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1 Introduction

Access to a reliable power is arguably essential if a country is to industrialize and continue to grow.

However, in many developing countries access to electricity remains limited (Lipscomb et al., 2013),

while in others, although there may have been great progress made in overall electrification rates,

consumption of electricity per head remains low. At the same time, an unreliable power supply can

hinder firm performance which can have a wider impact on economic growth. Despite the obvious

economic importance, power reliability in developing countries is generally given far less attention

than power accessibility concerns (Meles, 2020).

A primary challenge in quantifying the impact of power reliability on firm performance is that

there are a number of potential endogeneity concerns, including measurement error (Allcott et al.,

2016), selection bias (Alam, 2013), and simultaneity. The recent approach in the literature to address

these concerns has been to focus on hydropower generation under the realisation that this energy

source can largely be explained by exogenous shocks from weather variability, and that this variability

can be used as an instrument for power outages. Such an identification strategy has recently been

employed in different contexts, such as India (Allcott et al., 2016) and Sub-Saharan Africa (Mensah,

2016; Cole et al., 2018), where it has been shown that the potential endogeneity bias is non-negligible

and tends to lead to substantial under-estimates of the impact of outages on firm performance.

Nonetheless, the current state-of-the-art is restricted to investigating multiple-grid cases (different

countries or states within a large country), where access to the different grids provides the variation in

firm level power provision. Such an approach is thus not applicable to single grid contexts, i.e., where
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all firms and utilities are connected to the same centrally managed grid. In this paper we extend

the current approach to a single grid network by developing a hydro-instrumental variable strategy

which integrates a river flow model with a hydropower generation model and an electricity-grid-based

distance interpolation technique, using the case study of Vietnam.

To investigate the impact of outages on firm performance in a single grid context we match firms

with (hydro)power plants that are connected to a single grid. Given that we, as in most cases, have

limited information on the electricity distribution rules (if any) within this single grid system, and

that these decision rules might themselves be endogenous, we are presented with several challenges.

First, because of the interconnected system it is difficult to match the power provision of a firm

to particular large hydropower plant(s) as the impact of reduced electricity production could be

nationwide. Second, a number of fossil fuel power plants are connected to the grid and can be used

to increase the power supply if production from hydropower plants is reduced. Our solution is to take

an interdisciplinary approach and use a rainfall-runoff model based on Soil and Water Assessment

Tool (SWAT) to simulate river flows to the 40 largest hydropower dams across Vietnam. This allows

us to take into account a variety of terrain conditions and variation in the weather. The simulated

series from the SWAT model are then used to predict hydropower generation, thus eliminating the

component of electricity production driven by changes in demand. The estimated series from the

electricity generation model are subsequently used to construct an index for the weighted hydro-plant

factors that are explained by the exogenous variation in hydrological conditions, using a grid-based

distance penalty parameter calibrated by the ‘reduced-form equation’ of the IV estimation. Finally,

the hydro-index is employed as a single instrument for power outages measured across multiple

dimensions in the ‘structural equation’ to address the endogeneity concerns.

The response of firms to an unreliable electricity supply can vary. At its simplest it means
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additional costs, if, for example, the firm needs to purchase and operate a backup generator (that

also comes with a higher unit cost of electricity). One implication is that firms with limited financial

resources will find it harder to access electricity-intensive sectors (Reinikka and Svensson, 2002;

Adenikinju, 2003; Alby and Dethier, 2013). A further consequence of increased costs is the impact

on productivity (Mensah, 2016) and reduced firm size (Allcott et al., 2016; Grainger and Zhang,

2017), and hence lower profitability (Doe and Asamoah, 2014). As a result, firms may mitigate

the impact of an unreliable energy supply by switching to less energy-intensive technologies (Alam,

2013), or may substitute electricity for other fuel types (Allcott et al., 2016), or materials (Fisher-

Vanden et al., 2015) (where firms outsource the production of energy intensive intermediates instead

of making them in house). In addition, these factors will lead the firm to have a revenue gap that

is wider than the productivity gap, as the former is driven by the combination of the latter and the

reduction in input usage Allcott et al. (2016). We use our single grid Hydro-IV approach to test

these implications for the case of Vietnamese firms, using the 2005 and 2015 World Bank Enterprise

surveys for Vietnam.

Vietnam arguably represents an ideal country to study the changing dynamics in the power sector

as it has enjoyed strong economic growth alongside a rapid expansion of electrification across the

country. As a result, it has seen electrification rates increase from under 2.5% in 1975 to around

96% in 2009 (Min and Gaba, 2014). Between 1990 and 2013, Vietnam’s growth rate has averaged

round 6.8% a year (ADB, 2015), the $1.90-a-day poverty rate reduced to under 3% (WB and MPI,

2016), and in 2008 the economy entered the group of lower-middle income countries. During this

time annual power consumption has grown at double digit rates while at the same time Vietnam

has almost completed the process of universal electrification with the capacity of the power system

reaching 15 GW of installed capacity in 2010 (Vagliasindi and Besant-Jones, 2013).1 However, despite
1Since the 1986 social-economic reforms (Doi moi), and the post-1995 energy sector reforms, almost the entire population
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considerable investment in electricity infrastructure, the reliability of the power network remains

patchy, driven in part of hydrological uncertainty.2 Despite such seemingly impressive progress,

the quality of the installed electricity was ranked only 113th out of 144 countries by the Global

Competitiveness Index 2012-14 (Cattelaens et al., 2015). The result is that the average customer

experiences between 18 and 40 power interruptions per year (equivalent to approximately 3,000

to 8,000 minutes per year) (EVN, 2017). Our ability to estimate the impact of outages on firm

performance for two separate years allows us to compare their importance both at the early and late

stage of electricity infrastructure development in the country, which is in contrast to most existing

cross-sectional and panel studies; see Mensah (2016); Cole et al. (2018); Allcott et al. (2016); Alam

(2013); Fisher-Vanden et al. (2015); Grainger and Zhang (2017).

To briefly summarize our results, we find that the impact of power outages on firm performance is

relatively small but became more important in the later period as firms increased their dependency on

electricity. In 2015 we find a significant reduction in revenue of between 0.73% to 1.81% in response

to a 1% increase in power outages. In other results we show that frequent outages are found to cause

larger losses than a small number of long-lasting outages

The remainder of the paper is organised as follows. Section 2 describes our dataset. Section 3

presents our empirical strategy, with the results shown in Section 4. Section 5 concludes.

of nearly 100 million people have been connected to the electricity grid. Just under 2% of households remain off the grid and in
2014 just under 3% reported that their electricity needs were not being met (Ha-Minh and Nguyen, 2017).

2Vietnam’s great strides in electrification have been driven in part by its considerable investment in hydropower production
that accounts for between 37.6% to 40.2% of installed capacity (ADB, 2011; EVN, 2015a,b)
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2 Data

2.1 Firm-level Data

Our firm level data comes from the World Bank Enterprise Surveys (WBES) that includes a range

of questions on infrastructure and firm performance.3 The WBES data are collected from interviews

with owners/ top managers of registered companies in the manufacturing, and services sectors, with

at least five employees. For Vietnam, three surveys were undertaken in 2005, 2009, and 2015. Each

WBES survey records firm-level data for the previous fiscal year. Hence, the 2005, 2009, and 2015

surveys capture the business environment and firm performance indicators for the years 2004, 2008,

and 2014, respectively. In this paper we use the 2005 and 2015 surveys.4 These surveys samples

five regions out of eight most important regions in terms of economic activity (See Appendix A.1 for

details).

Firm characteristics. As our study includes a spatial dimension it is important to have firm location

information. We choose the province as the spatial unit of analysis based on an administrative GIS

map for 2005. To account for the expansion of the capital city (Hanoi) after 2008, all centroid-based

variables for firms in Hanoi in Survey 2015 were constructed using weights for the old Hanoi area,

and the former Ha Tay area computed from their industrial values just before the expansion.5 We

redefine sector, and size variables, using variables collected from the face-to-face interview phase of the
3The WBES covers 127,000 firms across 139 countries and also asks questions on finance, corruption, crime, competition,

labor, obstacles to growth. The WBES has been operating since the 1990’s, and has been run from the Enterprise Analysis Unit
(EAU) since 2005-06.

4We exclude the 2009 survey as the 2007-2008 financial crisis means that the 2008 firm level characteristics are less reliable.
5In 2007 industrial gross output at current prices for Hanoi and Ha Tay are 116,096.4, and 20,173.5 (billion VND), respec-

tively. The weight applied is 1:0.1737. We ignore the rural areas that used to belong to Hoa Binh, and Vinh Phuc provinces, and
latter appended to Hanoi due to their limited economic importance.
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WBES surveys.6 A series of variables were created to control for firm heterogeneity, including sector

dummies (based on the first two digits of the main product ISIC (International Standard Industrial

Classification) code), four size dummies, a firm age variable, four dummies for state and foreign

ownership at the 10%, and 50% thresholds, a share-holding dummy, a publicly quoted company

dummy, a dummy for access to credit, and an exporter dummy. For more details on the original

variables, treatments for missing values, and the data cleaning process see Appendix A.1.

