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THE STEINHAUS-WEIL PROPERTY:
lll. WEIL TOPOLOGIES

NICHOLAS H. BINGHAM AND ADAM J. OSTASZEWSKI

In memory of Harry I. Miller (1939 - 2018)

ABSTRACT. We study Weil topologies, linking the topological-groupusture

with the measure-theoretic structure. This paper is a caiopgiece to Parts
I, 11, IV [BinO7,8,9] on theorems of Steinhaus-Weil type.e€S[BinO6] for the

fuller arXiv version combining all four.)

1. WEIL-LIKE TOPOLOGIES PRELIMINARIES

We are concerned with relatives of tiideil topologyas generators of the Stein-
haus-Weil interior-point property [Ste]. For backgroumek refer to Weil's book
[Wei, Ch. VII] and Halmos’s book [Hal, Ch. XII] (see also [BD®, §8.4]). Weil
regarded his result as @onverse Haar Theorenin retrieving the topological-
group structure from the measure-algebra structure [srehaoded by the Haar-
measurable subsets — cf. [Kod]. (Here one may work eithdlgwing Weil, to
within a dense embedding in a locally compact group, as irRt@ark to Theo-
rem 1M below, or, following Mackey, uniquely up to homeomaigm, granted the
further assumption of an analytic Borel structure [Mac, TH.]; for further infor-
mation see [BinOG6, §8.16].) The alternative view below wsdight on this result
in that the measure structure is already encoded by thetgeogology P via the
Haar density theorem, for which see [Mue], [Hal, §61(5), |88]2 cf. [BIinOL1,
8§7; Th. 6.10], [BinO3]. This view is partially implicit in [Ab]: writing M (L)
for the y-measurable sets of positigemeasure, refinement of one invariant mea-
surepy by anothery, holds when sets i/, (L) contain sets itV (k) (as in the
refinement of one topology by another). This falls within tireader aim of re-
trieving atopologicalgroup structure from a given (one-sidedly) invariant topgyl
T on a groupG, whent arises from refinement of a topological group structure (i.e
starting from asemitopologicagroup structuréG,1)). Also relevant here ar€on-
verse Steinhaus-Waeaibsults, as in Part || Prop. 1 of [BinO6,83], [BinO8, 82] (see
also [BinO6, 8§8.5]). For background on group-norms seedkidbok treatment in
[ArhT, §3.3] (who trace this notion back to Markov) or [BinDbut note their use
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of ‘pre-norm’ for what we call (following Pettis [Pet]) pseudo-normfor quasi-
interiors and regular open sets see [BinO6, 88.6]. Thus mmol|: G — [0,)
satisfies all the three conditions 1-3 below and generatégh&invariant metric
d(x,y) = ||xy1|| and so a topologyT” = T 4, just as a right-invariant metrid de-
rives from a separable topolo@; and generates, via the Birkhoff-Kakutani Theo-
rem ([HewR, Th. 8.3], [Gao, Th. 2.1.1]), the notfr|| = d(x, 1g). A pseudo-norm
differs in possibly lacking condition 1.i. (so generatgssaudemetric).

1.i (positivity): ||g|| > O for g # 1g, and 1.ii:||1g|| = 0;

2 (subadditivity):|ghl| < ||g]| -+ [hll,

3 (symmetry):|lg 1| = |lgll-

With U(G) the universally measurable subset&ofecall from the Introduction
of Part | [BinO6,7] thatA € Mg if A is a set functiorh defined on?(G) and is
asubmeasurdg,e. is monotone and subadditive wili®) = O (Introduction, [Fre,
Ch. 39, §392], [Tal]); by analogy with the terfimitely additive measuréor back-
ground see [Bin], [TomW, Ch. 12]; cf. [Pat]), this isfiaitely subadditive outer
measuresimilarly as in Maharam [Mah], albeit in the context of Beah algebras,
but without her positivity condition. Recall from HalmosdH Ch. Il 810] that a
submeasure is aouter measurdf in addition it is countably subadditiveThe set
functionA is left invariantif A(gE) = A(E) for allg € G andE € U(G).

