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Abstract. In this the �nal part of the four-part series [BinO3; 4,5,6] on the-
orems of Steinhaus-Weil type, as a companion piece to Part III, [BinO6], on
Weil-type re�nement topologies, we study from the perspective of re�nement
topologies the relation of the composite AB�1 to the classical setting of the
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1 The Steinhaus property AA�1 versus the
Steinhaus property AB�1

We clarify below the relation between two versions of the Steinhaus interior
points property: the simple (sometimes called �classical�) version concerning
sets AA�1 and the composite, more embracing one, concerning sets AB�1,
for sets from a given family H. The latter is connected to a strong form
of metric transitivity: Kominek [Kom] shows, for a general separable Baire
topological group G equipped with an inner-regular measure � de�ned on
some �-algebraM, that AB�1 has non-empty interior for all A;B 2M+(�);
the sets inM of positive �-measure, i¤ for each countable dense set D and
each E 2M+(�) the set XnDE 2M0(�); the sets inM of �-measure zero;
this is recalled in Theorem K below. The composite property is thus related
to the Smital property, for which see [BarFN]. Care is required when moving
to the alternative property for AB; since the family H need not be preserved
under inversion.
In general the simple property does not imply the composite: Mato¼usková

and Zelený [MatZ] show that in any non-locally compact abelian Polish group
there are closed non-(left) Haar null sets A;B such that A + B has empty
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interior. Jab÷ońska [Jab] has shown that likewise in any non-locally compact
abelian Polish group there are closed non-Haar meager sets A;B such that
A + B has empty interior; see also [BanGJS]. Bartoszewicz and M. and
T. Filipczak [BarFF, Ths. 1, 4] analyze the Bernoulli product measure on
f0; 1gN with p the probability of the digit 1; see [BinO3, §8.15]. The product
space may be regarded as comprising canonical binary digit expansions of the
additive reals modulo 1 (in which case the measure is not invariant). Here
the (Borel) set A of binary expansions with asymptotic frequency p of the
digit 1 has [0; 1) as its di¤erence set i¤ 1

4
� p � 3

4
; however A+A has empty

interior unless p = 1
2
(the base 2 simple-normal-numbers case).

Below we identify some conditions on a family of sets A with the simple
AA�1 property which do imply the AB�1 property. What follows is a gener-
alization to a group context of relevant observations from [BinO3] from the
classical context of R.
The motivation for the de�nition below is that its subject, the space H; is

a subgroup of a topological group G from which it inherits a (necessarily)
translation-invariant (either-sidedly) topology � : Various notions of �density
at a point�give rise to �density topologies� [BinO1], which are translation-
invariant since they may be obtained via translation to a �xed reference
point: early examples, which originate in spirit with Denjoy as interpreted
by Haupt and Pauc [HauP], were studied intensively in [GofW], [GofNN],
soon followed by [Mar1,2] and [Mue]; more recent examples include [FilW]
and others investigated by the Wilczyński school, cf. [Wil].
Proposition 1 below embraces as an immediate corollary the case H =

G with G locally compact and � the Haar density topology (see [BinO2]).
Proposition 2 proves that Proposition 1 applies also to the ideal topology
(in the sense of [LukMZ]) generated from the ideal of Haar null sets of an
abelian Polish group.
We recall that a group H carries a left semi-topological structure � if the

topology � is left invariant [ArhT] (hU 2 � i¤ U 2 �); the structure is semi-
topological if it is also right invariant, i.e. brie�y: � is translation invariant.
H is a quasi-topological group under � if � is both left and right invariant
and inversion is � -continuous.

De�nition. For H a group with a translation-invariant topology � ; call a
topology � � � a Steinhaus re�nement if:
i) int� (AA�1) 6= ; for each non-empty A 2 �; and
ii) � is involutive-translation invariant: hA�1 2 � for all A 2 � and all h 2 H:
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Property (ii) above (called simply �invariance� in [BarFN]) apparently
calls for only left invariance, but in fact, via double inversion, delivers transla-
tion invariance, since Uh = (h�1U�1)�1; thenH under � is a semi-topological
group with a continuous inverse, so a quasi-topological group. We address the
step from the simple property to the composite in

Proposition 1. If � is translation-invariant, and � � � is a Steinhaus
re�nement topology, then int� (AB�1) 6= ; for non-empty A;B 2 �: In par-
ticular, as � is preserved under inversion, also int� (AB) 6= ; for A;B 2 �.