Power supply provision. We use two variables to measure the frequency and intensity of power

outages: (1) the average number of power outages per month, and (2) the typical duration of an

outage. To analyze the impact of both factors we create a variable that proxies power outage volume

(hours per month), calculated as the product of power outage frequency (occurrences per month),

and power outage intensity (hours per occurrence).7 We construct a variable for generator usage as

a percentage of electricity used, and assign a zero value for those firms that do not own or share a

generator. See Appendix A.2 for details.

Firm performance. Monetary variables (revenues, and input variables, including the replacement

value of machinery, vehicles, and equipment (proxied for capital stock); materials cost; labor cost;

fuel cost; electricity cost, and energy cost) are deflated using the World Bank deflators and then

logged (base year 2010=100). The energy cost variable is only available for the 2005 Survey, and

the electricity, and fuel cost variables are only available for the 2015 Survey. To reduce the impact

of outliers we apply the ‘three sigma rule’ to account for extreme values in the revenue and factor

input variables.8 We also estimate a two total factor productivity revenue (TFPR) variable based on
6The surveys were designed as a two-stage procedure. The variables in the first stage (screening by phone) include sector and

size are and considered less reliable than those collected in the second stage (face-to-face interview with firm owners/managers).
7The three proxies for power quality were log transformed after being added to 1 (to address the log of zero problem).
8We calculate the mean, and the standard error of the log of firm revenue for each year in the original database then define

‘extreme values’ as those that are more than three standard errors deviations from the mean. A similar process is applied for
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YKL and YKLM models using the method suggested by EAU-WB (2017). We pool the data of two

surveys to obtain a decent sample and estimate the log of revenues as a function of the logs of input

values separately for different sector groups, including province and year fixed effects to control for

unobserved spatially variant and temporally variant factors. TFPR is computed as the component

of fitted revenues that are not explained by input factors (details of how we measure the efficiency

of input usage are given in Appendix A.3).

2.2 Province-level Data

It is possible that certain characteristics of a province may simultaneously affect firm performance

and power provision. We construct two variables to control for economic conditions at the province

level based on data from the Statistical Yearbooks of Vietnam by Vietnam’s General Statistics Office

(GSO).9 Province industrial product (IP) share is calculated as the ratio of the gross industrial output

of each province to national gross industrial output for each year and is a proxy for agglomeration

economies and also captures the importance of each province to the national economy. We argue

that this variable may affect both firm performance and the priority that may be given to power

distribution when there are shortages (for example, priority is given to areas of strategic economic

importance). Second, we calculate a Province IP index to capture IP growth at the province level that

could both improve a firm’s performance but worsen power reliability if power supply significantly

lags demand.10

We also control for topography differences. In general, we hypothesize that less elevated provinces

offer better conditions for business (i.e. better transportation and access to the sea ports). However,

factor input variables.
9Data is accessible at http://www.gso.gov.vn/Default_en.aspx?tabid=515.

10See Appendix B1 for details
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they may also be more susceptible to electricity interruptions caused by an overloaded system.

Similarly, in highly-elevated provinces it may be harder to maintain the distribution and transmission

pf electricity. To control for elevation we use the void-filled DEM from the HydroSHEDS database

to calculate the mean elevation of each province where the boundaries are defined by the GAUL

dataset.11

In addition to elevation, we also include controls for temperature that can both affect power

provision (hot weather increases electricity demand for air-conditioners, and hence is more likely

to cause a system overload) and firm performance (that could, for example, negatively affect labor

productivity). Following the literature, we control for cooling degree (Allcott et al., 2016) which is

derived from the forecast variable of air temperature at 2m extracted from a gridded temperature

data set (NCEP-DOE Reanalysis 2 provided by the NOAA/OAR/ESRL PSD). See Appendix B.2

for more detail of the spatial interpolation and computation methods used in the paper.

Previous studies suggest that rainfall shocks can affect the economy through multiple chan-

nels other than through its effect on hydropower generation. For example, more rain may increase

agriculture-related activities, raise electricity demand in rural areas due to increased income for

farmers, and together with storms, may affect power transmission, and the electricity distribution

network (Alam, 2013). In addition, floods frequently hamper transportation networks. To measure

the impact of rainfall shocks, we construct a Standardized Precipitation Index (SPI) for each province

derived from ‘Terrestrial Air Temperature, and Precipitation: Monthly Climatologies’ (version 4.1)

by the Daleware University (Matsuura and Willmott, 2009). Positive values of SPI indicate a posi-

tive rainfall shock while a negative SPI indicates a negative rainfall shock. Near-zero values of SPI

indicate normal rainfall conditions while large values indicate extreme weather conditions.12

11HydroSHEDS DEM was derived from Space Shuttle flight for NASA’s Shuttle Radar Topography Mission (SRTM) at three
arc-second resolution.

12As the measure fits a rainfall series into a gamma series to account for the skewness of rainfall, it has a number of benefits
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2.3 Hydrological and Hydropower Data

Our interdisciplinary approach to tackle endogeneity is based on a variety of data. In terms of to-

pographic and hydrological data, we rely on HydroSHEDS (Hydrological data, and maps based on

SHuttle Elevation Derivatives at multiple Scales) (Lehner et al., 2008), and its subset HydroBASINS

(Lehner and Grill, 2013).13 Soil and land cover information is extracted from Soil Map of the

World (DSMW) (version 3.6) (FAO, 2007) and the University of Maryland Department of Geog-

raphy (UMD) Land Cover classification collection at the 1km pixel resolution (Hansen et al., 1998,

2000). Daily weather data for the watershed (the maximum, and minimum temperature, precipi-

tation, wind speed, relative humidity, and solar radiation) were supplied by 2,755 gridded stations

from the Climate Forecast System Reanalysis (CFSR) which is part of the US’s National Centers

for Environmental Prediction (NCEP) (Saha et al., 2010, 2014). Our hydropower operation data

(installed capacity and electricity generation) at the plant level was obtained from Electricity of

Vietnam (EVN, 2015b).

2.4 Summary Statistics

Table 1 provides a series of summary statistics for our regression sample. Compared with the 2005

sample, the sample in 2015 is characterized by a higher number of smaller firms; and domestic

private firms and fewer exporters; publicly quoted firms; and firms that have access to credit. In

terms of power provision, firms in the 2015 Survey on average have access to a more reliable power

not shared by those used in the literature (Duflo and Pande, 2007; Kaur, 2014; Sarsons, 2015), which construct rainfall shocks
from the long-term mean, and for certain degrees assume normality of the rainfall series. See Appendix B.3 for more details
about the spatial interpolation, and computation methods used in this paper.

13HydroSHEDS is a derivative of the digital elevation model (DEM) at a three arc-second resolution of the Shuttle Radar To-
pography Mission (SRTM). The elevation data was void-filled, hydrologically processed, and corrected to produce a consistent,
and comprehensive suite of geo-referenced data that enables the analysis of upstream, and downstream connectivity of water-
sheds. Among the subsets of the HydroSHEDS database, the polygon layers that depict watershed boundaries, and sub-basin
delineations at a global scale critical for hydrological analysis are termed HydroBASINS.
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supply (regardless of how we measure power outages) and the variation across firms is also lower. An

average firm in the 2005 Survey experiences 0.6 outages per month, which typically last 2.51 hours

each while an average firm in the 2015 Survey experiences 0.37 outages per month, which typically

last 1.46 hours each. The average outage volume is 4.61 hours/month in the 2005 survey and 3.12

hours/month in the 2015 survey. This suggests an improvement in the overall reliability of the power

system. The share of firms that own a generator is comparable between the two surveys (34% in

2005 and 35% in 2015).

In terms of our firm performance variables, because the 2015 survey includes a larger share of

small and medium firms and a smaller share of large and very large firms, the mean (deflated) values

for revenues and inputs are lower than the 2005 survey.14 An average firm in the 2005 survey pays

out 97.4 billion in materials costs and 10.7 billion in labor costs to generate 129 billion in revenues.