Propositions 1 and 2 below are motivated by [Hal, Ch. Xl 8&2,Ch. 1l 89
(2-4)], whereG is a locally compact group with its left Haar measure, but here
the context is broader, allowing amenablegroupsG (cf. [TomW, Ch. 12], [Pat]).
The two results enable the introduction in §2 of Weil-likepadtogies generated
from families of left-invarianfppseudo-metricgerived from invariant submeasures.
The latter rely on the naturaheasure-metricalso known as théréchet-Nikodym
metric ([Fre, 8323Ad], [Hal, 840 Th. A], [Bog, p. 53, 102-3, 418]ges[Drel,2]
(cf. [Web]) for the related literature of Fréchet-Nikodywpblogies and their re-
lation to the Vitali-Hahn-Saks Theorem. Maharam [Mah] gtadequential conti-
nuity of the order relation (of inclusion, here in the measailgebra), and requires
positivity to obtain a (measuren)etric, see Talagrand [Tal] (cf. [Fre, 8394] and the
literature cited there) for a discussion of pathologicdreeasures (the only mea-
sures they dominate undet being trivial), and [ChrH] for corresponding exotic
abelian Polish groups.

In the setting of a locally compact grop, these pseudo-metrics are implicit
in work of Struble: initially, in 1953 [Str1], he used a (‘safar’) family of pre-
compact open setfE; : t > 0} to construct a mean o8, thereby referring to a
one-parameter family of pseudo-metrics correspondingdsétsE;; some twenty
years later in 1974 [Str2] (cf. [DieS, Ch. 8]) identifies atleivariant (proper)
metric onG by taking the supremum of pseudo-metrics, each generaigddome
open set in a countable open base @t The pseudo-metric makes a very brief
appearance in Yamasaki's textbook treatment [Yam, Ch. Waeif's theorem.
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Proposition 1.1 (Weil pseudo-norm, cf. [Fre, § 392H], [Yam, Ch. 1, Proof of Th.
4.1]). For G a Polish groupA € Mgup(G), a left-invariant submeasure oti(G),
and E<€ U(G) withA(E) > 0O, put

gl :=MgEAE) (g€ G).
Thenl||.||e defines a group pseudo-norm with associated right-invarjzseudo-
metric _

d2(gh) =|lgh M|lt  (g,h€G).

Likewise, forA right-invariant, a pseudo-norm is defined by

lgllt :=NMEAEg)  (9€G).
Proof. SinceA(0) =0, ||1g||} = 0. By left invariance undea,

la”|t = A (@ 'EAE) =\ (a(@ *EAE)) = A(EAaE) = ||a]|}.

Also, A A A
|labj|g < [|allg + [|bl|

follows from monotonicity, subadditivity and(abEAaE) = A(bEAE) :
A(abE\EUE\abE) < A(abE\aE)U (aE\E)U (E\aE) U (aE\abE))
= A(abE\aE) U (aE\abE)U (aE\E) U (E\aE))
< A(abEAaE) +A(EAaE) =A(bEAE)+A(EAaE). O
Corollary 1.1. (Kneser for Haar measure, [Kne, Hilfs. 4]). For G a Polish group,
A € Msup(G), a left-invariant submeasure oti(G), and E€ U(G) withA(E) > 0,
the set H:={ge G:A(gEAE) =0}
is a subgroup of G closed under the nofig) 2.
Proof. IndeedH = {ge G: ||g||2 =0}, and scH is a subgroup, since fa;h e H,
[lgh~*/2 < [lgll2 +[Ihllz = 0. O
Recall now that a subs@tof a Polish groups is left Haar nullif it is contained
in a universally measurable $&tsuch that for sompa e P(G)
HgB) =0  (g€G).
It is Haar null: A € HN ymp [Sol1] (cf. [HofT, p. 374)), if it is contained in a
universally measurable sBtsuch that for somg € P(G)
H(gBh =0  (g,heG).

This motivates the following application of Propositiorld 1beyond Haar measure.
Extending the notation of [BinO6,83], Part Il §1, belaW(G) (resp. Mo(G))
denotes the family of left-Haar-null (resp. Haar-null)ssetG, and we write

U (G) = UG\M(G),  U.(G):= UG)\Mo(G).

