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1 Weil-like topologies: preliminaries

We are concerned with relatives of the Weil topology as generators of the
Steinhaus-Weil interior-point property [Ste]. For background, we refer to
Weil’s book [Wei, Ch. VII] and Halmos’s book [Hal, Ch. XII| (see also
[BinO6, §8.4]). Weil regarded his result as a Converse Haar Theorem, in
retrieving the topological-group structure from the measure-algebra struc-
ture [Fre| as encoded by the Haar-measurable subsets — cf. [Kod]. (Here
one may work either, following Weil, to within a dense embedding in a lo-
cally compact group, as in the Remark to Theorem 1M below, or, following
Mackey, uniquely up to homeomorphism, granted the further assumption
of an analytic Borel structure [Mac, Th. 7.1]; for further information see
[BinO6, §8.16].) The alternative view below throws light on this result in
that the measure structure is already encoded by the density topology D
via the Haar density theorem, for which see [Mue|, [Hal, §61(5), p. 268],
cf. [BinO1, §7; Th. 6.10], [BinO3]. This view is partially implicit in [Amb]:
writing M (u) for the p-measurable sets of positive p-measure, refinement
of one invariant measure p, by another u, holds when sets in M (u,), con-
tain sets in M (1) (as in the refinement of one topology by another). This
falls within the broader aim of retrieving a topological group structure from
a given (one-sidedly) invariant topology 7 on a group G, when 7 arises from



refinement of a topological group structure (i.e. starting from a semitopo-
logical group structure (G, 7)). Also relevant here are Converse Steinhaus-
Weil results, as in Part II Prop. 1 of [Bin06,§3], [BinO8, §2] (see also
[BinO6, §8.5]). For background on group-norms see the textbook treatment
in [ArhT, §3.3] (who trace this notion back to Markov) or [BinO1], but note
their use of ‘pre-norm’ for what we call (following Pettis [Pet]) a pseudo-
norm; for quasi-interiors and regular open sets see [BinO6, §8.6]. Thus a
norm || - || : G — [0, 00) satisfies all the three conditions 1-3 below and gen-
erates a right-invariant metric d(z,y) = ||zy~!|| and so a topology 7 = T4,
just as a right-invariant metric d derives from a separable topology 7, and
generates, via the Birkhoff-Kakutani Theorem ([HewR, Th. 8.3], [Gao, Th.
2.1.1]), the norm ||z|| = d(x,1g). A pseudo-norm differs in possibly lacking
condition 1.i. (so generates a pseudo-metric).

1.i (positivity): ||g|| > 0 for g # 1, and 1.i: ||1g]| = 0;

2 (subadditivity): |[gh[| < ||g[| + ||A]],

3 (symmetry): [|g7*|| = [|g]|-

With U (G) the universally measurable subsets of G, recall from the Intro-
duction of Part I [BinO6,7] that A € My, if A is a set function A defined on
U(G) and is a submeasure, i.e. is monotone and subadditive with A(})) = 0
(Introduction, [Fre, Ch. 39, §392], [Tal]); by analogy with the term finitely
additive measure (for background see [Bin|, [TomW, Ch. 12]; cf. [Pat]), this
is a finitely subadditive outer measure, similarly as in Maharam [Mah], albeit
in the context of Boolean algebras, but without her positivity condition. Re-
call from Halmos [Hal, Ch. II §10] that a submeasure is an outer measure if
in addition it is countably subadditive. The set function A is left invariant if
AMgE) = AE) for all g € G and E € U(G).

Propositions 1 and 2 below are motivated by [Hal, Ch. XII §62, cf. Ch.
IT §9 (2-4)], where G is a locally compact group with A its left Haar measure,
but here the context is broader, allowing in amenable groups G (cf. [TomW,
Ch. 12], [Pat]). The two results enable the introduction in §2 of Weil-like
topologies generated from families of left-invariant pseudo-metrics derived
from invariant submeasures. The latter rely on the natural measure-metric,
also known as the Fréchet-Nikodym metric ([Fre, §323Ad], [Hal, §40 Th. A],
[Bog, p. 53, 102-3, 418]); see [Drel,2] (cf. [Web]) for the related literature
of Fréchet-Nikodym topologies and their relation to the Vitali-Hahn-Saks
Theorem. Maharam [Mah]| studies sequential continuity of the order relation
(of inclusion, here in the measure algebra), and requires positivity to obtain



a (measure-) metric; see Talagrand [Tal] (cf. [Fre, §394] and the literature
cited there) for a discussion of pathological submeasures (the only measures
they dominates under < being trivial), and [ChrH] for corresponding exotic
abelian Polish groups.

