The Steinhaus-Weil property: IV. Other interior-point properties by N. H. Bingham and A. J. Ostaszewski

In memory of Harry I. Miller (1939-2018)

Abstract. In this the final part of the four-part series [BinO3; 4,5,6] on theorems of Steinhaus-Weil type, as a companion piece to Part III, [BinO6], on Weil-type refinement topologies, we study from the perspective of refinement topologies the relation of the composite AB^{-1} to the classical setting of the AA^{-1} Steinhaus interior-point theorem.

Keywords. Steinhaus-Weil property, Cameron-Martin space, Borell's theorem, refinement topology, Haar density topology, quasi-invariance. **Classification**: Primary 22A10, 43A05; Secondary 28C10.

1 The Steinhaus property AA^{-1} versus the Steinhaus property AB^{-1}

We clarify below the relation between two versions of the Steinhaus interior points property: the simple (sometimes called 'classical') version concerning sets AA^{-1} and the composite, more embracing one, concerning sets AB^{-1} , for sets from a given family \mathcal{H} . The latter is connected to a strong form of metric transitivity: Kominek [Kom] shows, for a general separable Baire topological group G equipped with an inner-regular measure μ defined on some σ -algebra \mathcal{M} , that AB^{-1} has non-empty interior for all $A, B \in \mathcal{M}_+(\mu)$, the sets in \mathcal{M} of positive μ -measure, iff for each countable dense set D and each $E \in \mathcal{M}_+(\mu)$ the set $X \setminus DE \in \mathcal{M}_0(\mu)$, the sets in \mathcal{M} of μ -measure zero; this is recalled in Theorem K below. The composite property is thus related to the Smital property, for which see [BarFN]. Care is required when moving to the alternative property for AB, since the family \mathcal{H} need not be preserved under inversion.

In general the simple property does not imply the composite: Matoŭsková and Zelený [MatZ] show that in any non-locally compact abelian Polish group there are closed non-(left) Haar null sets A, B such that A + B has empty interior. Jabłońska [Jab] has shown that likewise in any non-locally compact abelian Polish group there are closed non-Haar meager sets A, B such that A + B has empty interior; see also [BanGJS]. Bartoszewicz and M. and T. Filipczak [BarFF, Ths. 1, 4] analyze the Bernoulli product measure on $\{0, 1\}^{\mathbb{N}}$ with p the probability of the digit 1; see [BinO3, §8.15]. The product space may be regarded as comprising canonical binary digit expansions of the additive reals modulo 1 (in which case the measure is not invariant). Here the (Borel) set A of binary expansions with asymptotic frequency p of the digit 1 has [0, 1) as its difference set iff $\frac{1}{4} \leq p \leq \frac{3}{4}$; however A + A has empty interior unless $p = \frac{1}{2}$ (the base 2 simple-normal-numbers case).

Below we identify some conditions on a family of sets A with the simple AA^{-1} property which do imply the AB^{-1} property. What follows is a generalization to a group context of relevant observations from [BinO3] from the classical context of \mathbb{R} .

The motivation for the definition below is that its subject, the space H, is a subgroup of a topological group G from which it inherits a (necessarily) translation-invariant (either-sidedly) topology τ . Various notions of 'density at a point' give rise to 'density topologies' [BinO1], which are translationinvariant since they may be obtained via translation to a fixed reference point: early examples, which originate in spirit with Denjoy as interpreted by Haupt and Pauc [HauP], were studied intensively in [GofW], [GofNN], soon followed by [Mar1,2] and [Mue]; more recent examples include [FilW] and others investigated by the Wilczyński school, cf. [Wil].

Proposition 1 below embraces as an immediate corollary the case H = G with G locally compact and σ the Haar density topology (see [BinO2]). Proposition 2 proves that Proposition 1 applies also to the ideal topology (in the sense of [LukMZ]) generated from the ideal of Haar null sets of an abelian Polish group.

