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Abstract

Magnitude-sensitivity refers to the result that performance in decision-making,
across domains and organisms, is affected by the total value of the possible alter-
natives. This simple result offers a window onto fundamental issues in decision-
making and has led to a reconsideration of ecological decision-making, prominent
computational models of decision-making and optimal decision-making. More-
over, magnitude-sensitivity has inspired the design of new robotic systems that
exploit natural solutions and apply optimal decision-making policies. In this arti-
cle, we review the key theoretical and empirical results about magnitude-sensitivity
and highlight the importance that this phenomenon has for the understanding of
decision-making. Furthermore, we discuss open questions and ideas for future
research.
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Highlights

• Performance in decision-making is affected by the overall mag-

nitude (i.e., summed values) of the alternatives; this result is

known as ‘magnitude-sensitivity’.

• Magnitude-sensitivity is observed for all types of decision-making

(e.g., perceptual, value-based, economic, and collective) and

for different organisms (e.g., unicellular organisms, honeybee

swarms, monkeys, and humans).

• Magnitude-sensitivity allows organisms to optimise speed-value

trade-offs for naturalistic decisions, in which a fast choice for

high-magnitude stimuli is often preferred over a slow but correct

one.

• Prominent accounts of theoretical, descriptive and normative

decision-making need to be revisited in order to account for

magnitude-sensitivity.

• Magnitude-sensitivity has inspired the design of decentralised al-

gorithms for robot swarms that efficiently manage speed-value

trade-offs.

2



Size matters

What do unicellular organisms making food choices [1], humans making

perceptual decisions [2, 3], monkeys making economic decisions [3], honeybees

choosing between nest sites [4] or robot swarms reaching an agreement [5, 6]

have in common?

An answer to this question (among many other possibilities; [see 7]) is

that in all those cases, decision-making is affected by the ‘magnitude’ (see

Glossary) of the alternatives. ‘Magnitude’ is defined as the summed value

of the alternatives. If two food sources have arbitrary values of 3 and 5, the

magnitude is simply 3 + 5 = 8. In the case of a perceptual decision such

as deciding which of two stimuli is brighter, the magnitude is the overall

brightness of the alternatives, so that two stimuli having brightness of 30

cd/m3 and 60 cd/m3 have a magnitude of 30 + 60 = 90 cd/m3.

‘Magnitude-sensitivity’ (often also referred to as ‘value-sensitivity’)

refers to the result that performance in decision-making is affected by the

magnitude of the alternatives [1, 3, 8–21]. In particular, for higher magnitude

conditions, decision-makers show responses that are faster and more likely to

be random (i.e., more likely to be incorrect when there is a correct alternative)

[3, 11, 22].

An interesting empirical result is that of magnitude-sensitivity with zero

evidence [1, 3, 9, 17]: a choice between equal alternatives of high magnitude

is made faster compared with a choice between equal alternatives of low

magnitude. In this case, analyses are often based on reaction times alone
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since choice over equal alternatives is generally uninformative. The focus on

‘equal alternatives’ is of particular interest, as it allows experimentalists to

estimate the effect of magnitude-sensitivity in the absence of confounds due

to psychophysical transformations.

Empirical evidence of magnitude-sensitivity with equal alternatives has

been shown, for example, for human participants who are faster in deciding

which of two equal stimuli is brighter when the magnitude of the alterna-

tives increases [3], and in monkeys who are faster in choosing between two

equally high-value rewards than between two equally low-value rewards [3].

A particularly evocative result is that even an unicellular, aneural organism

exhibits magnitude-sensitivity [1] (Box 1).

A ‘simple’ behavioural finding such as magnitude-sensitivity has led to

the reconsideration of key aspects of decision-making. This is because leading

theories and prominent accounts of both descriptive and normative decision-

making were magnitude-insensitive. That is, they did not take into account,

or could not account for, the result of magnitude-sensitivity, and thus made

incorrect predictions. In fact, major accounts of decision-making almost ex-

clusively focus on the difference, or ratio in some cases, between alternatives

[e.g., 23, 24]; in doing so, information about magnitude does not enter the

decision process. As explained in detail in the next section, this is done in an

attempt to study decision-making under the lens of statistical optimality [24],

in which the difference between alternatives alone drives decision-making.

Here, we present in detail the key theoretical and empirical results about
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magnitude-sensitivity and highlight the importance that this phenomenon

has for ecological decision-making, computational models of decision-making,

optimal accounts of decision-making, swarm cognition (Box 2), and the im-

plementation of autonomous decision-making systems in robotics (Box 3).

Given the relevance of magnitude-sensitivity to several disciplines, scientific

progress in understanding the causes, consequences, mechanisms, and im-

plications of such a phenomenon can be achieved through a combined in-

terdisciplinary effort. Throughout the article, we discuss ideas for future

interdisciplinary research.

Ecological decision-making and the speed-value trade-off

Psychology and neuroscience have often studied binary decision-making

in the laboratory under the lens of the speed-accuracy trade-off [24–27], in

which participants are required to make a ‘correct’ choice in the shortest time

possible or, alternatively, are required to be as accurate as possible within a

predefined time window. The statistically optimal strategy, which optimises

the speed-accuracy trade-off, is known to be magnitude-insensitive, since it

can be demonstrated that only information regarding the difference between

alternatives is needed in order to make an optimal choice satisfying such a

criterion [24]. In fact, to decide as quickly as possible which of two stimuli is

the best available, information regarding the overall value is irrelevant. In the

attempt to study decision-making under the working hypothesis of statistical

optimality, previous research has disregarded magnitude-sensitivity a priori
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[see for example 24].

