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THE STEINHAUS-WEIL PROPERTY:
IV. OTHER INTERIOR-POINT PROPERTIES

N. H. BINGHAM AND A.J. OSTASZEWSKI

In memory of Harry 1. Miller (1939-2018)

ABSTRACT. In this the final part of the four-part series [BinO3; 4,5,6] on the-
orems of Steinhaus-Weil type, as a companion piece to Part III, [BinO6], on
Weil-type refinement topologies, we study from the perspective of refinement
topologies the relation of the composite AB~! to the classical setting of the AA™!
Steinhaus interior-point theorem.

1. THE STEINHAUS PROPERTY AA_1 VERSUS THE STEINHAUS PROPERTY
AB™!

We clarify below the relation between two versions of the Steinhaus interior
points property: the simple (sometimes called ‘classical’) version concerning sets
AA~" and the composite, more embracing one, concerning sets AB~!, for sets from
a given family #. The latter is connected to a strong form of metric transitivity:
Kominek [Kom] shows, for a general separable Baire topological group G equipped
with an inner-regular measure u defined on some c-algebra M, that AB~! has non-
empty interior for all A,B € M, (u), the sets in M of positive y-measure, iff for
each countable dense set D and each E € M (u) the set X \DE € My(u), the sets in
M of y-measure zero; this is recalled in Theorem K below. The composite property
is thus related to the Smital property, for which see [BarFN]. Care is required when
moving to the alternative property for AB, since the family # need not be preserved
under inversion.

In general the simple property does not imply the composite: Matotiskova and
Zeleny [MatZ] show that in any non-locally compact abelian Polish group there are
closed non-(left) Haar null sets A, B such that A 4+ B has empty interior. Jabtoriska
[Jab] has shown that likewise in any non-locally compact abelian Polish group
there are closed non-Haar meager sets A, B such that A 4+ B has empty interior; see
also [BanGJS]. Bartoszewicz and M. and T. Filipczak [BarFF, Ths. 1, 4] analyze
the Bernoulli product measure on {0,1}" with p the probability of the digit 1;
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see [BinO3, §8.15]. The product space may be regarded as comprising canonical
binary digit expansions of the additive reals modulo 1 (in which case the measure
is not invariant). Here the (Borel) set A of binary expansions with asymptotic
frequency p of the digit 1 has [0,1) as its difference set iff % <p< %; however
A + A has empty interior unless p = % (the base 2 simple-normal-numbers case).

Below we identify some conditions on a family of sets A with the simple AA~!
property which do imply the AB~! property. What follows is a generalization to a
group context of relevant observations from [BinO3] from the classical context of
R.

The motivation for the definition below is that its subject, the space H, is a sub-
group of a topological group G from which it inherits a (necessarily) translation-
invariant (either-sidedly) topology t. Various notions of ‘density at a point’ give
rise to ‘density topologies’ [BinO1], which are translation-invariant since they may
be obtained via translation to a fixed reference point: early examples, which orig-
inate in spirit with Denjoy as interpreted by Haupt and Pauc [HauP], were studied
intensively in [GofW], [GofNN], soon followed by [Marl,2] and [Mue]; more re-
cent examples include [FilW] and others investigated by the Wilczyinski school, cf.
[Wil].

Proposition 1 below embraces as an immediate corollary the case H = G with
G locally compact and ¢ the Haar density topology (see [BinO2]). Proposition
2 proves that Proposition 1 applies also to the ideal topology (in the sense of
[LukMZ]) generated from the ideal of Haar null sets of an abelian Polish group.

We recall that a group H carries a left semi-topological structure 7T if the topology
T is left invariant [ArhT] (AU € Tiff U € 7); the structure is semi-topological if it is
also right invariant, i.e. briefly: 7T is translation invariant. H is a quasi-topological
group under 7 if T is both left and right invariant and inversion is T-continuous.

Definition 1.1. For H a group with a translation-invariant topology <, call a topol-
0gy 6 2 T a Steinhaus refinement if:

i) int;(AA~") # 0 for each non-empty A € G, and

ii) © is involutive-translation invariant: hA~' € 6 forall A€ c and allh € H.

Property (ii) above (called simply ‘invariance’ in [BarFN]) apparently calls for
only left invariance, but in fact, via double inversion, delivers translation invari-
ance, since Uh = (h~'U~")~!; then H under o is a semi-topological group with
a continuous inverse, so a quasi-topological group. We address the step from the
simple property to the composite in

Proposition 1. If T is translation-invariant, and G 2 T is a Steinhaus refinement
topology, then into(AB~1) # O for non-empty A,B € ©. In particular; as G is pre-
served under inversion, also int;(AB) # 0 for A,B € G.