Prop. 1.1. may be applied to the following measures; thosstoacted fromu a
normalized counting measure (of finite support) are stuitig¢gol1].
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Proposition 1.2. In a Polish group Gfor pe ?(G) put
W (E) :=sup{H(gE) :ge G}  (E € U(G)),
O(E) = sup{u(gEN) :g.h€ G}  (E € U(G)).
Then |{ (resp. 1) is a left invariant (resp. bi-invariant) submeasure oH{G),

which is positive for Ee UL (G) (resp. for E€ U, (G)), i.e. for universally mea-
surable, non-left-Haar null (resp. nhon-Haar-null) sets.

Proof. We consider only,"as the casg; is similar and simpler (through the omis-
sion ofh andb below). The set functiop is well defined, with

ME)<PE)<1  (EcUG)),
sincepis a probability measure; it is bi-invariant, since
f(akEb) := sup{p(gaEbh : g,h € G} = sup{p(gEh) : g,h € G},
andG is a group. Furthermore, f@ € U(G)
WoBh <pB) <1,  (9,heC).

So, forpe P(G) 0<fB)<1 (Be U (G)),

since there arg,h € G with p(gBh) > 0. Countable subadditivity follows (on tak-
ing suprema of the leftmost term owgth) from

uaJ, A0h) < 3 mgAh) < 5 RGAN) = T (A,
for any sequence of sefg € U(G). O
Definition 1.1. For pe P(G),E € U(G), put
BE(W) = {x€ G: ||| <e}.

Our next step uses Prop. 1.2. to inscribe these balls into&&r all small enough
£>0.

Lemma 1.1. (Self-intersection Lemma). In a Polish group G for E= 7, (G), and
respectively for B 7% (G), and pe ?(G),
lceBf () CEE™! (0<e<p(E)),
1c € BE(f) CEE™! (0<e < (E)).
Equivalently, for0 < € < i(E), and respectively fod < € < i (E),
ENXE#0 (xeBE()); ENXE#0 (xeBE(W)).
Proof. We check only thaucase; the other is similar and simpler (through the

omission ofh below). ForE € U (G), sincel(E) > 0 by Prop. 1.2, we may pick

g,h € G such thatg := pu(gEh) > 0. Considerx ande > 0 with ||X||g < € < eg. If
E andxE are disjoint, then
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ee = H(9ENh < W(g(EUXE)h) < i(g(E UXE)h) = (EUXE)
= M(XEAE) = [X||E <& <eE,

a contradiction. Sd& andxE do meet. Now first pick € XENE and nexts € E
so thatt = xs thenx = ts™* ¢ EE~L. The argument is valid whege = p(gEh)
assumes any value {0, \(E)]. The converse is clear. O

We need a simple analogue of a result due to Weil ([Wei, Ch, 831], cf. [Hal,
Ch. Xl 862]). Belowt; denotes tha-openneighbourhoods oflg. ForG locally
compact withA = n = ng (Haar measure), the identity

2N(E) — 20(ENXE) = N(EAXE) — 1 — 2/1E(t)1E,1(r1x)dn(t) (1)

connects the continuity of the (pseudo-) norniffecontinuity of translation in the
topological group structuréG, 7y) of the locally compact group, and to continuity
of the convolution function here (fog of finite n-measure) — see [HewR, Th.
20.16]; see also [HewR, Th. 20.17] for the well-known cortizecbetween the
Steinhaus-Weil Theorem and convolution. Such continuitgrgntees thaBt (n)
contains points other thars1

Lemma 1.2. (Fragmentation Lemma; cf. [Hal, Ch. Xl 862 Th. A]). ForA €
Msup(G) a left-invariant submeasure oti(G) in a Polish group G equipped with
a finer right-invariant topologyt with 1g-open-nhd familyr, C U (G): if the map
X |Ix|[

is continuous under at x= 1 for each Ec . (G)
— then, for eactd # E,F € T ande > 0 with € < A(E), there exists He 11 with
HH-1CFF-land

IWh YRk <e (hWeH): HHIcCBE
so that diami (H) < €.

Proof. Pick anyf € F, andD € 1, satisfying||x|/|} < &/2 for all x€ D. AsTis
right-invariant and 4 € DNF f~1 € 1, pickH € 1y with H C DNF f~%; then
HH ' =Hff "H 'CFF L
Forh,i € H, ash,h’ € D,
I F(h) MR = IR < [IWIR+|Ih IR = INI]R+ (R <e O
In the presence of a refinement topolagyn the grous, the lemma motivates

further notation: writePeon(G, 1), Or just

P(1) == {nec P(G,74) : g+~ ||gl|g := [(gEAE) is T-continuous atd}.