We recall that a group H carries a *left semi-topological* structure τ if the topology τ is left invariant [ArhT] ($hU \in \tau$ iff $U \in \tau$); the structure is *semi-topological* if it is also right invariant, i.e. briefly: τ is translation invariant. H is a *quasi-topological group* under τ if τ is both left and right invariant and inversion is τ -continuous.

Definition. For H a group with a translation-invariant topology τ , call a topology $\sigma \supseteq \tau$ a *Steinhaus refinement* if:

i) $\operatorname{int}_{\tau}(AA^{-1}) \neq \emptyset$ for each non-empty $A \in \sigma$, and

ii) σ is involutive-translation invariant: $hA^{-1} \in \sigma$ for all $A \in \sigma$ and all $h \in H$.

Property (ii) above (called simply 'invariance' in [BarFN]) apparently calls for only left invariance, but in fact, via double inversion, delivers translation invariance, since $Uh = (h^{-1}U^{-1})^{-1}$; then H under σ is a semi-topological group with a continuous inverse, so a *quasi-topological group*. We address the step from the simple property to the composite in

Proposition 1. If τ is translation-invariant, and $\sigma \supseteq \tau$ is a Steinhaus refinement topology, then $\operatorname{int}_{\tau}(AB^{-1}) \neq \emptyset$ for non-empty $A, B \in \sigma$. In particular, as σ is preserved under inversion, also $\operatorname{int}_{\tau}(AB) \neq \emptyset$ for $A, B \in \sigma$.

Proof. Suppose $A, B \in \sigma$ are non-empty; as $B^{-1} \in \sigma$, choose $a \in A$ and $b \in B$; then by (ii)

$$1_H \in C := a^{-1}A \cap b^{-1}B^{-1} \in \sigma.$$

By (i), for some non-empty $W \in \tau$,

$$W \subseteq CC^{-1} = (a^{-1}A \cap b^{-1}B) \cdot (A^{-1}a \cap B^{-1}b) \subseteq (a^{-1}A) \cdot (B^{-1}b).$$

As τ is translation invariant, $aWb^{-1} \in \tau$ and

$$aWb^{-1} \subseteq AB^{-1},$$

the latter since for each $w \in W$ there are $x \in A, y \in B^{-1}$ with

$$w = a^{-1}x.yb:$$
 $awb^{-1} = xy \in AB^{-1}.$

So $\operatorname{int}_{\tau}(AB^{-1}) \neq \emptyset$.

Corollary 1. In a locally compact group the Haar density topology is a Steinhaus refinement.

Proof. Property (i) follows from Weil's theorem since density-open sets are non-null measurable; left translation invariance in (ii) follows from left invariance of Haar measure, while involutive invariance holds, as any measurable set of positive Haar measure has non-null inverse ([HewR, 15.14], cf. Part II [BinO5, \S 2 Lemma H]).

A weaker version, inspired by metric transitivity, comes from applying the following concept. **Definition.** Say that a group H acts transitively on a family $\mathcal{H} \subseteq \wp(G)$ if for each $A, B \in \mathcal{H}$ there is $h \in H$ with $A \cap hB \in \mathcal{H}$.

Thus a locally compact topological group acts transitively on its non-null Haar measurable subsets (in fact, either-sidedly); this follows from Fubini's Theorem [Hal, 36C], via the average theorem [Hal, 59.F]:

$$\int_{G} |g^{-1}A \cap B| dg = |A| \cdot |B^{-1}| \qquad (A, B \in \mathcal{M}),$$

 $(g = ab^{-1} \text{ iff } g^{-1}a = b) - \text{cf.}$ [TomW, §11.3 after Th. 11.17].

[MatZ] show that in any non-locally compact abelian Polish group G there exist two non-Haar null sets, $A, B \notin \mathcal{HN}$, such that $A \cap hB \in \mathcal{HN}$ for all h; that is, G there does *not* act transitively on the non-Haar null sets.

Definition (cf. [BarFN]). In a quasi-topological group (H, τ) say that a proper σ -ideal \mathcal{H} has the *Simple Steinhaus Property* AA^{-1} if AA^{-1} has interior points for universally measurable subsets $A \notin \mathcal{H}$.

