The Steinhaus-Weil property: III. Weil Topologies
by
N. H. Bingham and A. J. Ostaszewski
In memory of Harry I. Miller (1939-2018)

Abstract

We study Weil topologies, linking the topological-group structure with the measure-theoretic structure. This paper is a companion piece to Parts I, II, IV [BinO7,8,9] on theorems of Steinhaus-Weil type. (See [BinO6] for the fuller arXiv version combining all four.)

Keywords. Weil topology, Haar measure, Marczewski measure.
Classification: Primary 22A10, 43A05; Secondary 28C10.

1 Weil-like topologies: preliminaries

We are concerned with relatives of the Weil topology as generators of the Steinhaus-Weil interior-point property [Ste]. For background, we refer to Weil's book [Wei, Ch. VII] and Halmos's book [Hal, Ch. XII] (see also [BinO6, §8.4]). Weil regarded his result as a Converse Haar Theorem, in retrieving the topological-group structure from the measure-algebra structure [Fre] as encoded by the Haar-measurable subsets - cf. [Kod]. (Here one may work either, following Weil, to within a dense embedding in a locally compact group, as in the Remark to Theorem 1M below, or, following Mackey, uniquely up to homeomorphism, granted the further assumption of an analytic Borel structure [Mac, Th. 7.1]; for further information see [BinO6, §8.16].) The alternative view below throws light on this result in that the measure structure is already encoded by the density topology \mathcal{D} via the Haar density theorem, for which see [Mue], [Hal, §61(5), p. 268], cf. [BinO1, $\S 7 ;$ Th. 6.10], [BinO3]. This view is partially implicit in [Amb]: writing $\mathcal{M}_{+}(\mu)$ for the μ-measurable sets of positive μ-measure, refinement of one invariant measure μ_{1} by another μ_{2} holds when sets in $\mathcal{M}_{+}\left(\mu_{2}\right)$, contain sets in $\mathcal{M}_{+}\left(\mu_{1}\right)$ (as in the refinement of one topology by another). This falls within the broader aim of retrieving a topological group structure from a given (one-sidedly) invariant topology τ on a group G, when τ arises from
refinement of a topological group structure (i.e. starting from a semitopological group structure (G, τ)). Also relevant here are Converse SteinhausWeil results, as in Part II Prop. 1 of [BinO6,§3], [BinO8, §2] (see also [BinO6, §8.5]). For background on group-norms see the textbook treatment in [ArhT, §3.3] (who trace this notion back to Markov) or [BinO1], but note their use of 'pre-norm' for what we call (following Pettis [Pet]) a pseudonorm; for quasi-interiors and regular open sets see [BinO6, §8.6]. Thus a norm $\|\cdot\|: G \rightarrow[0, \infty)$ satisfies all the three conditions 1-3 below and generates a right-invariant metric $d(x, y)=\left\|x y^{-1}\right\|$ and so a topology $\mathcal{T}=\mathcal{T}_{d}$, just as a right-invariant metric d derives from a separable topology \mathcal{T}_{G} and generates, via the Birkhoff-Kakutani Theorem ([HewR, Th. 8.3], [Gao, Th. 2.1.1]), the norm $\|x\|=d\left(x, 1_{G}\right)$. A pseudo-norm differs in possibly lacking condition 1.i. (so generates a pseudo-metric).
1.i (positivity): $\|g\|>0$ for $g \neq 1_{G}$, and 1.ii: $\left\|1_{G}\right\|=0$;

2 (subadditivity): $\|g h\| \leq\|g\|+\|h\|$,
3 (symmetry): $\left\|g^{-1}\right\|=\|g\|$.
With $\mathcal{U}(G)$ the universally measurable subsets of G, recall from the Introduction of Part I [BinO6,7] that $\lambda \in \mathcal{M}_{\text {sub }}$ if λ is a set function λ defined on $\mathcal{U}(G)$ and is a submeasure, i.e. is monotone and subadditive with $\lambda(\emptyset)=0$ (Introduction, [Fre, Ch. 39, §392], [Tal]); by analogy with the term finitely additive measure (for background see [Bin], [TomW, Ch. 12]; cf. [Pat]), this is a finitely subadditive outer measure, similarly as in Maharam [Mah], albeit in the context of Boolean algebras, but without her positivity condition. Recall from Halmos [Hal, Ch. II §10] that a submeasure is an outer measure if in addition it is countably subadditive. The set function λ is left invariant if $\lambda(g E)=\lambda(E)$ for all $g \in G$ and $E \in \mathcal{U}(G)$.

Propositions 1 and 2 below are motivated by [Hal, Ch. XII $\S 62$, cf. Ch. II $\S 9(2-4)$], where G is a locally compact group with λ its left Haar measure, but here the context is broader, allowing in amenable groups G (cf. [TomW, Ch. 12], [Pat]). The two results enable the introduction in $\S 2$ of Weil-like topologies generated from families of left-invariant pseudo-metrics derived from invariant submeasures. The latter rely on the natural measure-metric, also known as the Fréchet-Nikodym metric ([Fre, §323Ad], [Hal, §40 Th. A], [Bog, p. 53, 102-3, 418]); see [Dre1,2] (cf. [Web]) for the related literature of Fréchet-Nikodym topologies and their relation to the Vitali-Hahn-Saks Theorem. Maharam [Mah] studies sequential continuity of the order relation (of inclusion, here in the measure algebra), and requires positivity to obtain
a (measure-) metric; see Talagrand [Tal] (cf. [Fre, §394] and the literature cited there) for a discussion of pathological submeasures (the only measures they dominates under \ll being trivial), and [ChrH$]$ for corresponding exotic abelian Polish groups.

In the setting of a locally compact group G, these pseudo-metrics are implicit in work of Struble: initially, in 1953 [Str1], he used a ('sampler') family of pre-compact open sets $\left\{E_{t}: t>0\right\}$ to construct a mean on G, thereby refering to a one-parameter family of pseudo-metrics corresponding to the sets E_{t}; some twenty years later in 1974 [Str2] (cf. [DieS, Ch. 8]) identifies a left-invariant (proper) metric on G by taking the supremum of pseudometrics, each generated from some open set in a countable open base at 1_{G}. The pseudo-metric makes a very brief appearance in Yamasaki's textbook treatment [Yam, Ch. 1] of Weil's theorem.

