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THE STEINHAUS-WEIL PROPERTY:

IV. OTHER INTERIOR-POINT PROPERTIES
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In memory of Harry I. Miller (1939-2018)

ABSTRACT. In this the final part of the four-part series [BinO3; 4,5,6] on the-

orems of Steinhaus-Weil type, as a companion piece to Part III, [BinO6], on

Weil-type refinement topologies, we study from the perspective of refinement

topologies the relation of the composite AB−1 to the classical setting of the AA−1

Steinhaus interior-point theorem.

1. THE STEINHAUS PROPERTY AA−1
VERSUS THE STEINHAUS PROPERTY

AB−1

We clarify below the relation between two versions of the Steinhaus interior

points property: the simple (sometimes called ‘classical’) version concerning sets

AA−1 and the composite, more embracing one, concerning sets AB−1, for sets from

a given family H . The latter is connected to a strong form of metric transitivity:

Kominek [Kom] shows, for a general separable Baire topological group G equipped

with an inner-regular measure µ defined on some σ-algebra M , that AB−1 has non-

empty interior for all A,B ∈ M+(µ), the sets in M of positive µ-measure, iff for

each countable dense set D and each E ∈ M+(µ) the set X\DE ∈ M0(µ), the sets in

M of µ-measure zero; this is recalled in Theorem K below. The composite property

is thus related to the Smital property, for which see [BarFN]. Care is required when

moving to the alternative property for AB, since the family H need not be preserved

under inversion.

In general the simple property does not imply the composite: Matoŭsková and

Zelený [MatZ] show that in any non-locally compact abelian Polish group there are

closed non-(left) Haar null sets A,B such that A+B has empty interior. Jabłońska

[Jab] has shown that likewise in any non-locally compact abelian Polish group

there are closed non-Haar meager sets A,B such that A+B has empty interior; see

also [BanGJS]. Bartoszewicz and M. and T. Filipczak [BarFF, Ths. 1, 4] analyze

the Bernoulli product measure on {0,1}N with p the probability of the digit 1;
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see [BinO3, §8.15]. The product space may be regarded as comprising canonical

binary digit expansions of the additive reals modulo 1 (in which case the measure

is not invariant). Here the (Borel) set A of binary expansions with asymptotic

frequency p of the digit 1 has [0,1) as its difference set iff 1
4
≤ p ≤ 3

4
; however

A+A has empty interior unless p = 1
2

(the base 2 simple-normal-numbers case).

Below we identify some conditions on a family of sets A with the simple AA−1

property which do imply the AB−1 property. What follows is a generalization to a

group context of relevant observations from [BinO3] from the classical context of

R.

The motivation for the definition below is that its subject, the space H, is a sub-

group of a topological group G from which it inherits a (necessarily) translation-

invariant (either-sidedly) topology τ. Various notions of ‘density at a point’ give

rise to ‘density topologies’ [BinO1], which are translation-invariant since they may

be obtained via translation to a fixed reference point: early examples, which orig-

inate in spirit with Denjoy as interpreted by Haupt and Pauc [HauP], were studied

intensively in [GofW], [GofNN], soon followed by [Mar1,2] and [Mue]; more re-

cent examples include [FilW] and others investigated by the Wilczyński school, cf.

[Wil].

Proposition 1 below embraces as an immediate corollary the case H = G with

G locally compact and σ the Haar density topology (see [BinO2]). Proposition

2 proves that Proposition 1 applies also to the ideal topology (in the sense of

[LukMZ]) generated from the ideal of Haar null sets of an abelian Polish group.

We recall that a group H carries a left semi-topological structure τ if the topology

τ is left invariant [ArhT] (hU ∈ τ iff U ∈ τ); the structure is semi-topological if it is

also right invariant, i.e. briefly: τ is translation invariant. H is a quasi-topological

group under τ if τ is both left and right invariant and inversion is τ-continuous.

Definition 1.1. For H a group with a translation-invariant topology τ, call a topol-

ogy σ ⊇ τ a Steinhaus refinement if:

i) intτ(AA−1) 6= /0 for each non-empty A ∈ σ, and

ii) σ is involutive-translation invariant: hA−1 ∈ σ for all A ∈ σ and all h ∈ H.

Property (ii) above (called simply ‘invariance’ in [BarFN]) apparently calls for

only left invariance, but in fact, via double inversion, delivers translation invari-

ance, since Uh = (h−1U−1)−1; then H under σ is a semi-topological group with

a continuous inverse, so a quasi-topological group. We address the step from the

simple property to the composite in

Proposition 1. If τ is translation-invariant, and σ ⊇ τ is a Steinhaus refinement

topology, then intτ(AB−1) 6= /0 for non-empty A,B ∈ σ. In particular, as σ is pre-

served under inversion, also intτ(AB) 6= /0 for A,B ∈ σ.

Proof. Suppose A,B ∈ σ are non-empty; as B−1 ∈ σ, choose a ∈ A and b ∈ B; then

by (ii)
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1H ∈C := a−1A∩b−1B−1 ∈ σ.