Proposition 1' (cf. [Kha, Th. 1]). In a group (H, τ) with τ translationinvariant, if H acts transitively on a family of subsets \mathcal{H} with the simple Steinhaus property, then \mathcal{H} has the (composite) Steinhaus property:

$$\operatorname{int}_{\tau}(AB^{-1}) \neq \emptyset \text{ for } A, B \in \mathcal{H}$$

Furthermore, if \mathcal{H} is preserved under inversion, then also

$$\operatorname{int}_{\tau}(AB) \neq \emptyset \text{ for } A, B \in \mathcal{H}.$$

Proof. For $A, B \in \mathcal{H}$ choose h with $C := A \cap hB \in \mathcal{H}$; then

$$CC^{-1}h = (A \cap hB)(A^{-1} \cap B^{-1}h^{-1}) \subseteq AB^{-1}.$$

Proposition 2. If (H, τ) is a quasi-topological group (i.e. τ is invariant with continuous inversion) carrying a left invariant σ -ideal \mathcal{H} with the Steinhaus property and $\tau \cap \mathcal{H} = \{\emptyset\}$, then the ideal-topology σ with basis

$$\mathcal{B} := \{U \setminus N : U \in \tau, N \in \mathcal{H}\}$$

is a Steinhaus refinement of τ .

In particular, for (H, τ) an abelian Polish group, the ideal topology generated by its σ -ideal of Haar null subsets is a Steinhaus refinement.

Proof. If $U, V \in \mathcal{B}$ and $w \in U \cap V$, choose $M, N \in \mathcal{H}$ and $W_M, W_N \in \tau$ such that $x \in (W_M \setminus M) \subseteq U$ and $x \in (W_N \setminus N) \subseteq V$. Then as $M \cup N \in \mathcal{H}$,

$$x \in (W_M \cap W_N) \setminus (M \cup N) \in \mathcal{B}.$$

So \mathcal{B} generates a topology σ refining τ . With the same notation, $hU = hW_M \setminus hM \in \sigma$, as $hM \in H$, and $U^{-1} = W_M^{-1} \setminus M^{-1}$. Finally, UU^{-1} has non-empty τ -interior, as $U \notin \mathcal{H}$ and is non-empty.

As for the final assertion concerned with an *abelian* Polish group context, note that if N is Haar null $(N \in \mathcal{HN})$, then $\mu(hN) = 0$ for some $\mu \in \mathcal{P}(G)$ and all $h \in H$, so $hN \in \mathcal{HN}$ for all $h \in H$. Furthermore, if $A \notin \mathcal{HN}$, then $A^{-1} \notin \mathcal{HN}$: for otherwise, $\mu(hA^{-1}) = 0$ for some $\mu \in \mathcal{P}(G)$ and all $h \in H$; then, taking $\tilde{\mu}(B) = \mu(B^{-1})$ for Borel B, we have $\tilde{\mu}(A) = 0$ and $\tilde{\mu}(hA) = \mu(A^{-1}h^{-1}) = 0$ for all $h \in H$, a contradiction. \Box

Remark. A left Haar null set need not be right Haar null: for one example see [ShiT], and for more general non-coincidence see Solecki [Sol1, Cor. 6]. So the argument in Prop. 2 does not extend to the family of left Haar null sets \mathcal{HN} of a *non-commutative* Polish group. Indeed, Solecki [Sol2, Th. 1.4] shows in the context of a countable product of countable groups that the simpler Steinhaus property holds for \mathcal{HN}_{amb} (involving simultaneous left-and right-sided translation – see Part III §1) iff $\mathcal{HN}_{amb} = \mathcal{HN}$.

Next, we reproduce a result from [Kom]. Recall that μ is quasi-invariant if μ -nullity is translation invariant. The transitivity assumption (of co-nullity) is motivated by *Smítal's lemma*, which refers to a countable dense set – see [KucS].