Proposition 1 (Weil pseudo-norm, cf. [Fre, $\S 392 \mathrm{H}]$, [Yam, Ch. 1, Proof of Th. 4.1]). For G a Polish group, $\lambda \in \mathcal{M}_{\text {sub }}(G)$, a left-invariant submeasure on $\mathcal{U}(G)$, and $E \in \mathcal{U}(G)$ with $\lambda(E)>0$, put

$$
\|g\|_{E}^{\lambda}:=\lambda(g E \triangle E) \quad(g \in G)
$$

Then $\|.\|_{E}$ defines a group pseudo-norm with associated right-invariant pseudometric

$$
d_{E}^{\lambda}(g, h)=\left\|g h^{-1}\right\|_{E}^{\lambda} \quad(g, h \in G) .
$$

Likewise, for λ right-invariant, a pseudo-norm is defined by

$$
\|g\|_{E}^{\lambda}:=\lambda(E \triangle E g) \quad(g \in G)
$$

Proof. Since $\lambda(\emptyset)=0,\left\|1_{G}\right\|_{E}^{\lambda}=0$. By left invariance under a,

$$
\left\|a^{-1}\right\|_{E}^{\lambda}=\lambda\left(a^{-1} E \triangle E\right)=\lambda\left(a\left(a^{-1} E \triangle E\right)\right)=\lambda(E \triangle a E)=\|a\|_{E}^{\lambda} .
$$

Also,

$$
\|a b\|_{E}^{\lambda} \leq\|a\|_{E}^{\lambda}+\|b\|_{E}^{\lambda}
$$

follows from monotonicity, subadditivity and $\lambda(a b E \triangle a E)=\lambda(b E \triangle E)$:

$$
\begin{aligned}
\lambda(a b E \backslash E \cup E \backslash a b E) & \leq \lambda(a b E \backslash a E) \cup(a E \backslash E) \cup(E \backslash a E) \cup(a E \backslash a b E)) \\
& =\lambda(a b E \backslash a E) \cup(a E \backslash a b E) \cup(a E \backslash E) \cup(E \backslash a E)) \\
& \leq \lambda(a b E \triangle a E)+\lambda(E \triangle a E)=\lambda(b E \triangle E)+\lambda(E \triangle a E) .
\end{aligned}
$$

Corollary 1 (Kneser for Haar measure, [Kne, Hilfs. 4]). For G a Polish group, $\lambda \in \mathcal{M}_{\text {sub }}(G)$, a left-invariant submeasure on $\mathcal{U}(G)$, and $E \in \mathcal{U}(G)$ with $\lambda(E)>0$, the set

$$
H:=\{g \in G: \lambda(g E \triangle E)=0\}
$$

is a subgroup of G closed under the norm $\|g\|_{E}^{\lambda}$.
Proof. Indeed $H=\left\{g \in G:\|g\|_{E}^{\lambda}=0\right\}$, and so H is a subgroup, since for $g, h \in H,\left\|g h^{-1}\right\|_{E}^{\lambda} \leq\|g\|_{E}^{\lambda}+\|h\|_{E}^{\lambda}=0$.

Recall now that a subset A of a Polish group G is left Haar null if it is contained in a universally measurable set B such that for some $\mu \in \mathcal{P}(G)$

$$
\mu(g B)=0 \quad(g \in G)
$$

It is Haar null: $A \in \mathcal{H} \mathcal{N}_{\text {amb }}$ [Sol1] (cf. [HofT, p. 374]), if it is contained in a universally measurable set B such that for some $\mu \in \mathcal{P}(G)$

$$
\mu(g B h)=0 \quad(g, h \in G) .
$$

This motivates the following application of Proposition 1 beyond Haar measure. Extending the notation of [BinO6, $\S 3]$, Part II $\S 1$, below $\mathcal{M}_{0}^{L}(G)$ (resp. $\mathcal{M}_{0}(G)$) denotes the family of left-Haar-null (resp. Haar-null) sets of G, and we write

$$
\mathcal{U}_{+}^{L}(G):=\mathcal{U}(G) \backslash \mathcal{M}_{0}^{L}(G), \quad \mathcal{U}_{+}(G):=\mathcal{U}(G) \backslash \mathcal{M}_{0}(G)
$$

Prop. 1 may be applied to the following measures; those constructed from μ a normalized counting measure (of finite support) are studied in [Sol1].

Proposition 2. In a Polish group G, for $\mu \in \mathcal{P}(G)$ put

$$
\begin{aligned}
\mu_{L}^{*}(E) & : \\
\hat{\mu}(E) & :=\sup \{\mu(g E): g \in G\} \quad(E \in \mathcal{U}(G)), \\
& =\sup \{\mu(g E h): g, h \in G\} \quad(E \in \mathcal{U}(G)) .
\end{aligned}
$$

Then μ_{L}^{*} (resp. $\left.\hat{\mu}\right)$ is a left invariant (resp. bi-invariant) submeasure on $\mathcal{U}(G)$, which is positive for $E \in \mathcal{U}_{+}^{L}(G)$ (resp. for $E \in \mathcal{U}_{+}(G)$), i.e. for universally measurable, non-left-Haar null (resp. non-Haar-null) sets.

Proof. We consider only $\hat{\mu}$, as the case μ_{L}^{*} is similar and simpler (through the omission of h and b below). The set function $\hat{\mu}$ is well defined, with

$$
\mu(E) \leq \hat{\mu}(E) \leq 1 \quad(E \in \mathcal{U}(G))
$$

since μ is a probability measure; it is bi-invariant, since

$$
\hat{\mu}(a E b):=\sup \{\mu(g a E b h): g, h \in G\}=\sup \{\mu(g E h): g, h \in G\}
$$

and G is a group. Furthermore, for $B \in \mathcal{U}(G)$

$$
\mu(g B h) \leq \hat{\mu}(B) \leq 1, \quad(g, h \in G)
$$

So, for $\mu \in \mathcal{P}(G)$

$$
0<\hat{\mu}(B) \leq 1 \quad\left(B \in \mathcal{U}_{+}(G)\right)
$$

since there are $g, h \in G$ with $\mu(g B h)>0$. Countable subadditivity follows (on taking suprema of the leftmost term over g, h) from

$$
\mu\left(g\left(\bigcup_{n} A_{n}\right) h\right) \leq \sum_{n} \mu\left(g A_{n} h\right) \leq \sum_{n} \hat{\mu}\left(g A_{n} h\right)=\sum_{n} \hat{\mu}\left(A_{n}\right)
$$

for any sequence of sets $A_{n} \in \mathcal{U}(G)$.
Definition. For $\mu \in \mathcal{P}(G), E \in \mathcal{U}(G)$, put

$$
B_{\varepsilon}^{E}(\mu):=\left\{x \in G:\|x\|_{E}^{\mu}<\varepsilon\right\} .
$$

Our next step uses Prop. 2 to inscribe these balls into $E E^{-1}$ for all small enough $\varepsilon>0$.

