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Abstract
To monitor risk in temporal financial networks, we need to understand how individual
behaviours affect the global evolution of networks. Here we define a structural
importance metric—which we denote as le—for the edges of a network. The metric
is based on perturbing the adjacency matrix and observing the resultant change in its
largest eigenvalues. We then propose a model of network evolution where this metric
controls the probabilities of subsequent edge changes. We show using synthetic data
how the parameters of the model are related to the capability of predicting whether
an edge will change from its value of le. We then estimate the model parameters
associated with five real financial and social networks, and we study their
predictability. These methods have applications in financial regulation whereby it is
important to understand how individual changes to financial networks will impact
their global behaviour. It also provides fundamental insights into spectral
predictability in networks, and it demonstrates how spectral perturbations can be a
useful tool in understanding the interplay between micro and macro features of
networks.
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1 Introduction
Understanding how individual edges in a network influence its structure and evolution is
important in a range of applications. Considering financial networks, network structure
has implications for financial stability [1], market efficiency [2] and consumer safety [3].
Identification of players to monitor more closely is of paramount importance to regulators
and policy makers, with many attributing the severity of the 2008 crisis to systemic flaws
in the banking ecosystem [4].

Our research focuses on understanding how individual edges affect the structure of net-
works, and how this relates to network stability and evolution. In particular, the purpose
of this paper is to show how a spectral perturbation based measure for structural edge
importance can be used in the study of temporal networks. We present a brief review
of related literature, first considering individual effects on network structure, then those
that link network structure to stability and systemic risk, before considering how network
structure relates to temporal evolution. We then define a measure for structural edge im-
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portance le,1 and we propose a model for network evolution in which an edge’s importance
can be indicative of future changes. Our results show that le values are higher for edges
which appear to play a more important structural role, and that subsequent changes oc-
curring in the real networks analysed depend to some extent on the value of le.

1.1 Individual effects on network structure
The effect an individual node or edge can have on a network’s structure depends not only
on the scale of its activity, but also on its position within the network, and the activity of
neighbouring nodes and edges. Understanding these interrelations remains one of the key
challenges in network science.

Recently, structural node importance has gained a large amount of attention due to its
relevance in use cases across a wide range of fields [5]. Methods have predominantly fo-
cused on network spectra, in order to illicit structural information from the network ad-
jacency matrix. This includes numerous studies of epidemic processes, in which it is in-
tuitive that the removal of a node that acts as a bridge between communities can be used
to stem the spread of a disease, leading to significant effort being taken to understand
the influences of community structure on epidemic spreading [5–7]. Similar applications
include preventing network-based attacks [8, 9] and understanding and actioning on the
spread of gossip in society [10]. This idea of network resilience is often approached from
the angle of percolation theory, in which the percolation threshold governing the appear-
ance of a giant component is often related to the leading eigenvalue of the adjacency matrix
[11, 12]. An alternative lens is taken by Wang et al. [13] who make use of the observation
that the spectrum of the adjacency matrix gives an indication of community structure.
In noting that for a network with c strong communities, the c largest eigenvalues of the
adjacency matrix are significantly larger than the others, they follow a perturbation based
approach to define node importance as the relative change in the c largest eigenvalues
of the upon the node’s removal. Similar to Wang et al., Lü et al. [14] propose a universal
structural consistency index for a network-based on perturbing the adjacency matrix and
demonstrate that this index is a good index for link predictability. Restrepo et al. use the
same approach to define the dynamical importance of network nodes and edges, instead
motivated by the observed relationship between the network leading eigenvalue and dy-
namical network processes [15]. Our work considers the same central concept of applying
edge based perturbations to the adjacency matrix and focusing on the change in the lead-
ing eigenvalue, however differs in that we propose the use of this concept as an indicator
for subsequent change in networks, as opposed to a measure capturing the effects of node
or edge removal on network structure and dynamics.