In the setting of a locally compact group G, these pseudo-metrics are im-
plicit in work of Struble: initially, in 1953 [Strl], he used a (‘sampler’) family
of pre-compact open sets {F; : t > 0} to construct a mean on G, thereby
refering to a one-parameter family of pseudo-metrics corresponding to the
sets Fy; some twenty years later in 1974 [Str2] (cf. [DieS, Ch. 8]) identifies
a left-invariant (proper) metric on G by taking the supremum of pseudo-
metrics, each generated from some open set in a countable open base at 1.
The pseudo-metric makes a very brief appearance in Yamasaki’s textbook
treatment [Yam, Ch. 1] of Weil’s theorem.

Proposition 1 (Weil pseudo-norm, cf. [Fre, §392H], [Yam, Ch. 1, Proof
of Th. 4.1]). For G a Polish group, A\ € Mg, (G), a left-invariant submeasure
on U(G), and E € U(G) with \(E) > 0, put

lgll} == \GEAE) (g€ Q).

Then ||.||r defines a group pseudo-norm with associated right-invariant pseudo-
metric

dp(g.h) =|lgh |3 (9,h € Q).

Likewise, for X right-invariant, a pseudo-norm is defined by

9|l == A(EAEg) (g€ G).

Proof. Since A\()) = 0, ||1¢||3 = 0. By left invariance under a,
lla™Y|%y = Ma'EAE) = Ma(a ' EAE)) = NEAaE) = ||a||.
Also,
[labl[3 < llalls + [[6]%
follows from monotonicity, subadditivity and A(abEAaE) = A(bEAE) :
AMabE\E U E\abE) <A(abE\aE) U (aE\E) U (E\aFE) U (aE\abE))
=\abE\aFE) U (aE\abE) U (aE\E) U (E\aF))

<MNabEAGE) + AMEAaE) = NbEAE) + NMEAaE).
U



Corollary 1 (Kneser for Haar measure, [Kne, Hilfs. 4]). For G a Polish
group, A € Muw(G), a left-invariant submeasure on U(G), and E € U(G)
with A\(E) > 0, the set

H:={ge G:\NgEAE) =0}
is a subgroup of G closed under the norm ||g||%-

Proof. Indeed H = {g € G : ||g||}, = 0}, and so H is a subgroup, since for
g:h € H, |lgh™'[13 < llgll% + lIR[[3 = 0. B

Recall now that a subset A of a Polish group G is left Haar null if it is
contained in a universally measurable set B such that for some pu € P(G)

w(gB)=0  (g€G).

It is Haar null: A € HN amp [Soll] (cf. [HofT, p. 374]), if it is contained in
a universally measurable set B such that for some p € P(G)

u(gBh) =0 (g,h € G).

This motivates the following application of Proposition 1 beyond Haar mea-
sure. Extending the notation of [Bin06,§3], Part II §1, below M&(G) (resp.
My(G)) denotes the family of left-Haar-null (resp. Haar-null) sets of GG, and
we write

UL (G) = UG)\MG(G),  U(G) :=U(G)\Mo(G).

Prop. 1 may be applied to the following measures; those constructed from
p a normalized counting measure (of finite support) are studied in [Soll].

Proposition 2. In a Polish group G, for u € P(G) put

pp(E) « =sup{u(gk): g€ G}  (E€U(G)),
p(E) : =sup{u(gEh): g,h € G}  (E€U(G)).

Then 5 (resp. [i1) is a left invariant (resp. bi-invariant) submeasure on
U(G), which is positive for E € UX(G) (resp. for E € UL(G)), i.e. for

universally measurable, non-left-Haar null (resp. non-Haar-null) sets.