Meanwhile, an average firm in the 2015 survey pays out 63.7 billion in materials cost and 5.75 billion

in labor costs to generate 72.8 billion in revenues. However, productivity is higher for firms in the

2015 survey. TFPR estimated by YKLM model averages 1.89 in 2015 compared to 1.43 in 2005. The

time fixed effects in TFPR estimation (see Table A4) confirm a significant increase in the average

productivity in nine of eleven manufacturing sector groups except for Paper, printing publishing and

the Garment sector.
14The change in firm size distribution reflects a more better business environment for small- and medium-sized enterprises

(SMEs) to grow and survive and is due in part to a range of policies that help support SMEs such as the privatization of large
state-owned enterprises, pro-investment and pro-innovation policies, and greater financial support for SMEs (Pham, Phan and
Takayama, 2020).
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3 Econometric Stragey

3.1 Empirical Specification

To evaluate the impact of power reliability on the operation of firms, we estimate the following

regression:

yi jpt = α + βOutagei jpt + Π′FIRMi jpt + Σ′PROVINCEpt + θ jt + εi jpt (1)

where i, j, p, and t are subscripts for firm, sector, province, and year, respectively. The dependent

variable yi jpt is a measure of the performance or factor inputs (in log form) of firm i in sector j

located in province p, and surveyed in year t. Finally, Outagei jpt is a measure of the quality of

power supplied to that firm, which is one of three variables: power outage frequency, intensity and

volume (in log form). The intercept is α, and β is our parameter of interest. FIRMi jpt is a vector

of firm characteristics including size, age, ownership, legal status, foreign trade activities, a measure

of financial constraints, and corresponds to the vector of coefficients Π. PROVINCEpt is a vector

of province specific variables (in the given year) including the average elevation, cooling degree,

rainfall shocks, province industrial product (IP) share, and province IP growth and corresponds to

the vector of coefficients Σ. Sector-year dummies are given by θ jt, and εi jpt is the idiosyncratic error

term. Equation 1 is estimated for each individual survey (t = 2005, 2015).

3.2 Instrumental Variables Approach

A major concern with taking an OLS approach in estimating equation 1 is the endogeneity concerns

previously discussed. To overcome these challenges we employ an instrumental strategy that inte-

grates information about weather, river flow, hydropower generation, and the electricity grid. More
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specifically, we take advantage of the fact that the power supply of Vietnam is heavily dependent on

hydropower sources, which in turn is largely determined by the weather-induced variations in river

flows to hydro electric dams. This kind of exogenous shock is unlikely to affect the performance

of firms while it will drive the shift in hydropower supply, a component of electricity supply, once

we already control for factors that may give cause for concern like local cooling degree, and rainfall

shocks.

3.2.1 River Flow Simulation

At a national scale it is difficult, and prohibitively costly, to obtain discharge data for a large number

of stations over a long period. Hence, we use the Soil and Water Assessment Tool (SWAT) (Arnold

et al., 1998), one of the most widely used river basin-scale models (Gassman et al., 2014), to simulate

river flow. The simulation process follows the approach taken by Nguyen-Tien et al. (2018). First,

we deploy high-resolution topographic and predefined river network data to delineate the watershed,

which is shown in left panel of Figure 1. It is a combination of three large basins with a total

area of 977,964 km2 as defined by the ‘FAO Rivers in South, and East Asia’ that was selected to

take into account the interconnection of Vietnam’s rivers with those in upstream countries.15 The

watershed is divided into 7,887 sub-basins at level 12 of HydroBASINS, then broken further into

53,024 terrain units called Hydrologic Response Units (HRU) that are heterogeneous in terms of soil,

land cover conditions, and slope. Daily weather data for the watershed (the maximum, and minimum

temperature, precipitation, wind speed, relative humidity, and solar radiation) were then added to

simulate monthly river flow for the whole watershed for the period from January 1995 to July 2014.

The simulation period was chosen to best fit the available performance data of hydropower plants,
15Three basins include Red River (165,007 km2), Vietnam Coast (186,187 km2), and a part of Mekong River (similar to Lower

Mekong River with an area of 626,771 km2).
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subject to the availability of weather data.

3.2.2 Hydropower Generation Model

We use regression analysis to predict hydropower supply at each of the 40 large hydropower dams

in Vietnam between 1995 and mid 2014. The combined installed capacity accounts for 75-85% of all

hydropower sources, which in turn accounts for 35%-53% of energy generation across Vietnam. This

model utilizes installed capacity, a quadratic function of SWAT simulated flow, upstream combined

installed capacity, and dam fixed effects as regressors to determine the level of electricity generation.16

Our model explains 87.8% of the variation in electricity generation at the dam level. From this energy

regression we predict the average daily production for each dam by month (Ĝenist), then calculate

the Hydrologically Predicted Plant Factor (HPPF) given by:

HPPFist =
Ĝenist (MWh/day)

CAPist (MW) × 24 (hours/day)
× 100% (2)

where i, s, t are indices for dam, month, and year, respectively. Ĝenist is the predicted value of dam

generation, which excludes the error term that could be correlated with power demand fluctuation.

The HPPF is the ratio between predicted generation, and the generation under full utilization at the

designed discharge. HPPF of a dam at a given time point is mainly determined by the hydrological

conditions at that dam (water availability, and flow extreme degree), which in turn is driven by

weather conditions and not affected by human activities or firm performance.

We calculate the HPPF for each year as the average of HPPF for each month in that year:

HPPFit =

∑T
s=1 HPPFist

T
(3)

16See Appendix C for more details
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Where T is the number of months in a year: T = 12 for t = 2004, and T = 7 for t = 2014, as we

were not able to simulate river-flow series for the last five months of 2014 due to the unavailability

of weather data.17 It should be noted that for each survey we used a different number of hydropower

plants to calculate HPPF, taking into account the dynamics of dam hydropower construction: 11 for

the 2005 survey, and 40 for the 2015 survey (for details see Table Appendix C.1).

3.2.3 Linking Provinces and Hydropower Plants

After estimating hydropower plant factors based on weather shocks, we need to link the performance

of power utility companies with the power provided to firms. One solution is to define a cutoff radius

(100km, 200km or 400km) to determine the hydopower plant that supplies a certain province before

constructing an instrumental variable (Cole et al., 2018). However, this approach is not appropriate

for a country like Vietnam that has a single grid system that connects all provinces and power

sources. More specifically, since 1994, Vietnam has constructed, and operates a 500kV North - South

line that has enabled the interconnection and exchange of electricity across regions. For example, a

power shortage in a large industrial centre in the South could be filled by the transfer of a surplus

of supply of a power plant located in the North. Hence, in our single grid context, it is important

to incorporate the performance of all hydropower plants for each province centre. We consider two

factors: the size, and the distance of the utility to our sample of firms. The size of a utility can be

proxied by its installed capacity. However, we need to construct a measure of distance. Right panel

of Figure 1 shows the provinces in the WBES, the hydropower plants used in this study and the

electric grid network that connects them.
17The incompleteness of the series however does not affect the IV for 2014 as the first seven months already cover the entire

dry season when the variation in river flows to hydropower dams is most likely to affect power reliability. As the last five months
are within the rainy season, outages due to hydropower are less of a concern.
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A simple solution is to estimate the geodesic distance, the minimum length of a curve that links

a province centroid to a hydropower dam along the surface of the earth.18 A more advanced measure

is distance measured through the electricity transmission network based on the grid GIS dataset by

WB (2017).19 For the 2005 survey, the grid-based distance between province centroids and large

dams varies between 34 and 1,822 km with a mean of 800 km. For the 2015 survey the distance

ranges between 3 and 2,085 km with a mean of 842 km.

To calculate our instrumental variable we incorporate the HPPF from listed hydropower sources

that we call the Hydropower Availability Index (HAI) for each province that captures the power

supply availability in that province where the HAI is given by:

HAI jt(ρ) =

∑N
i=1 HPPFit × wi jt∑N

i=1 wi jt
, where wi jt =

CAPit

dρi j

(4)

where the Hydropower Availability Index (HAI) of province j in year t is the weighted average

of HPPF of all (N) hydropower plants (indexed by i) within our sample in that year. The weight

wi jt is proportionate to the installed capacity of plant i but inversely related to the distance raised

to power ρ between plant i, and province j (dρi jt).

18More specifically, we compute this distance by the geodist package by Picard (2017), which uses the coordinates in the WGS
1984 datum, and the equations in Vincenty (1975).

19See Appendix B.4 for details).
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4 Results

4.1 OLS Estimation

Table 2 presents our estimates of the impact of outages on firm revenues using OLS controlling for

firms characteristics, province characteristics, and sector dummies. The coefficients on the variable

of interest are negative but insignificant. This suggests that power outages have no effect on firm

performance in either 2004 or 2014. Turning to the other dependent variables, in Table 3 we present

our OLS estimates of the impact of power outages on productivity (Panel A), firms’ use of energy

inputs (Panel B), and firms’ use of other flexible inputs (Panel C). We include the same controls as

Table 2 including sector dummies but they are not reported for reasons of space. Panel A shows that

for 2004, power outages resulted in a significant reduction in TFPR estimated by the YKL model.

More precisely, a one percent increase in power outage intensity is associated with a reduction in

TFPR of 0.06%, while the equivalent reduction for power outage frequency is 0.15%, everything else

equal. The estimates are significant at the 10%, and 1% level, respectively. The coefficients for

2014 are also negative but insignificant. When material inputs are taken into account in the TFPR

estimation (YKLM model), the impact of power disruption is insignificant in both years.

Panel B shows the results for the use of a series of different factor inputs, where the top panel

demonstrates a significant increase in generator use in both years. A 1% increase in the volume of

power outages increases the share of self-generated power by 0.09% in 2004, and 0.05% in 2014. Due

to the difference in the availability of energy input variables in the two waves of WBES, we report

results for two different dependent variable sets in Panel B: energy cost only for the 2005 Survey,

and electricity cost and fuel cost for the 2015 Survey.20 Our OLS results show no significant change
20The WBES 2005 survey has limited support documentation other than the questionnaire itself which unfortunately does not

include a precise explanation of the ‘energy cost’ variable. Correspondences with World Bank staff suggests that energy cost in
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in energy use. Finally, in Panel C we investigate the relationship between power reliability, and

non-power flexible factor utilization. Again, in both years power outages are not found to affect the

amount of material inputs or the number of workers employed within a firm.