Proof. Suppose A, B € ¢ are non-empty; as B! € 6, choose a € A and b € B; then
by (ii)
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lpeC:=a'Anb'B ' co.
By (i), for some non-empty W € 7,
wccC =@ ''Anb7'B)- (A" 'anB'b) C (a7'A) - (B~ D).
As T is translation invariant, aWb ! € T and
aWb~ ' CAB!,
the latter since for each w € W there are x € A,y € B~! with
w=a lxyb: awb™ ! =xyc AB7L,
So int;(AB~!) # 0. a

Corollary 1.1. In a locally compact group the Haar density topology is a Steinhaus
refinement.

Proof. Property (i) follows from Weil’s theorem since density-open sets are non-
null measurable; left translation invariance in (ii) follows from left invariance of
Haar measure, while involutive invariance holds, as any measurable set of positive
Haar measure has non-null inverse ([HewR, 15.14], cf. Part II [BinO5, §2 Lemma
H]). U

A weaker version, inspired by metric transitivity, comes from applying the fol-
lowing concept.

Definition 1.2. Say that a group H acts transitively on a family H C (G) if for
each A,B € H thereis h € H with ANhB € #.

Thus a locally compact topological group acts transitively on its non-null Haar
measurable subsets (in fact, either-sidedly); this follows from Fubini’s Theorem
[Hal, 36C], via the average theorem [Hal, 59.F]:

[lgtanBlag= a5 (B e ),
G

(g =ab 'iff g7'a = b) — cf. [TomW, §11.3 after Th. 11.17].

[MatZ] show that in any non-locally compact abelian Polish group G there exist
two non-Haar null sets, A,B ¢ H N, such that ANhB € HN for all h; that is, G
there does not act transitively on the non-Haar null sets.

Definition 1.3. (cf. [BarFN]). In a quasi-topological group (H ,7) say that a proper
o-ideal H has the Simple Steinhaus Property AA~' if AA~! has interior points for
universally measurable subsets A ¢ H .

Proposition 1’ (cf. [Kha, Th. 1]). In a group (H,t) with T translation-invariant,
if H acts transitively on a family of subsets H with the simple Steinhaus property,
then H has the (composite) Steinhaus property:

int;(AB™") £ 0 for A\ B H.
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Furthermore, if H is preserved under inversion, then also

int;(AB) # 0 for A,B € .

Proof. For A,B € # choose h with C := ANhB € H; then
CC'h=(AnhB)(A"'nB 'h 1)y CcAB™". O

Proposition 2. If (H,t) is a quasi-topological group (i.e. T is invariant with con-
tinuous inversion) carrying a left invariant 6-ideal H with the Steinhaus property
and 1N H = {0}, then the ideal-topology & with basis

B:={U\N:Uet,NecH}

is a Steinhaus refinement of T.
In particular, for (H,t) an abelian Polish group, the ideal topology generated
by its 6-ideal of Haar null subsets is a Steinhaus refinement.

Proof. If U,V € Band w € U NV, choose M,N € H and Wy;,Wy € T such that
x€ (Wy\M)CUandxe (Wy\N) CV. Thenas MUN € H,

X e (WMﬂWN)\(MUN) € B.

So ‘B generates a topology G refining t. With the same notation, hU = hWy,\hM €
c,ashM c H and U~! = Wﬁgl\M ~!. Finally, UU ~! has non-empty t-interior, as
U ¢ # and is non-empty.

As for the final assertion concerned with an abelian Polish group context, note
that if N is Haar null (N € HN), then u(hN) = 0 for some u € P(G) and all
h € H,sohN € HN for all h € H. Furthermore, if A ¢ HN, then A~! ¢ HN:
for otherwise, u(hA~!) = 0 for some u € P(G) and all i € H; then, taking ji(B) =
u(B~1) for Borel B, we have ji(A) = 0 and ji(hA) = u(A~'h™!) =0 forall h € H,
a contradiction. (]

Remark. A left Haar null set need not be right Haar null: for one example see
[ShiT], and for more general non-coincidence see Solecki [Soll, Cor. 6]. So the
argument in Prop. 2 does not extend to the family of left Haar null sets H N
of a non-commutative Polish group. Indeed, Solecki [Sol2, Th. 1.4] shows in
the context of a countable product of countable groups that the simpler Steinhaus
property holds for H A, ,,, (involving simultaneous left- and right-sided translation
—see Part III §1) iff H Ny, = HAN.

Next, we reproduce a result from [Kom]. Recall that u is quasi-invariant if
p-nullity is translation invariant. The transitivity assumption (of co-nullity) is mo-
tivated by Smital’s lemma, which refers to a countable dense set — see [KucS].