Many works in the financial literature focus on node specific influence on stability. For
example, Battiston et al. [16] define a node ranking coined DebtRank, which takes recur-
sively into account the impact of distress of an initial node across the whole network. Their
measure amounts to the fraction of the total economic value in the network that is poten-
tially affected by the distress or default of a specific node. They applied their method to
a network of loans from the Federal Reserve to financial institutions between 2008 and
2010, enriched with equity investment relations, and found a strongly connected core of
22 institutions which all became too systemically important to fail at the 2008 crisis peak.

1Throughout this paper, we use le as shorthand for lij .
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They demonstrated the effectiveness of their node ranking in comparison to other cen-
trality measures, and found that it was the only measure to deliver a clear response well
before the crisis peak. However, their method specifically considers the case of distress
propagation, and does not explicitly measure how an individual node or edge affects the
structure of the network in general. Barucca et al. [17] investigate whether a change to few
selected banks in the network of the e-MID2 market can affect the large scale structure of a
network through node removal or degree mutation, and comparing the network structure
that results to the original.

Although the bulk of the attention has focused on importance of actors in networks,
Helander et al. [18] propose a method for characterising the relative importance of an
edge, which they refer to as edge gravity. Edge gravity measures how often an edge oc-
curs in any possible network path. They show that important edges are not necessarily
adjacent to nodes of importance as identified by standard centrality metrics, and they also
observe that high centrality nodes often have their centrality over-represented by being ad-
jacent to ‘edges to nowhere’. Similar path-based methods include the BCCMOD (Between-
ness Centrality and Clique Model) proposed by [19], which weights the importance of the
two nodes forming the endpoints of the edge with the number of cliques containing the
edge. Their method outperforms several well-known methods including Jaccard coeffi-
cient and betweenness centrality in identifying critical edges both in network connectivity
and spreading dynamic. In our work we define the importance of an edge in terms of the
change that a small perturbation on the edge would induce in the leading eigenvalue of
the weighted adjacency matrix of the network. While other definitions could be consid-
ered, we focus here on the leading eigenvalue because it determines for instance the sta-
bility of spreading processes on social networks [20, 21], or financial shocks on inter-bank
networks [22]. Our methods contrast the above-mentioned path-based approaches by in-
stead considering a network spectrum-based approach, however both approaches show
strong connections to node centrality measures; as shown in Sect. 2, an approximation to
the network eigenvalue derivative is proportional to the product of the constituent nodes’
centralities. In addition, our research focuses on the temporal behaviour of the network in
relation to structural importance, for which future work could consider using alternative
measures of structural importance to understand the expected temporal behaviour.

1.2 Network structure in relation to stability and systemic risk
Increasing complexity and stability are inextricably linked, with works as early as May’s
investigations into ecosystems with increasing biodiversity highlighting the relationship
[23]. In the context of financial markets, although market integration and diversification
are widely believed to play a stabilising role [24, 25], Bardoscia et al. [26] demonstrated
that two factors of increasing complexity, namely increasing the number of institutions
(nodes) and contracts (edges) in an interbank network can drive the system to instabil-
ity. Similarly, Markose et al. [27] present the idea of institutions being ‘too interconnected
to fail’ through an exploration of the structure of the US CDS market. They consider an
empirical network constructed from market shares, and make use of the May–Wigner

