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1 Weil-like topologies: preliminaries

We are concerned with relatives of the Weil topology as generators of the
Steinhaus-Weil interior-point property [Ste]. For background, we refer to
Weil�s book [Wei, Ch. VII] and Halmos�s book [Hal, Ch. XII] (see also
[BinO6, §8.4]). Weil regarded his result as a Converse Haar Theorem, in
retrieving the topological-group structure from the measure-algebra struc-
ture [Fre] as encoded by the Haar-measurable subsets � cf. [Kod]. (Here
one may work either, following Weil, to within a dense embedding in a lo-
cally compact group, as in the Remark to Theorem 1M below, or, following
Mackey, uniquely up to homeomorphism, granted the further assumption
of an analytic Borel structure [Mac, Th. 7.1]; for further information see
[BinO6, §8.16].) The alternative view below throws light on this result in
that the measure structure is already encoded by the density topology D
via the Haar density theorem, for which see [Mue], [Hal, §61(5), p. 268],
cf. [BinO1, §7; Th. 6.10], [BinO3]. This view is partially implicit in [Amb]:
writingM+(�) for the �-measurable sets of positive �-measure, re�nement
of one invariant measure �1 by another �2 holds when sets inM+(�2); con-
tain sets inM+(�1) (as in the re�nement of one topology by another). This
falls within the broader aim of retrieving a topological group structure from
a given (one-sidedly) invariant topology � on a group G; when � arises from
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re�nement of a topological group structure (i.e. starting from a semitopo-
logical group structure (G; �)): Also relevant here are Converse Steinhaus-
Weil results, as in Part II Prop. 1 of [BinO6,§3], [BinO8, §2] (see also
[BinO6, §8.5]). For background on group-norms see the textbook treatment
in [ArhT, §3.3] (who trace this notion back to Markov) or [BinO1], but note
their use of �pre-norm� for what we call (following Pettis [Pet]) a pseudo-
norm; for quasi-interiors and regular open sets see [BinO6, §8.6]. Thus a
norm jj � jj : G! [0;1) satis�es all the three conditions 1-3 below and gen-
erates a right-invariant metric d(x; y) = jjxy�1jj and so a topology T = T d;
just as a right-invariant metric d derives from a separable topology TG and
generates, via the Birkho¤-Kakutani Theorem ([HewR, Th. 8.3], [Gao, Th.
2.1.1]), the norm jjxjj = d(x; 1G): A pseudo-norm di¤ers in possibly lacking
condition 1.i. (so generates a pseudo-metric).
1.i (positivity): jjgjj > 0 for g 6= 1G, and 1.ii: jj1Gjj = 0;
2 (subadditivity): jjghjj � jjgjj+ jjhjj;
3 (symmetry): jjg�1jj = jjgjj:

With U(G) the universally measurable subsets of G; recall from the Intro-
duction of Part I [BinO6,7] that � 2Msub if � is a set function � de�ned on
U(G) and is a submeasure, i.e. is monotone and subadditive with �(;) = 0
(Introduction, [Fre, Ch. 39, §392], [Tal]); by analogy with the term �nitely
additive measure (for background see [Bin], [TomW, Ch. 12]; cf. [Pat]), this
is a �nitely subadditive outer measure, similarly as in Maharam [Mah], albeit
in the context of Boolean algebras, but without her positivity condition. Re-
call from Halmos [Hal, Ch. II §10] that a submeasure is an outer measure if
in addition it is countably subadditive. The set function � is left invariant if
�(gE) = �(E) for all g 2 G and E 2 U(G):
Propositions 1 and 2 below are motivated by [Hal, Ch. XII §62, cf. Ch.