It is certainly possible to design experiments for which the effect of mag-

nitude may be negligible; for example, in value-based experiments in which

the value of alternatives is near-identical across trials [28]. So, while not

focusing on magnitude in specific studies could be perfectly reasonable, the

problem arises when results from such studies are used to inform conclusions

about the cognitive architecture for decision-making.

Interestingly, from a speed-accuracy trade-off perspective, not only is the

optimal strategy magnitude-insensitive, but it also predicts, in the absence of

ad hoc additions [29–31], decision deadlocks in the case of equal alternatives,

regardless of their magnitude, as illustrated by the so-called Buridan’s ass

paradox [32], in which a decision-maker faced with equal alternatives starves,

not being able to choose the best alternative.

Magnitude-sensitivity, while puzzling from a speed-accuracy trade-off per-

spective [24, 26], allows decision-makers to optimise another trade-off that

was proposed for value-based decisions: the speed-value trade-off [3, 33].

This trade-off has been conceptualised in order to account both theoretically

and empirically for magnitude-sensitivity. Such a decision trade-off is com-

mon in naturalistic settings in which agents are rewarded by the value of the

alternative chosen, and not on making a correct choice nor by the overall

accuracy of choices over many trials as commonly assumed in the laboratory.

In naturalistic environments [33–35] characterised by uncertainty of future

alternatives due to factors such as competition, scarcity, and degradation of
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alternatives, magnitude-sensitivity is advantageous since it allows the max-

imisation of long-term reward in a simple manner. This mechanism allows

decision-makers to sacrifice small differences between high-valued alterna-

tives and avoid time-costly decision deadlocks associated with ambivalence

between similar high-valued options [3, 11, 33]. Additionally, it has been pro-

posed that a fast choice is advantageous over a slow but correct one in the

case of negative rewards of high intensity (e.g., the loud noise of a quickly

approaching stimulus) that are to be avoided quickly [11]. In the case of

low-valued alternatives, magnitude-sensitivity allows decision-makers not to

make a decision, by maintaining a decision deadlock, in the hope that they

will encounter better alternatives in the future [8, 33]. This rationale is at

odds with classical experiments in value-based decision-making, charac-

terised by the requirement of a ‘forced’ choice, according to which partici-

pants must make a choice even in the case of low-valued alternatives [e.g., 36].

Furthermore, this rationale is at odds with the kind of static stimuli used in

laboratory settings; often, alternatives outside the laboratory are nonstatic,

hence maintaining a deadlock with low-value alternatives may allow for bet-

ter alternatives to be encountered.

Nonetheless, the fact that magnitude-sensitivity is also observed in other

types of decision-making that are not characterised by speed-value trade-

offs, such as is often the case in perceptual decision-making [3, 11, 37–

44] [but see 45], reinforces a common belief [45, 46] that the same compu-

tational mechanism may be responsible for how organisms make decisions
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across different domains, and that their decision-making architecture is in-

deed magnitude-sensitive. Given the importance of optimising speed-value

trade-offs in naturalistic decisions, it is assumed that a signature of this evo-

lutionarily plausible strategy is observed for all types of decision-making,

even for those tasks in which it results in little or no benefit (e.g., in most

perceptual choices and tasks with fixed or no reward).

In the next section we discuss the most prominent descriptive models of

decision-making that can, or surprisingly cannot, account for magnitude-

sensitivity, and present theoretical and empirical evidence in favour and

against each account as a prime candidate for the explanation of magnitude-

sensitivity. Our focus is on dynamic models of evidence accumulation able

to account for both choice and reaction times; there is a large number of

decision models besides the ones addressed here [e..g, 47, 48], which however

are not ‘computational’ [49] and generally only focus on the choice made but

not on reaction times.

Magnitude-sensitivity in computational models of decision-making

A common assumption [52–54] when modelling decision-making is that

evidence is accumulated over time until a threshold for a decision is reached

and a decision is made in favour of that alternative, as depicted in Figure 1.