Lemma 1 (Self-intersection Lemma). In a Polish group G for $E \in$ $\mathcal{U}_{+}(G)$, and respectively for $E \in \mathcal{U}_{+}^{L}(G)$, and $\mu \in \mathcal{P}(G)$,

$$
\begin{array}{ll}
1_{G} \in B_{\varepsilon}^{E}(\hat{\mu}) \subseteq E E^{-1} & (0<\varepsilon<\hat{\mu}(E)) \\
1_{G} \in B_{\varepsilon}^{E}\left(\mu_{L}^{*}\right) \subseteq E E^{-1} & \left(0<\varepsilon<\mu_{L}^{*}(E)\right)
\end{array}
$$

Equivalently, for $0<\varepsilon<\hat{\mu}(E)$, and respectively for $0<\varepsilon<\mu_{L}^{*}(E)$,

$$
E \cap x E \neq \emptyset \quad\left(x \in B_{\varepsilon}^{E}(\hat{\mu})\right) ; \quad E \cap x E \neq \emptyset \quad\left(x \in B_{\varepsilon}^{E}\left(\mu_{L}^{*}\right)\right)
$$

Proof. We check only the $\hat{\mu}$ case; the other is similar and simpler (through the omission of h below). For $E \in \mathcal{U}_{+}(G)$, since $\hat{\mu}(E)>0$ by Prop. 2, we
may pick $g, h \in G$ such that $\varepsilon_{E}:=\mu(g E h)>0$. Consider x and $\varepsilon>0$ with $\|x\|_{E}^{\hat{\mu}}<\varepsilon \leq \varepsilon_{E}$. If E and $x E$ are disjoint, then

$$
\begin{aligned}
\varepsilon_{E} & =\mu(g E h) \leq \mu(g(E \cup x E) h) \leq \hat{\mu}(g(E \cup x E) h)=\hat{\mu}(E \cup x E) \\
& =\hat{\mu}(x E \triangle E)=\|x\|_{E}^{\hat{\mu}}<\varepsilon \leq \varepsilon_{E},
\end{aligned}
$$

a contradiction. So E and $x E$ do meet. Now first pick $t \in x E \cap E$ and next $s \in E$ so that $t=x s$; then $x=t s^{-1} \in E E^{-1}$. The argument is valid when $\varepsilon_{E}=\mu(g E h)$ assumes any value in $(0, \hat{\mu}(E)]$. The converse is clear.

We need a simple analogue of a result due to Weil ([Wei, Ch. VII, §31], cf. [Hal, Ch. XII §62]). Below τ_{1} denotes the τ-open neighbourhoods of 1_{G}. For G locally compact with $\lambda=\eta_{G}$, the identity

$$
2 \eta(E)-2 \eta(E \cap x E)=\eta(E \triangle x E)=1-2 \int 1_{E}(t) 1_{E^{-1}}\left(t^{-1} x\right) d \eta(t)
$$

connects the continuity of the (pseudo-) norm to \mathcal{T}_{d}-continuity of translation in the topological group structure $\left(G, \mathcal{T}_{d}\right)$ of the locally compact group, and to continuity of the convolution function here (for E of finite η-measure) - see [HewR, Th. 20.16]; see also [HewR, Th. 20.17] for the well-known connection between the Steinhaus-Weil Theorem and convolution. Such continuity guarantees that $B_{\varepsilon}^{E}(\eta)$ contains points other than 1_{G}.

Lemma 2 (Fragmentation Lemma; cf. [Hal, Ch. XII §62 Th. A]). For $\lambda \in \mathcal{M}_{\text {sub }}(G)$ a left-invariant submeasure on $\mathcal{U}(G)$ in a Polish group G equipped with a finer right-invariant topology τ with $1_{G^{-}}$open-nhd family $\tau_{1} \subseteq \mathcal{U}_{+}^{L}(G):$
if the map

$$
x \mapsto\|x\|_{E}^{\lambda}
$$

is continuous under τ at $x=1_{G}$ for each $E \in \mathcal{U}_{+}^{L}(G)$

- then, for each $\emptyset \neq E, F \in \tau$ and $\varepsilon>0$ with $\varepsilon<\lambda(E)$, there exists $H \in \tau_{1}$ with $H H^{-1} \subseteq F F^{-1}$ and

$$
\left\|h^{\prime} h^{-1}\right\|_{E}^{\lambda}<\varepsilon \quad\left(h, h^{\prime} \in H\right): \quad H H^{-1} \subseteq B_{\varepsilon}^{E}
$$

so that $\operatorname{diam}_{E}^{\lambda}(H) \leq \varepsilon$.
Proof. Pick any $f \in F$, and $D \in \tau_{1}$ satisfying $\|x\|_{E}^{\lambda}<\varepsilon / 2$ for all $x \in D$. As τ is right-invariant and $1_{G} \in D \cap F f^{-1} \in \tau$, pick $H \in \tau_{1}$ with $H \subseteq D \cap F f^{-1}$; then

$$
H H^{-1}=H f f^{-1} H^{-1} \subseteq F F^{-1}
$$

For $h, h^{\prime} \in H$, as $h, h^{\prime} \in D$

$$
\left\|h^{\prime} f(h f)^{-1}\right\|_{E}^{\lambda}=\left\|h^{\prime} h^{-1}\right\|_{E}^{\lambda} \leq\left\|h^{\prime}\right\|_{E}^{\lambda}+\left\|h^{-1}\right\|_{E}^{\lambda}=\left\|h^{\prime}\right\|_{E}^{\lambda}+\|h\|_{E}^{\lambda}<\varepsilon
$$

In the presence of a refinement topology τ on the group G, the lemma motivates further notation: write $\mathcal{P}_{\text {cont }}(G, \tau)$, or just

$$
\mathcal{P}(\tau):=\left\{\mu \in \mathcal{P}\left(G, \mathcal{T}_{d}\right): g \mapsto\|g\|_{E}^{\hat{\mu}}:=\hat{\mu}(g E \triangle E) \text { is } \tau \text {-continuous at } 1_{G}\right\} .
$$

Of necessity attention here focuses on continuity. The characterization question as to which topologies τ yield a non-empty $\mathcal{P}(\tau)$ is in part answered by Theorem 1 M below. Indeed, for Haar measure η in the locally compact case,

$$
\mu \in \mathcal{P}(\tau) \quad\left(\mu \ll \eta, \tau \supseteq \mathcal{T}_{d}\right)
$$

by (\dagger) in the presence of $d \mu / d \eta$ as a kernel:

$$
\|x\|_{E}^{\mu}=1-2 \int 1_{E}(t) 1_{E-1}\left(t^{-1} x\right) \frac{d \mu}{d \eta} d \eta(t) .
$$

However, $\mathcal{P}(G)$ will contain measures μ singular with respect to η : for such μ, by the Simmons-Mospan Theorem [BinO6,8, Th. SM] there will be Borel subsets B of positive μ-measure such that $B B^{-1}$ has void \mathcal{T}_{d}-interior.