II §9 (2-4)], where G is a locally compact group with � its left Haar measure,
but here the context is broader, allowing in amenable groups G (cf. [TomW,
Ch. 12], [Pat]). The two results enable the introduction in §2 of Weil-like
topologies generated from families of left-invariant pseudo-metrics derived
from invariant submeasures. The latter rely on the natural measure-metric,
also known as the Fréchet-Nikodym metric ([Fre, §323Ad], [Hal, §40 Th. A],
[Bog, p. 53, 102-3, 418]); see [Dre1,2] (cf. [Web]) for the related literature
of Fréchet-Nikodym topologies and their relation to the Vitali-Hahn-Saks
Theorem. Maharam [Mah] studies sequential continuity of the order relation
(of inclusion, here in the measure algebra), and requires positivity to obtain
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a (measure-) metric; see Talagrand [Tal] (cf. [Fre, §394] and the literature
cited there) for a discussion of pathological submeasures (the only measures
they dominates under � being trivial), and [ChrH] for corresponding exotic
abelian Polish groups.
In the setting of a locally compact group G; these pseudo-metrics are im-

plicit in work of Struble: initially, in 1953 [Str1], he used a (�sampler�) family
of pre-compact open sets fEt : t > 0g to construct a mean on G; thereby
refering to a one-parameter family of pseudo-metrics corresponding to the
sets Et; some twenty years later in 1974 [Str2] (cf. [DieS, Ch. 8]) identi�es
a left-invariant (proper) metric on G by taking the supremum of pseudo-
metrics, each generated from some open set in a countable open base at 1G:
The pseudo-metric makes a very brief appearance in Yamasaki�s textbook
treatment [Yam, Ch. 1] of Weil�s theorem.

Proposition 1 (Weil pseudo-norm, cf. [Fre, §392H], [Yam, Ch. 1, Proof
of Th. 4.1]). For G a Polish group, � 2Msub(G); a left-invariant submeasure
on U(G), and E 2 U(G) with �(E) > 0; put

jjgjj�E := �(gE4E) (g 2 G):

Then jj:jjE de�nes a group pseudo-norm with associated right-invariant pseudo-
metric

d�E(g; h) = jjgh�1jj�E (g; h 2 G):
Likewise, for � right-invariant, a pseudo-norm is de�ned by

jjgjj�E := �(E4Eg) (g 2 G):

Proof. Since �(;) = 0; jj1Gjj�E = 0: By left invariance under a;

jja�1jj�E = �(a�1E4E) = �(a(a�1E4E)) = �(E4aE) = jjajj�E:

Also,
jjabjj�E � jjajj�E + jjbjj�E

follows from monotonicity, subadditivity and �(abE4aE) = �(bE4E) :

�(abEnE [ EnabE) ��(abEnaE) [ (aEnE) [ (EnaE) [ (aEnabE))
=�(abEnaE) [ (aEnabE) [ (aEnE) [ (EnaE))
��(abE4aE) + �(E4aE) = �(bE4E) + �(E4aE):

�
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Corollary 1 (Kneser for Haar measure, [Kne, Hilfs. 4]). For G a Polish
group, � 2 Msub(G); a left-invariant submeasure on U(G), and E 2 U(G)
with �(E) > 0; the set

H := fg 2 G : �(gE4E) = 0g

is a subgroup of G closed under the norm jjgjj�E.

Proof. Indeed H = fg 2 G : jjgjj�E = 0g; and so H is a subgroup, since for
g; h 2 H; jjgh�1jj�E � jjgjj�E + jjhjj�E = 0: �

Recall now that a subset A of a Polish group G is left Haar null if it is
contained in a universally measurable set B such that for some � 2 P(G)

�(gB) = 0 (g 2 G):

It is Haar null: A 2 HN amb [Sol1] (cf. [HofT, p. 374]), if it is contained in
a universally measurable set B such that for some � 2 P(G)

�(gBh) = 0 (g; h 2 G):

This motivates the following application of Proposition 1 beyond Haar mea-
sure. Extending the notation of [BinO6,§3], Part II §1, belowML

0 (G) (resp.
M0(G)) denotes the family of left-Haar-null (resp. Haar-null) sets of G, and
we write

UL+(G) := U(G)nML
0 (G); U+(G) := U(G)nM0(G):

Prop. 1 may be applied to the following measures; those constructed from
� a normalized counting measure (of �nite support) are studied in [Sol1].