Despite their fundamental differences, computational models of decision-

making show a high degree of model mimicry when fitted to decision-making

data [10, 24, 55, 56] but, interestingly, magnitude-sensitivity has been shown
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Figure 1: Accumulation of evidence in value-based decision-making. According
to evidence accumulation models [e.g., 23, 24, 50], decision-makers accumulate relative
value over time (to choose the orange versus to choose the apple). Decision-makers, if
unbiased, start to accumulate value at the same distance between the two alternatives
(dashed line). The value accumulation is subject to noise and a decision is made when
a boundary threshold is reached. The time taken to reach a threshold is the reaction
time. The blue line shows a case in which a decision-maker has a slight preference for
the orange (small evidence drift); hence, the decision is slow because information needs
to be sampled and integrated over many steps in order to reach a boundary. The black
line shows a case in which a decision-maker has instead a strong preference for the apple
(large evidence drift); in this case, the boundary is reached quickly. In the case where
alternatives are indistinguishable (both have the same value, regardless of whether it is a
high value or a low value), a decision deadlock is maintained: noisy fluctuations around
the dashed line of indifference are expected [3, 23, 24, 32, 33]. However, a boundary could
eventually be reached because of noise in the accumulation process [51]. A magnitude-
sensitive mechanism ensures that if both alternatives are equally poor no choice is made,
while if both alternatives are equally good a fast random choice is made [3, 11, 33]. In
the case in which alternatives have different values, magnitude-sensitivity predicts that,
on average, the most valuable alternative is selected but with lower consistency (i.e., lower
accuracy) compared with when decision-makers are optimising speed-accuracy trade-offs
[11].
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Figure 2: Schematics of accumulator models. A and B are evidence accumulators
integrating evidence over time, IA and IB are the respective sensory inputs. (A) In the race
model [59, 60], two accumulators integrate evidence for each alternative separately. (B)
In the drift diffusion model [61, 62], a single accumulator integrates difference in evidence
between the alternatives. (C) In the leaky competing accumulator [50], two accumulators
integrate evidence for each alternative separately; the two accumulators inhibit each other
(proportionally to evidence accumulated), and information is lost (i.e., leaked) over time.
Solid arrows denote excitatory connections, arrows ending with a dot denote inhibitory
connections, crosses on the evidence accumulators denote leak of evidence. Figure adapted
from [24, 63].

to be a feature of decision-making that allows researchers to discriminate be-

tween models of choice, either qualitatively (i.e., magnitude-sensitive versus

insensitive models) or quantitatively [9–12, 57, 58].

While it is beyond the scope of our review to present all the decision-

making models that have been proposed, we introduce the reader to the

most relevant ones [for in depth discussion, see 24] for the topic of our pa-

per. Such models differ in substantial ways, including: the mechanism that

implements magnitude-sensitivity (or insensitivity); their goodness of fit to

empirical data; whether they can explain magnitude-sensitivity across do-

mains and tasks; their ecological validity and/or biological plausibility; and

the importance that they assign to additional, unique, factors such as visual

fixations.
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Race models

One of the oldest proposed accumulator models is the race model [59, 64],

Figure 2(A). In this model, two accumulators integrate evidence separately

for the two respective inputs and once one of the two accumulators reaches

a threshold, a decision is made. This is a prototype of a magnitude-sensitive

model, since each accumulator integrates evidence separately and conditions

with higher magnitude reach a decision threshold faster. However, it has been

shown in studies of magnitude-sensitivity that race models cannot account

for data quantitatively (i.e., obvious mismatches in choice and reaction times)

when, compared with a baseline condition, the magnitude of the alternatives

is increased by keeping either difference or ratio between alternatives constant

[11]; similarly, in other studies that compared models extensively, race models

performed poorly when fitted to data [58]. For these reasons [2, 11, 58], this

account is not generally considered as a plausible candidate in investigations

about magnitude-sensitivity.

The drift diffusion model

A prominent model of binary decision-making is the drift diffusion model

[DDM; 23, 61, 62, 65, 66] – arguably the most celebrated computational

model of binary decision-making [for a review of its applications see 62],

which under specific parametrisations [24, 25, 67] optimises speed-accuracy

trade-offs. In the DDM, a single accumulator integrates noisy difference in

evidence between the alternatives. This model cannot explain magnitude-
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sensitivity since it is purely relative (i.e., only information about the dif-

ference between alternatives is processed, so magnitude information is lost)

and, as a consequence, it is magnitude-insensitive.

The attentional drift diffusion model

A modification of the DDM, particularly popular in studies of value-based

decision-making, is the attentional DDM [36] in which the accumulation of

difference in evidence between the alternatives is biased by visual fixation

patterns (which are de facto equated to attention) and duration (see [68, 69]

for a critique of this key assumption). When one of the alternatives is fixated,

the value of the nonfixated alternative is discounted by a factor 0 ≤ θ ≤ 1.

Fitting this model to previous datasets, it has been shown that this model

can accommodate magnitude effects [16]. This is because the biasing effect

of visual fixation ensures that net evidence is higher for high-magnitude al-

ternatives compared to low-magnitude alternatives, even in the case of equal

alternatives. Consider a scenario of alternatives having values of 5 versus 5

(high magnitude) and 1 versus 1 (low magnitude); if the discount factor θ

has a value of .3, net evidence for the first case is 5 - (5×.3) = 3.5, while

for the second case it is 1 - (1×.3) = .7; thus, the first case is more likely to

reach a boundary faster, exhibiting magnitude-sensitivity.

The visual fixation model was not compared with competing accounts

of magnitude-sensitivity, but only to magnitude-insensitive models [16, 70].

Although the goodness of fit from visual-fixation accounts is adequate (but
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see [71]), and this model has also been extended to the multi-alternative case

[72], we believe that an account of magnitude-sensitivity based on visual

fixations alone may be unsatisfactory on theoretical grounds.