2 Weil-like topologies: theorems

Prop. 2 now yields the following result, which embraces known Hashimoto topologies [BinO3] in both the Polish abelian setting, where the left Haar null sets form a σ-ideal (Christensen [Chr]), and likewise in (the not necessarily abelian) Polish groups that are amenable at 1 (Solecki [Sol1,2]); this includes, as additive groups, F - (hence also Banach) spaces - cf. [BinO3,4], where use is made of Hashimoto topologies.

Theorem 1. Let G be a Polish group and τ both a left- and a right-invariant refinement topology with 1_{G}-open-nhd family $\tau_{1} \subseteq \mathcal{U}_{+}(G)$.
Then both the families $\left\{A A^{-1}: A \in \tau_{1}\right\}$ and $\left\{B_{\varepsilon}^{E}(\hat{\mu}): \emptyset \neq E \in \tau, \mu \in \mathcal{P}(\tau)\right.$ and $0<\varepsilon \leq \hat{\mu}(E)\}$ generate neighbourhoods of the identity under which G is a topological group. Moreover, the pseudo-norms

$$
\left\{\|.\|_{E}^{\hat{\mu}}: \emptyset \neq E \in \tau, \mu \in \mathcal{P}(\tau)\right\}
$$

are downward directed by refinement as follows: for $\emptyset \neq E, F \in \tau_{1}, \lambda, \mu \in$ $\mathcal{P}(\tau)$ and $\varepsilon<\min \{\hat{\lambda}(E), \hat{\mu}(F)\}\}$, there is $H \in \tau_{1}$ such that for $0<\delta<$ $\min \{\tilde{\lambda}(H), \hat{\mu}(H)\}$

$$
B_{\delta}^{H}(\lambda) \cap B_{\delta}^{H}(\mu) \subseteq B_{\varepsilon}^{E}(\lambda) \cap B_{\varepsilon}^{F}(\mu)
$$

Proof. The proof is similar to but simpler than that of [Hal, Ch. XII $\S 62$ Th. A]. With the notation of Prop. 2 for $\lambda, \mu \in \mathcal{P}(\tau)$, given two (non-left-Haar-null) sets $E, F \in \tau_{1}$ and $\varepsilon<\min \{\hat{\lambda}(E), \hat{\mu}(F)\}$, by the Fragmentation Lemma (Lemma 2 of $\S 1$) applied separately to $\hat{\lambda}$ and to $\hat{\mu}$, there are $A, B \in \tau_{1}$ with

$$
A A^{-1} \subseteq B_{\varepsilon}^{E}(\hat{\lambda}), \quad B B^{-1} \subseteq B_{\varepsilon}^{F}(\hat{\mu})
$$

Take any $H \in \tau_{1}$ with $H \subseteq A \cap B$; then

$$
H H^{-1} \subseteq A A^{-1} \cap B B^{-1}
$$

Since $H \in \mathcal{U}_{+}(G)\left(\right.$ as $\left.\tau_{1} \subseteq \mathcal{U}_{+}(G)\right)$, take δ with $0<\delta<\min \{\hat{\lambda}(H), \hat{\mu}(H)\}$; then by $(*)$ of I, Lemma 1,

$$
B_{\delta}^{H}(\hat{\lambda}) \cap B_{\delta}^{H}(\hat{\mu}) \subseteq H H^{-1} \subseteq A A^{-1} \cap B B^{-1} \subseteq B_{\varepsilon}^{E}(\hat{\lambda}) \cap B_{\varepsilon}^{F}(\hat{\mu})
$$

(So 'mutual refinement' holds between the sets of the form $A A^{-1}$ and those of the form $\left.B_{\varepsilon}^{E}.\right)$ As $\|\cdot\|_{E}^{\hat{\mu}}$ is a pre-norm,

$$
B_{\varepsilon / 2}^{E}(\hat{\mu}) B_{\varepsilon / 2}^{E}(\hat{\mu})^{-1}=B_{\varepsilon / 2}^{E}(\hat{\mu}) B_{\varepsilon / 2}^{E}(\hat{\mu}) \subseteq B_{\varepsilon}^{E}(\hat{\mu})
$$

By the Fragmentation Lemma again, given any $x \in G$ and $\varepsilon>0$, choose $H \in \tau_{1}$ with $H H^{-1} \subseteq B_{\varepsilon}^{E}(\tilde{\mu})$. Then with $F:=x H \in \tau$,

$$
B_{\varepsilon}^{F}(\hat{\mu})=\left\{z:\|z\|_{F}^{\hat{\mu}}<\varepsilon\right\} \subseteq(x H)(x H)^{-1}=x H H^{-1} x^{-1} \subseteq x B_{\varepsilon}^{E}(\hat{\mu}) x^{-1}
$$

Finally, for any x_{0} with $\left\|x_{0}\right\|_{E}^{\hat{\mu}}<\varepsilon$, put $\delta:=\varepsilon-\left\|x_{0}\right\|_{E}^{\hat{\mu}}$. Then for $\|y\|_{E}^{\hat{\mu}}<\delta$,

$$
\left\|x_{0} \cdot y\right\|_{E}^{\hat{\mu}} \leq\left\|x_{0}\right\|_{E}^{\hat{\mu}}+\|y\|_{E}^{\hat{\mu}}<\left\|x_{0}\right\|_{E}^{\hat{\mu}}+\varepsilon-\left\|x_{0}\right\|_{E}^{\hat{\mu}}<\varepsilon,
$$

i.e.

$$
x_{0} B_{\delta}^{E}(\hat{\mu}) \subseteq B_{\varepsilon}^{E}(\hat{\mu})
$$

Specializing to locally compact groups yields as a corollary, on writing $B_{\varepsilon}^{E}:=B_{\varepsilon}^{E}(\eta):$

Theorem 1M. For G a locally compact group with left Haar measure η, if: (i) τ is both a left- and a right-invariant refinement topology with $\tau_{1} \subseteq \mathcal{M}_{+}$, (ii) for every non-empty $E \in \tau$, the pseudo-norm

$$
g \mapsto\|g\|_{E}:=\eta(g E \triangle E) \quad(g \in G)
$$

is continuous under τ at $g=1_{G}$

- then both the families $\left\{A A^{-1}: A \in \tau_{1}\right\}$ and $\left\{B_{\varepsilon}^{E}: \emptyset \neq E \in \tau\right.$ and $0<\varepsilon \leq 2 \eta(E)\}$ generate neighbourhoods of the identity under which G is a topological group. Moreover, the pseudo-norms

$$
\left\{\|\cdot\|_{E}: \emptyset \neq E \in \tau\right\}
$$

are downward directed by refinement; indeed, for $\emptyset \neq E, F \in \tau$ and $\varepsilon<$ $2 \min \{\eta(E), \eta(F)\}$, there is $H \in \tau_{1}$ such that for $0<\delta<\eta(H)$

$$
B_{\delta}^{H} \subseteq B_{\varepsilon}^{E} \cap B_{\varepsilon}^{F}
$$

Proof. It is enough to replace $\mathcal{P}(G)$ by $\{\eta\}$ (so that λ and μ both refer to $\eta)$, and to note that if $x E$ and E are disjoint, then $\eta(x E \triangle E)=2 \eta(E)$, so that in Lemma 1 the bound $\eta^{*}(E)$ in the restriction governing inclusion may be replaced by $2 \eta(E)$.