Theorem K ([Kom, Th. 5]). If $\mu \in \mathcal{P}(G)$ is quasi-invariant and there exists a countable subset $H \subseteq G$ with HM co-null for all $M \in \mathcal{M}_+(\mu)$, then $\operatorname{int}(AB^{-1}) \neq \emptyset$ for all $A, B \in \mathcal{M}_+(\mu)$.

Proof. By regularity, we may assume $A, B \in \mathcal{M}_+(\mu)$ are compact, so AB^{-1} is compact. Fix $g \in G$; then by quasi-invariance $\mu(gB) > 0$. So by the transitivity assumption, both $G \setminus HgB$ and $G \setminus HA$ are null, and so

 $HA \cap HgB \neq \emptyset$. Say $h_1a = h_2gb$, for some $a \in A, b \in B, h_1, h_2 \in H$; then $g = h_2^{-1}h_1ab^{-1}$. As g was arbitrary,

$$G = \bigcup_{h \in H} h_2^{-1} h_1 A B^{-1}.$$

By Baire's Theorem, as H is countable, $int(AB^{-1}) \neq \emptyset$.

2 Borell's interior-point property

For completeness of this overview of the Steinhaus-Weil interior-point property, we offer in brief here the context and statement of a (by now) classical Steinhaus-like result in probability theory; this differs in that the Polish group now specializes to an infinite-dimensional topological vector space and the reference measure is Gaussian, so no longer invariant. We refer to the related paper [BinO2] for further details and background literature, and to our generalizations to Polish groups and other reference measures.

For X a locally convex topological vector space, γ a probability measure on the σ -algebra of the cylinder sets generated by the dual space X^* (equivalently, for X separable Fréchet, e.g. separable Banach, the Borel sets), with $X^* \subseteq L^2(\gamma)$: then γ is called *Gaussian* on X ('gamma for Gaussian', following [Bog]) iff $\gamma \circ \ell^{-1}$ defined by

$$\gamma \circ \ell^{-1}(B) = \gamma(\ell^{-1}(B))$$
 (Borel $B \subseteq \mathbb{R}$)

is Gaussian (normal) on \mathbb{R} for every $\ell \in X^* \subseteq L^2(\gamma)$. For a monograph treatment of Gaussianity in a Hilbert-space setting, see Janson [Jan]. Write $\gamma_h(K) := \gamma(K+h)$ for the translate by h. Relative quasi-invariance of γ_h and γ , that for all compact K

$$\gamma_h(K) > 0 \text{ iff } \gamma(K) > 0,$$

holds relative to a set of vectors $h \in X$ (the *admissible directions*) forming a vector subspace known as the *Cameron-Martin space*, $H(\gamma)$. Then γ_h and γ are equivalent, $\gamma \sim \gamma_h$, iff $h \in H(\gamma)$. Indeed, if $\gamma \sim \gamma_h$ fails, then the two measures are mutually singular, $\gamma_h \perp \gamma$ (the Hajek-Feldman Theorem – cf. [Bog, Th. 2.4.5, 2.7.2]).

Continuing with the assumption above on X^* , as $X \subseteq X^{**} \subseteq L^2(\gamma)$, one can equip $H = H(\gamma)$ with a norm derived from that on $L^2(\gamma)$. In brief, this

is done with reference to a natural covariance under γ obtained by regarding $f \in X^*$ as a random variable and working with its zero-mean version $f - \gamma(f)$; then, for $h \in H$, δ_h^{γ} , the (shifted) evaluation map defined by $\delta_h^{\gamma}(f) := f(h) - \gamma(f)$ for $f \in X^*$, is represented as $\langle f - \gamma(f), \hat{h} \rangle_{L^2(\gamma)}$ for some $\hat{h} \in L^2(\gamma)$. (Here for γ symmetric $\gamma(f) = 0$, so $\delta_h^{\gamma} = \delta_h$ is the Dirac measure at h.) This is followed by identifying h with \hat{h} (for $h \in H$), and $|h|_H := ||\hat{h}||_{L^2(\gamma)}$ is a norm on H arising from the inner product

$$(h,k)_H := \int_X \hat{h}(x)\hat{k}(x)d\gamma(x).$$

Formally, the construction first requires an extension of the domain of δ_h^{γ} to X_{γ}^* , the closed span of $\{x^* - \gamma(x^*) : x^* \in X^*\}$ in $L^2(\gamma)$, a Hilbert subspace in which to apply the Riesz Representation Theorem.