Proposition 2. In a Polish group G; for � 2 P(G) put

��L(E) : = supf�(gE) : g 2 Gg (E 2 U(G));
�̂(E) : = supf�(gEh) : g; h 2 Gg (E 2 U(G)):

Then ��L (resp. �̂) is a left invariant (resp. bi-invariant) submeasure on
U(G), which is positive for E 2 UL+(G) (resp. for E 2 U+(G)), i.e. for
universally measurable, non-left-Haar null (resp. non-Haar-null) sets.
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Proof. We consider only �̂, as the case ��L is similar and simpler (through
the omission of h and b below). The set function �̂ is well de�ned, with

�(E) � �̂(E) � 1 (E 2 U(G));

since � is a probability measure; it is bi-invariant, since

�̂(aEb) := supf�(gaEbh) : g; h 2 Gg = supf�(gEh) : g; h 2 Gg;

and G is a group. Furthermore, for B 2 U(G)

�(gBh) � �̂(B) � 1; (g; h 2 G):

So, for � 2 P(G)
0 < �̂(B) � 1 (B 2 U+(G));

since there are g; h 2 G with �(gBh) > 0: Countable subadditivity follows
(on taking suprema of the leftmost term over g; h) from

�(g(
[

n
An)h) �

X
n
�(gAnh) �

X
n
�̂(gAnh) =

X
n
�̂(An);

for any sequence of sets An 2 U(G). �

De�nition. For � 2 P(G); E 2 U(G); put

BE" (�) := fx 2 G : jjxjj
�
E < "g:

Our next step uses Prop. 2 to inscribe these balls into EE�1 for all small
enough " > 0.

Lemma 1 (Self-intersection Lemma). In a Polish group G for E 2
U+(G); and respectively for E 2 UL+(G); and � 2 P(G);

1G 2 BE" (�̂) � EE�1 (0 < " < �̂(E));
1G 2 BE" (��L) � EE�1 (0 < " < ��L(E)):

Equivalently, for 0 < " < �̂(E); and respectively for 0 < " < ��L(E),

E \ xE 6= ; (x 2 BE" (�̂)); E \ xE 6= ; (x 2 BE" (��L)):

Proof. We check only the �̂ case; the other is similar and simpler (through
the omission of h below). For E 2 U+(G); since �̂(E) > 0 by Prop. 2, we
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may pick g; h 2 G such that "E := �(gEh) > 0: Consider x and " > 0 with
jjxjj�̂E < " � "E: If E and xE are disjoint, then

"E = �(gEh) � �(g(E [ xE)h) � �̂(g(E [ xE)h) = �̂(E [ xE)
= �̂(xE4E) = jjxjj�̂E < " � "E;

a contradiction. So E and xE do meet. Now �rst pick t 2 xE \E and next
s 2 E so that t = xs; then x = ts�1 2 EE�1: The argument is valid when
"E = �(gEh) assumes any value in (0; �̂(E)]. The converse is clear. �

We need a simple analogue of a result due to Weil ([Wei, Ch. VII, §31],
cf. [Hal, Ch. XII §62]). Below � 1 denotes the � -open neighbourhoods of 1G.
For G locally compact with � = �G, the identity

2�(E)� 2�(E \ xE) = �(E4xE) = 1� 2
Z
1E(t)1E�1(t

�1x)d�(t) (y)

connects the continuity of the (pseudo-) norm to Td-continuity of translation
in the topological group structure (G; Td) of the locally compact group, and
to continuity of the convolution function here (for E of �nite �-measure) �see
[HewR, Th. 20.16]; see also [HewR, Th. 20.17] for the well-known connec-
tion between the Steinhaus-Weil Theorem and convolution. Such continuity
guarantees that BE" (�) contains points other than 1G:

Lemma 2 (Fragmentation Lemma; cf. [Hal, Ch. XII §62 Th. A]).
For � 2 Msub(G) a left-invariant submeasure on U(G) in a Polish group
G equipped with a �ner right-invariant topology � with 1G-open-nhd family
� 1 � UL+(G):
if the map

x 7! jjxjj�E
is continuous under � at x = 1G for each E 2 UL+(G)
�then, for each ; 6= E;F 2 � and " > 0 with " < �(E), there exists H 2 � 1
with HH�1 � FF�1 and

jjh0h�1jj�E < " (h; h0 2 H) : HH�1 � BE" ;

so that diam�
E(H) � ":

Proof. Pick any f 2 F; and D 2 � 1 satisfying jjxjj�E < "=2 for all x 2 D. As
� is right-invariant and 1G 2 D\Ff�1 2 � , pick H 2 � 1 with H � D\Ff�1;
then

HH�1 = Hff�1H�1 � FF�1:
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For h; h0 2 H; as h; h0 2 D

jjh0f(hf)�1jj�E = jjh0h�1jj�E � jjh0jj�E + jjh�1jj�E = jjh0jj�E + jjhjj�E < ": �

In the presence of a re�nement topology � on the group G; the lemma
motivates further notation: write Pcont(G; �); or just

P(�) := f� 2 P(G; Td) : g 7! jjgjj�̂E := �̂(gE4E) is � -continuous at 1Gg:

Of necessity attention here focuses on continuity. The characterization
question as to which topologies � yield a non-empty P(�) is in part answered
by Theorem 1M below. Indeed, for Haar measure � in the locally compact
case,

� 2 P(�) (�� �; � � Td);
by (y) in the presence of d�=d� as a kernel:

jjxjj�E = 1� 2
Z
1E(t)1E�1(t

�1x)
d�

d�
d�(t): (yy)

However, P(G) will contain measures � singular with respect to � : for such
�, by the Simmons-Mospan Theorem [BinO6,8, Th. SM] there will be Borel
subsets B of positive �-measure such that BB�1 has void Td-interior.

2 Weil-like topologies: theorems

Prop. 2 now yields the following result, which embraces known Hashimoto
topologies [BinO3] in both the Polish abelian setting, where the left Haar null
sets form a �-ideal (Christensen [Chr]), and likewise in (the not necessarily
abelian) Polish groups that are amenable at 1 (Solecki [Sol1,2]); this includes,
as additive groups, F - (hence also Banach) spaces �cf. [BinO3,4], where use
is made of Hashimoto topologies.

Theorem 1. Let G be a Polish group and � both a left- and a right-invariant
re�nement topology with 1G-open-nhd family � 1 � U+(G).
Then both the families fAA�1 : A 2 � 1g and fBE" (�̂) : ; 6= E 2 � ; � 2 P(�)
and 0 < " � �̂(E)g generate neighbourhoods of the identity under which G
is a topological group. Moreover, the pseudo-norms

fjj:jj�̂E : ; 6= E 2 � ; � 2 P(�)g
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are downward directed by re�nement as follows: for ; 6= E;F 2 � 1, �; � 2
P(�) and " < minf�̂(E); �̂(F )gg; there is H 2 � 1 such that for 0 < � <
minf~�(H); �̂(H)g

BH� (�) \BH� (�) � BE" (�) \BF" (�):

Proof. The proof is similar to but simpler than that of [Hal, Ch. XII §62
Th. A]. With the notation of Prop. 2 for �; � 2 P(�); given two (non-left-
Haar-null) sets E;F 2 � 1 and " < minf�̂(E); �̂(F )g; by the Fragmentation
Lemma (Lemma 2 of §1) applied separately to �̂ and to �̂; there are A;B 2 � 1
with