2e-MID is the Italian electronic market for interbank deposits, a platform for trading unsecured money-market deposits.
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condition for stability3 in comparison to a random network. They show that although the
CDS structure shows better outcomes than a random network when subject to shocks, the
demise of any one big player will bring down other big players. Caccioli et al. [28] showed in
a theoretical exploration that uncontrolled proliferation of financial instruments can lead
to large instability in markets, and suggest potential interventions such as the introduc-
tion of a Tobin tax [29], which is shown by Bianconi et al. to have a stabilising effect [30].
Related to this, Brock et al. [31] used ‘arrow securities’ as a proxy for more complicated
hedging instruments, and found that these incentivise construction of larger positions, re-
sulting in a reinforcement effect due to large gains/losses as a result of being on the ‘right’
or ‘wrong’ side of the market. They showed that this is associated with greater instability,
and also that the primary bifurcation parameter, marking the onset of instability, occurs
earlier when there are more arrow securities. In contrast to the majority of the data centric
financial literature which focuses on interbank trading, Bardoscia et al. [22] analysed UK
Trade Repository data, which includes all transactions occurring through a Central Coun-
terparty clearing house (CCP) in the UK. Considering a snapshot of the open positions on
a single day for interest rate derivatives, FX derivatives and credit default swaps as a three
layered network, they compared a ranking derived from the centrality measures to a rank-
ing derived from modelling the network’s response to liquidity contagion, looking at how
shocks propagate across the network and translate into payment deficiencies across the
different markets. The model considers the stress faced by an institution—the difference
between all payments it is required to make and all payment inflows from counterparties,
and allows stress to spill over between the layers. They found that centrality measures can
be used as a proxy for the vulnerability of financial institutions.

1.3 Network structure in relation to temporal evolution
To understand how networks evolve across time, many researchers have focused on study-
ing the mechanisms for network growth, and defining network models to understand the
origin of observed properties of real networks [32–36]. These include the Barabasi–Albert
model [37], which demonstrates that scale-free degree distributions observed in real net-
works can be explained by the presence of growth and preferential attachment in the net-
work evolution. Falkenberg et al. [38] present a simple adaptation to the Barabasi–Albert
model, in which new nodes attach to nodes in the existing network in proportion to the
number of nodes one or two steps from the target node. This results in an implicit time
dependence, which arises from a node’s attractiveness being dependent on its local en-
vironment which changes as the network evolves. Central to their model is the idea that
network structure and temporal evolution are inherently linked, however their model is
limited to the influence of local environment. Others focus on considering temporal net-
works as multilayer networks, in which one can account for the fact that connectivity
patterns in different layers can depend on each other. Bazzi et al. [39] proposed a genera-
tive model which explicitly incorporates a user-specified dependency between layers that
is flexible enough to incorporate complex interlayer relationships such as dependencies
between a layer and all layers that follows, incorporating memory effects into the model.

3The May–Wigner condition for stability is a critical threshold below which any random network has a high probability
of stability, and is defined as D < 1

Ns2
where D is the network diameter, N is the number of nodes and s is the strength of

average interactions between nodes.
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A handful of studies have attempted to link global network structure to temporal evolu-
tion, such as Peixoto et al. [40], who suggest dynamical variation of the degree-corrected
stochastic block model that is capable of finding meaningful large-scale temporal struc-
tures in real-world systems and predict their temporal evolution. Their method works
with both discrete and continuous time representations, making it versatile to a range
of applications. Watts et al. [41] consider semi-random ‘small world’ networks and show
that the dynamics are an explicit function of the network structure, and also show find an
enhanced propagation speed for small world networks.

A common and general framework for network growth is the fitness model, in which
each node has associated with it a time independent ‘fitness’ which represents its propen-
sity to attract links, as proposed by Barabasí and Bianconi [42] and further emphasised in
[43]. They find that different fitnesses results in multiscaling in the dynamic evolution, or
in other words that the time dependence of a node’s connectivity depends on the fitness.
Attempts have been made build on this model in order to understand the origins of net-
work dynamics, such as a recent study by Kobayashi et al. [44]. They find that population
and activity dynamics are sufficient to explain two types of scaling empirically observed
in real networks, however their methods do not explicitly allow for different roles to be
captured within a network, by assuming a uniform distribution of fitness parameters. In
our research, we explore instead how an edge level quantity derived from the spectrum
of a network can similarly be used to determine which edges change in the network. We
present methods for estimation of parameters which control both the overall activity in
the network, as well as the bias to change for edges with a larger structural importance,
and we show how these reproduce behaviours observed empirically.