Proof. We consider only ji, as the case u} is similar and simpler (through
the omission of h and b below). The set function i is well defined, with

WE)<HE)<1  (BEeUG)).
since 4 is a probability measure; it is bi-invariant, since
fi(aEd) := sup{u(gakbh) : g.h € G} = sup{p(gEh) : g.h € G},
and G is a group. Furthermore, for B € U(G)
ugBh) <(BY <1, (g9.h €.

So, for u € P(G)
0<ia(B)<1 (BeU(q)),

since there are g, h € G with p(gBh) > 0. Countable subadditivity follows
(on taking suprema of the leftmost term over g, h) from

wlg(J Adh) <D0 ulgAuh) <37 algAch) = fi(Aw),
for any sequence of sets A,, € U(G). O
Definition. For p € P(G), E € U(G), put
BE(n) = {w € G : lally < e}

Our next step uses Prop. 2 to inscribe these balls into EE~! for all small
enough ¢ > 0.

Lemma 1 (Self-intersection Lemma). In a Polish group G for E €
U (G), and respectively for E € UL(G), and p € P(G),

lg € B (i) € EE™ (0 <e<i(E))
lg € BX(py) € EE™ (0 <e < pi(E)).

Equivalently, for 0 < e < u(E), and respectively for 0 < e < p}(E),
ENnzE#0  (z € BE(p)); ENnzE#0  (z € BF(3)).

Proof. We check only the i case; the other is similar and simpler (through
the omission of h below). For E € U, (G), since ji(E) > 0 by Prop. 2, we
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may pick g,h € G such that e = pu(gEh) > 0. Consider x and € > 0 with
|z||% < e <eg. If E and 2F are disjoint, then

e = ulgBh) < plg(EUzE) < jlg(EUE)h) = i(EU2E)
= WeEAE) = |lalll < e < ep,

a contradiction. So £ and xFE do meet. Now first pick ¢ € £ N E and next
s € FE so that t = xs; then z = ts~! € EE~!. The argument is valid when
ep = (gFEh) assumes any value in (0, 2(E)]. The converse is clear. O

We need a simple analogue of a result due to Weil ([Wei, Ch. VII, §31],
cf. [Hal, Ch. XII §62]). Below 7; denotes the 7-open neighbourhoods of 1.
For G locally compact with A\ = 7, the identity

2n(E) —2n(ENzE)=n(EAzE)=1-2 / le(t)lpa(tt2)dn(t) (1)

connects the continuity of the (pseudo-) norm to Zy-continuity of translation
in the topological group structure (G, 7;) of the locally compact group, and
to continuity of the convolution function here (for E of finite -measure) — see
[HewR, Th. 20.16]; see also [HewR, Th. 20.17] for the well-known connec-
tion between the Steinhaus-Weil Theorem and convolution. Such continuity
guarantees that BF(n) contains points other than 1¢.

Lemma 2 (Fragmentation Lemma; cf. [Hal, Ch. XII §62 Th. A]).
For A € Muw(G) a left-invariant submeasure on U(G) in a Polish group
G equipped with a finer right-invariant topology T with 1g-open-nhd family
if the map
@ |

is continuous under T at x = lg for each E € UL(G)

— then, for each ) # E,F € 7 and € > 0 with ¢ < \(E), there exists H € 11
with HH™' C FF~! and

a7y <e h,h € H) : HH™' C B?,
E = "¢
so that diamy,(H) < e.

Proof. Pick any f € F, and D € 7, satisfying ||z|| < /2 for all z € D. As
7 is right-invariant and 1 € DNEFf~1 € 7, pick H € 71 with H C DNFf~};
then

HH'=Hff'H'C FF L
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For h,h' € H, as h,h' € D
()Ml = IR < W[l + 1AMl = 1]y + Al < e D

In the presence of a refinement topology 7 on the group G, the lemma
motivates further notation: write Peon (G, 7), or just

P(r) :={p e P(G,Ty) : g ||g||t .= (g EAE) is -continuous at 15}

Of necessity attention here focuses on continuity. The characterization
question as to which topologies 7 yield a non-empty P(7) is in part answered
by Theorem 1M below. Indeed, for Haar measure n in the locally compact
case,

peP(r) (p<nT12T),

by (1) in the presence of du/dn as a kernel:

el =1 =2 [ 16(0)15-1(¢72) Podnte) (i)

However, P(G) will contain measures p singular with respect to 7 : for such
i, by the Simmons-Mospan Theorem [Bin06,8, Th. SM] there will be Borel
subsets B of positive p-measure such that BB~! has void 7g-interior.