We may now state the Steinhaus-like property due, essentially in this form, to Christer Borell. ([LeP, Prop. 1] offers a weaker, 'one-dimensionalsection' form with the origin an interior point of the difference set relative to each line of H passing through it; we may call it the H-radial form by analogy with the Q-radial form [Kuc, §10.1] of Euclidean spaces: the rational points are indeed an additive subgroup. The alternative term 'algebraic interior point' is also in use, e.g. in the literature of functional equations – cf. [Brz].)

Theorem B (Borell's Interior-point Theorem, [Bor, Cor. 4.1] – see [Bog, p. 64]). For γ a Gaussian measure on a locally convex topological space X with $X^* \subseteq L^2(\gamma)$, and A any non-null γ -measurable subset A of X, the difference set A - A contains a $|.|_H$ -open nhd (neighbourhood) of 0 in the Cameron Martin space $H = H(\gamma)$, i.e. $(A - A) \cap H$ contains a H-open nhd of 0.

This follows from the continuity in h of the density of γ_h wrt γ ([Bog, Cor. 2.4.3]), as given in the *Cameron-Martin-Girsanov formula*:

$$\exp\left(\hat{h}(x) - \frac{1}{2} ||\hat{h}||_{L^2(\gamma)}^2\right) \tag{CM}$$

(where \hat{h} 'Riesz-represents' h, i.e. $x^*(h) = \langle x^*, \hat{h} \rangle$, for $x^* \in X^*$, as above). Thus here a modified Steinhaus Theorem holds: the *relative-interior-point* theorem.

References

[ArhT] A. Arhangelskii, M. Tkachenko, *Topological groups and related structures.* World Scientific, 2008.

[BanGJS] T. Banakh, S. Głąb, E. Jabłońska, J. Swaczyna, Haar- \mathcal{I} sets: looking at small sets in Polish groups through compact glasses. arXiv: 1803.06712.

[BarFF] A. Bartoszewicz, M. Filipczak, T. Filipczak, On supports of probability Bernoulli-like measures. J. Math. Anal. Appl. 462 (2018), 26–35.

[BarFN] A. Bartoszewicz, M. Filipczak, T. Natkaniec, On Smítal properties. Topology Appl. **158** (2011), 2066–2075.

[BinO1] N. H. Bingham and A. J. Ostaszewski, Beyond Lebesgue and Baire IV: Density topologies and a converse Steinhaus-Weil theorem. *Topology* and its Applications **239** (2018), 274-292 (arXiv:1607.00031).

[BinO2] N. H. Bingham and A. J. Ostaszewski, Beyond Haar and Cameron-

Martin: the Steinhaus support. Topology Appl. 260 (2019), 23–56 (arXiv:1805.02325v2).

[BinO3] N. H. Bingham and A. J. Ostaszewski, The Steinhaus-Weil property and its converse: subcontinuity and amenability. arXiv:1607.00049.

[BinO4] N. H. Bingham and A. J. Ostaszewski, The Steinhaus-Weil property: I. Subcontinuity and amenability. Preprint.

[BinO5] N. H. Bingham and A. J. Ostaszewski, The Steinhaus-Weil property: II. The Simmons-Mospan converse. Preprint.

[BinO6] N. H. Bingham and A. J. Ostaszewski, The Steinhaus-Weil property: III. Weil topologies. Preprint.

[Bog] V. I. Bogachev, *Gaussian Measures*, Math. Surveys & Monographs **62**, Amer Math Soc., 1998.

[Bor] C. Borell, Gaussian Radon measures on locally convex spaces, *Math. Scand.* **36** (1976), 265-284.