Of necessity attention here focuses on continuity. Theasdtarization question
as to which topologies yield a non-emptyP(t) is in part answered by Theorem
1M below. Indeed, for Haar measuran the locally compact case,
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HEP(T)  (MKN, T2 D),
by (1) in the presence afy/dn as a kernel:

d
X =1-2 [ 1201070 gran(). (1)

However,P(G) will contain measureg singular with respect tq : for suchy, by
the Simmons-Mospan Theorem [Bin0O6,8, Th. SM] there will rd8 subset®
of positivep-measure such th&B ! has voidZg-interior.

2. WEIL-LIKE TOPOLOGIES THEOREMS

Prop. 1.2. now yields the following result, which embracaswn Hashimoto
topologies [BIinNO3] in both the Polish abelian setting, vehire left Haar null sets
form a o-ideal (Christensen [Chr]), and likewise in (the not neaé$s abelian)
Polish groups that aramenable afl (Solecki [Sol1,2]); this includes, as additive
groups,F- (hence also Banach) spaces — cf. [Bin0O3,4], where use i€ mad
Hashimoto topologies.

Theorem 1 Let G be a Polish group and both a left- and a right-invariant
refinement topology witlg-open-nhd family; C U, (G).
Then both the familie$AA™1: Ac 1} and {BE(f1) : 0 £ E € T,p€ P(1) and0 <
€ <{I(E)} generate neighbourhoods of the identity under which G ipaltmical
group. Moreover, the pseudo-norms
{IIE:0£Eect,uc (1)}

are downward directed by refinement as follows: @£ E,F € 11, A,p € P(1) and
€< min{5\(E), ((F)}}, there is He 11 such that for0 < 8 < min{X(H),ﬁ(H)}

BS (A\) NBE (W) € BE(A) NBE (1.
Proof. The proof is similar to but simpler than that of [Hal, Ch. XBZTh. A].
With the notation of Prop. 1.2. fox,p € 2(1), given two (non-left-Haar-null) sets
E,F et1ande < min{fx(E),ﬁ(F)}, by the Fragmentation Lemma (Lemma 1.2. of
81) applied separately foand toy, there areéA, B € 11 with

AATCBE(N), BB LCBE().
Take anyH € 11 with H C AN B; then
HHtcAA1nBB

SinceH € U, (G) (ast1 C U, (G)), taked with 0 < d < min{f\(H),ﬁ(H)}; then
by (x) of I, Lemma 1.1,

BE (\)NBY () CHH *C AA*nBB 1 C BE(A)nBE ().

(So ‘mutual refinement’ holds between the sets of the frn* and those of the
form BE.) As||-||E is a pre-norm,
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BsE/z(ﬁ)BE/z(ﬁ)_l = BsE/z(ﬁ)BE/z(ﬁ) C Be ().
By the Fragmentation Lemma again, given any G ande > 0, chooseH € 13
with HH =1 C BE(fi). Then withF := xH € 1,
BE (1) = {z: [|ZlIF <&} C (xH)(xH) = xHH 1 CxBE ()x L.
Finally, for anyxo with HXOHE <E putd:i=¢e— HXOHE. Then forHyHE <9,
[1x0-YIlE < IPxollE + IIYIIE < IPollE +&— IIxllg <,

XoB§ (1) € BE(f). O
Specializing to locally compact groups yields as a corgllan writing Bf :=
BE(n):
Theorem 1M. For G a locally compact group with left Haar measuyeif:

(i) tis both aleft- and a right-invariant refinement topologywig C 9/,
(ii) for every non-empty E t, the pseudo-norm

g+ |lglle :==n(gEAE) (g€ C)
is continuous undert at g= 1g
—then both the familie$AA1: Ac 13} and {BE: 0 £ E c tand0 < e < 2n(E)}
generate neighbourhoods of the identity under which G ispmltmical group.
Moreover, the pseudo-norms
{Ile:0#E€eT}
are downward directed by refinement; indeed,®a# E,F € 1 and
e <2min{n(E),n(F)}, there is He 11 such that ford < d < n(H)

BY € BENBE.