In the following sections, we look to address two questions: Can we quantify the extent
to which an edge affects the overall network structure, and does this provide information
on the network’s temporal evolution? We know from the above that network structural
information can be gained from the network spectra, both from the observation that the
threshold for the appearance of a giant component in a network relates to the leading
eigenvalue, and in that the number of communities can be determined from the number
of well separated eigenvalues. We also see that the leading eigenvalue provides an indica-
tion of stability in terms of dynamical processes occurring on the network. Our aims are
to understand edge importance in terms of network structure and stability, so we thus
look to capture both of these in our analysis through considering the derivatives of the
network’s leading eigenvalue with respect to individual edges. We present evidence that
this measure could be a useful indicator in understanding temporal changes in network
structure, and we present the results of its application to five real networks. Our main
results demonstrate that the elementwise derivative of the leading eigenvalue (le) can be
predictive of subsequent change for five different networks analysed, and that predictabil-
ity can be related to the specific realisation of two parameters, α and ρ in the network
evolution model in which edges change with probability αlρe . This has potential implica-
tions for stability, as a system experiencing more changes to edges of structural dominance
could see a reinforcing effect, leading to an unstable system. These methods could be use-
ful in classifying financial asset systems to inform regulation activities and policy making.
We further show that the scale of resultant changes can be related to the realisation of two
additional parameters β and γ , again with potential stability implications.
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2 Methodology
2.1 Definition of temporal networks
Traditionally, network analytics has focused on static representations of networks, either
looking at single snapshots in time, or considering a projection of the time dimension
onto a static view by aggregating the links in a time window. In doing so, some, or all, of
the temporal information about the network is lost.

However, recently, there have been developments in the modelling of systems as tempo-
ral networks, for which the system is represented by a contact sequence (i, j, t), where i and
j constitute the vertex set V at time t. This representation also allows for edges that take
time to traverse, or contracts completed after a duration δt by representing the contact
sequence as (i, j, t, δt) [45]. Since we are considering transactions as instantaneous, we are
not interested in transmission time for edges, and we are considering applications where
time is discretised, we can formally define a temporal graph Gw

t (tmin, tmax) as in [46] as the
ordered sequence of graphs, Gtmin , Gtmin+w, . . . , Gtmax where w is the size of the time aggre-
gation (e.g. daily). Element As

ij of the adjacency matrix at time s is 1 if and only if there
exists a link between i and j in Gt , t ≤ s ≤ t + w.

2.2 Central concept—eigenvalue derivatives as a measure of importance
For a given graph Gt(V , E) with adjacency matrix At , the eigenspectrum of At is the set of
eigenvalues λ that satisfy the equation

Ax = λx. (1)

By observing changes in the eigenspectrum of a graph, we can gain an insight into struc-
tural changes. As we are looking at network snapshots across time, we have a ‘time series’
of graphs and we can consider the change in the leading eigenvalue between successive
time snapshots,

�λ = λ
(
A(t+1)) – λ

(
A(t)) ≈

∑

ij

∂λ

∂Aij
�Aij, (2)

where we have made a first order approximation, and the derivative is with respect to the
(i, j)th entry of the matrix, as opposed to the entire matrix. Here A refers to the adjacency
matrix, λ refers to the leading eigenvalue of the adjacency matrix and �Aij refers to the
relative element-wise difference between the two network snapshots, or in other words
the change for the individual edge between i and j between the two snapshots.

The two parts of equation (2) can be seen as a playoff between the potential for an edge
to influence the structure ( ∂λ

∂Aij
) and the actual change in the network structure (�Aij).

Our experiments with synthetic networks look to assess the extent to which our deriva-
tion below, which makes approximations and assumptions, captures the true behaviour.
The first term measures the sensitivity of the eigenvalue to changes in an individual edge,
which we refer to as the structural importance of an edge and denote by le. We derive ap-
proximations for le in equation (3) for the undirected case by taking a perturbation theory
approach. Although not explicitly explored in this paper, we also present equation (4) for
the directed case. In both cases, we see that the approximations are proportional to the
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product of the eigenvector centralities of the two nodes involved in the edge:

le =
∂λ

∂Aij
= 2x0,ix0,j, (3)