Proof. Suppose A;B 2 � are non-empty; as B�1 2 �; choose a 2 A and
b 2 B; then by (ii)

1H 2 C := a�1A \ b�1B�1 2 �:

By (i), for some non-empty W 2 � ;

W � CC�1 = (a�1A \ b�1B) � (A�1a \B�1b) � (a�1A) � (B�1b):

As � is translation invariant, aWb�1 2 � and

aWb�1 � AB�1;

the latter since for each w 2 W there are x 2 A; y 2 B�1 with

w = a�1x:yb : awb�1 = xy 2 AB�1:

So int� (AB�1) 6= ;: �

Corollary 1. In a locally compact group the Haar density topology is a
Steinhaus re�nement.

Proof. Property (i) follows from Weil�s theorem since density-open sets are
non-null measurable; left translation invariance in (ii) follows from left invari-
ance of Haar measure, while involutive invariance holds, as any measurable
set of positive Haar measure has non-null inverse ([HewR, 15.14], cf. Part II
[BinO5, §2 Lemma H]). �

A weaker version, inspired by metric transitivity, comes from applying
the following concept.
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De�nition. Say that a group H acts transitively on a family H � }(G) if
for each A;B 2 H there is h 2 H with A \ hB 2 H.

Thus a locally compact topological group acts transitively on its non-null
Haar measurable subsets (in fact, either-sidedly); this follows from Fubini�s
Theorem [Hal, 36C], via the average theorem [Hal, 59.F]:Z

G

jg�1A \Bjdg = jAj � jB�1j (A;B 2M);

(g = ab�1 i¤ g�1a = b) �cf. [TomW, §11.3 after Th. 11.17].
[MatZ] show that in any non-locally compact abelian Polish groupG there

exist two non-Haar null sets, A;B =2 HN , such that A\ hB 2 HN for all h;
that is, G there does not act transitively on the non-Haar null sets.

De�nition (cf. [BarFN]). In a quasi-topological group (H; �) say that a
proper �-ideal H has the Simple Steinhaus Property AA�1 if AA�1 has inte-
rior points for universally measurable subsets A =2 H:

Proposition 10 (cf. [Kha, Th. 1]). In a group (H; �) with � translation-
invariant, if H acts transitively on a family of subsets H with the simple
Steinhaus property, then H has the (composite) Steinhaus property:

int� (AB
�1) 6= ; for A;B 2 H:

Furthermore, if H is preserved under inversion, then also

int� (AB) 6= ; for A;B 2 H:

Proof. For A;B 2 H choose h with C := A \ hB 2 H; then

CC�1h = (A \ hB)(A�1 \B�1h�1) � AB�1: �

Proposition 2. If (H; �) is a quasi-topological group (i.e. � is invariant with
continuous inversion) carrying a left invariant �-ideal H with the Steinhaus
property and � \H = f;g, then the ideal-topology � with basis

B := fUnN : U 2 � ;N 2 Hg
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is a Steinhaus re�nement of � .
In particular, for (H; �) an abelian Polish group, the ideal topology gen-

erated by its �-ideal of Haar null subsets is a Steinhaus re�nement.

Proof. If U; V 2 B and w 2 U \ V; choose M;N 2 H and WM ;WN 2 �
such that x 2 (WMnM) � U and x 2 (WNnN) � V: Then as M [N 2 H,

x 2 (WM \WN)n(M [N) 2 B:

So B generates a topology � re�ning � : With the same notation, hU =
hWMnhM 2 �; as hM 2 H; and U�1 = W�1

M nM�1. Finally, UU�1 has
non-empty � -interior, as U =2 H and is non-empty.
As for the �nal assertion concerned with an abelian Polish group context,

note that if N is Haar null (N 2 HN ), then �(hN) = 0 for some � 2 P(G)
and all h 2 H; so hN 2 HN for all h 2 H: Furthermore, if A =2 HN ,
then A�1 =2 HN : for otherwise, �(hA�1) = 0 for some � 2 P(G) and all
h 2 H; then, taking ~�(B) = �(B�1) for Borel B; we have ~�(A) = 0 and
~�(hA) = �(A�1h�1) = 0 for all h 2 H; a contradiction. �

Remark. A left Haar null set need not be right Haar null: for one example
see [ShiT], and for more general non-coincidence see Solecki [Sol1, Cor. 6].
So the argument in Prop. 2 does not extend to the family of left Haar null
sets HN of a non-commutative Polish group. Indeed, Solecki [Sol2, Th. 1.4]
shows in the context of a countable product of countable groups that the
simpler Steinhaus property holds for HN amb (involving simultaneous left-
and right-sided translation �see Part III §1) i¤HN amb = HN .

Next, we reproduce a result from [Kom]. Recall that � is quasi-invariant if
�-nullity is translation invariant. The transitivity assumption (of co-nullity)
is motivated by Smítal�s lemma, which refers to a countable dense set �see
[KucS].