4.2 IV First Stage

4.2.1 Distance Penalty Parameter Selection

One important aspect in the calculation of our IV is that it may be sensitive to the selection of

the distance penalty parameter (ρ). Hence, we need to make a decision on the value of ρ for each

survey. To this end we estimated HAI using ten different penalty parameters. Increasing ρ tends

to give us a lower minimum and higher maximum values and a larger variation (measured by the

standard error). A higher penalty for distance means it is harder to smooth power production across

the country, and a more ‘localised’ measure of our hydrological predictor of power shortages and

can take on more extreme values. It is also useful to consider each cross section individually. A

firm located in a province with a higher HAI is less likely to be constrained by poor power supply

conditions everything else equal. However, because in a given year, there is only one transmission

and distribution system, there should be only one value of ρ that is the most suitable to describe

the system at that time. As we have limited information on the power transmission and distribution

system we rely on our WBES sample to choose a suitable value of ρ for each survey.

2005 is likely to include both electricity and fuel costs rather than just the cost of electricity alone.
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4.2.2 Instrument Validity

For our IV to be a valid instrument it must be correlated with our outage measures (the relevance

condition) but should not drive firm performance via any channel other than through the deficien-

cies in the power supply (the exogeneity condition). As we intend to use a single hydro-IV for our

endogenous variable (power outages), it is not possible to formally test (partial) exogeneity of our

instrument. However, as our IV is generated from an arguably exogenous source of variation (the

weather), it is difficult to imagine any mechanism through which the hydro-IV could influence firm

performance other than through power outage once factors that may give cause for concern in the

literature such as cooling degree, and rainfall shocks (Allcott et al., 2016; Alam, 2013) are controlled

for. More specifically, our IV generation process ensures that our hydro instruments are not depen-

dent on weather local to the firm but the weather conditions upstream from the dams (and in some

cases even beyond Vietnam’s borders) that generate electricity supplied to the local region where

the firm is located.

In order to investigate the relevance of our instrument we, besides the usual t-tests which are

derived from the heteroscedasticity-robust standard errors clustered at the province level, also under-

took an underidentification test to check whether the ‘reduced form’ equation is identified, namely

the Sanderson-Windmeijer (SW) first-stage χ2 test (Sanderson and Windmeijer, 2016).21 We also

consider the problem of weak instruments, which may bias the 2SLS estimates, and make the size

of associated tests less reliable (Stock and Yogo, 2005). The widely-used rule of thumb by Staiger

and Stock (1997) suggests that an IV should not be used if the first stage F-statistic is less than 10.

In our case, to report a first stage F-statistic we rely on the Kleibergen-Paap rank Wald F statistic,

which is generalised for the non-i.i.d errors (Kleibergen and Paap, 2006; Kleibergen and Schaffer,
21The SW test builds on the procedure by Angrist and Pischke (2008) [p217-218], and implemented using the ivreg2 command

(Baum et al., 2010).
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2007). A remedy for a weak IV (if any) is to use a test that is robust to weak instruments for the

significance of the potentially endogenous variable. Hence, we use the Anderson-Rubin (AR) test

(Anderson and Rubin, 1949) where the null hypothesis is that the coefficients on the endogenous

variable in the structural equation (power outage) are not statistically different from zero, and the

overidentifying restriction is valid.

Our approach is to run the first stage with the same set of control variables as the OLS estimations,

using HAI(ρ) with varying values of ρ as an instrument for the measurement of outages. Hence, to

be considered as a possible instrument the variable must be relevant (i.e., correlated with the outage

measurements conditional on the control variables) and the correlations should be negative (i.e., less

hydro-availability is associated with a greater risk of a power supply shortage). Among the qualified

candidates for the choice of IV, for a given set of control variables, we favour those that return the

highest values in the first stage Kleibergen-Paap rank Wald F-statistic. For the ‘calibration’ process

we use the values of ρ from 1 to 10 with one unit intervals with revenues (in logs) as the dependent

variable (of the second stage).

Figure 2 illustrates the performance of the first stage analysis for different choices of HAI(ρ). In

all of the graphs the coefficients of HAI(ρ) in the first stage regression, represented by the red lines,

lie below the blue horizontal lines (constant value at 0) and the province-clustered robust confidence

interval bands (grey areas) do not touch the blue lines in any of the graphs presented. These indicate

that the IVs that we generate in the first stage are within the chosen range of ρ and are negative

and relevant. This gives us a certain flexibility when it comes to the selection of IVs for the main

regressions results.

Hence, for the 2005 survey we choose ρ = 1 for the baseline regressions where the IV is at its

most powerful (highest blue bars) regardless of which measure of power outage is used. For the
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2015 Survey the IV is strongest when ρ = 9 for outage frequency and ρ = 10 for outage intensity

and volume. As a result, for the firms in the 2015 survey, we choose ρ = 10 to generate the IV

for our baseline 2SLS regressions. The first stage has allowed us to decide on an optimal value

for the distance penalty parameter for the models that use different measures of outages and gives

us confidence in the selection process given our prior belief that in each year there should be only

one value of ρ that best describes the current system of power transmission and distribution. One

possible explanation for the higher value of ρ in 2015 is that more hydropower plants were used in

the construction of the IVs (40 vs 11). When the network of power sources became more intensive,

the impact of each plant tends to be more localised (i.e., a local utility is more important to local

supply) and hence one might expect a higher distance penalty parameter (ρ).

4.2.3 First Stage Estimates

The first panel of Table 4 presents the results of our baseline first stage regressions (where revenue

is the dependent variable in the second stage) using our chosen IVs for each survey. The IVs are

negatively correlated with our outage measures and the correlations are significant at the 1% level.

The exception is the correlation between HAI(1) and outage frequency in the 2005 Survey (Column

1), which is significant only at the 5% level. The first stage (Kleibergen-Paap rk Wald) F-statistic for

this column is lower than the rule of thumb (6.08), while those of the five others exceed 10, ranging

between 13.29 (Column 4), and 20.12 (Column 2). Hence, our IVs can be considered reasonably

powerful. Everything else equal, if the (weighted) hydropower sources that supply a particular firm

experience more advantageous hydrological conditions, the firm is less likely to face power constraints

across all three measures. Our results for the 2005 Survey show that a one percent increase in HAI(1)

corresponds to a 4.34% reduction in outage frequency, a 9.39% decrease in outage intensity, and a
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11.65% decrease in outage volume. For the 2015 Survey we find that a one percent increase in

HAI(10) corresponds to a 0.71% decrease in outage frequency, a 1.56% decrease in outage intensity,

and a 1.76% decrease in outage volume. Under-identification is rejected at the 1% level for each

regressions according to the SW χ2 test, with the exception of Column 1, which is rejected at the

5% level.

Table 4 also provides the first stage results for our other second stage dependent variables (TFPR,

and our energy input factors). Due to missing values for a number of these dependent variables, the

sample sizes are smaller than those for total revenues. In general, the first stage appears to be

consistent across the different samples: The IV coefficients are negative and of a similar magnitude

to those shown for revenues and are generally significant at the 1% level with some only at the 5%

level. The exceptions are the estimates for Frequency, and when the second stage dependent variable

is a measure of TFPR in the 2015 survey. However, the under-identification problem of these first

stage regressions are rejected at the 10% level implying the IVs are still valid. For the other first

stage results, IV irrelevance is rejected at least at the 5%, and for the majority it is rejected at the

1% level.

4.3 IV Second Stage Results

Table 5 provides a comparison of the impact of outages on revenues. In both years, the 2SLS

coefficients are negative, and larger than those of the OLS estimates. The smaller coefficients in

the OLS results are in line with the hypothesized attenuation biases caused by measurement error,

and biases caused by pro-business environment factors and match what was found for India (Allcott

et al., 2016).22 Our findings for 2004 show that, on average, a 1% increase in power outage frequency,
22Omitted environmental factors that support business may increase power demand and put further stress on power supplies,

causing more power disruption. This kind of bias pushes the negative impact of power deficiency toward zero.
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intensity, and volume is associated with a loss of 0.74%, 0.34%, and 0.27% in revenue although the

coefficients remain insignificant, confirmed by the weak instrument test. The coefficients for revenue

losses are much larger in 2014, at 1.81%, 0.82%, and 0.73%, respectively and the coefficients are

significant at the 1% level for all three outage measures.

The insignificance of an outage impact is also rejected by the weak-instrument test at the 5%

level. Overall, the 2SLS estimates support the view of outages in 2004 had very little impact on firm

revenues, but, in contrast to the OLS results, they do provide strong evidence that power unreliability

in 2014 had a significant impact.

Panel A of Table 5 also shows the 2SLS estimates for the impact of power outages on productivity.