2 Weil-like topologies: theorems

Prop. 2 now yields the following result, which embraces known Hashimoto
topologies [BinO3] in both the Polish abelian setting, where the left Haar null
sets form a o-ideal (Christensen [Chr]), and likewise in (the not necessarily
abelian) Polish groups that are amenable at 1 (Solecki [Sol1,2]); this includes,
as additive groups, F- (hence also Banach) spaces — cf. [BinO3,4], where use
is made of Hashimoto topologies.

Theorem 1. Let G be a Polish group and T both a left- and a right-invariant
refinement topology with 1g-open-nhd family 71 C U (G).

Then both the families {AA™ : A€ 71} and {BF (1) : 0 # E € 7, € P(7)
and 0 < ¢ < u(E)} generate neighbourhoods of the identity under which G
s a topological group. Moreover, the pseudo-norms

(k0 #£E€er,ueP(r)}
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are downward directed by refinement as follows: for 0+ EFeTy, \,u€
P(r) and e < min{\(E), i(F)}}, there is H € 71 such that for 0 < 6 <
min{A(H), i(H)}

Bi'(\) N Bj' (1) € BZ(A\) N B ().

Proof. The proof is similar to but simpler than that of [Hal, Ch. XII §62
Th. A]. With the notation of Prop. 2 for A, u € P(7), given two (non-left-
Haar-null) sets F, F' € 71 and € < min{\(F), i(F)}, by the Fragmentation

~

Lemma (Lemma 2 of §1) applied separately to A and to ji, there are A, B € 7,
with R
AATY C BE()N), BB C Bf(p).
Take any H € 71 with H C AN B; then
HH ' C AA'nBB™.

Since H € U (G) (as 71 C U, (G)), take § with 0 < § < min{\(H), a(H)};
then by (%) of I, Lemma 1,

BN NBI () CHH' C AA'nBB~' C BP(\) n BF ().

(So ‘mutual refinement’ holds between the sets of the form AA~! and those
of the form BE.) As || -||% is a pre-norm,

Bab}z(/])Bf/z(ﬂ)fl = 352(/1)35/2(/1) C BE(j).

By the Fragmentation Lemma again, given any z € G and ¢ > 0, choose
H € 7y with HH™* C BF(f1). Then with F':=zH € T,

BE(R) = {z : [|2I[% < ¢} € (@H)(@H) ™ = oHH 2™ C oBE(R)a,
Finally, for any zo with ||zo|/% < &, put § := ¢ — ||zo||%. Then for ||y||% < 4,
[l - yllfs < Mol I + 1yl < [lwoll + & — llzolli; < e,

i.e.
2BE(j1) € BE(jy). 0

Specializing to locally compact groups yields as a corollary, on writing
BP == BF(n) :



Theorem 1M. For G a locally compact group with left Haar measure n, if:
(i) 7 is both a left- and a right-invariant refinement topology with 71 C M,
(i) for every non-empty E € T, the pseudo-norm

g—lgllg =n(gEAE)  (g€G)

s continuous under T at g = 1g

— then both the families {AA™ : A € 71} and {BF : ) # E € 7 and
0 <e < 2n(E)} generate neighbourhoods of the identity under which G is a
topological group. Moreover, the pseudo-norms

{Illle:0#Eer}

are downward directed by refinement; indeed, for ) # E,F € 7 and ¢ <
2min{n(E),n(F)}, there is H € 71 such that for 0 < § < n(H)

BF C BEn BE.