AA�1 � BE" (�̂); BB�1 � BF" (�̂):
Take any H 2 � 1 with H � A \B; then

HH�1 � AA�1 \BB�1:

Since H 2 U+(G) (as � 1 � U+(G)); take � with 0 < � < minf�̂(H); �̂(H)g;
then by (�) of I, Lemma 1,

BH� (�̂) \BH� (�̂) � HH�1 � AA�1 \BB�1 � BE" (�̂) \BF" (�̂):

(So �mutual re�nement�holds between the sets of the form AA�1 and those
of the form BE" .) As jj � jj

�̂
E is a pre-norm,

BE"=2(�̂)B
E
"=2(�̂)

�1 = BE"=2(�̂)B
E
"=2(�̂) � BE" (�̂):

By the Fragmentation Lemma again, given any x 2 G and " > 0; choose
H 2 � 1 with HH�1 � BE" (~�): Then with F := xH 2 � ;

BF" (�̂) = fz : jjzjj
�̂
F < "g � (xH)(xH)�1 = xHH�1x�1 � xBE" (�̂)x�1:

Finally, for any x0 with jjx0jj�̂E < "; put � := "� jjx0jj
�̂
E: Then for jjyjj

�̂
E < �;

jjx0 � yjj�̂E � jjx0jj
�̂
E + jjyjj

�̂
E < jjx0jj

�̂
E + "� jjx0jj

�̂
E < ";

i.e.
x0B

E
� (�̂) � BE" (�̂): �

Specializing to locally compact groups yields as a corollary, on writing
BE" := B

E
" (�) :
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Theorem 1M. For G a locally compact group with left Haar measure �; if:
(i) � is both a left- and a right-invariant re�nement topology with � 1 �M+,
(ii) for every non-empty E 2 � ; the pseudo-norm

g 7! jjgjjE := �(gE4E) (g 2 G)

is continuous under � at g = 1G
� then both the families fAA�1 : A 2 � 1} and fBE" : ; 6= E 2 � and
0 < " � 2�(E)g generate neighbourhoods of the identity under which G is a
topological group. Moreover, the pseudo-norms

fjj:jjE : ; 6= E 2 �g

are downward directed by re�nement; indeed, for ; 6= E;F 2 � and " <
2minf�(E); �(F )g; there is H 2 � 1 such that for 0 < � < �(H)

BH� � BE" \BF" :

Proof. It is enough to replace P(G) by f�g (so that � and � both refer to
�), and to note that if xE and E are disjoint, then �(xE4E) = 2�(E); so
that in Lemma 1 the bound ��(E) in the restriction governing inclusion may
be replaced by 2�(E). �

Remark. As in [Hal, Ch. XII §62 Th. F], but by the Fragmentation
Lemma (and by the countable additivity of �), the Weil-like topology on a
locally compact G in Theorem 1M is locally bounded (norm-totally-bounded
in some ball). Then G with the Weil-like topology may be densely embedded
in its completion Ĝ; which is in turn locally compact, being locally complete
and (totally) bounded. However, the corresponding argument in the case of
the preceeding more general Theorem 1 fails, since �̂ there is not necessarily
countably additive.

Finally, we give a category version of Theorem 1M, as an easy corollary;
indeed, our main task is merely to de�ne what is meant by �mutatis mutandis�
in the present context. Denote by B+(�) the non-meagre Baire sets (= with
the Baire property, [Oxt2]) of a topology � . Given the assumption � 1 � B+
below, we are entitled to refer to the usual quasi-interior of any E 2 B+;
denoted below by ~E; as in Part I Cor. 20 [BinO6, Cor. 20]; we also write ~BE"
for B ~E