∂sA

∂Mij
=

xM
0,ixM

0,j

2sA , (4)

where x0,i refers to the ith component of the eigenvector corresponding to the lead-
ing eigenvalue, sA refers to the leading singular value of the adjacency matrix and xM

0,i

refers to the ith component of the eigenvector corresponding to the leading eigenvalue
of M = AAT. Our definitions are defined in terms of the eigenvector corresponding to the
largest eigenvalue, which usually has non-zero values only for the largest connected com-
ponent of a network. For this reason, in this paper we restrict ourselves to exploring the
giant component of the networks, however generalising these to allow for disconnected
components will be considered in future work. We note here that our approach is general
in that le can be computed for all networks, weighted or unweighted, directed or undi-
rected, as differentiability of the spectrum is ensured whenever the adjacency matrix is
real and symmetric. The perturbative approach is valid in the case of small, isolated per-
turbations, which we further explore in Sect. 3.1. Full derivations for these can be found in
the Additional file 1, and we validate the approximation for the undirected case in results
Sect. 3.1.

We can capture the relationship between le and subsequent edge changes by observing
the distributions of P(�Aij = 0| ln(le)) and the joint probability P(�Aij, le), which we ex-
plore in detail in the results Sects. 3.2.5 and 3.3. Our findings from these are compared to
our model for the temporal evolution of networks, which we propose in Sect. 2.3, to assess
the extent to which our model captures the true behaviour observed.

The second term considers the changes that subsequently occur in response to the value
of le. This is of significance from a stability perspective; edges that are structurally impor-
tant could cause a system to become unstable by changing frequently or by a large amount.
Conversely, they may also act to stabilise a system if it begins to move towards a regime of
instability. This can be explored by assuming that the evolution of our temporal graph is
Markovian. We consider this first of all in the proposal of a model for network evolution,
parameterised by the extent to which le is indicative of the propensity of an edge to change,
and the scale of the resultant changes. We further assess the predictability of changes from
the value of le through the use of a logistic regression classifier, and relate the performance
of this to the model parameters.

2.3 Model for network evolution
In order to understand the relation between structural importance and stability of a net-
work over time, we need a model that captures two behaviours. The first of these is that
the value of le is indicative of the probability for an edge to change, and the second is that
the size of a resultant change can be related to le.

We thus propose a model in which we can control the extent to which le influences a
subsequent edge change, both in probability of occurrence and resultant scale. Specifically,
we propose a model in which the network evolution exhibits the Markovian property as
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in [33, 40]:

At+1
ij = V t

ijA
t
ijU t

ij +
(
1 – V t

ij
)
At

ij, (5)

where V t
ij follows a Bernoulli distribution B(α(le)ρ), and U t

ij is the distribution of edge
changes. Here we introduce two parameters which control the probability of an edge to
change—ρ which controls the level to which the value of le influences the probability for an
edge to change, and α scales V t

ij to ensure that it is a valid probability. A positive value for
ρ indicates that more important edges are more likely to change, and a negative ρ would
indicate the opposite.

The simplicity of this model means that we are unable to account for edges appearing
and disappearing in the network. We will look to incorporate this in future research.

2.3.1 Parameter estimation in real networks
Assuming that our data evolves according to the model in equation (5), we can use obser-
vations from real networks to estimate the most likely values of α and ρ from the data.
Following a maximum likelihood approach, we can derive estimations for these parame-
ters, by maximising the following log-likelihood as proposed in the Additional file 1:

ln
(
L(k|θ )

)
=

N∑

e
ke ln(θe) + (1 – ke) ln(1 – θe), (6)

where θe = αlρe , and ke is the observed outcome of edge e. We note here that since α and
ρ are constrained to result in a valid probability calculated from αlρe , the minimisation
is subject to constraints and must satisfy the Karush–Kuhn–Tucker conditions [47]. In
practice, numerical optimisation of the log-likelihood in equation (6) was used to estimate
α and ρ .