Proof. It is enough to replace P(G) by {n} (so that A and u both refer to
n), and to note that if xF and F are disjoint, then n(xEAE) = 2n(E), so
that in Lemma 1 the bound 7*(E) in the restriction governing inclusion may
be replaced by 2n(FE). O

Remark. As in [Hal, Ch. XII §62 Th. F|, but by the Fragmentation
Lemma (and by the countable additivity of 1), the Weil-like topology on a
locally compact G in Theorem 1M is locally bounded (norm-totally-bounded
in some ball). Then G with the Weil-like topology may be densely embedded
in its completion G , which is in turn locally compact, being locally complete
and (totally) bounded. However, the corresponding argument in the case of
the preceeding more general Theorem 1 fails, since /i there is not necessarily
countably additive.

Finally, we give a category version of Theorem 1M, as an easy corollary;
indeed, our main task is merely to define what is meant by ‘mutatis mutandis’
in the present context. Denote by B (7) the non-meagre Baire sets (= with
the Baire property, [Oxt2]) of a topology 7. Given the assumption 7; C B
below, we are entitled to refer to the usual quasi-interior of any F € B,
denoted below by E, as in Part I Cor. 2’ [BinO6, Cor. 2']; we also write BEE

for Bf(n).



Theorem 1B. For G a locally compact group with left Haar measure n, if:
(i) 7 is both a left- and a right-invariant refinement topology with 71 C By
and with the left Nikodym property (preservation of category under left shifts),
(ii) for every non-empty E € T the pseudo-norm

g lgllz =n(gEAE) (g€ @)

18 continuous under T at g = 1g

— then both the families {AA™' : A € 11} and {BF : ) # E € 7 and
0<e< Zn(E)} generate neighbourhoods of the identity under which G is a
topological group. Moreover, the pseudo-norms

{lIlllz:0#Eer}

are downward directed by refinement; indeed, for 0 # E F €7 and e <
2min{n(E),n(F)}, there is H € 71 such that for 0 < § < 2n(H)

B C BE B

Proof. In place of the inclusion of Lemma 1 we note a result stronger than
that valid for £ (i.e. inclusion only in EE~1): since meagreness is translation-
invariant (the ‘Nikodym property’ of [BinO3]), (zE) = xF for non-meagre
Baire F, so tE N E # 0 implies E N E # 0, and so again

BF = BF C EE™Y;

here again in Lemma 1 the bound n*(F) in the restriction governing inclusion
may be replaced by 2n(F). The proof of Theorem 1 may now be followed ver-
batim, but for the replacement of P(G) by {n}, using the stronger inclusion
just observed, and of B.(n) by Bé. O

Remark. The last result follows more directly from Th. 1M in a context
where there exists on G' a Marczewski measure (see [TomW, Ch. 13, cf. Ch.
11]), i.e. a finitely additive invariant measure on B vanishing on bounded
members of By; this includes R, R? S, albeit under AC [TomW, Cor. 13.3];
cf. [Myc], but not R? for d > 3 [DouF).

With the groundwork of Part I [BinO6,7] on translation-continuity for
compacts completed, we close by establishing the promised dichotomy asso-
ciated with the map

2 |lall = p(aEAE),
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for measurable F : the Fubini Null Theorem [Bin06,7, Th. FN (Part I §1)]
creates a duality between the vanishing of the F-based pseudo-norm and a
dichotomy for z-translates of E~! in relation to F' according as x € E or
x ¢ E, which are thus unable in each case to distinguish between the points
of F. Below we write V* for the generalized quantifier “for p-a.a.” (cf. [Kec,

8.7).

Theorem 2 (Almost Inclusion-Exclusion). For G a Polish group pn €
P(G) and non-null p-measurable E, F', the vanishing u-a.e. on F of the
E-norm under p :

lells = W@EAE) =0 (v € F),

is equivalent to the following Almost Inclusion-Exclusion for translates of
E-1:
(i) Inclusion: F is p-almost covered by p-almost every translate xE~*for
rekl:

w(F\eE)=0  (Vx€E),

(ii) Exclusion: F is p-almost disjoint from p-almost every translate xE~* for
r ¢ FE:

W(FNnzE™) =0 (V'z ¢ E).
Proof. By the Fubini Null Theorem [BinO6,7, Th. FN (Part I §1)], applied
to the set H of Part I Prop. 3 [BinO6, Prop. 3], i.e

H = U Aa} x (@EAE),

H has vertical sections H, almost all py-null iff p-almost all of its horizontal
sections HY are p-null. But, since y € oF iff # € yE~!, HY = F\yE~! for
y€ Eand HY := FNyE~! for y € G\E. O

Remark. If the inclusion side of the dichotomy of Th. 8 holds for all z € F,
then ' C EE~!. The converse direction may fail: consider F = (1,2) C R
and F' = (—1,1), so that £ — E' = F, but no translate of —E may cover F.