In fact, a causal effect of visual fixations is not necessary for magnitude-

sensitivity. In most experiments investigating magnitude-sensitivity [e.g.,

3, 11, 12, 17], participants were required to fixate the centre of the screen

for the whole duration of the experiment, minimising in this way any effect

due to visual fixations, which in some cases were even controlled [17]. In all

these cases, magnitude-sensitivity was observed, meaning that, while a visual

fixation bias could provide an additional source of magnitude-sensitivity, the

core mechanism explaining magnitude-sensitivity may be unrelated to visual

fixations alone. Noticeably, one could speculate that the mechanisms of the

attentional DDM may extend to covert attention (i.e., directing attention

independent of fixations). In tasks where they are required to fixate at the

centre of the screen, participants could use covert attention which discounts

the value of nonattended items [73]; in this case, the model could account for

the cases mentioned earlier, which are currently problematic. This hypothe-

sis, and a theoretical reconsideration of the model, would need to be tested

by future research.

Furthermore, while experiments in laboratory settings include the simul-

taneous presence of two (or multiple) alternatives, in numerous cases alter-

natives are likely to be encountered sequentially [e.g., 74] – that is, one at a

time. In the case of a single isolated stimulus, in which agents have to decide
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whether to obtain the reward or not, it remains unclear how visual fixations

could bias the decision in order to produce magnitude-sensitivity.

The input-dependent noise DDM

Another magnitude-sensitive modification of the canonical DDM is the

input-dependent noise DDM [11, 12]. In this model, there is an additional

noise component, on top of constant processing noise common to all DDMs.

This additional noise scales with the magnitude of the alternatives.

Input-dependent noise is an attractive account since it links biologically

and neurally plausible principles [75, 76] that have been shown to provide

excellent fits to data [75–77] and, in particular, to magnitude-sensitive data

[10–12, 78]. Experimentally, there is evidence [75, 76] for a dominant role

of input-dependent noise during evidence accumulation. Even in the case

of equal alternatives, input-dependent noise ensures that decisions between

high-magnitude alternatives are made faster than decisions between low-

magnitude alternatives; higher noise, associated with higher magnitude, leads

to stronger fluctuations in the accumulated evidence which, in turn, is more

likely to reach a decision threshold faster.

The input-dependent noise account suggests that magnitude-sensitivity

is an artefact of the limitations of information processing [11]. Magnitude-

sensitivity has not been selected against by natural selection because of the

advantages it provides in various scenarios, for example those characterised

by speed-value trade-offs.
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To the best of our knowledge, an account that combines input-dependent

noise with integration of differences in evidence between the alternatives

has been applied only to the two-alternative case (however, see [17] for an

input-dependent noise account with separate accumulators for each of three

possible alternatives). Extending input-dependent models to more than two

alternatives would require ad hoc, nontrivial theoretical and mathematical

adaptations [e.g., 2, 11].

Lateral inhibition

Finally, the leaky competing accumulator model [LCA; 50], Figure 2(C),

is a biologically inspired model of choice [see 50, 79], in which two separate ac-

cumulators leak evidence over time (i.e., evidence is lost/forgotten) and there

is lateral inhibition between evidence accumulators. In this case, magnitude-

sensitivity arises as a function of lateral inhibition between evidence accumu-

lators [10, 11, 50]. Inhibition between accumulators is proportional to overall

activation, and it increases with time [see 11, 50, 79]. Consequently, early

decision dynamics are similar to those of race models (due to low inhibition)

and are dominated by the magnitude of alternatives; as time progresses, in-

hibition increases (which in turn decreases the effect of magnitude) and this

leads to late dynamics to be dominated by the alternatives’ difference, in a

DDM-like fashion [11, 50, 79]. In short, the resulting temporal dynamics of

lateral inhibition between evidence accumulators [24, 54] ensure that deci-

sions for high-magnitude conditions are made faster and more inaccurately,
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due to ‘early’ magnitude-sensitivity.

This account links a biologically and neurally plausible mechanism [80–

85] of decision-making to magnitude-sensitivity; it has also been shown to fit

magnitude-sensitive data well [10, 11]. It is interesting to note that several

models characterised by nonlinear decision dynamics [8, 19, 86–89] under

specific parametrisations can approximate a lateral inhibition model [10, 11,

50] and show a very high degree of model mimicry when simulated or fitted

to data [10, 24] – see also Box 2 and Box 3. Moreover, this model is naturally

extendable to more than two alternatives [2, 79] in a biologically plausible

way.

A strong model mimicry between accounts based on input-dependent

noise and those based on lateral inhibition has also been documented [10,

11, 24] and it has been debated which of the two provides a better fit to

the data. While a first study [11] showed that both models provide equally

good numerical fit to data, subsequent studies comparing the two models

in more detail have suggested that the fit of the input-dependent noise ac-

count is superior [10, 12]. However, a recent study found lateral inhibition

to be a better quantitative account of magnitude-sensitivity [58] when com-

pared with input-dependent noise and other accounts. Contrasting modelling

results highlight the importance of designing tasks that allow unique qual-

itative predictions of different models to be tested experimentally; specific

parametrisations and fitting methods are likely to drive contrasting results

across modelling studies. Alternatively, a modelling approach would have to
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rely on large-scale experiments and datasets [90] to shed light on the best

descriptors of magnitude-sensitivity.

From an evolutionary perspective, compared with the input-dependent

noise account, the LCA account proposes that magnitude-sensitivity has

evolved as an adaptive feature that allows organisms to directly optimise

speed-value trade-offs [3, 11, 13, 33]. In this case, magnitude-sensitivity is

implemented as part of the decision architecture rather than as an artefact

of the limitations of information processing.