Remark. As in [Hal, Ch. XII $\S 62$ Th. F], but by the Fragmentation Lemma (and by the countable additivity of η), the Weil-like topology on a locally compact G in Theorem 1M is locally bounded (norm-totally-bounded in some ball). Then G with the Weil-like topology may be densely embedded in its completion \hat{G}, which is in turn locally compact, being locally complete and (totally) bounded. However, the corresponding argument in the case of the preceeding more general Theorem 1 fails, since $\hat{\mu}$ there is not necessarily countably additive.

Finally, we give a category version of Theorem 1M, as an easy corollary; indeed, our main task is merely to define what is meant by 'mutatis mutandis' in the present context. Denote by $\mathcal{B}_{+}(\tau)$ the non-meagre Baire sets (= with the Baire property, [Oxt2]) of a topology τ. Given the assumption $\tau_{1} \subseteq \mathcal{B}_{+}$ below, we are entitled to refer to the usual quasi-interior of any $E \in \mathcal{B}_{+}$, denoted below by \tilde{E}, as in Part I Cor. 2^{\prime} [BinO6, Cor. $\left.2^{\prime}\right]$; we also write $\tilde{B}_{\varepsilon}^{E}$ for $B_{\varepsilon}^{\tilde{E}}(\eta)$.

Theorem 1B. For G a locally compact group with left Haar measure η, if: (i) τ is both a left- and a right-invariant refinement topology with $\tau_{1} \subseteq \mathcal{B}_{+}$ and with the left Nikodym property (preservation of category under left shifts), (ii) for every non-empty $E \in \tau$ the pseudo-norm

$$
g \mapsto\|g\|_{\tilde{E}}:=\eta(g \tilde{E} \triangle \tilde{E}) \quad(g \in G)
$$

is continuous under τ at $g=1_{G}$

- then both the families $\left\{A A^{-1}: A \in \tau_{1}\right\}$ and $\left\{\tilde{B}_{\varepsilon}^{E}: \emptyset \neq E \in \tau\right.$ and $0<\varepsilon \leq 2 \eta(\tilde{E})\}$ generate neighbourhoods of the identity under which G is a topological group. Moreover, the pseudo-norms

$$
\left\{\|\cdot\|_{\tilde{E}}: \emptyset \neq E \in \tau\right\}
$$

are downward directed by refinement; indeed, for $\emptyset \neq E, F \in \tau$ and $\varepsilon<$ $2 \min \{\eta(\tilde{E}), \eta(\tilde{F})\}$, there is $H \in \tau_{1}$ such that for $0<\delta<2 \eta(\tilde{H})$

$$
\tilde{B}_{\delta}^{H} \subseteq \tilde{B}_{\varepsilon}^{E} \cap \tilde{B}_{\varepsilon}^{F}
$$

Proof. In place of the inclusion of Lemma 1 we note a result stronger than that valid for \tilde{E} (i.e. inclusion only in $\tilde{E} \tilde{E}^{-1}$): since meagreness is translationinvariant (the 'Nikodym property' of [BinO3]), $(x E)^{\sim}=x \tilde{E}$ for non-meagre Baire E, so $x \tilde{E} \cap \tilde{E} \neq \emptyset$ implies $x E \cap E \neq \emptyset$, and so again

$$
\tilde{B}_{\varepsilon}^{E}=B_{\varepsilon}^{\tilde{E}} \subseteq E E^{-1}
$$

here again in Lemma 1 the bound $\eta^{*}(E)$ in the restriction governing inclusion may be replaced by $2 \eta(E)$. The proof of Theorem 1 may now be followed verbatim, but for the replacement of $\mathcal{P}(G)$ by $\{\eta\}$, using the stronger inclusion just observed, and of $B_{\varepsilon}^{\cdot}(\eta)$ by $\tilde{B}_{\varepsilon}^{\cdot}$.

Remark. The last result follows more directly from Th. 1M in a context where there exists on G a Marczewski measure (see [TomW, Ch. 13, cf. Ch. 11]), i.e. a finitely additive invariant measure on \mathcal{B} vanishing on bounded members of \mathcal{B}_{0}; this includes $\mathbb{R}, \mathbb{R}^{2}, \mathbb{S}^{1}$, albeit under AC [TomW, Cor. 13.3]; cf. [Myc], but not \mathbb{R}^{d} for $d \geq 3$ [DouF].

With the groundwork of Part I [BinO6,7] on translation-continuity for compacts completed, we close by establishing the promised dichotomy associated with the map

$$
x \mapsto\|x\|_{E}^{\mu}=\mu(x E \triangle E),
$$

for measurable E : the Fubini Null Theorem [BinO6,7, Th. FN (Part I §1)] creates a duality between the vanishing of the F-based pseudo-norm and a dichotomy for x-translates of E^{-1} in relation to F according as $x \in E$ or $x \notin E$, which are thus unable in each case to distinguish between the points of F. Below we write \forall^{μ} for the generalized quantifier "for μ-a.a.' (cf. [Kec, 8.J]).

Theorem 2 (Almost Inclusion-Exclusion). For G a Polish group $\mu \in$ $\mathcal{P}(G)$ and non-null μ-measurable E, F, the vanishing μ-a.e. on F of the E-norm under μ :

$$
\|x\|_{F}^{\mu}=\mu(x E \triangle E)=0 \quad(x \in F)
$$

is equivalent to the following Almost Inclusion-Exclusion for translates of E^{-1} :
(i) Inclusion: F is μ-almost covered by μ-almost every translate $x E^{-1}$ for $x \in E$:

$$
\mu\left(F \backslash x E^{-1}\right)=0 \quad\left(\forall^{\mu} x \in E\right)
$$

(ii) Exclusion: F is μ-almost disjoint from μ-almost every translate $x E^{-1}$ for $x \notin E$:

$$
\mu\left(F \cap x E^{-1}\right)=0 \quad\left(\forall^{\mu} x \notin E\right)
$$

Proof. By the Fubini Null Theorem [BinO6,7, Th. FN (Part I §1)], applied to the set H of Part I Prop. 3 [BinO6, Prop. 3], i.e.

$$
H:=\bigcup_{x \in F}\{x\} \times(x E \triangle E)
$$

H has vertical sections H_{x} almost all μ-null iff μ-almost all of its horizontal sections H^{y} are μ-null. But, since $y \in x E$ iff $x \in y E^{-1}, H^{y}=F \backslash y E^{-1}$ for $y \in E$ and $H^{y}:=F \cap y E^{-1}$ for $y \in G \backslash E$.