Again, the 2SLS estimated coefficients are negative and their magnitudes are greater than those

estimated by OLS. In line with the testable hypotheses, the size of the productivity losses are

smaller than the revenue losses. In 2004, a 1% increase in the power outages decreases the efficiency

of machinery, and labor usage by (YKL model) 0.25 - 0.77%, and the efficiency of machinery, labor,

and material input usage (YKLM model) by 0.13 - 0.38%. For 2014 the productivity losses for the

same two groups range from 0.55 - 1.36%, and 0.53 - 1.30%, respectively. The significance level of

these coefficients varies. The loss of TFPR measured by YKLM in the 2005 Survey is significant at

the 10% level. The loss of TFPR measured by the YKL model in the 2015 Survey is significant at the

1% level. The loss of TFPR measured by the YKLM model in Survey 2015 is insignificant according

to the t-test but significant at the 5% level according to the weak-instrument test (AR χ2).

Panel B of Table 5 shows how power deficiency affects a firm’s use of energy in the production

process. A common adaptation that firms appear to make, and that we find evidence for in both

years, is to use self-generated electricity with the coefficients being significant at at least the 5% level.

An increase in the degree of power unreliability explains 0.35% - 1.02%, and 0.31% - 0.76% of the
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increase in the share of self-generated electricity in the 2005 and 2015 Surveys, respectivel, with the

magnitude depending on the measure of outages. Of the three measures, firms are more sensitive to

the frequency rather than the intensity or volume of outages.

Overall, the higher the level of unreliability in the power supply, the less energy firms use. For the

2005 Survey the magnitude of energy reduction in terms of reduced energy costs, ranges from 0.76 -

2.03, and is significant at the 5% level (t-test) and the 1% level (AR χ2 test). The same significance

levels are found for the use of electricity in the 2015 Survey with the size of the coefficient ranging

between -1.03, and -2.46. The impacts of outages on fuel costs in 2015 is found to be negative but

not statistically different from zero.

Panel C of Table 5 shows the impact on other flexible inputs (material inputs and labor). For

both inputs, there is no impact on firms in the 2005 Survey. Those in the 2015 Survey are only

significant at the 10% level according to the AR χ2 test. Hence, in 2014 a one percent increase in

power outages is estimated to decrease the use of material inputs, and labor by 0.62 - 1.39%, and

0.64 - 1.53%, respectively.

The lack of solid results may suggest that firms are not able to adjust factor inputs that easily in

the face of power outages, or that the impact is not homogenous across all firms. One mechanism may

be the flexibility in the labor which means that if a power cut is unanticipated, firms cannot reduce

employment that quickly to save costs when machines and production lines are not operating. When

the theoretical model à la Allcott et al. (2016) simply predicts a reduction in materials used during

machine down times, some firms may adapt by outsourcing energy-intensive materials as was found

to be the case for Chinese firms (Fisher-Vanden et al., 2015), which meant that other inputs were

effectively substituted by greater use of materials. As Vietnam’s supply chains are less developed

and complete than China, the outsourcing option is unlikely to be as accessible (or affordable) for
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a large majority of Vietnamese firms. The mixed responses are one possible reason for the large

standard errors attached to the negative coefficients of outage impact on material use.

4.4 Distance Penalty Parameter Uncertainty Analysis

As part of our sensitivity analysis we investigate whether our 2SLS results are sensitive to the selection

of the distance penalty parameter (ρ). Figure 3 illustrates how the estimates for the responses of

revenue to power unreliability change across different values of ρ. In both years the 2SLS estimates

(red dots) are negative and considerably below the OLS estimates no matter which ρ is chosen to

generate the IV. The magnitude of the 2SLS coefficients for the 2005 Survey are largest for ρ = 2,

and gradually decreases as ρ becomes larger. However, the change is negligible in comparison with

the standard error of our baseline estimates. As the 95% confidence intervals (grey bands) always

cross the green line (zero coefficient) we can conclude that the impact of power outages on revenues

in 2004 is insignificant regardless of the value of ρ.

However, when we turn to the 2015 Survey we find our results are sensitive to the choice of

ρ. From the baseline values, the coefficients increase when we put a lower penalty (ρ) on distance

(the size of hydropower plants is more important), and exceeds one deviation from the baseline

values when ρ reaches 1. This implies the role of distance causes a range of coefficient uncertainty.

Nevertheless, regardless of the value of ρ, the coefficients for the 2015 Survey are always negative

and significant (at the 5% level or better), and their magnitudes are always larger than those for the

2005 Survey. In Appendix D we provide additional robustness checks to show that our findings are

robust to the use of alternative IVs or when regressions are run on subsets of the data.
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4.5 Differences across Years

Our robustness checks reinforce our result that power unreliability was more harmful (both in terms

of size and significance) for firm performance in the 2015 Survey rather than the 2005 Survey. In

this subsection we investigate the mechanisms that may be driving this difference. One possible

explanation is that the extent to which firms require electricity to operate has intensified. If electricity

is mainly used for general purposes, such as lighting, or makes only a minimal contribution to the

value-added processes, there is no reason to expect a significant impact of a power outage on firm

performance. However, if firms have become more technologically advanced and now operate complex

production processes then it is easy to imagine how power outages could become more costly.

To investigate whether electricity intensity changes after power outages, we pool all manufacturing

firms (that report a value of machine use) and test whether there were changes in factor intensities

across the two surveys. We employ a median regressor to estimate the three log-linear versions of

the Cobb-Douglas function: YKL, YKLM, and YKLMN, where YKLMN is an extension of YKLM,

adding energy (N) to the production function. We assume that the energy cost reported in the

2005 Survey is the sum of electricity costs and fuel costs. All regressions include the factor costs of

production (in log form), their interaction terms with an indicator for year 2015, and a year dummy.

For robust checks, we sequentially include province and sector dummies. The results are presented

in Table 6.

Of primary interest are the interaction terms that indicate whether factor intensities change across

the two surveys. All twelve regressions confirm that there was a significant rise in capital intensity,

and the final four columns show that there has also been a significant increase in energy intensity.

The magnitude of the shift is relatively large. The results in the final column show that in the
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2005 Survey, the intensity of capital is just 2.3% whereas it almost five-folds to 11.5% in the 2015

Survey. Over the same period the average energy intensity almost doubles from 5.8% to 10.2%. In

contrast, material input intensity significantly decreases by 13%. Labour intensity also falls, however

the significance of the reduction is not robust, especially when taking material inputs and energy

into account.

Assuming the firms in the WBES are representative, our results suggest that over the period 2004

to 2014 there was substantial development in the Vietnam manufacturing sector. Firms engaged in

more comprehensive and complicated manufacturing processes that use fewer intermediate material

inputs, generate more value from existing capital and energy inputs through the more intensive use

of machinery, and hence are less reliant on simple product assembly. It is also likely, although we

cannot test it directly, that firms became more electricity intensive. This would explain Vietnam’s

increasing sensitivity to changes in the quality of electricity provision.

The increase in energy intensity of manufacturing firms estimated in a Vietnam context is in line

with previous studies that confirm positive links between energy consumption and industrialisation

(Sadorsky, 2013; Samouilidis and Mitropoulos, 1984), trade liberalisation (Cole, 2006) and economic

complexity (Liu et al., 2020). During the period between the two WBESs, Vietnam continued its

policy of pursuing export-oriented industrialisation while maintaining a subsidised electricity tariff

for industry with a price that is relatively low compared to neighbouring countries (ADB, 2015).

Vietnam joined the World Trade Organisation (WTO) in 2007 and concluded or negotiated trade

deals with Japan, Korea, the EU and important trading and investment partners within the Trans-

Pacific Partnership (TPP, now known as CPTPP).23). The development of a strong industrial sector

benefited from a higher level of economic openness and Vietnam’s deeper integration into the global
23The Comprehensive and Progressive Agreement for Trans-Pacific Partnership.
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economy (Nguyen et al., 2016). As a result, Vietnam emerged as an Asian manufacturing powerhouse

(Bloomberg, 2015). Thanks to trade liberalisation, following accession to the WTO, Vietnam’s

export structure became more sophisticated and closer to that of Thailand rather than Indonesia

and the Philippines to which Vietnam used to compare itself (Nguyen, 2016). Between 2004 and

2014, Vietnam moved from 85th to 54th place in the global economic complexity index ranking (The

Growth Lab at Harvard University, 2020). Such a move up the ranking suggests that Vietnam’s

managed to improve its competitiveness as it diversified its export basket by producing and exporting

more sophisticated products. More specifically, exports have been modernised with a transition away

from primary commodities such as crude oil and rice to manufactured goods that require low and

medium technological inputs such as apparel and footwear as well as high technology goods such as

electronics, mobile phones, electronic tablets, and incorporated circuits (WB and MPI, 2016; Pham,

Hollweg, Mtonya, Winkler, Nguyen and Nguyen, 2020).