Honourable mentions

Another theoretical modification of the DDM proposes that magnitude-

sensitivity arises as a consequence of input-dependent across-trial variabil-

ity in evidence accumulation [12] – which in all other models is generally

kept constant. However, we note that while a proposal based on input-

dependent across-trial variability may account for magnitude-sensitivity in

laboratory experiments, it lacks ecological plausibility. It is unclear how

input-dependent across-trial variability could give rise to magnitude-sensitivity

for isolated decisions [8, 9, 74, 91, 92], as is the case in naturalistic decision-

making in which decisions are not embedded in a sequence of repeated en-

counters, but are met as isolated decision problems.

Lastly, we present a model that differs significantly from those presented

up to this point. Compared with all models discussed earlier, the urgency-

gating model [93, 94] assumes that evidence is not accumulated at all; instead,
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samples for each alternative are only low-pass filtered. Evidence signals are

then combined with a time-dependent ‘urgency signal’ which brings, over

time, activity nearer to the decision threshold; once a decision threshold is

reached, a decision is made. This model avoids long reaction times for low

evidence trials and, in theory, it could be adopted to explain magnitude-

sensitivity. However, to the best of our knowledge, there is no research

on how the urgency-gating model accounts for magnitude-sensitivity theo-

retically and empirically. Future research should assess the ability of this

account to explain magnitude-sensitivity, especially in view of recent studies

[95] showing a mixture of evidence accumulation and time-varying urgency

in decision-making (but see [96]).

Magnitude-sensitive optimal decision-making

So far, we have reviewed descriptive accounts of decision-making; that

is, accounts of how decisions are made. Normative accounts of decision-

making focus instead on how decisions should be made. The study of op-

timal decision-making makes it possible to propose models that define the

ideal decision-making strategy (‘policy’) given an objective criterion to be op-

timised and a number of underlying assumptions regarding the environment.

Under the assumption that evolutionary pressure selects optimal strategies

for decision-making [99], normative models can then be used to predict be-

haviour and/or explain (ir)regularities in decision-making. There is obviously

a direct link between the descriptive and normative accounts; in some cases,
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(A) (B)

Figure 3: Optimal policy for value based decision-making. (A) For binary deci-
sions with linear subjective utility (and linear cost of time and constant processing noise)
[97], the optimal policy is magnitude-insensitive. (B) For binary decisions with nonlinear
subjective utility [97], the optimal policy is magnitude-sensitive. Nonparallel collapsing
boundaries implementing magnitude-sensitivity can also be observed for linear subjective
utility when time has a multiplicative cost [13, 34]. In the presence of input-dependent
noise [98], boundaries remain parallel to each other, however high noise (associated with
high magnitude) results in stronger fluctuations in accumulated evidence which hit a de-
cision boundary faster compared with low-magnitude conditions.
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researchers use descriptive accounts and investigate under what parametrisa-

tions and in which scenarios such models implement optimal strategies [24],

while in other cases researchers derive optimal models of decision-making

[57, 97, 100] for specific scenarios and then compare the optimal models to

the descriptive accounts in order to highlight similarities and differences. A

word of caution with regard to the concept of ‘optimality’: any model/rule

implements optimality only under specific, limited, assumptions. Therefore,

these assumptions are often the matter of debate in research about optimal

decision-making [25, 33, 34, 57].

Recent research has focused on deriving the optimal policy for value-

based decision-making [13, 34, 97, 98, 101, 102]. The general question that

this research has addressed is: how much evidence should be accumulated

before committing to a choice, in the case in which the rewards associated

with the stimuli are uncertain?

For the binary case, the optimal policy for value-based decision-making

[97] shows, under certain assumptions, striking similarities to the optimal

strategy for speed-accuracy trade-offs [24]. As shown in Figure 3(A), for

value-based decisions, the optimal strategy is implemented by a purely rela-

tive model (i.e., decision dynamics are dominated by the difference between

alternatives), resembling a classical DDM, in which, unlike the canonical

DDM, parallel boundaries collapse over time. Figure 3(A) shows that the

boundaries are both parallel to each other in the reward space of the two

options, and parallel to the identity line on which all equal alternatives lie.
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As a result, the optimal policy is magnitude-insensitive since the collaps-

ing boundaries would hit a choice for equally low or equally high-value

alternatives in the same time. The speed at which boundaries collapse is a

function of overall reward received; this ensures that for highly rewarding en-

vironments thresholds collapse faster; nonetheless, the dynamics of each trial

remain magnitude-insensitive, a result that clashes with empirical evidence

[3, 9, 11].

Seminal work has shown that the optimal policy for two-alternative value-

based decision-making could predict magnitude-sensitive reaction times when

utility grows nonlinearly in the reward (under specific functional forms of the

utility) [97]. In this case, collapsing boundaries are not parallel to the identity

line in the reward space, ensuring faster decision with high-magnitude equal

alternatives, as illustrated in Figure 3(B).