By (i), for some non-empty W ∈ τ,

W ⊆CC−1 = (a−1A∩b−1B) · (A−1a∩B−1b)⊆ (a−1A) · (B−1b).

As τ is translation invariant, aW b−1 ∈ τ and

aWb−1 ⊆ AB−1,

the latter since for each w ∈W there are x ∈ A,y ∈ B−1 with

w = a−1x.yb : awb−1 = xy ∈ AB−1.

So intτ(AB−1) 6= /0. �

Corollary 1.1. In a locally compact group the Haar density topology is a Steinhaus

refinement.

Proof. Property (i) follows from Weil’s theorem since density-open sets are non-

null measurable; left translation invariance in (ii) follows from left invariance of

Haar measure, while involutive invariance holds, as any measurable set of positive

Haar measure has non-null inverse ([HewR, 15.14], cf. Part II [BinO5, §2 Lemma

H]). �

A weaker version, inspired by metric transitivity, comes from applying the fol-

lowing concept.

Definition 1.2. Say that a group H acts transitively on a family H ⊆℘(G) if for

each A,B ∈ H there is h ∈ H with A∩hB ∈ H .

Thus a locally compact topological group acts transitively on its non-null Haar

measurable subsets (in fact, either-sidedly); this follows from Fubini’s Theorem

[Hal, 36C], via the average theorem [Hal, 59.F]:∫
G
|g−1A∩B|dg = |A| · |B−1| (A,B ∈ M ),

(g = ab−1 iff g−1a = b) – cf. [TomW, §11.3 after Th. 11.17].

[MatZ] show that in any non-locally compact abelian Polish group G there exist

two non-Haar null sets, A,B /∈ H N , such that A∩ hB ∈ H N for all h; that is, G

there does not act transitively on the non-Haar null sets.

Definition 1.3. (cf. [BarFN]). In a quasi-topological group (H,τ) say that a proper

σ-ideal H has the Simple Steinhaus Property AA−1 if AA−1 has interior points for

universally measurable subsets A /∈ H .

Proposition 1′ (cf. [Kha, Th. 1]). In a group (H,τ) with τ translation-invariant,

if H acts transitively on a family of subsets H with the simple Steinhaus property,

then H has the (composite) Steinhaus property:

intτ(AB−1) 6= /0 for A,B ∈ H .
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Furthermore, if H is preserved under inversion, then also

intτ(AB) 6= /0 for A,B ∈ H .

Proof. For A,B ∈ H choose h with C := A∩hB ∈ H ; then

CC−1h = (A∩hB)(A−1∩B−1h−1)⊆ AB−1. �

Proposition 2. If (H,τ) is a quasi-topological group (i.e. τ is invariant with con-

tinuous inversion) carrying a left invariant σ-ideal H with the Steinhaus property

and τ∩H = { /0}, then the ideal-topology σ with basis

B := {U\N : U ∈ τ,N ∈ H }

is a Steinhaus refinement of τ.

In particular, for (H,τ) an abelian Polish group, the ideal topology generated

by its σ-ideal of Haar null subsets is a Steinhaus refinement.

Proof. If U,V ∈ B and w ∈ U ∩V, choose M,N ∈ H and WM ,WN ∈ τ such that

x ∈ (WM\M)⊆U and x ∈ (WN\N)⊆V. Then as M∪N ∈ H ,

x ∈ (WM ∩WN)\(M ∪N) ∈ B .

So B generates a topology σ refining τ. With the same notation, hU = hWM\hM ∈
σ, as hM ∈ H, and U−1 =W−1

M \M−1. Finally, UU−1 has non-empty τ-interior, as

U /∈ H and is non-empty.

As for the final assertion concerned with an abelian Polish group context, note

that if N is Haar null (N ∈ H N ), then µ(hN) = 0 for some µ ∈ P (G) and all

h ∈ H, so hN ∈ H N for all h ∈ H. Furthermore, if A /∈ H N , then A−1 /∈ H N :

for otherwise, µ(hA−1) = 0 for some µ ∈ P (G) and all h ∈ H; then, taking µ̃(B) =
µ(B−1) for Borel B, we have µ̃(A) = 0 and µ̃(hA) = µ(A−1h−1) = 0 for all h ∈ H,
a contradiction. �

Remark. A left Haar null set need not be right Haar null: for one example see

[ShiT], and for more general non-coincidence see Solecki [Sol1, Cor. 6]. So the

argument in Prop. 2 does not extend to the family of left Haar null sets H N
of a non-commutative Polish group. Indeed, Solecki [Sol2, Th. 1.4] shows in

the context of a countable product of countable groups that the simpler Steinhaus

property holds for H N amb (involving simultaneous left- and right-sided translation

– see Part III §1) iff H N amb = H N .

Next, we reproduce a result from [Kom]. Recall that µ is quasi-invariant if

µ-nullity is translation invariant. The transitivity assumption (of co-nullity) is mo-

tivated by Smítal’s lemma, which refers to a countable dense set – see [KucS].