Proof. It is enough to replac®(G) by {n} (so thatA andp both refer ton), and

to note that ifxE andE are disjoint, them (XEAE) = 2n(E), so that in Lemma
1.1. the boundh*(E) in the restriction governing inclusion may be replaced by
2n(E). O

Remark2.1 As in [Hal, Ch. Xl 862 Th. F], but by the Fragmentation Lemma
(and by the countable additivity of), the Weil-like topology on a locally compact
Gin Theorem 1M is locally bounded (norm-totally-boundedom® ball). TherG
with the Weil-like topology may be densely embedded in ilmptetioné, which

is in turn locally compact, being locally complete and (ig)cbounded. However,
the corresponding argument in the case of the preceeding georeral Theorem 1
fails, sincethere is not necessarily countably additive.

i.e.

Finally, we give a category version of Theorem 1M, as an easyllary; indeed,
our main task is merely to define what is meant by ‘mutatis mit in the present
context. Denote byB. (1) the non-meagr®aire sets (= with the Baire property,
[Oxt2]) of a topologyt. Given the assumption, C ‘B, below, we are entitled to
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refer to the usual quasi-interior of alyc B, , denoted below b§, as in Part |
Cor. 2 [BinO8, Cor. 2]; we also writeBE for BE(n)).

Theorem 1B. For G a locally compact group with left Haar measuyeif:

(i) tis both a left- and a right-invariant refinement topologywig C 3, and
with the left Nikodym property (preservation of categorgemleft shifts),
(i) for every non-empty E 1 the pseudo-norm

g~ llglle :=n(gEAE)  (g€G)
is continuous undert at g= 1g
—then both the familie§AA ™1 : Ac 1;} and {BE : 0 £E c tand0 < £ < 2n(E)}
generate neighbourhoods of the identity under which G ispmltmical group.
Moreover, the pseudo-norms
{lllle:0#EeT}
are downward directed by refinement; indeed,@e¢ E,F € 1 and
e <2min{n(E),n(F)}, there is He 141 such that for0 < & < 2n(H)

BY C BENBE.

Proof. In place of the inclusion of Lemma 1.1. we note a result steorthan
that valid forE (i.e. inclusion only inEE~1): since meagreness is translation-
invariant (the ‘Nikodym property’ of [BInO3])(XE) = xE for non-meagre Baire
E, soxENE # 0impliesxENE # 0, and so again

BE =BECEE L
here again in Lemma 1.1. the bound(E) in the restriction governing inclusion
may be replaced byrRE). The proof of Theorem 1 may now be followed ver-

batim, but for the replacement @f(G) by {n}, using the stronger inclusion just
observed, and d8;(n) by B;. O

Remark2.2 The last result follows more directly from Th. 1M in a contexiere
there exists oic a Marczewski measurgsee [TomW, Ch. 13, cf. Ch. 11]),i.e. a
finitely additive invariant measure @b vanishing on bounded members®y; this
includesR, R?,S?, albeit under AC [TomW, Cor. 13.3]; cf. [Myc], but n@t¢ for

d > 3 [DouF].

With the groundwork of Part | [BinO6,7] on translation-cionfity for compacts
completed, we close by establishing the promised dichotasspciated with the

map X+ |[X|[£ = WXEAE),

for measurablé : the Fubini Null Theorem [BinO6,7, Th. FN (Part | 81)] creste
a duality between the vanishing of thebased pseudo-norm andlechotomyfor
x-translates oE 1 in relation toF according ax € E or x ¢ E, which are thus
unable in each case to distinguish between the poins Below we write'v* for
the generalized quantifier “fara.a.’ (cf. [Kec, 8.J]).
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Theorem 2 (Almost Inclusion-Exclusion). For G a Polish group e ?(G) and
non-null p-measurable B, the vanishing p-a.e. on F of the E-norm under p
IX|F =HXEAE)=0  (xeF),

is equivalent to the following Almost Inclusion-Exclusfontranslates of E?:
(i) Inclusion:F is p-almost covered by p-almost every translate Xar x € E:

WF\XEH)=0  (WxeE),
(i) Exclusion:F is p-almost disjoint from p-almost every translate Xfor x ¢

E:
MFNXEH) =0  (VWX¢E).
Proof. By the Fubini Null Theorem [Bin0O6,7, Th. FN (Part | §1)], ajgal to the
setH of Part | Prop. 3 [BinOG Prop. 3], i.e.