Building on this work, two studies [13, 34] have shown that once the

ecologically plausible assumption of multiplicative cost of time [103] is

added to the decision-making process, the optimal policy for two-alternative

value-based decision-making predicts magnitude-sensitive reaction times re-

gardless of the specific details of the subjective utility function (i.e., linear

or nonlinear). In these accounts, there is a discount of future rewards that

is nonlinearly proportional to the time it takes to realise such rewards, a

common assumption [34, 104] made in behavioural ecology [but see 105].

Multiplicative cost of time can account for the inherent uncertainty of fu-

ture rewards in some naturalistic environments and for uncertainty in value
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representations of future events [106].

Recent work [100] has shown that, also in the multi-alternative case,

magnitude-sensitivity is observed, but with surprising differences compared

to the case of binary decisions [13, 57]. Theory shows that, for multi-

alternative decision-making, nonlinear subjective utility combined with linear

time discounting induces only very weak magnitude-sensitivity; multiplica-

tive time discounting instead predicts strong magnitude-sensitivity for both

linear and nonlinear utility, in line with empirical evidence showing strongly

magnitude-sensitive reaction times with three alternatives [57]. Overall, the

multiplicative cost of time account assumes that magnitude-sensitivity is the

signature of a common mechanism for decision-making that has evolved to di-

rectly optimise speed-value trade-offs and that, as a consequence, is observed

even when there is no reward associated with a choice [e.g., in perceptual

tasks, see 3, 9, 11, 12] or in experiments for which the cost of time is con-

trolled/minimised (e.g., when the experiment duration and number of trials

are fixed). That is, even though decision-makers perform a purely perceptual

task, they perform it as if optimising a speed-value trade-off for value-based

choices [34, 57].

Lastly, a recent study on normative magnitude-sensitivity has questioned

the assumption of constant processing noise made in all models of optimal

binary decision-making [13, 34, 97, 100]. This study has investigated the

optimal policy for value-based decision-making with input-dependent noise

[98]. Interestingly, input-dependent noise in the evidence accumulation pre-
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dicts magnitude-sensitive optimal decision-making, without requiring further

assumptions regarding the utility function or cost of time [98]. As discussed

by the authors [98], this account could provide a parsimonious explanation

that bridges the gap between various task assumptions (i.e., there is always

noise, endogenous or exogenous, associated with the stimuli regardless of the

task) and between various types of decision-making (i.e., value-based and

perceptual).

Overall, the normative approach seems to suggest a hybrid account in

which a relative model, resembling a classical DDM, is coupled with either

input-dependent noise, nonlinear time cost or nonlinear utility functions in

order to give rise to magnitude-sensitive optimal decisions. Interestingly,

none of these accounts are mutually exclusive; indeed, these accounts may

work in conjunction, an interesting avenue for future research.

Concluding Remarks

The research synthesised here shows how an entire field can be signif-

icantly reshaped in view of a ‘simple’ experimental result that challenges

untested assumptions about key aspects of decision-making. Specifically,

the result that decisions are made faster and are more likely to be random

with high-magnitude alternatives [3, 11, 33] has led to reconsideration of

current descriptive, theoretical, and normative accounts of decision-making.

In particular, purely relative models of descriptive and normative decision-

making that have dominated the literature for decades had to be revisited.
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This is a dramatic change imposed by results of magnitude-sensitivity. Simi-

larly, the dominant view of equating optimal decision-making with statistical

optimality seems now obsolete, in view of theoretical arguments driven by

magnitude-sensitivity and its associated speed-value trade-off.

An overview of the literature on magnitude-sensitivity shows that while it

is established that decision-making is magnitude-sensitive and that this is a

problematic result for several dominant views on decision-making, the com-

putational, algorithmic, and implementational levels of analysis [107] con-

cerning magnitude-sensitivity are far from being fully understood. Crucially,

it remains to be understood whether embracing existing models, or patched

up versions of them, is the best solution, or whether magnitude-sensitivity

calls for bigger scale changes in how we model decisions. We believe that

one of the most promising avenues for future research consists of considering

optimal strategies from first principles [108], by understanding the context

in which decisions are made [109] rather than tweaking existing models with

ad hoc fixes.

Given the number of timely questions that remain unanswered (see Out-

standing Questions), we believe that magnitude-sensitivity, being a decisive

feature in view of which decision-making should be understood, will continue

to motivate further research into the fundamental aspects of decision-making.
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Box 1 - Magnitude-sensitive decision-making without a brain

The slime mould Physarum polycephalum is a macroscopic, unicellular

organism, abundant in nature. P. polycephalum explores the environ-

ment, searching for nutrients by extending tubular structures called

pseudopods. Despite its lack of a nervous system, P. polycephalum

is capable of complex behaviours, such as, for example, sophisticated

navigational skills [110]. Furthermore, a decade of research has shown

that fundamental features of cognition and information processing ob-

served in humans and animals, such as the speed-accuracy trade-off

[111], habituation [112], learning [113–115] and memory (externalised

spatial “memory”) [116] are also observed in slime moulds. Surpris-

ingly, even violations of rationality in P. polycephalum are in line with

those observed in humans and other animals [117]. While obviously

the architecture of information processing differs between different bi-

ological taxa, there are striking similarities in observable behaviours

[1], postulated cognitive mechanisms [118] and common properties for

information processing [119].