[Brz] J. Brzdęk, Subgroups of the group \mathbb{Z}_n and a generalization of the Gołąb-Schinzel functional equation. Aequat. Math. 43 (1992), 59–71.

[FilW] M. Filipczak, W. Wilczyński, Strict density topology on the plane. Measure case. Rend. Circ. Mat. Palermo (2) **60** (2011),113–124.

[GofNN] C. Goffman, C. J. Neugebauer and T. Nishiura, Density topology and approximate continuity, *Duke Math. J.* **28** (1961), 497–505.

[GofW] C. Goffman, D. Waterman, Approximately continuous transformations, *Proc. Amer. Math. Soc.* **12** (1961), 116–121.

[Hal] P. R. Halmos, *Measure theory*, Grad. Texts in Math. **18**, Springer 1974 (1st ed. Van Nostrand, 1950).

[HauP] O. Haupt, C. Pauc, La topologie approximative de Denjoy envisagée comme vraie topologie. C. R. Acad. Sci. Paris **234** (1952), 390–392.

[HewR] E. Hewitt, K. A. Ross, *Abstract harmonic analysis*, Vol. I, Grundl. math. Wiss. **115**, Springer 1963 [Vol. II, Grundl. **152**, 1970].

[Jab] E. Jabłońska, A theorem of Piccard's type in abelian Polish groups. Anal. Math. **42** (2016), 159–164.

[Jan] S. Janson, *Gaussian Hilbert spaces*. Cambridge Tracts in Mathematics **129**. Cambridge University Press, 1997.

[Kha] A. Kharazishvili, Some remarks on the Steinhaus property for invariant extensions of the Lebesgue measure, *Eur. J. Math.* **5** (2019), 81–90.

[Kom] Z. Kominek, On an equivalent form of a Steinhaus theorem, Math. (Cluj) **30** (53)(1988), 25-27.

[Kuc] M. Kuczma, An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality. 2nd ed., Birkhäuser, 2009 (1st ed. PWN, Warszawa, 1985).

[KucS] M. Kuczma, J. Smítal, On measures connected with the Cauchy equation. Aequationes Math. 14 (1976), no. 3, 421–428.

[LeP] R. D. LePage, Subgroups of paths and reproducing kernels, Ann. Prob. 1 (1973), 345-347.

[LukMZ] J. Lukeš, Jaroslav, J. Malý, L. Zajíček, *Fine topology methods in real analysis and potential theory*. Lecture Notes in Math. **1189**, Springer, 1986.

[Mar1] N. F. G. Martin, A topology for certain measure spaces, Trans. Amer. Math. Soc. **112** (1964), 1-18.

[Mar2] N. F. G. Martin, Generalized condensation points, *Duke Math. J.*, **28** (1961), 507-514.

[MatZ] E. Matoŭsková, M. Zelený, A note on intersections of non–Haar null sets, *Colloq. Math.* **96** (2003), 1-4.

[Mue] B. J. Mueller, Three results for locally compact groups connected with the Haar measure density theorem. *Proc. Amer. Math. Soc.* **16** (6) (1965), 1414-1416.

[ShiT] H. Shi, B. S. Thomson, Haar null sets in the space of automorphisms on [0,1]. Real Anal. Exchange **24** (1998/99), 337–350.

[Sol1] S. Solecki, Size of subsets of groups and Haar null sets. *Geom. Funct.* Anal. **15** (2005), 246–273.

[Sol2] S. Solecki, Amenability, free subgroups, and Haar null sets in nonlocally compact groups. *Proc. London Math. Soc.* (3) **93** (2006), 693–722.

[TomW] G. Tomkowicz, S. Wagon, The Banach-Tarski paradox. Cambridge

University Press, 2016 (1st ed. 1985). [Wil] W. Wilczyński, *Density topologies*, Handbook of measure theory, Vol. I, II, 675–702, North-Holland, 2002.

Mathematics Department, Imperial College, London SW7 2AZ; n.bingham@ic.ac.uk Mathematics Department, London School of Economics, Houghton Street, London WC2A 2AE; A.J.Ostaszewski@lse.ac.uk