= e X X (XEAE),

H has vertical sectiond, almost allu-null iff p-almost all of its horizontal sections
HY arep-null. But, sincey € xE iff xc yE=1, HY = F\yE~! fory € E andHY :=
FNyE lforyc G\E. O

Remark2.3. If the inclusion side of the dichotomy of Th. 8 holds for alE E,
thenF C EE1. The converse direction may fail: consideér= (1,2) C R and
F =(—1,1), so thatE — E = F, but no translate of-E may coverf.

3. COMPLEMENTS

1. Inclusion-Exclusion dichotomyAbove we focus on inclusions amongst sets of
the formEE~1, for E € U(G), the exception being the Inclusion-Exclusion of a
setF € U(G) by anE-, or nonE, x-translate off ! in Theorem 2 (a dichotomy
as betweett and its complement). This places most of our study on onedfide
related inclusion-exclusion dichotomy — for subgét8 € U(G) in a groupG one
has either inclusion, or ‘near-disjointness’

HH1cBB! or HHINBB!={1g}.

Inclusion may be equivalently re-phrased to the meetingsiimdt pairs ofH —*-
translates oB :

kBNKB#0 (kK eH™), (In)
whereas exclusion to their disjointness:
kBNKB=0  (distinctk k' € H™Y). (EX)

The duality of the relation offX) to the results in Th. 2 is clarified by observing
thatp(F NxE~1) = 0, for a.a.x € C, is equivalent tq(CNyE) = 0, fora.a.y € F.
Indeed,

oz//k(x)lp(y)lel (Hx ) = /1F (X Ly (X)d(x 1),
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The condition EX) gives rise toly, the o-ideal introduced in Balcerzak et al.
[BalRS], generated by Borel seBshaving perfectly many disjoint translates, as
in (EX) above withH ! a perfect compact set (i.e. compact and dense-in-itself);
continuum-many disjoint translates of a compactum alsorgenim a theorem of
Ulam concerning a non-locally compact Polish group: seeI0OXh. 1]. Such
perfect exclusionsffer a combinatorial tool, akin tehift-compactnesgs in Part
| Th. 3 or [BinO6, Th. 3], the latter requiring a subsequenoeedding under
translation of any null sequence into a non-negligible sett Bin0O1,2] [MilO],
[BanJ]), and play a key role in the context of groups véathple generigssee for
instance the small-index property of [HodHLS].

Solecki [Sol3] proves a ‘Fubini for negligibles’-type ttrem (cf. Theorem FN
in Part | 81 or [BinOG6, 81]): the non-negligible vertical §eos (relative to a uni-
formly Steinhaus ideal) of a pland@s-negligible set form a horizontdh-negligible
set. The ideall is of particular interest, as it violates the countable ijestiain
condition, [BalRS].

2. Regular open setsRecall that, in a topological spac€ U is regular open

if U =int(clU), and that intclU) is itself regular open; for background see e.g.
[GivH, Ch. 10]. ForD = D4 the Baire-density topology of a normed topological
group, letDRO denote the regular open sets. Eoe DRC, put

Np:={teG:tDND#0}=DD %,  Aj:={Np:1g €D € Dro};

thenq; is a base atd (since 5 € C € Droand ks € D € Droyield g e CND e
Dro) comprising7 -neighbourhoods that ardz-open (sinceDD~! = J{Dd*:

d € D}). We raise the (metrizability) question, by analogy with Weil topology
of a measurable group (see 81 and 83.1 above): Withabove replaced by a
general density topolog® on a groupG, when is the topology generated g on
G a norm topology? Some indications of an answer may be foupdrinT, §83.3].
We note the following answer in the context of Theorem 1B; pama Struble’s
Theorem [Str2], or [DieS, Ch. 8]. If there exists a sepapaequencd,, i.e.
such that for each # 1g there isn with ||g||p, = 1, then

lall =3 .2 "lgllo,

is a norm, since it is separating and, by the Nikodym propéiyg—'D) =

g (gbND) € Bo.