5 Conclusions

In this paper we investigated the impact of power outages on firm performance using an innovative

instrumental variable strategy. More specifically, we contribute to the hydro-IV literature by offering

an alternative approach for a single-grid country. More specifically, we integrate a rainfall-runoff

model with a hydropower generation model and employ an interpolation technique using grid-based

distances to generate an appropriate instrument to deal with the endogeneity of power outages in

their impact on firm performance. We apply our methodological approach to firm-level data for

Vietnam for two waves of the World Bank Enterprise Surveys spanning ten years, allowing us to

identify and compare the causal effect in the context of early and late stage development of electricity

infrastructure. Our methodological contribution can be applied to study the impact of power outages
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on firm performance or household welfare in other contexts with hydropower dependency.

Our results suggest that, despite an overall improvement in access to power and better reliability,

in a rapidly growing economy like Vietnam firms have become increasingly reliant on electricity and,

hence, any power disruption incurs greater financial costs. As expected, we also find that firms

that face frequent or long lasting power disruptions tend to generate less revenue than firms that

do not experience outages. Moreover, our results show that firms that suffer power outages have

lower productivity and use less flexible inputs, such as material inputs and labor. Power outages

additionally encourage firms to use backup generators to supply more of their electricity.

Of the different types of outages, increased frequency appears to be more damaging than the

intensity of individual events. Comparing the impact of power outages in 2004 and 2014, our findings

indicate that firm performance appears to be less responsive to an unreliable power supply in 2004

and perhaps not surprisingly became more sensitive as firms became more dependent on electricity.

This finding supports a progressive approach to power development policy making. Our results show

that an increase in the production complexity of the manufacturing process for the average firm

helps to explain the differences in our empirical results compared to previous studies, where the

reduction in revenues due to power outages are found to be significant in some (Allcott et al., 2016)

but insignificant in others (Mensah, 2016).

In terms of policy prescriptions, our findings imply that an improvement in power reliability

could substantially enhance economic growth in Vietnam. According to our 2SLS estimates, in 2014

a small reduction in power disruption by 1% would have increased revenues by 0.73%. Given that

total revenues of registered firms in 2014 was 13,516 trillion dong (639 billion USD), and assuming

that firms in the survey we used are representative, such an improvement in power quality could have

29



added 4.66 billion USD to the performance of Vietnam’s firms.24 As Vietnam has been attempting

to exploit its untapped potentials for low-carbon solar and wind power (The Diplomat, 2020), it is

critical for the country to develop energy storage technology and smart grid network to address the

intermittency of these new power sources and ensure the stability of the power system.

24Total revenues of registered firms is from Vietnam General Statistics Office (GSO). The average official exchange rate for
2014 (1USD= 21,148 VND) is from International Monetary Fund, International Financial Statistics.
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Figure 2: First stage performance using HAI(ρHAI(ρHAI(ρ) as the IV and varying the distance penalty
parameter (ρρρ)
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Figure 3: Distance penalty parameter uncertainty analysis
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Note: (a) Each graph draws the estimate of coefficient power outage impact on revenue (red line, left y-axis), its 95%
confidence interval (area, left y-axis) and the F-statistic (bar, right y-axis) of the first stage regression for each value of ρ within
the stated range. (b) The vertical spikes indicate the standard errors of the baseline IV estimates at the optimal values of ρ,
the horizontal line at 0 (green, left y-axis) is drawn with reference to the confidence intervals to identify the significance of
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“weak” instrument issue, based on the rough rule of thumb (F-statistic <10). (c) F statistic reported is for the heteroskedasticity
Kleibergen-Paap weak instrument test.
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Table 1: Summary statistics

Survey 2005 Survey 2015

VARIABLES N mean sd min max N mean sd min max
FIRM LEVEL DATA
Power provision
Power outages; frequency (occurences per month) 1,150 0.60 1.20 0 20 960 0.37 1.19 0 20
Power outages; intensity (hours per occurence) 1,149 2.51 8.56 0 96 960 1.46 5.82 0 96
Power outages; volume (hours per month) 1,149 4.61 20.7 0 384 960 3.12 18.7 0 480
Generator ownership or share; binary 1,131 0.34 0.47 0 1 684 0.35 0.48 0 1
Firm characteristics
Firm age 1,147 12.5 13.2 1 115 989 13.3 10.3 1 113
Small size 1,149 0.10 0.30 0 1 989 0.38 0.49 0 1
Medium size 1,149 0.37 0.48 0 1 989 0.35 0.48 0 1
Large size 1,149 0.26 0.44 0 1 989 0.17 0.38 0 1
Very large size 1,149 0.27 0.45 0 1 989 0.098 0.30 0 1
State ownership 10%-50% 1,145 0.14 0.34 0 1 994 0.020 0.14 0 1
State ownership > 50% 1,145 0.20 0.40 0 1 994 0.015 0.12 0 1
Foreign ownership 10%-50% 1,145 0.017 0.13 0 1 993 0.013 0.11 0 1
Foreign ownership > 50% 1,145 0.100 0.30 0 1 993 0.065 0.25 0 1
Share-holding 1,149 0.37 0.48 0 1 989 0.22 0.41 0 1
Share-traded 1,149 0.0035 0.059 0 1 989 0.039 0.19 0 1
Exporter 1,150 0.46 0.50 0 1 994 0.27 0.45 0 1
Access to credit 1,150 0.70 0.46 0 1 971 0.49 0.50 0 1
Firm performance
Revenues (bil. VND) 1,141 129 333 0.16 5,271 975 72.8 228 0.034 4,108
TFPR YKL model; log 986 2.34 1.23 -1.76 6.57 432 2.34 1.37 -1.35 7.57
TFPR YKLM model; log 975 1.43 0.84 -1.52 3.92 401 1.89 1.10 -0.44 5.85
Energy use
Generator use; % electricity 1,045 1.37 3.51 0 25 637 0.37 0.80 0 7
Energy cost (mil. VND) 1,146 2,854 9,659 1.14 128,264
Fuel cost (mil. VND) 476 4,271 40,972 0.68 753,043
Electricity cost (mil. VND) 892 681 2,387 0.68 34,229
Other factor use
Material cost (bil. VND) 1,134 97.4 299 0.036 5,808 552 63.7 447 0.0034 9,844
Labor cost (bil. VND) 1,139 10.7 23.0 0.023 324 899 5.75 16.2 0.010 222

PROVINCE LEVEL DATA
Province characteristics
Elevation (m) 24 128 154 1.94 464 19 119 142 1.94 397
Rainfall shocks (SPI) 24 0.080 0.63 -1.35 0.76 19 -0.35 0.38 -0.95 0.46
Cooling degree (F) 24 11.9 2.95 7.20 15.8 19 11.6 2.60 7.90 15.4
Province IP share 24 0.033 0.058 0.0016 0.25 19 0.042 0.049 0.0051 0.18
Province IP Index 24 1.18 0.053 1.08 1.32 19 1.07 0.057 0.88 1.15

Note: The mean of volume measure does not necessarily equal the product of the means of frequency and intensity as a sum of products differ
from a product of sums.
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Table 2: The impact of outages on firm revenue (OLS estimates)

Survey 2005 Survey 2015
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)
Power outage; log -0.03 -0.01 -0.01 -0.14 -0.10 -0.07

(0.07) (0.04) (0.04) (0.13) (0.08) (0.06)
Age; log 0.09** 0.09** 0.09** 0.05 0.05 0.05

(0.04) (0.04) (0.04) (0.08) (0.08) (0.08)
Medium size 0.79*** 0.78*** 0.78*** 1.50*** 1.50*** 1.50***

(0.13) (0.13) (0.13) (0.10) (0.10) (0.10)
Large size 1.97*** 1.96*** 1.97*** 2.70*** 2.71*** 2.70***

(0.18) (0.18) (0.18) (0.20) (0.20) (0.20)
Very large size 3.13*** 3.13*** 3.13*** 3.89*** 3.90*** 3.89***

(0.22) (0.22) (0.22) (0.20) (0.19) (0.20)
State ownership 10%-50% 0.28** 0.28** 0.29** -0.09 -0.09 -0.09

(0.11) (0.11) (0.11) (0.32) (0.32) (0.32)
State ownership > 50% 0.66*** 0.66*** 0.66*** 0.50* 0.52* 0.51*

(0.15) (0.15) (0.15) (0.25) (0.25) (0.25)
Foreign ownership 10%-50% 0.70** 0.70** 0.70** 0.23 0.22 0.23

(0.25) (0.25) (0.25) (0.33) (0.33) (0.33)
Foreign ownership > 50% 0.73*** 0.73*** 0.73*** 0.49*** 0.49*** 0.49***

(0.23) (0.23) (0.23) (0.12) (0.12) (0.12)
Share-holding 0.20** 0.20** 0.20** 0.39** 0.38** 0.38**

(0.09) (0.09) (0.09) (0.16) (0.16) (0.16)
Share-traded 0.71** 0.71** 0.72** 0.45* 0.44* 0.44*

(0.28) (0.28) (0.28) (0.23) (0.22) (0.22)
Exporter 0.20*** 0.20*** 0.20*** -0.14* -0.14* -0.14*