Remark. If the inclusion side of the dichotomy of Th. 8 holds for all $x \in E$, then $F \subseteq E E^{-1}$. The converse direction may fail: consider $E=(1,2) \subseteq \mathbb{R}$ and $F=(-1,1)$, so that $E-E=F$, but no translate of $-E$ may cover F.

3 Complements

1. Inclusion-Exclusion dichotomy. Above we focus on inclusions amongst sets of the form $E E^{-1}$, for $E \in \mathcal{U}(G)$, the exception being the InclusionExclusion of a set $F \in \mathcal{U}(G)$ by an E-, or non- E, x-translate of E^{-1} in

Theorem 2 (a dichotomy as between E and its complement). This places most of our study on one side of a related inclusion-exclusion dichotomy for subsets $H, B \in \mathcal{U}(G)$ in a group G one has either inclusion, or 'neardisjointness':

$$
H H^{-1} \subseteq B B^{-1}, \quad \text { or } \quad H H^{-1} \cap B B^{-1}=\left\{1_{G}\right\}
$$

Inclusion may be equivalently re-phrased to the meeting of distinct pairs of H^{-1}-translates of B :

$$
\begin{equation*}
k B \cap k^{\prime} B \neq \emptyset \quad\left(k, k^{\prime} \in H^{-1}\right), \tag{In}
\end{equation*}
$$

whereas exclusion to their disjointness:

$$
\begin{equation*}
k B \cap k^{\prime} B=\emptyset \quad\left(\text { distinct } k, k^{\prime} \in H^{-1}\right) . \tag{Ex}
\end{equation*}
$$

The duality of the relation of $(E x)$ to the results in Th. 2 is clarified by observing that $\mu\left(F \cap x E^{-1}\right)=0$, for a.a. $x \in C$, is equivalent to $\mu(C \cap y E)=$ 0 , for a.a. $y \in F$. Indeed,

$$
0=\iint 1_{C}(x) 1_{F}(y) 1_{x E^{-1}}(y) d(\mu \times \mu)=\iint 1_{F}(y) 1_{C}(x) 1_{y E}(x) d(\mu \times \mu)
$$

The condition ($E x$) gives rise to \mathcal{I}_{0}, the σ-ideal introduced in Balcerzak et al. [BalRS], generated by Borel sets B having perfectly many disjoint translates, as in (Ex) above with H^{-1} a perfect compact set (i.e. compact and dense-in-itself); continuum-many disjoint translates of a compactum also emerge in a theorem of Ulam concerning a non-locally compact Polish group: see [Oxt1, Th. 1]. Such perfect exclusions offer a combinatorial tool, akin to shift-compactness (as in Part I Th. 3 or [BinO6, Th. 3], the latter requiring a subsequence embedding under translation of any null sequence into a non-negligible set - cf. [BinO1,2] [MilO], [BanJ]), and play a key role in the context of groups with ample generics; see for instance the small-index property of [HodHLS].

Solecki [Sol3] proves a 'Fubini for negligibles'-type theorem (cf. Theorem FN in Part I §1 or [BinO6, §1]): the non-negligible vertical sections (relative to a uniformly Steinhaus ideal) of a planar \mathcal{I}_{0}-negligible set form a horizontal \mathcal{I}_{0}-negligible set. The ideal \mathcal{I}_{0} is of particular interest, as it violates the countable (anti)-chain condition, [BalRS].
2. Regular open sets. Recall that, in a topological space X, U is regular open if $U=\operatorname{int}(\operatorname{cl} U)$, and that $\operatorname{int}(\mathrm{cl} U)$ is itself regular open; for background see e.g. [GivH, Ch. 10]. For $\mathcal{D}=\mathcal{D}_{\mathcal{B}}$ the Baire-density topology of a normed topological group, let $\mathcal{D}_{\mathcal{B}}^{R O}$ denote the regular open sets. For $D \in \mathcal{D}_{\mathcal{B}}^{R O}$, put

$$
N_{D}:=\{t \in G: t D \cap D \neq \emptyset\}=D D^{-1}, \quad \mathcal{N}_{1}:=\left\{N_{D}: 1_{G} \in D \in \mathcal{D}_{R O}\right\}
$$

then \mathcal{N}_{1} is a base at 1_{G} (since $1_{G} \in C \in \mathcal{D}_{R O}$ and $1_{G} \in D \in \mathcal{D}_{R O}$ yield $1_{G} \in C \cap D \in \mathcal{D}_{R O}$) comprising \mathcal{T}-neighbourhoods that are $\mathcal{D}_{\mathcal{B}}$-open (since $D D^{-1}=\bigcup\left\{D d^{-1}: d \in D\right\}$). We raise the (metrizability) question, by analogy with the Weil topology of a measurable group (see $\S 1$ and $\S 3.1$ above): with $\mathcal{D}_{\mathcal{B}}$ above replaced by a general density topology \mathcal{D} on a group G, when is the topology generated by \mathcal{N}_{1} on G a norm topology? Some indications of an answer may be found in [ArhT, §3.3]. We note the following answer in the context of Theorem 1B; compare Struble's Theorem [Str2], or [DieS, Ch. 8]. If there exists a separating sequence D_{n}, i.e. such that for each $g \neq 1_{G}$ there is n with $\|g\|_{D_{n}}=1$, then