Theorem K ([Kom, Th. 5]). If µ ∈ P (G) is quasi-invariant and there exists a

countable subset H ⊆ G with HM co-null for all M ∈ M+(µ), then int(AB−1) 6= /0
for all A,B ∈ M+(µ).
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Proof. By regularity, we may assume A,B ∈ M+(µ) are compact, so AB−1 is com-

pact. Fix g ∈ G; then by quasi-invariance µ(gB)> 0. So by the transitivity assump-

tion, both G\HgB and G\HA are null, and so HA∩HgB 6= /0. Say h1a = h2gb, for

some a ∈ A,b ∈ B,h1,h2 ∈ H; then g = h−1
2 h1ab−1. As g was arbitrary,

G =
⋃

h∈H
h−1

2 h1AB−1.

By Baire’s Theorem, as H is countable, int(AB−1) 6= /0. �

2. BORELL’S INTERIOR-POINT PROPERTY

For completeness of this overview of the Steinhaus-Weil interior-point property,

we offer in brief here the context and statement of a (by now) classical Steinhaus-

like result in probability theory; this differs in that the Polish group now specializes

to an infinite-dimensional topological vector space and the reference measure is

Gaussian, so no longer invariant. We refer to the related paper [BinO2] for further

details and background literature, and to our generalizations to Polish groups and

other reference measures.

For X a locally convex topological vector space, γ a probability measure on the

σ-algebra of the cylinder sets generated by the dual space X∗ (equivalently, for X

separable Fréchet, e.g. separable Banach, the Borel sets), with X∗ ⊆ L2(γ) : then γ

is called Gaussian on X (‘gamma for Gaussian’, following [Bog]) iff γ◦ℓ−1 defined

by
γ◦ ℓ−1(B) = γ(ℓ−1(B)) (Borel B ⊆ R)

is Gaussian (normal) on R for every ℓ ∈ X∗ ⊆ L2(γ). For a monograph treatment of

Gaussianity in a Hilbert-space setting, see Janson [Jan]. Write γh(K) := γ(K + h)
for the translate by h. Relative quasi-invariance of γh and γ, that for all compact K

γh(K)> 0 iff γ(K)> 0,

holds relative to a set of vectors h ∈ X (the admissible directions) forming a vector

subspace known as the Cameron-Martin space, H(γ). Then γh and γ are equivalent,

γ ∼ γh, iff h ∈ H(γ). Indeed, if γ ∼ γh fails, then the two measures are mutually

singular, γh⊥γ (the Hajek-Feldman Theorem – cf. [Bog, Th. 2.4.5, 2.7.2]).

Continuing with the assumption above on X∗, as X ⊆ X∗∗ ⊆ L2(γ), one can

equip H = H(γ) with a norm derived from that on L2(γ). In brief, this is done with

reference to a natural covariance under γ obtained by regarding f ∈ X∗ as a random

variable and working with its zero-mean version f − γ( f ); then, for h ∈ H, δ
γ
h, the

(shifted) evaluation map defined by δ
γ
h( f ) := f (h)−γ( f ) for f ∈ X∗, is represented

as 〈 f −γ( f ), ĥ〉L2(γ) for some ĥ ∈ L2(γ). (Here for γ symmetric γ( f ) = 0, so δ
γ
h = δh

is the Dirac measure at h.) This is followed by identifying h with ĥ (for h ∈ H),

and |h|H := ||ĥ||L2(γ) is a norm on H arising from the inner product

(h,k)H :=

∫
X

ĥ(x)k̂(x)dγ(x).
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Formally, the construction first requires an extension of the domain of δ
γ
h to X∗

γ ,

the closed span of {x∗− γ(x∗) : x∗ ∈ X∗} in L2(γ), a Hilbert subspace in which to

apply the Riesz Representation Theorem.

We may now state the Steinhaus-like property due, essentially in this form, to

Christer Borell. ([LeP, Prop. 1] offers a weaker, ‘one-dimensional-section’ form

with the origin an interior point of the difference set relative to each line of H

passing through it; we may call it the H-radial form by analogy with the Q-radial

form [Kuc, §10.1] of Euclidean spaces: the rational points are indeed an additive

subgroup. The alternative term ‘algebraic interior point’ is also in use, e.g. in the

literature of functional equations – cf. [Brz].)

Theorem B (Borell’s Interior-point Theorem, [Bor, Cor. 4.1] – see [Bog, p. 64]).

For γ a Gaussian measure on a locally convex topological space X with X∗⊆ L2(γ),
and A any non-null γ-measurable subset A of X , the difference set A−A contains

a |.|H-open nhd (neighbourhood) of 0 in the Cameron Martin space H = H(γ), i.e.

(A−A)∩H contains a H-open nhd of 0.

This follows from the continuity in h of the density of γh wrt γ ([Bog, Cor.

2.4.3]), as given in the Cameron-Martin-Girsanov formula:

exp

(

ĥ(x)−
1

2
||ĥ||2

L2(γ)

)

(CM)

(where ĥ ‘Riesz-represents’ h, i.e. x∗(h) = 〈x∗, ĥ〉, for x∗ ∈ X∗, as above). Thus

here a modified Steinhaus Theorem holds: the relative-interior-point theorem.
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