Theorem K ([Kom, Th. 5]). If � 2 P(G) is quasi-invariant and there
exists a countable subset H � G with HM co-null for all M 2M+(�); then
int(AB�1) 6= ; for all A;B 2M+(�):

Proof. By regularity, we may assume A;B 2 M+(�) are compact, so
AB�1 is compact. Fix g 2 G; then by quasi-invariance �(gB) > 0: So
by the transitivity assumption, both GnHgB and GnHA are null, and so
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HA \ HgB 6= ;: Say h1a = h2gb; for some a 2 A; b 2 B; h1; h2 2 H; then
g = h�12 h1ab

�1: As g was arbitrary,

G =
[

h2H
h�12 h1AB

�1:

By Baire�s Theorem, as H is countable, int(AB�1) 6= ;: �

2 Borell�s interior-point property

For completeness of this overview of the Steinhaus-Weil interior-point prop-
erty, we o¤er in brief here the context and statement of a (by now) classical
Steinhaus-like result in probability theory; this di¤ers in that the Polish
group now specializes to an in�nite-dimensional topological vector space and
the reference measure is Gaussian, so no longer invariant. We refer to the
related paper [BinO2] for further details and background literature, and to
our generalizations to Polish groups and other reference measures.
For X a locally convex topological vector space,  a probability measure

on the �-algebra of the cylinder sets generated by the dual space X� (equiv-
alently, for X separable Fréchet, e.g. separable Banach, the Borel sets),
with X� � L2() : then  is called Gaussian on X (�gamma for Gaussian�,
following [Bog]) i¤  � `�1 de�ned by

 � `�1(B) = (`�1(B)) (Borel B � R)

is Gaussian (normal) on R for every ` 2 X� � L2(). For a monograph
treatment of Gaussianity in a Hilbert-space setting, see Janson [Jan]. Write
h(K) := (K + h) for the translate by h: Relative quasi-invariance of h
and ; that for all compact K

h(K) > 0 i¤ (K) > 0;

holds relative to a set of vectors h 2 X (the admissible directions) forming
a vector subspace known as the Cameron-Martin space, H(). Then h and
 are equivalent,  � h; i¤ h 2 H(): Indeed, if  � h fails, then the
two measures are mutually singular, h? (the Hajek-Feldman Theorem �
cf. [Bog, Th. 2.4.5, 2.7.2]).
Continuing with the assumption above on X�; as X � X�� � L2(); one

can equip H = H() with a norm derived from that on L2(): In brief, this
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is done with reference to a natural covariance under  obtained by regarding
f 2 X� as a random variable and working with its zero-mean version f�(f);
then, for h 2 H; �h; the (shifted) evaluation map de�ned by �


h(f) := f(h)�

(f) for f 2 X�; is represented as hf � (f); ĥiL2() for some ĥ 2 L2():
(Here for  symmetric (f) = 0; so �h = �h is the Dirac measure at h.) This
is followed by identifying h with ĥ (for h 2 H), and jhjH := jjĥjjL2() is a
norm on H arising from the inner product

(h; k)H :=

Z
X

ĥ(x)k̂(x)d(x):

Formally, the construction �rst requires an extension of the domain of �h to
X�
 ; the closed span of fx� � (x�) : x� 2 X�g in L2(); a Hilbert subspace

in which to apply the Riesz Representation Theorem.
We may now state the Steinhaus-like property due, essentially in this

form, to Christer Borell. ([LeP, Prop. 1] o¤ers a weaker, �one-dimensional-
section�form with the origin an interior point of the di¤erence set relative to
each line ofH passing through it; we may call it theH-radial form by analogy
with the Q-radial form [Kuc, §10.1] of Euclidean spaces: the rational points
are indeed an additive subgroup. The alternative term �algebraic interior
point�is also in use, e.g. in the literature of functional equations �cf. [Brz].)

Theorem B (Borell�s Interior-point Theorem, [Bor, Cor. 4.1] � see
[Bog, p. 64]). For  a Gaussian measure on a locally convex topological
space X with X� � L2(), and A any non-null -measurable subset A of
X; the di¤erence set A�A contains a j:jH-open nhd (neighbourhood) of 0 in
the Cameron Martin space H = H(); i.e. (A� A) \H contains a H-open
nhd of 0:

This follows from the continuity in h of the density of h wrt  ([Bog,
Cor. 2.4.3]), as given in the Cameron-Martin-Girsanov formula:

exp

�
ĥ(x)� 1

2
jjĥjj2L2()

�
(CM)

(where ĥ �Riesz-represents�h; i.e. x�(h) = hx�; ĥi; for x� 2 X�; as above).
Thus here a modi�ed Steinhaus Theorem holds: the relative-interior-point
theorem.
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