" (�):
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Theorem 1B. For G a locally compact group with left Haar measure �; if:
(i) � is both a left- and a right-invariant re�nement topology with � 1 � B+
and with the left Nikodym property (preservation of category under left shifts),
(ii) for every non-empty E 2 � the pseudo-norm

g 7! jjgjj ~E := �(g ~E4 ~E) (g 2 G)

is continuous under � at g = 1G
� then both the families fAA�1 : A 2 � 1} and f ~BE" : ; 6= E 2 � and
0 < " � 2�( ~E)g generate neighbourhoods of the identity under which G is a
topological group. Moreover, the pseudo-norms

fjj:jj ~E : ; 6= E 2 �g

are downward directed by re�nement; indeed, for ; 6= E;F 2 � and " <
2minf�( ~E); �( ~F )g; there is H 2 � 1 such that for 0 < � < 2�( ~H)

~BH� � ~BE" \ ~BF" :

Proof. In place of the inclusion of Lemma 1 we note a result stronger than
that valid for ~E (i.e. inclusion only in ~E ~E�1): since meagreness is translation-
invariant (the �Nikodym property�of [BinO3]), (xE)e= x ~E for non-meagre
Baire E; so x ~E \ ~E 6= ; implies xE \ E 6= ;, and so again

~BE" = B
~E
" � EE�1;

here again in Lemma 1 the bound ��(E) in the restriction governing inclusion
may be replaced by 2�(E). The proof of Theorem 1 may now be followed ver-
batim, but for the replacement of P(G) by f�g, using the stronger inclusion
just observed, and of B�"(�) by ~B

�
": �

Remark. The last result follows more directly from Th. 1M in a context
where there exists on G a Marczewski measure (see [TomW, Ch. 13, cf. Ch.
11]), i.e. a �nitely additive invariant measure on B vanishing on bounded
members of B0; this includes R, R2;S1, albeit under AC [TomW, Cor. 13.3];
cf. [Myc], but not Rd for d � 3 [DouF].

With the groundwork of Part I [BinO6,7] on translation-continuity for
compacts completed, we close by establishing the promised dichotomy asso-
ciated with the map

x 7! jjxjj�E = �(xE4E);
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for measurable E : the Fubini Null Theorem [BinO6,7, Th. FN (Part I §1)]
creates a duality between the vanishing of the F -based pseudo-norm and a
dichotomy for x-translates of E�1 in relation to F according as x 2 E or
x =2 E; which are thus unable in each case to distinguish between the points
of F: Below we write 8� for the generalized quanti�er �for �-a.a.� (cf. [Kec,
8.J]).

Theorem 2 (Almost Inclusion-Exclusion). For G a Polish group � 2
P(G) and non-null �-measurable E;F , the vanishing �-a.e. on F of the
E-norm under � :

jjxjj�F = �(xE4E) = 0 (x 2 F );

is equivalent to the following Almost Inclusion-Exclusion for translates of
E�1:
(i) Inclusion: F is �-almost covered by �-almost every translate xE�1for
x 2 E :

�(FnxE�1) = 0 (8�x 2 E);
(ii) Exclusion: F is �-almost disjoint from �-almost every translate xE�1for
x =2 E :

�(F \ xE�1) = 0 (8�x =2 E):
Proof. By the Fubini Null Theorem [BinO6,7, Th. FN (Part I §1)], applied
to the set H of Part I Prop. 3 [BinO6, Prop. 3], i.e.

H :=
[

x2F
fxg � (xE4E);

H has vertical sections Hx almost all �-null i¤ �-almost all of its horizontal
sections Hy are �-null. But, since y 2 xE i¤ x 2 yE�1, Hy = FnyE�1 for
y 2 E and Hy := F \ yE�1 for y 2 GnE: �

Remark. If the inclusion side of the dichotomy of Th. 8 holds for all x 2 E;
then F � EE�1: The converse direction may fail: consider E = (1; 2) � R
and F = (�1; 1); so that E � E = F; but no translate of �E may cover F:

3 Complements

1. Inclusion-Exclusion dichotomy. Above we focus on inclusions amongst
sets of the form EE�1; for E 2 U(G); the exception being the Inclusion-
Exclusion of a set F 2 U(G) by an E-, or non-E; x-translate of E�1 in
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Theorem 2 (a dichotomy as between E and its complement). This places
most of our study on one side of a related inclusion-exclusion dichotomy �
for subsets H;B 2 U(G) in a group G one has either inclusion , or �near-
disjointness�:

HH�1 � BB�1; or HH�1 \BB�1 = f1Gg:

Inclusion may be equivalently re-phrased to the meeting of distinct pairs of
H�1-translates of B :

kB \ k0B 6= ; (k; k0 2 H�1); (In)

whereas exclusion to their disjointness:

kB \ k0B = ; (distinct k; k0 2 H�1): (Ex)

The duality of the relation of (Ex) to the results in Th. 2 is clari�ed by
observing that �(F \xE�1) = 0; for a.a. x 2 C; is equivalent to �(C\yE) =
0; for a.a. y 2 F . Indeed,

0 =

Z Z
1C(x)1F (y)1xE�1(y)d(�� �) =

Z Z
1F (y)1C(x)1yE(x)d(�� �):

The condition (Ex) gives rise to I0, the �-ideal introduced in Balcerzak
et al. [BalRS], generated by Borel sets B having perfectly many disjoint
translates, as in (Ex) above with H�1 a perfect compact set (i.e. compact
and dense-in-itself); continuum-many disjoint translates of a compactum also
emerge in a theorem of Ulam concerning a non-locally compact Polish group:
see [Oxt1, Th. 1]. Such perfect exclusions o¤er a combinatorial tool, akin
to shift-compactness (as in Part I Th. 3 or [BinO6, Th. 3], the latter re-
quiring a subsequence embedding under translation of any null sequence into
a non-negligible set �cf. [BinO1,2] [MilO], [BanJ]), and play a key role in
the context of groups with ample generics; see for instance the small-index
property of [HodHLS].
Solecki [Sol3] proves a �Fubini for negligibles�-type theorem (cf. Theorem

FN in Part I §1 or [BinO6, §1]): the non-negligible vertical sections (relative
to a uniformly Steinhaus ideal) of a planar I0-negligible set form a horizontal
I0-negligible set. The ideal I0 is of particular interest, as it violates the
countable (anti)-chain condition, [BalRS].
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2. Regular open sets. Recall that, in a topological space X; U is regular open
if U =int(clU); and that int(clU) is itself regular open; for background see
e.g. [GivH, Ch. 10]. For D = DB the Baire-density topology of a normed
topological group, let DROB denote the regular open sets. For D 2 DROB , put

ND := ft 2 G : tD \D 6= ;g = DD�1; N1 := fND : 1G 2 D 2 DROg;

then N1 is a base at 1G (since 1G 2 C 2 DRO and 1G 2 D 2 DRO yield
1G 2 C \D 2 DRO) comprising T -neighbourhoods that are DB-open (since
DD�1 =

S
fDd�1 : d 2 Dg). We raise the (metrizability) question, by

analogy with theWeil topology of a measurable group (see §1 and §3.1 above):
with DB above replaced by a general density topology D on a group G; when
is the topology generated by N1 on G a norm topology? Some indications
of an answer may be found in [ArhT, §3.3]. We note the following answer in
the context of Theorem 1B; compare Struble�s Theorem [Str2], or [DieS, Ch.
8]. If there exists a separating sequence Dn; i.e. such that for each g 6= 1G
there is n with jjgjjDn = 1; then