$$
\|g\|:=\sum_{n} 2^{-n}\|g\|_{D_{n}}
$$

is a norm, since it is separating and, by the Nikodym property, $\left(D \cap g^{-1} D\right)=$ $g^{-1}(g D \cap D) \in \mathcal{B}_{0}$.
3. The Effros Theorem asserts that a transitive continuous action of a Polish group G on a space X of second category in itself is necessarily 'open', or more accurately is microtransitive (the (continuous) evaluation map $e_{x}: g \mapsto g(x)$ takes open neighbourhoods E of 1_{G} to open neighbourhoods that are the orbit sets $E(x)$ of $x)$. It emerges that this assertion is very close to the shiftcompactness property: see [Ost]. The Effros Theorem reduces to the Open Mapping Theorem when G, X are Banach spaces regarded as additive groups, and G acts on X by a linear surjection $L: G \rightarrow X$ via $g(x)=L(g)+x$. Indeed, here $e_{0}(E)=L(E)$. For a neat proof, choose an open neighbourhood U of 0 in G with $E \supseteq U-U$; then $L(U)$ is Baire (being analytic) and nonmeagre (since $\{L(n U): n \in \mathbb{N}\}$ covers X), and so $L(U)-L(U) \subseteq L(E)$ is an open neighbourhood of 0 in X.
4. Beyond local compactness: Haar category-measure duality. In the absence of Haar measure, the definition of left Haar null subsets of a topological group G requires $\mathcal{U}(G)$, the universally measurable sets - by dint of the role of the totality of (probability) measures on G. The natural dual of $\mathcal{U}(G)$ is the class $\mathcal{U}_{\mathcal{B}}(G)$ of universally Baire sets, defined for G with a Baire topology as those
sets B whose preimages $f^{-1}(B)$ are Baire in any compact Hausdorff space K for any continuous $f: K \rightarrow G$. Initially considered in [FenMW] for $G=\mathbb{R}$, these have attracted continued attention for their role in the investigation of axioms of determinacy and large cardinals - see especially [Woo], cf. [MarS] - and is a key notion in [BanJ].

Analogously to the left Haar null sets, define a left Haar meagre set as any set M coverable by a universally Baire set B for which there are a compact Hausdorff space K and a continuous $f: K \rightarrow G$ with $f^{-1}(g B)$ meagre in K for all $g \in G$. Here, as recently noted in [BanGJS, Prop. 5.1], K may be replaced by the Cantor space $2^{\mathbb{N}}$. These were introduced, in the abelian Polish group setting with K metrizable, by Darji [Dar], cf. [Jab], and shown there to form a σ-ideal of meagre sets (co-extensive with the meagre sets for G locally compact).
5. Metrizability and Christensen's Theorem. An analytic topological group is metrizable; so if also it is a Baire space, then it is a Polish group - [HofT, Th. 2.3.6].
6. Metrizability of refinements. Underlying the Disaggregation Theorem (Part II Th. 1) which refines the topology \mathcal{T}_{d} of G there are refining metrics:

$$
d_{K}(x, y):=d(x, y)+|\mu(K x)-\mu(K y)|
$$

(for a family of sets $K \in \mathcal{K}_{+}(\mu)-$ cf. the Struble sampler of $\S 1$ above), reminiscent of Theorem 1 above.
7. Quasi-invariance and the Mackey topology of analytic Borel groups. We comment on the force of full quasi-invariance of a measure in connection with a Steinhaus triple (H, G, μ) [BinO5] with H and G completely metrizable. Both groups, being absolutely Borel, are analytic spaces. So both carry a 'standard' Borel structures with H a Borel substructure of G. Mackey [Mac] investigates such Borel groups, defining also a (Borel) measure μ to be 'standard' if it has a Borel support. It emerges that every σ-finite Borel measure in an analytic Borel space is standard [Mac, Th. 6.1]. Of interest to us is Mackey's notion of a 'measure class' C_{μ}, comprising all Borel measures ν with the same null sets as $\mu: \mathcal{M}_{0}(\nu)=\mathcal{M}_{0}(\mu)$. Such a measure class may be closed under translation, and may be right or left invariant; then their mutually common null sets are themselves invariant, and so may be viewed as witnessing quasi-invariance of the measure μ. Mackey shows that a Borel group with a one-sided invariant measure class has a both-sidedly invariant measure class [Mac, Lemma 7.2]; furthermore, if the class is countably generated, then the class contains a left-invariant and a right-invariant measure
[Mac, Lemma 7.3]. This enables Mackey to improve on Weil's theorem in showing that an analytic Borel group G with a one-sidedly invariant measure class, in particular one generated by a quasi-invariant measure, has a unique locally compact topology on G both yielding a topological group structure and generating the given Borel structure.

