone.

Finally, the paper has argued that to better explain and understand the complexities,
inferences and biases in RCTs we require a greater view from practice and a broader
account of causal bias. Only then can we gain a richer understanding about how trials
produce some degree of bias – and thereby how to improve overall validity and how
trials are carried out in practice.

Notes

1. For example, Andrew et al. 1994; Sackett et al. 1996; Djulbegovic et al. 2013.
2. For example, Seligman 1996; Duflo, Glennerster, and Kremer 2007; Banerjee 2007.
3. Holman (2017) also acknowledges some of the limitations of theoretical and idealised

approaches to studying RCTs.
4. The examples provided throughout this paper are all found within the top ten cited RCT

studies worldwide in any scientific journal. Each of these ten trials has been cited by at
least 6,500 or more articles as of 2016 based on the Scopus database. They include world-
leading trials on the topics of breast cancer (Slamon et al. 2001), colorectal cancer
(Hurwitz et al. 2004), stroke (Marler 1995), postmenopause (Rossouw et al. 2002), insulin
therapy (Van den Berghe et al. 2001), two separate trials on cholesterol (Shepherd et al.
1995; SSSSG 1994) and three separate trials on diabetes (Turner 1998; DCC 1993;
Knowler et al. 2002). The issues discussed here, while these RCTs are a sample of highly influ-
ential trials and fall within medicine, biology and neurology, generally apply to any RCT
across the medical, behavioural and social sciences and beyond; though there are differences
in the design features of trials between fields like medicine, psychology and economics.

5. The RCT method yields what is often called an interventionist or manipulationist form of
causation (Woodward 2003; see also Russo and Williamson 2011).

6. For a discussion on the meaning of causal claims in biomedical contexts, see Russo andWil-
liamson (2011).

7. Cartwright refers here to balance ‘in both wings’, though balance is needed between all
wings as trials in practice at times employ multiple treatment groups (to test different
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treatments or dosages against each other) and multiple control groups (to test the treatment
against both a placebo and the common treatment at present, for example).

8. The distinction of internal-external validity can also at times be problematic for another
reason. There are many biases that often go beyond both, including industry sponsorship
bias, reporting bias, reference bias (citing only studies favouring a given outcome), publi-
cation bias etc.

9. The majority of RCTs in medicine do not thus have what Clarke et al. (2014, 343) call the
‘realistic chance of stumbling across coincidental correlations’.

10. In addition, computerised randomisation algorithms make the assumption that numbers
can actually be selected entirely at random – but such algorithms, as Fallis (2000) argues,
in fact tend to use a deterministic sequence in which initial values shape later values.

11. Researchers conducting trials in one field are not always aware of different design features in
other fields. For example, in trials within economics all participants are commonly random-
ized in the entire sample before a trial begins, while participants are generally randomized
on a roll-in basis in medical trials which can lead to greater imbalances in background traits
of participants.

12. See Teira (2010) for a discussion on frequentist versus Bayesian clinical trials.
13. For a discussion on meta-analyses, see Moher et al. (1998), Stegenga (2011) and Holman

(2018).
14. Most of the ten most cited trials were furthermore published after the Consolidated Stan-

dards of Reporting Trials guidelines were adopted (Andrew et al. 1994) – though these guide-
lines need to be extended to include the broader range of issues and constraints facing trials
(cf. Moher et al. 2010; Rennie 2001).

15. Ankeny 2014.
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