jjgjj :=
X

n
2�njjgjjDn

is a norm, since it is separating and, by the Nikodym property, (D\g�1D) =
g�1(gD \D) 2 B0.
3. The E¤ros Theorem asserts that a transitive continuous action of a Polish
groupG on a spaceX of second category in itself is necessarily �open�, or more
accurately is microtransitive (the (continuous) evaluation map ex : g 7! g(x)
takes open neighbourhoods E of 1G to open neighbourhoods that are the
orbit sets E(x) of x). It emerges that this assertion is very close to the shift-
compactness property: see [Ost]. The E¤ros Theorem reduces to the Open
Mapping Theorem whenG;X are Banach spaces regarded as additive groups,
and G acts on X by a linear surjection L : G ! X via g(x) = L(g) + x:
Indeed, here e0(E) = L(E): For a neat proof, choose an open neighbourhood
U of 0 in G with E � U � U ; then L(U) is Baire (being analytic) and non-
meagre (since fL(nU) : n 2 Ng covers X); and so L(U) � L(U) � L(E) is
an open neighbourhood of 0 in X:
4. Beyond local compactness: Haar category-measure duality. In the absence
of Haar measure, the de�nition of left Haar null subsets of a topological group
G requires U(G); the universally measurable sets �by dint of the role of the
totality of (probability) measures on G. The natural dual of U(G) is the class
UB(G) of universally Baire sets, de�ned for G with a Baire topology as those
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sets B whose preimages f�1(B) are Baire in any compact Hausdor¤ space K
for any continuous f : K ! G. Initially considered in [FenMW] for G = R,
these have attracted continued attention for their role in the investigation of
axioms of determinacy and large cardinals �see especially [Woo], cf. [MarS]
�and is a key notion in [BanJ].
Analogously to the left Haar null sets, de�ne a left Haar meagre set as any

set M coverable by a universally Baire set B for which there are a compact
Hausdor¤ space K and a continuous f : K ! G with f�1(gB) meagre in
K for all g 2 G: Here, as recently noted in [BanGJS, Prop. 5.1], K may
be replaced by the Cantor space 2N: These were introduced, in the abelian
Polish group setting with K metrizable, by Darji [Dar], cf. [Jab], and shown
there to form a �-ideal of meagre sets (co-extensive with the meagre sets for
G locally compact).
5. Metrizability and Christensen�s Theorem. An analytic topological group
is metrizable; so if also it is a Baire space, then it is a Polish group �[HofT,
Th. 2.3.6].
6. Metrizability of re�nements. Underlying the Disaggregation Theorem
(Part II Th. 1) which re�nes the topology Td of G there are re�ning metrics:

dK(x; y) := d(x; y) + j�(Kx)� �(Ky)j

(for a family of sets K 2 K+(�) � cf. the Struble sampler of §1 above),
reminiscent of Theorem 1 above.
7. Quasi-invariance and the Mackey topology of analytic Borel groups. We
comment on the force of full quasi-invariance of a measure in connection with
a Steinhaus triple (H;G; �) [BinO5] with H and G completely metrizable.
Both groups, being absolutely Borel, are analytic spaces. So both carry a
�standard�Borel structures with H a Borel substructure of G: Mackey [Mac]
investigates such Borel groups, de�ning also a (Borel) measure � to be �stan-
dard�if it has a Borel support. It emerges that every �-�nite Borel measure
in an analytic Borel space is standard [Mac, Th. 6.1]. Of interest to us is
Mackey�s notion of a �measure class�C�; comprising all Borel measures �
with the same null sets as � : M0(�) =M0(�): Such a measure class may
be closed under translation, and may be right or left invariant; then their
mutually common null sets are themselves invariant, and so may be viewed
as witnessing quasi-invariance of the measure �: Mackey shows that a Borel
group with a one-sided invariant measure class has a both-sidedly invariant
measure class [Mac, Lemma 7.2]; furthermore, if the class is countably gen-
erated, then the class contains a left-invariant and a right-invariant measure
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[Mac, Lemma 7.3]. This enables Mackey to improve on Weil�s theorem in
showing that an analytic Borel group G with a one-sidedly invariant measure
class, in particular one generated by a quasi-invariant measure, has a unique
locally compact topology on G both yielding a topological group structure
and generating the given Borel structure.
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