3. The Effros Theorerasserts that a transitive continuous action of a Polishmgrou
G on a space of second category in itself is necessarily ‘open’, or mareua
rately ismicrotransitive(the (continuous) evaluation map: g — g(x) takes open
neighbourhood£ of 1 to open neighbourhoods that are the orbit &gtg of x).

It emerges that this assertion is very close to the shiftgaminess property: see
[Ost]. The Effros Theorem reduces to the Open Mapping TmeaveenG, X are
Banach spaces regarded as additive groupsaacts onX by a linear surjection
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L:G — Xviag(x) =L(g) +x. Indeed, herex(E) = L(E) for gy evaluation at 0.
For a neat proof, choose an open neighbouridad 0 in G with E DU —U; then
L(U) is Baire (being analytic) and non-meagre (sift¢nU) : n € N} coversX),
and soL(U)—L(U) C L(E) is an open neighbourhood of 0
4. Beyond local compactness: Haar category-measure dudlitghe absence of
Haar measure, the definition of left Haar null subsets of altapcal groupG re-
quires U(G), the universally measurable sets — by dint of the role of thalitp
of (probability) measures 08. The natural dual oft/(G) is the classtz(G) of
universally Baire setsdefined forG with a Baire topology as those sd&@svhose
preimagesf ~1(B) are Baire in any compact Hausdorff spatedor any continu-
ousf : K — G. Initially considered in [FenMW] foiG = R, these have attracted
continued attention for their role in the investigation gicans of determinacy and
large cardinals — see especially [Woo], cf. [MarS] — and igywhotion in [BanJ].
Analogously to the left Haar null sets, defindeft Haar meagreset as any set
M coverable by a universally Baire d&tfor which there are a compact Hausdorff
spaceK and a continuous : K — G with f~1(gB) meagre irK for all g € G. Here,
as recently noted in [BanGJS, Prop. 5K]may be replaced by the Cantor space
2N, These were introduced, in the abelian Polish group settitly kvmetrizable,
by Darji [Dar], cf. [Jab], and shown there to formaaideal of meagre sets (co-
extensive with the meagre sets failocally compact).

5. Metrizability and Christensen’s Theorern analytic topological group is met-
rizable; so if also it is a Baire space, then itis a Polish greyHofT, Th. 2.3.6].

6. Metrizability of refinementsUnderlying the Disaggregation Theorem (Part I
Th. 1) which refines the topolog¥y of G there are refining metrics:

de (Xy) :==d(X,Y) + [U(KX) — lW(KY)|

(for a family of setK € % (i) — cf. the Struble sampler of 81 above), reminiscent
of Theorem 1 above.

7. Quasi-invariance and the Mackey topology of analytic Bgrelups. We com-
ment on the force of full quasi-invariance of a measure imeation with aStein-
haus triple(H, G, ) [BinO5] with H andG completely metrizable. Both groups,
being absolutely Borel, are analytic spaces. So both cdetaadard’ Borel struc-
tures withH a Borel substructure 0. Mackey [Mac] investigates such Borel
groups, defining also a (Borel) measyr® be ‘standard’ if it has a Borel support.
It emerges that eveng-finite Borel measure in an analytic Borel space is standard
[Mac, Th. 6.1]. Of interest to us is Mackey’s notion of a ‘meeesclassC,,, com-
prising all Borel measures with the same null sets as: My(v) = Mo(1). Such
a measure class may be closed under translation, and maghberileft invari-
ant; then their mutually common null sets are themselveariamt, and so may
be viewed as witnessing quasi-invariance of the megsukéackey shows that a
Borel group with a one-sided invariant measure class hashadidedly invariant



140 NICHOLAS H. BINGHAM AND ADAM J. OSTASZEWSKI

measure class [Mac, Lemma 7.2]; furthermore, if the classumtably generated,
then the class contains a left-invariant and a right-iar@rmeasure [Mac, Lemma
7.3]. This enables Mackey to improve on Weil's theorem invghg that an an-
alytic Borel groupG with a one-sidedly invariant measure class, in particute o
generated by a quasi-invariant measure, has a uniqueylamathpact topology
on G both yielding a topological group structure and generatireygiven Borel
structure.
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