3 Complements

1. Inclusion-Exclusion dichotomy. Above we focus on inclusions amongst
sets of the form FE~!, for E € U(G), the exception being the Inclusion-
Exclusion of a set F € U(G) by an E-, or non-FE, z-translate of EF~1

11



Theorem 2 (a dichotomy as between E and its complement). This places
most of our study on one side of a related inclusion-exclusion dichotomy —
for subsets H, B € U(G) in a group G one has either inclusion , or ‘near-
disjointness’:

HHCBB™, o HH'NBB™=/{l}

Inclusion may be equivalently re-phrased to the meeting of distinct pairs of
H~'-translates of B :

EBNKB#0 (kK € H?), (In)
whereas exclusion to their disjointness:
kEBNKB=0  (distinct k, k' € H™1). (Ex)

The duality of the relation of (Ex) to the results in Th. 2 is clarified by
observing that u(FNxE~') =0, for a.a. x € C, is equivalent to u(CNyE) =
0, for a.a. y € F. Indeed,

0= / / 1o(2)Lp () Loz () X 1) = / / 1 () 1e(@) Ly (2)d( x ).

The condition (Ex) gives rise to Zy, the o-ideal introduced in Balcerzak
et al. [BalRS], generated by Borel sets B having perfectly many disjoint
translates, as in (Fx) above with H~! a perfect compact set (i.e. compact
and dense-in-itself); continuum-many disjoint translates of a compactum also
emerge in a theorem of Ulam concerning a non-locally compact Polish group:
see [Oxtl, Th. 1]. Such perfect exclusions offer a combinatorial tool, akin
to shift-compactness (as in Part I Th. 3 or [BinO6, Th. 3], the latter re-
quiring a subsequence embedding under translation of any null sequence into
a non-negligible set — cf. [BinO1,2] [MilO], [BanJ]), and play a key role in
the context of groups with ample generics; see for instance the small-index
property of [HodHLS].

Solecki [Sol3| proves a ‘Fubini for negligibles’-type theorem (cf. Theorem
FN in Part I §1 or [BinO6, §1]): the non-negligible vertical sections (relative
to a uniformly Steinhaus ideal) of a planar Zy-negligible set form a horizontal
Zo-negligible set. The ideal Z; is of particular interest, as it violates the
countable (anti)-chain condition, [BalRS].
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2. Regular open sets. Recall that, in a topological space X, U is reqular open
if U =int(clU), and that int(clU) is itself regular open; for background see
e.g. [GivH, Ch. 10]. For D = Dg the Baire-density topology of a normed
topological group, let DEC denote the regular open sets. For D € DEC, put

Np:={t€eG:tDND #0}=DD, Ny :={Np:1c € D € Dro};

then N is a base at 1g (since 1¢ € C' € Do and 1g € D € Dgo yield
lg € CN D € Dgp) comprising 7 -neighbourhoods that are Dg-open (since
DD = | {Dd! : d € D}). We raise the (metrizability) question, by
analogy with the Weil topology of a measurable group (see §1 and §3.1 above):
with Dgp above replaced by a general density topology D on a group G, when
is the topology generated by N} on G a norm topology? Some indications
of an answer may be found in [ArhT, §3.3]. We note the following answer in
the context of Theorem 1B; compare Struble’s Theorem [Str2], or [DieS, Ch.
8]. If there exists a separating sequence D,, i.e. such that for each g # 14
there is n with ||g||p, = 1, then

lgl| := Zn 27" |gllp.,

is a norm, since it is separating and, by the Nikodym property, (DNg~'1D) =
g (gD N D) € B.