Of particular interest for our review is the evidence of magnitude-

sensitivity in slime moulds [1]. In their study [1], the authors used

three different strains of P. polycephalum. The experimental arena

consisted of a Petri dish filled with a plain agar. Three equidistant

holes were punched in the agar (in a triangular arrangement); on one
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the slime mould was introduced, while two equal sources of food were

introduced in the remaining two holes. The nutritional value of equal

food sources could be poor, medium, or rich. Each decision problem

was repeated 60 times for each of the three different strains, and the

time it took to the slime mould to reach any of the two stimuli was

recorded. Results showed that, for all three strains, time decreased

significantly as a function of the food quality, in line with predictions

from the speed-value trade-off. Moreover, compared with decisions

with a single food source, slime moulds exhibited faster decision times

in the equal alternatives case. Magnitude-sensitivity was also observed

in a similar recent study investigating multi-alternative decisions in

slime moulds [57].

These experiments show that even a biologically simple organism can

maximise value over accuracy of decisions, in order to avoid costly deci-

sion deadlocks with high-value alternatives, and that the signature of a

magnitude-sensitive decision-making architecture is observed in a wide

range of taxa. These results reinforce the argument that magnitude-

sensitivity is a fundamental mechanism of decision-making that allows

resolution of decision deadlocks adaptively.
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Box 2 - Value-sensitive decision-making in animal swarms

Predictions and empirical results from collective behaviour [8, 92] have

inspired research about magnitude-sensitivity. In particular, the study

of decision-making in social insect colonies has led to the questioning

of the dominant view of speed-accuracy trade-offs for human decision-

making [33] and has inspired the first magnitude-sensitivity tests in

humans [3, 11].

Collective behaviour can generate similar patterns to those observed

in diverse species at the individual level and it is therefore interest-

ing to study it through the lens of cognitive science [120–123]. A

fundamental cognitive process is collective decision-making, through

which groups of individuals either reach a consensus to select one of

several available options, or distribute themselves over different tasks

[124, 125]. When natural selection acts at a super-organismal level, the

mechanisms of information processing by groups can be similar to the

brain mechanisms for optimal decision-making [126]. In fact, some of

the accumulator models of Figure 2 that describe decision-making as

excitation and inhibition of neuron populations can also describe the

house-hunting process of social insects [54]. Analogously to neuronal

mechanisms, the house-hunting insects accumulate noisy evidence of

the environment and interact through simple excitatory and inhibitory

signals. Through numerous interactions, the colony collectively pro-
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cesses the collected information, until a decision quorum is reached

[127]. The house-hunting process can be seen as a collective form of

the two-alternatives forced-choice tasks in which the decision value is

the colony reward in terms of the dwelling place quality. The analysis of

an empirically motivated model of European house-hunting honeybees

has predicted that the emergent group-level response is magnitude-

sensitive with regard to the quality of the nest-site location [4, 8, 92].

Individual bees do not have a magnitude-sensitive response to environ-

mental stimuli; however, the collective response shows such a response

pattern [7]. Interestingly, the analysis predicts that such emergent dy-

namics also generalise to other psychophysical laws normally observed

in human individuals and other animals, such as Hick-Hyman’s and

Weber’s laws [7].

Box 3 - Magnitude-sensitive decision-making in robot swarms

Inspired by the honeybee house-hunting models [4, 8, 92], a series of

studies implemented collective site-selection behaviours in swarms of

robots (Figure I) [5, 6, 128–130]. The robots explore the environ-

ment comprising n available sites and exchange excitatory and in-
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Figure I: Robot swarms can efficiently manage the speed-value trade-off. Efficient
solutions from nature have always been the source of inspiration for the design of machines
and their algorithms. Swarm robotics looks at collective animal behaviour to design large
groups of robots able to self-organise. In the depicted experiment, a swarm of Kilobot
robots exchanges excitatory and inhibitory messages to reach consensus on the best site.
Each robot shows its opinion through a coloured LED. The interaction mechanism of the
robots is similar to the ones of house-hunting honeybees and neuronal accumulator models.
The results show that the swarm manages the speed-value trade-off efficiently and exhibits
magnitude-sensitive behaviour [5, 6].

hibitory messages with communication patterns similar to the accu-

mulator model of Figure 2(C). Each robot forms its opinion on noisy

estimates and, similarly to individual bees, exchanges its opinion for

a quantity of time proportional to the estimated value of the site’s

quality. Through this quality-dependent behaviour, the swarm solves

the so-called best-of-n problem by reaching a consensus in favour of

the best of the n sites. Swarm robotics experiments have found two

qualitatively different responses when the magnitude of the stimuli is

changed [5]. In a form of ‘good-enough rule’, the 150 robot swarm
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formed a decision deadlock and refrained from making a collective de-

cision when the quality of the two equal-quality sites was low. Instead,

when the environment had two high quality sites, the swarm broke the

symmetry and selected either of the two. The minimum quality to

trigger the decision (the good-enough threshold) can be controlled by

changing the frequency of the social interactions among robots. Thus,

robot swarms display magnitude-sensitive behaviour.

Biological observations and robotics experiments confirm that when

the values of the option qualities are similar and obtaining high accu-

racy is difficult, the collective system can neglect accuracy in favour

of better performance in terms of the speed-value trade-off. An open

question for future research consists of understanding the mechanis-

tic causal relationship between individual rules that are magnitude-

insensitive and the emergent magnitude-sensitive collective response.