Theorem K ([Kom, Th. 5]). If u € P(G) is quasi-invariant and there exists a
countable subset H C G with HM co-null for all M € M., (u), then int(AB~1) # 0
forall A,B € M, (u).
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Proof. By regularity, we may assume A, B € M (u) are compact, so AB~! is com-
pact. Fix g € G; then by quasi-invariance u(gB) > 0. So by the transitivity assump-
tion, both G\HgB and G\HA are null, and so HANHgB # 0. Say hya = hpgb, for
somea €A,be B,h;,hy € H;then g = hz_lhlabfl. As g was arbitrary,

_ ~1 -1
G=J,., ' mAB™".
By Baire’s Theorem, as H is countable, int(AB~") # 0. O

2. BORELL’S INTERIOR-POINT PROPERTY

For completeness of this overview of the Steinhaus-Weil interior-point property,
we offer in brief here the context and statement of a (by now) classical Steinhaus-
like result in probability theory; this differs in that the Polish group now specializes
to an infinite-dimensional topological vector space and the reference measure is
Gaussian, so no longer invariant. We refer to the related paper [BinO2] for further
details and background literature, and to our generalizations to Polish groups and
other reference measures.

For X a locally convex topological vector space, 'y a probability measure on the
c-algebra of the cylinder sets generated by the dual space X* (equivalently, for X
separable Fréchet, e.g. separable Banach, the Borel sets), with X* C L?(Y) : then
is called Gaussian on X (‘gamma for Gaussian’, following [Bog]) iff yo/~! defined
b

Y Yol (B) =y(¢"'(B)) (Borel BC R)
is Gaussian (normal) on R for every ¢ € X* C L?(y). For a monograph treatment of
Gaussianity in a Hilbert-space setting, see Janson [Jan]. Write ,(K) := y(K + h)
for the translate by h. Relative quasi-invariance of vy, and v, that for all compact K

Yn(K) > 0 iff y(K) > 0,

holds relative to a set of vectors i € X (the admissible directions) forming a vector
subspace known as the Cameron-Martin space, H (7). Then vy, and 7y are equivalent,
Y ~ Y, iff h € H(Y). Indeed, if y ~ v, fails, then the two measures are mutually
singular, y, Ly (the Hajek-Feldman Theorem — cf. [Bog, Th. 2.4.5, 2.7.2]).

Continuing with the assumption above on X*, as X C X** C L*(y), one can
equip H = H(7y) with a norm derived from that on L (7). In brief, this is done with
reference to a natural covariance under Y obtained by regarding f € X* as a random
variable and working with its zero-mean version f —y(f); then, for h € H, SZ, the
(shifted) evaluation map defined by SZ (f) := f(h) —y(f) for f € X*, is represented
as <f—'y(f),fl>Lz(Y) for some /i € L?(y). (Here for y symmetric Y(f) = 0, so 8! = §,
is the Dirac measure at 4.) This is followed by identifying & with & (for h € H),
and |h|y := ||hl |12(y) is anorm on H arising from the inner product

(h )y = /X Bk () dy(x).
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Formally, the construction first requires an extension of the domain of SZ to X,

the closed span of {x* —y(x*) : x* € X*} in L*(Y), a Hilbert subspace in which to
apply the Riesz Representation Theorem.

We may now state the Steinhaus-like property due, essentially in this form, to
Christer Borell. ([LeP, Prop. 1] offers a weaker, ‘one-dimensional-section” form
with the origin an interior point of the difference set relative to each line of H
passing through it; we may call it the H-radial form by analogy with the QQ-radial
form [Kuc, §10.1] of Euclidean spaces: the rational points are indeed an additive
subgroup. The alternative term ‘algebraic interior point’ is also in use, e.g. in the
literature of functional equations — cf. [Brz].)

Theorem B (Borell’s Interior-point Theorem, [Bor, Cor. 4.1] —see [Bog, p. 64]).
For y a Gaussian measure on a locally convex topological space X with X* C L*(Y),
and A any non-null y-measurable subset A of X, the difference set A — A contains
a |.|g-open nhd (neighbourhood) of 0 in the Cameron Martin space H = H(Y), i.e.
(A—A)NH contains a H-open nhd of 0.

This follows from the continuity in /& of the density of 7y, wrt v ([Bog, Cor.
2.4.3]), as given in the Cameron-Martin-Girsanov formula:

A 1.4
exp <h(x) — EHhHizm> (CM)

(where /i ‘Riesz-represents’ h, i.e. x*(h) = (x*,h), for x* € X*, as above). Thus
here a modified Steinhaus Theorem holds: the relative-interior-point theorem.
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