3. The Effros Theorem asserts that a transitive continuous action of a Polish
group GG on a space X of second category in itself is necessarily ‘open’, or more
accurately is microtransitive (the (continuous) evaluation map e, : g — g(x)
takes open neighbourhoods E of 15 to open neighbourhoods that are the
orbit sets E(z) of z). It emerges that this assertion is very close to the shift-
compactness property: see [Ost]. The Effros Theorem reduces to the Open
Mapping Theorem when GG, X are Banach spaces regarded as additive groups,
and G acts on X by a linear surjection L : G — X via g(x) = L(g) + .
Indeed, here eo(E) = L(E). For a neat proof, choose an open neighbourhood
Uof 0in G with £ D U — U; then L(U) is Baire (being analytic) and non-
meagre (since {L(nU) : n € N} covers X), and so L(U) — L(U) C L(E) is
an open neighbourhood of 0 in X.

4. Beyond local compactness: Haar category-measure duality. In the absence
of Haar measure, the definition of left Haar null subsets of a topological group
G requires U(G), the universally measurable sets — by dint of the role of the
totality of (probability) measures on G. The natural dual of U(G) is the class
Up(G) of universally Baire sets, defined for G with a Baire topology as those
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sets B whose preimages f~!(B) are Baire in any compact Hausdorff space K
for any continuous f : K — . Initially considered in [FenMW] for G = R,
these have attracted continued attention for their role in the investigation of
axioms of determinacy and large cardinals — see especially [Woo], cf. [MarS]
— and is a key notion in [BanJ].

Analogously to the left Haar null sets, define a left Haar meagre set as any
set M coverable by a universally Baire set B for which there are a compact
Hausdorff space K and a continuous f : K — G with f~!(gB) meagre in
K for all g € G. Here, as recently noted in [BanGJS, Prop. 5.1], K may
be replaced by the Cantor space 2. These were introduced, in the abelian
Polish group setting with K metrizable, by Darji [Dar], cf. [Jab], and shown
there to form a o-ideal of meagre sets (co-extensive with the meagre sets for
G locally compact).

5. Metrizability and Christensen’s Theorem. An analytic topological group
is metrizable; so if also it is a Baire space, then it is a Polish group — [HofT,
Th. 2.3.6].

6. Metrizability of refinements. Underlying the Disaggregation Theorem
(Part II Th. 1) which refines the topology 7; of G there are refining metrics:

dr(z,y) == d(z,y) + |p(Kz) — p(Ky)|

(for a family of sets K € K, () — cf. the Struble sampler of §1 above),
reminiscent of Theorem 1 above.

7. Quasi-invariance and the Mackey topology of analytic Borel groups. We
comment on the force of full quasi-invariance of a measure in connection with
a Steinhaus triple (H,G, p) [BinO5] with H and G completely metrizable.
Both groups, being absolutely Borel, are analytic spaces. So both carry a
‘standard’ Borel structures with H a Borel substructure of G. Mackey [Mac]
investigates such Borel groups, defining also a (Borel) measure p to be ‘stan-
dard’ if it has a Borel support. It emerges that every o-finite Borel measure
in an analytic Borel space is standard [Mac, Th. 6.1]. Of interest to us is
Mackey’s notion of a ‘measure class’ C),, comprising all Borel measures v
with the same null sets as p : Mo(v) = Mo(p). Such a measure class may
be closed under translation, and may be right or left invariant; then their
mutually common null sets are themselves invariant, and so may be viewed
as witnessing quasi-invariance of the measure . Mackey shows that a Borel
group with a one-sided invariant measure class has a both-sidedly invariant
measure class [Mac, Lemma 7.2]; furthermore, if the class is countably gen-
erated, then the class contains a left-invariant and a right-invariant measure

14



[Mac, Lemma 7.3]. This enables Mackey to improve on Weil’s theorem in
showing that an analytic Borel group G with a one-sidedly invariant measure
class, in particular one generated by a quasi-invariant measure, has a unique
locally compact topology on G both yielding a topological group structure
and generating the given Borel structure.
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