Algorithms for decentralised artificial systems, such as robot swarms,

have been largely inspired by models of animal behaviour and brains

[131, 132]. In turn, implementation of the theoretical models in phys-

ical robots that are limited in sensory and communication abilities

can further help in the understanding of the link between individual

rules and collective behaviour [133, 134]. Rather than simulating the

behaviour, implementing it on physical devices forces researchers to

think about social behaviours in relation to the perceptual, cognitive,
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and motor abilities of the individual agents [135]. Identifying how the

information flows between decision agents, whether neurons, bees, or

robots, can uncover similarities that can be understood through inter-

disciplinary research.

Outstanding Questions

• How many mechanisms contribute to magnitude-sensitivity?

While the assumption of a single mechanism for magnitude-

sensitivity is attractive, future investigations could focus on elu-

cidating the unique contribution of the different mechanisms

that, depending on the nature of the task, explain magnitude-

sensitivity. Overall, depending on the specific domain and en-

vironmental constraints, it is possible that multiple sources con-

tribute to the observed result of faster reaction times for higher

magnitude conditions. Interestingly, the mechanisms reviewed in

this paper (e.g., overt/covert attention, input-dependent noise,

lateral inhibition, nonlinear utility, nonlinear time cost) are not

mutually exclusive.

• What are the temporal dynamics of magnitude-sensitivity? That
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is: do both early and late stages of evidence accumulation show

magnitude-sensitivity, or exclusively one of the two? In the leaky

competing accumulator (under certain assumptions), early stages

of evidence accumulation are magnitude-sensitive and late stages

are dominated by the difference between alternatives, while the

input-dependent noise account predicts a constant effect of mag-

nitude throughout a trial.

• How to extend the input-dependent noise explanation to the

multi-alternative case?

• Does magnitude-sensitivity extend to all sensory modalities?

• What is the link between descriptive/normative accounts of

magnitude-sensitivity and their neural implementation?

• Can models and accounts based on other mechanisms than accu-

mulation (e.g., urgency-gating) explain magnitude-sensitivity?

• Moving beyond reaction times and accuracy alone, what other

features of decision-making (e.g., confidence judgements) are af-

fected by magnitude-sensitivity and how?

• Has magnitude-sensitivity evolved as an artefact of imperfect im-

plementation (as in the input-dependent noise account) or as an
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adaptive feature (as in the temporal discount account) that di-

rectly optimises speed-value trade-offs?

• How do aneural organisms implement magnitude-sensitivity?

Glossary

Collapsing boundaries: decision thresholds that are not fixed but

that approach each other (collapse) over time. This mechanism en-

sures that, late in the trial, less evidence is needed in order to make

a decision. Collapsing boundaries per se do not necessarily predict

magnitude-sensitivity.

Equal alternatives: alternatives that have the same physical/re-

ward and perceived difference (null difference). Keeping physical/re-

ward difference constant and increasing magnitude introduces well-

known psychophysical transformations (in the case of perceptual stim-

uli) and/or unknown transformations (in the case of stimuli such as

food images). Using equal alternatives removes the issue of how to

scale differences (absolute, ratios, etc.) and makes it possible to test

magnitude-sensitivity directly, in the absence of confounds.

Magnitude: the sum of (goal-relevant) intensities or rewards of all
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stimuli under consideration during a trial.

Magnitude-sensitivity: the phenomenon that performance in

decision-making is affected by the magnitude of the stimuli under con-

sideration; in particular, as magnitude increases, reaction times de-

crease and the response is made more inaccurately (when a correct

response exists). The term ‘magnitude-sensitivity’ also refers to the

mechanism that allows resolution of deadlocks adaptively by maximis-

ing value over accuracy of a decision.

Multiplicative cost of time: the value of an alternative is multiplied

by a discount factor that decreases with time. An example (among

many functional forms possible) of multiplicative discounting: a reward

one time step in the future is discounted by rate γ < 1, two time steps

in the future by γ2 and so on. At each time step there is a cost that is

proportional to the overall value of the alternatives.

Perceptual decision-making: in perceptual decision-making, deci-

sions are made according to an objective, perceptual criterion. Exam-

ples include: deciding which of two stimuli is brighter, or which of two

stimuli is bigger. It is postulated that decision-makers integrate noisy

physical evidence over time.

Speed-accuracy trade-off : in decision-making, response times co-

vary with accuracy so that fast responses are made more inaccurately,

while correct responses are made slower. When decision-makers opti-
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mise speed-accuracy trade-offs, a correct response is expected in the

shortest time possible.

Speed-value trade-off : in decision-making, response times covary

with value so that fast (more inaccurate) responses are made with high-

value alternatives, while low-value alternatives responses are made

more slowly. This is a trade-off that characterises value-based deci-

sions (e.g., food choices) in naturalistic environments.

Value-based decision-making: decision-makers compare the values

of rewarding alternatives, such as food items or lotteries. Decisions are

made on the basis of a subjective criterion, such as which food item is

preferred. Similar to perceptual decision-making, it is postulated that

decision-makers integrate endogenous noisy evidence regarding the true

value of the stimuli over time. In value-based decisions, the subject’s

reward is the value of the option chosen, rather than a function of

whether they chose the best or not.
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