(0.06) (0.06) (0.06) (0.08) (0.08) (0.08)
Access to credit 0.55*** 0.55*** 0.55*** 0.06 0.05 0.05

(0.07) (0.08) (0.08) (0.16) (0.16) (0.16)
IP share 0.84 0.85 0.85 7.03*** 7.04*** 7.03***

(0.72) (0.73) (0.73) (1.26) (1.26) (1.27)
IP index -0.21 -0.20 -0.20 1.94 1.93 1.94

(0.89) (0.90) (0.90) (1.32) (1.28) (1.29)
Cooling degree; log 0.39 0.39 0.39 0.03 0.03 0.03

(0.32) (0.32) (0.32) (0.14) (0.13) (0.14)
Elevation (km); log -0.10** -0.10** -0.09** 0.04 0.05 0.04

(0.04) (0.04) (0.04) (0.03) (0.03) (0.03)
Rainfall shocks (SPI) 0.04 0.04 0.04 0.03 0.02 0.02

(0.09) (0.09) (0.09) (0.13) (0.12) (0.12)
R-squared 0.60 0.60 0.60 0.48 0.48 0.48
Observations 1,133 1,132 1,132 915 915 915

Notes: (a) Regression includes dummies for sectors. (b) Robust standard errors clustered at
province level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. (c) Three measures of power out-
ages (in log form) indicated in each column name: Frq - Frequency (average number of outage
per month); Int - Intensity (average duration (hour) per outage); and Vol - Volume (average outage
hour per month = Frq× Int).
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Table 3: Impact of power outages on TFP and other inputs (OLS estimates)

Survey 2005 Survey 2015
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)

Panel A: TFPR
TFP YKL model; log
Power outage; log -0.15*** -0.06* -0.05** -0.12 -0.04 -0.03

(0.05) (0.03) (0.02) (0.16) (0.09) (0.07)
R-squared 0.07 0.07 0.07 0.10 0.10 0.10
Observations 978 977 977 421 421 421
TFP YKLM model; log
Power outage; log -0.03 -0.01 -0.01 -0.01 0.01 0.00

(0.02) (0.01) (0.01) (0.09) (0.05) (0.04)
R-squared 0.02 0.02 0.02 0.06 0.06 0.06
Observations 967 966 966 392 392 392

Panel B: Energy inputs
Generator use; log
Power outage; log 0.17*** 0.08*** 0.09*** 0.11*** 0.08*** 0.05***

(0.06) (0.02) (0.02) (0.04) (0.02) (0.01)
R-squared 0.10 0.10 0.11 0.16 0.18 0.17
Observations 1,036 1,035 1,035 605 605 605
Energy cost; log
Power outage; log 0.17 0.00 0.01

(0.12) (0.05) (0.04)
R-squared 0.37 0.36 0.36
Observations 1,137 1,136 1,136
Electric cost; log
Power outage; log 0.11 0.06 0.06

(0.10) (0.04) (0.03)
R-squared 0.40 0.40 0.40
Observations 841 841 841
Fuel cost; log
Power outage; log -0.26 -0.08 -0.09

(0.21) (0.12) (0.09)
R-squared 0.31 0.31 0.31
Observations 458 458 458

Panel C: Other inputs
Material cost; log
Power outage; log -0.03 -0.02 -0.01 -0.19 -0.14 -0.09

(0.10) (0.05) (0.04) (0.19) (0.13) (0.09)
R-squared 0.50 0.50 0.50 0.40 0.40 0.40

(cont.)
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Survey 2005 Survey 2015
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)
Observations 1,125 1,124 1,124 529 529 529
Labor cost; log
Power outage; log 0.04 0.01 0.01 0.02 -0.00 -0.00

(0.05) (0.02) (0.02) (0.07) (0.03) (0.03)
R-squared 0.76 0.76 0.76 0.57 0.57 0.57
Observations 1,130 1,129 1,129 845 845 845

Notes: (a) Regressions include control variables as those in Table 2 (including sector dummies).(b) Depen-

dent variables are in bold. Three measures of power outages (in log form) indicated in each column name

are Frq - Frequency (average number of outage per month); Int - Intensity (average duration (hour) per out-

age); and Vol - Volume (average outage hour per month = Frq× Int). Robust standard errors clustered at

province level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: First stage

Survey 2005, ρ = 1 Survey 2015, ρ = 10
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)

Panel A: Performance
Revenues; log
HAI(ρ) -4.34** -9.39*** -11.65*** -0.71*** -1.56*** -1.76***

(1.76) (2.09) (3.08) (0.19) (0.35) (0.42)
Observations 1,133 1,132 1,132 915 915 915
Clusters 24 24 24 19 19 19
First stage F-statistic 6.08 20.12 14.32 13.29 19.84 17.68
SW χ2 test 6.56** 21.73*** 15.46*** 14.69*** 21.93*** 19.54***
TFP YKL model; log
HAI(ρ); IV -3.83** -9.56*** -11.53*** -0.62* -1.46** -1.53*

(1.78) (2.67) (3.72) (0.35) (0.61) (0.80)
Observations 978 977 977 421 421 421
Clusters 24 24 24 19 19 19
F-statistic 4.61 12.85 9.59 3.15 5.68 3.62
SW χ2 test 4.98** 13.88*** 10.36*** 3.61* 6.50** 4.15**
TFP YKLM model; log
HAI(ρ); IV -3.87** -9.52*** -11.54*** -0.61 -1.44** -1.50

(1.82) (2.78) (3.84) (0.40) (0.68) (0.91)
Observations 967 966 966 392 392 392
Clusters 24 24 24 19 19 19
F-statistic 4.54 11.69 9.01 2.25 4.45 2.71
SW χ2 test 4.90** 12.63*** 9.73*** 2.60 5.13** 3.13*

Panel B: Energy inputs
Generator use; log
HAI(ρ); IV -4.49** -10.61*** -12.88*** -0.75*** -1.71*** -1.86***

(1.84) (2.75) (3.82) (0.26) (0.46) (0.58)
Observations 1,036 1,035 1,035 605 605 605
Clusters 24 24 24 19 19 19
F-statistic 5.95 14.85 11.38 8.20 13.67 10.14
SW χ2 test 6.42** 16.02*** 12.28*** 9.17*** 15.28*** 11.34***
Energy cost; log
HAI(ρ); IV -4.53*** -10.04*** -12.19***

(1.73) (2.00) (3.00)
Observations 1,137 1,136 1,136
Clusters 24 24 24
F-statistic 6.82 25.16 16.47
SW χ2 test 7.36*** 27.16*** 17.78***
Electric cost; log
HAI(ρ); IV -0.78*** -1.62*** -1.85***

(0.19) (0.35) (0.42)
(cont.)
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Survey 2005, ρ = 1 Survey 2015, ρ = 10
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)
Observations 841 841 841
Clusters 19 19 19
F-statistic 17.13 20.89 19.32
SW χ2 test 19.01*** 23.18*** 21.44***
Fuel cost; log
HAI(ρ); IV -1.16*** -2.17*** -2.42***

(0.26) (0.52) (0.66)
Observations 458 458 458
Clusters 19 19 19
F-statistic 20.15 17.52 13.59
SW χ2 test 23.09*** 20.07*** 15.57***

Panel C: Other inputs
Material cost; log
HAI(ρ); IV -4.25** -9.32*** -11.52*** -0.83*** -1.72*** -1.87***

(1.72) (2.15) (3.12) (0.27) (0.48) (0.63)
Observations 1,125 1,124 1,124 529 529 529
Clusters 24 24 24 19 19 19
F-statistic 6.12 18.83 13.63 9.29 13.03 8.85
SW χ2 test 6.61** 20.34*** 14.72*** 10.53*** 14.76*** 10.03***
Labor cost; log
HAI(ρ); IV -4.20** -9.28*** -11.37*** -0.68*** -1.43*** -1.62***

(1.73) (2.11) (3.10) (0.19) (0.36) (0.43)
Observations 1,130 1,129 1,129 845 845 845
Clusters 24 24 24 19 19 19
F-statistic 5.90 19.32 13.45 12.41 16.07 14.10
SW χ2 test 6.37** 20.86*** 14.52*** 13.77*** 17.82*** 15.64***

Notes:(a) Table reports results for first stage of 2SLS with control variables as in Table 2 and dummies for sectors. (b) Dependent variable

in the second stage is in italics and are: Frq - Frequency (average number of outage per month); Int - Intensity (average duration (hour) per

outage); or Vol - Volume (average outage hour per month = Frq× Int). (c) First stage F-statistic is Kleibergen-Paap rk Wald F-statistic robust

to heteroskedasticity. (d) SW χ2 test is Sanderson-Windmeijer first stage χ2 test for underidentification. (e) Robust standard errors clustered at

province level in parentheses. (f) *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: 2SLS estimates

Survey 2005, ρ = 1 Survey 2015, ρ = 10
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)

Panel A: Outputs
Revenues; log
Outage; 2SLS -0.74 -0.34 -0.27 -1.81*** -0.82*** -0.73***