References

[Amb] W. Ambrose, Measures on locally compact topological groups. Trans. Amer. Math. Soc. 61 (1947), 106-121.
[ArhT] A. Arhangelskii, M. Tkachenko, Topological groups and related structures. World Scientific, 2008.
[BalRS] M. Balcerzak, A. Rosłanowski, S. Shelah, Ideals without ccc. J. Symbolic Logic 63 (1998), 128-148.
[BanJ] T. Banakh, E. Jabłońska, Null-finite sets in metric groups and their applications, Israel J. Math. 230 (2019), 361-386.
[BanGJS] T. Banakh, S. Głąb, E. Jabłońska, J. Swaczyna, Haar-I sets: looking at small sets in Polish groups through compact glasses. arXiv: 1803.06712.
[Bin] N. H. Bingham, Finite additivity versus countable additivity. Electronic J. History of Probability and Statistics, 6 (2010), 35p.
[BinO1] N. H. Bingham and A. J. Ostaszewski, Normed groups: Dichotomy and duality. Dissert. Math. 472 (2010), 138p.
[BinO2] N. H. Bingham and A. J. Ostaszewski, Dichotomy and infinite combinatorics: the theorems of Steinhaus and Ostrowski. Math. Proc. Camb. Phil. Soc. 150 (2011), 1-22.
[BinO3] N. H. Bingham and A. J. Ostaszewski, Beyond Lebesgue and Baire IV: Density topologies and a converse Steinhaus-Weil theorem. Topology and its Applications 239 (2018), 274-292 (arXiv:1607.00031).
[BinO4] N. H. Bingham and A. J. Ostaszewski, Additivity, subadditivity and linearity: Automatic continuity and quantifier weakening. Indag. Math. (N.S.) 29 (2018), 687-713. (arXiv 1405.3948v3).
[BinO5] N. H. Bingham and A. J. Ostaszewski, Beyond Haar and CameronMartin: the Steinhaus support. Topology Appl. 260 (2019), 23-56. (arXiv: 1805.02325 v 2).
[BinO6] N. H. Bingham and A. J. Ostaszewski, The Steinhaus-Weil property and its converse: subcontinuity and amenability. arXiv:1607.00049.
[BinO7] N. H. Bingham and A. J. Ostaszewski, The Steinhaus-Weil property: I. Subcontinuity and amenability. Preprint.
[BinO8] N. H. Bingham and A. J. Ostaszewski, The Steinhaus-Weil property: II. The Simmons-Mospan converse. Preprint.
[BinO9] N. H. Bingham and A. J. Ostaszewski, The Steinhaus-Weil property: IV. Other interior-point properties. Preprint.
[Bog] V. I. Bogachev, Measure theory. Vol. I, II. Springer-Verlag, Berlin, 2007.
[Chr] J. P. R. Christensen, On sets of Haar measure zero in abelian Polish groups. Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972). Israel J. Math. 13 (1972), 255-260 (1973).
[ChrH] J. P. R. Christensen, W. Herer, On the existence of pathological submeasures and the construction of exotic topological groups. Math. Ann. 213 (1975), 203-210.
[Dar] U. B. Darji, On Haar meager sets. Topology Appl. 160 (2013), 23962400.
[DieS] J. Diestel, A. Spalsbury, The joys of Haar measure. Grad. Studies in Math. 150. Amer. Math. Soc., 2014.
[DouF] R. Dougherty, M. Foreman, Banach-Tarski decompositions using sets with the property of Baire. J. Amer. Math. Soc. 7 (1994), no. 1, 75-124.
[Dre1] L. Drewnowski, Topological rings of sets, continuous set functions, integration. I, II, III. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 269-276; 20 (1972), 277-286; 20 (1972), 439-445.
[Dre2] L. Drewnowski, On control submeasures and measures. Studia Math. 50 (1974), 203-224.
[FenMW] Q. Feng, M. Magidor, H. Woodin, Universally Baire sets of reals, in H. Judah, W. Just, H. Woodin (eds.), Set theory of the continuum, 203242, Math. Sci. Res. Inst. Publ. 26, Springer, 1992.
[Fre] D. Fremlin, Measure theory Vol. 3: Measure algebras. Corrected $2^{\text {nd }}$ printing of the 2002 original. Torres Fremlin, Colchester, 2004.
[Gao] Su Gao, Invariant descriptive set theory. Pure and Applied Mathematics 293. CRC Press, 2009.
[GivH] S. Givant and P. Halmos, Introduction to Boolean algebras, Springer 2009.
[Hal] P. R. Halmos, Measure theory, Grad. Texts in Math. 18, Springer 1974 ($1^{\text {st }}$ ed. Van Nostrand, 1950).
[HewR] E. Hewitt, K. A. Ross, Abstract harmonic analysis, Vol. I, Grundl.
math. Wiss. 115, Springer 1963 [Vol. II, Grundl. 152, 1970].
[HodHLS] W. Hodges, I. Hodkinson, D. Lascar, S. Shelah, The small index property for ω-stable ω-categorical structures and for the random graph. J. London Math. Soc. 48 (1993), 204-218.
[HofT] J. Hoffmann-Jørgensen, F. Topsøe, Analytic spaces and their application, in [Rog, Part 3].
[Jab] E. Jabłońska, Some analogies between Haar meager sets and Haar null sets in abelian Polish groups. J. Math. Anal. Appl. 421 (2015), 1479-1486.
[Kec] A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics 156, Springer, 1995.
[Kne] M. Kneser, Summenmengen in lokalkompakten abelschen Gruppen, Math. Z. 66 (1956), 88-110.
[Kod] K. Kodaira, Uber die Beziehung zwischen den Massen und den Topologien in einer Gruppe. Proc. Phys.-Math. Soc. Japan (3) 23 (1941), 67-119. [Mac] G. W. Mackey, Borel structure in groups and their duals. Trans. Amer. Math. Soc. 85 (1957), 134-165.
[Mah] D. Maharam, An algebraic characterization of measure algebras. Ann. of Math. (2) 48 (1947). 154-167.
[MarS] D. A. Martin, J. R. Steel, Projective determinacy. Proc. Nat. Acad. Sci. U.S.A. 85 (1988), 6582-6586.
[MilO] H. I. Miller and A. J. Ostaszewski, Group action and shift-compactness. J. Math. Anal. App. 392 (2012), 23-39.
[Mue] B. J. Mueller, Three results for locally compact groups connected with the Haar measure density theorem. Proc. Amer. Math. Soc. 16 (6) (1965), 1414-1416.
[Myc] J. Mycielski, Finitely additive measures. Coll. Math., 42 (1979), 309318.
[Ost] A. J. Ostaszewski, Effros, Baire, Steinhaus-Weil and non-separability. Topology and its Applications (Mary Ellen Rudin Memorial Volume) 195 (2015), 265-274.
[Oxt1] J. C. Oxtoby, Invariant measures in groups which are not locally compact. Trans. Amer. Math. Soc. 60 (1946), 215-237.
[Oxt2] J. C. Oxtoby, Measure and category, 2nd ed. Graduate Texts in Math. 2, Springer, 1980 ($1^{\text {st }}$ ed. 1972).
[Pat] A. L. T. Paterson, Amenability. Math. Surveys and Mon. 29, Amer. Math. Soc., 1988
[Pet] B. J. Pettis, On continuity and openness of homomorphisms in topological groups. Ann. of Math. (2) 52 (1950), 293-308.
[Rog] C. A. Rogers, J. Jayne, C. Dellacherie, F. Topsøe, J. HoffmannJørgensen, D. A. Martin, A. S. Kechris, A. H. Stone, Analytic sets, Academic Press, 1980.
[Sol1] S. Solecki, Size of subsets of groups and Haar null sets. Geom. Funct. Anal. 15 (2005), 246-273.
[Sol2] S. Solecki, Amenability, free subgroups, and Haar null sets in nonlocally compact groups. Proc. London Math. Soc. (3) 93 (2006), 693-722.
[Sol3] S. Solecki, A Fubini theorem. Topology Appl. 154 (2007), 2462-2464.
[Ste] H. Steinhaus, Sur les distances des points de mesure positive. Fund. Math. 1 (1920), 83-104.
[Str1] R. Struble, Almost periodic functions on locally compact groups. Proc. Nat. Acad. Sci. U. S. A. 39 (1953). 122-126.
[Str2] R. Struble, Metrics in locally compact groups. Compositio Math. 28 (1974), 217-222.
[Tal] M. Talagrand, Maharam's problem. Ann. of Math. (2) 168 (2008), 981-1009.
[TomW] G. Tomkowicz, S. Wagon, The Banach-Tarski paradox. Cambridge University Press, 2016 ($1^{\text {st }}$ ed. 1985).
[Web] H. Weber, FN-topologies and group-valued measures. in E. Pap (ed) Handbook of measure theory, Vol. I, 703-743, North-Holland, 2002.
[Wei] A. Weil, L'intégration dans les groupes topologiques, Actualités Scientifiques et Industrielles 1145, Hermann, 1965 ($1^{\text {st }}$ ed. 1940).
[Woo] W. H. Woodin, The axiom of determinacy, forcing axioms, and the nonstationary ideal. $2^{\text {nd }}$ ed., De Gruyter Series in Logic and its Applications 1. De Gruyter, 2010.
[Yam] Y. Yamasaki, Measures on infinite-dimensional spaces. World Scientific, 1985.

Mathematics Department, Imperial College, London SW7 2AZ; n.bingham@ic.ac.uk
Mathematics Department, London School of Economics, Houghton Street, London WC2A 2AE; A.J.Ostaszewski@lse.ac.uk