(1.21) (0.54) (0.44) (0.52) (0.28) (0.25)
Outage; OLS -0.03 -0.01 -0.01 -0.14 -0.10 -0.07

(0.07) (0.04) (0.04) (0.13) (0.08) (0.06)
Observations 1,133 1,132 1,132 915 915 915
First stage F-statistic 6.08 20.12 14.32 13.29 19.84 17.68
SW χ2 test 6.56** 21.73*** 15.46*** 14.69*** 21.93*** 19.54***
AR χ2 test 0.46 0.45 0.45 5.67** 5.67** 5.67**
TFP YKL model; log
Outage; 2SLS -0.77 -0.31 -0.25 -1.36*** -0.57** -0.55**

(0.67) (0.25) (0.22) (0.47) (0.25) (0.23)
Outage; OLS -0.15*** -0.06* -0.05** -0.12 -0.04 -0.03

(0.05) (0.03) (0.02) (0.16) (0.09) (0.07)
Observations 978 977 977 421 421 421
First stage F-statistic 4.61 12.85 9.59 3.15 5.68 3.62
SW χ2 test 4.98** 13.88*** 10.36*** 3.61* 6.50** 4.15**
AR χ2 test 2.59 2.50 2.50 3.97** 3.97** 3.97**
TFP YKLM model; log
Outage; 2SLS -0.38 -0.15* -0.13* -1.30 -0.55 -0.53

(0.25) (0.08) (0.07) (1.03) (0.38) (0.41)
Outage; OLS -0.03 -0.01 -0.01 -0.01 0.01 0

(0.02) (0.01) (0.01) (0.09) (0.05) (0.04)
Observations 967 966 966 392 392 392
First stage F-statistic 4.54 11.69 9.01 2.25 4.45 2.71
SW χ2 test 4.90** 12.63*** 9.73*** 2.60 5.13** 3.13*
AR χ2 test 3.65* 3.66* 3.66* 4.66** 4.66** 4.66**

Panel B: Energy inputs
Generator use; log
Outage; 2SLS 1.02*** 0.43*** 0.35*** 0.76*** 0.33*** 0.31***

(0.33) (0.14) (0.11) (0.21) (0.10) (0.10)
Outage; OLS 0.17*** 0.08*** 0.09*** 0.11*** 0.08*** 0.05***

(0.06) (0.02) (0.02) (0.04) (0.02) (0.01)
Observations 1,036 1,035 1,035 605 605 605
First stage F-statistic 5.95 14.85 11.38 8.20 13.67 10.14
SW χ2 test 6.42** 16.02*** 12.28*** 9.17*** 15.28*** 11.34***
AR χ2 test 8.16*** 8.26*** 8.26*** 6.49** 6.49** 6.49**
Energy cost; log
Outage; 2SLS -2.03* -0.92** -0.76**

(1.04) (0.38) (0.33)
(cont.)
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Survey 2005, ρ = 1 Survey 2015, ρ = 10
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)
Outage; OLS 0.17 0 0.01

(0.12) (0.05) (0.04)
Observations 1,137 1,136 1,136
First stage F-statistic 6.82 25.16 16.47
SW χ2 test 7.36*** 27.16*** 17.78***
AR χ2 test 7.40*** 7.63*** 7.63***
Electric cost; log
Outage; 2SLS -2.46** -1.18** -1.03**

(1.14) (0.49) (0.43)
Outage; OLS 0.11 0.06 0.06

(0.10) (0.04) (0.03)
Observations 841 841 841
First stage F-statistic 17.13 20.89 19.32
SW χ2 test 19.01*** 23.18*** 21.44***
AR χ2 test 9.31*** 9.31*** 9.31***
Fuel cost; log
Outage; 2SLS -1.31 -0.70 -0.62

(1.16) (0.59) (0.55)
Outage; OLS -0.26 -0.08 -0.09

(0.21) (0.12) (0.09)
Observations 458 458 458
First stage F-statistic 20.15 17.52 13.59
SW χ2 test 23.09*** 20.07*** 15.57***
AR χ2 test 1.78 1.78 1.78

Panel C: Other inputs
Material cost; log
Outage; 2SLS -0.75 -0.34 -0.27 -1.39 -0.67 -0.62

(1.89) (0.85) (0.70) (0.88) (0.42) (0.40)
Outage; OLS -0.03 -0.02 -0.01 -0.19 -0.14 -0.09

(0.10) (0.05) (0.04) (0.19) (0.13) (0.09)
Observations 1,125 1,124 1,124 529 529 529
First stage F-statistic 6.12 18.83 13.63 9.29 13.03 8.85
SW χ2 test 6.61** 20.34*** 14.72*** 10.53*** 14.76*** 10.03***
AR χ2 test 0.18 0.17 0.17 3.34* 3.34* 3.34*
Labor cost; log
Outage; 2SLS 0.10 0.05 0.04 -1.53 -0.73 -0.64

(0.50) (0.23) (0.18) (1.28) (0.58) (0.52)
Outage; OLS 0.04 0.01 0.01 0.02 0 0

(0.05) (0.02) (0.02) (0.07) (0.03) (0.03)
Observations 1,130 1,129 1,129 845 845 845
First stage F-statistic 5.90 19.32 13.45 12.41 16.07 14.10
SW χ2 test 6.37** 20.86*** 14.52*** 13.77*** 17.82*** 15.64***
AR χ2 test 0.04 0.04 0.04 2.75* 2.75* 2.75*
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Notes: (a) Regression includes control variables as in Table 2 and dummies for sectors. (b) Endogenous variable is measure of power outages:

Frq - Frequency (average number of outage per month); Int - Intensity (average duration (hour) per outage); or Vol - Volume (average

outage hour per month = Frq× Int). (c) Excluded IV is HAI(ρ) with predetermined values of ρ for each survey. (d) OLS estimate included

for comparison. (e) First stage F-statistic: Kleibergen-Paap rk Wald F-statistic that is robust to heteroskedasticity, Underidentification

test: SW χ2 test (Sanderson-Windmeijer first stage χ2 test), Weak-instrument robust tests for significant endogenous variables: AR χ2 test

(Anderson-Rubin Wald χ2 test). (f) Robust standard errors clustered at province level in parentheses. (g) *** p<0.01, ** p<0.05, * p<0.1.

Table 6: Factor intensity: Survey 2005 vs Survey 2015, median regressor

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

VARIABLES Revenues; log

αK 0.20*** 0.21*** 0.18*** 0.16*** 0.035*** 0.041*** 0.037*** 0.033*** 0.028*** 0.030*** 0.029*** 0.023***

(0.025) (0.026) (0.024) (0.024) (0.0096) (0.0099) (0.010) (0.010) (0.0088) (0.0092) (0.0096) (0.0088)

αK * Year 2015 0.18*** 0.18*** 0.16*** 0.18*** 0.12*** 0.12*** 0.12*** 0.11*** 0.098*** 0.10*** 0.095*** 0.092***

(0.040) (0.042) (0.037) (0.037) (0.016) (0.016) (0.016) (0.017) (0.015) (0.016) (0.016) (0.015)

αL 0.81*** 0.79*** 0.84*** 0.82*** 0.24*** 0.23*** 0.24*** 0.22*** 0.23*** 0.23*** 0.21*** 0.19***

(0.031) (0.032) (0.029) (0.041) (0.014) (0.014) (0.015) (0.020) (0.013) (0.013) (0.014) (0.017)

αL * Year 2015 -0.25*** -0.21*** -0.21*** -0.23*** -0.0018 -0.0098 -0.0028 -0.0029 -0.039* -0.040* -0.035 -0.033

(0.050) (0.051) (0.046) (0.047) (0.021) (0.022) (0.022) (0.023) (0.022) (0.023) (0.024) (0.022)

αM 0.73*** 0.73*** 0.73*** 0.72*** 0.70*** 0.70*** 0.71*** 0.71***

(0.010) (0.011) (0.011) (0.012) (0.0096) (0.010) (0.011) (0.010)

αM * Year 2015 -0.15*** -0.14*** -0.14*** -0.14*** -0.14*** -0.13*** -0.13*** -0.13***

(0.015) (0.016) (0.016) (0.017) (0.015) (0.015) (0.016) (0.015)

αE 0.053*** 0.056*** 0.056*** 0.058***

(0.0086) (0.0090) (0.0095) (0.0087)

αE * Year 2015 0.050*** 0.044** 0.047** 0.044**

(0.019) (0.020) (0.020) (0.019)

Observations 1,440 1,440 1,440 1,439 1,398 1,398 1,398 1,398 1,343 1,343 1,343 1,343

Year dummies Y Y Y Y Y Y Y Y Y Y Y Y

Province dummies N Y Y Y N Y Y Y N Y Y Y

Sector dummies N N Y Y N N Y Y N N Y Y

Size dummies N N N Y N N N Y N N N Y

Notes: (a) Standard errors in parentheses. (b) *** p<0.01, ** p<0.05, * p<0.1.(c) Input factors included in regression: Machine values (K), labor cost (L), Material
cost (M) and Energy cost (N)
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