2.3.2 Structural influence and network predictability
Depending on the values of the parameters for a given dataset, we might expect the ob-
served values of le to be predictive of subsequent change. Specifically, since ρ controls the
relationship between le and the propensity for an edge to change, a high value of ρ would
suggest that le would be more predictive of future change. Similarly for α, within the con-
straints for αlρe to give the probability of an edge to change, a larger α factor will increase
the distance between change probabilities for edges with different le, thus also strength-
ening the relationship between the value of le and the propensity for an edge to change.
In order to evaluate these effects, we make use of logistic regression for classification of
edges into changing vs. unchanging from the values of le, and compare the results to a
null model consisting of the average over multiple trials in which edges randomly change
with probability equal to the fraction of observed changes. The data is split into train-
ing and test sets in a stratified manner, with 20% used to test the model on unseen data.
The predictions are compared according to balanced accuracy, defined as the average of
recall obtained on each class, and Area Under Curve scores for both Receiver Operating
Characteristic curves and Precision Recall curves.
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Figure 1 Scatter plot of perturbations �Aij and the resulting �λ, compared to line of constant le . Barbell
graph, with equal initial weights

3 Results
3.1 Validation of le using toy networks
Here we assess the extent to which the approximations made in calculating le hold. We
do this by approximating the change in eigenvalues as the coefficient weighted sum of the
edge weight changes, �λ =

∑
edges le�Aij, and comparing the gradient of this to the value

of le. Our derivation of le makes the simplification in assuming that edge changes occur
independently of each other. Our first test thus considers the case of an individual edge
changing at each timestep, and we consider perturbations applied to a barbell graph, to
observe the effects of network structure, a ring graph, to observe the effects of weight with
structural equivalence, and a Erdős–Rényi (ER) graph as a baseline. The results in Figs. 1,
2 and 3 show the line of constant le, overlaid with the observed �Aij and corresponding
�λ values.

We see here that our linear approximation generally holds for relative edge changes less
than �Aij = 0.05. We also see for the barbell graph that le captures the structural role of the
edges, with edges in the cliques having higher values of le than those in the bridge. For the
ring graph, we observe a poorer fit for edges with low values of le, and the larger le edges
tend to be adjacent to edges with similar le values. Although the edge with the largest
weight also has the largest value of le, in general there does not appear to be a simple
relationship between edge weight, or weight of neighbouring edges, and the value of le.
For the weighted random network we see similar observations are made for the weighted
ER graph, with the lowest le values observed for more peripheral edges, and the two edges
with the largest weights also having the highest le values. Further results for the case of a
weighted barbell, and unweighted ring and random networks are shown in the Additional
file 1.

Results for the case of two edges changing are also shown in the Additional file 1. In
these we observe for the barbell graph better fit is observed for higher values of le. For the
ring networks and random networks, we see that our model performs well if the observed
edge has a larger value of le than the other changing edge, but performs poorly when the
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Figure 2 Scatter plot of perturbations �Aij and the resulting �λ, compared to line of constant le . Ring graph
with each edge independently assigned a random integer between 1 and 10

Figure 3 Scatter plot of perturbations �Aij and the resulting �λ, compared to line of constant le .
Erdős–Rényi graph with each edge independently assigned a random integer between 1 and 10

value of le is smaller. The case of complete structural equivalence and equal weights in the
unweighted ring network shows good performance for all edges.

The breakdown of the method when there are multiple changes occurring between
snapshots suggests that our approximation for le may be better suited to a continuous or
pseudo-continuous representation of a temporal network, which can be seen as the limit
of a discrete temporal network in which each snapshot captures an individual edge change
occurring at an infinitesimally different time to the neighbouring snapshot changes.

3.2 Relationship between le and the presence of edge changes
We can understand the role of the parameters α and ρ by observing the effect of varying
the parameters on the distributions of the values of le for changing vs. non-changing edges,
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Figure 4 Distributions of le for edge changes vs. no changes, when varying α

Figure 5 P(�Aij = 0| ln(le)) as a function of ln(le) for 0.1 < α < 1

P(�Aij = 0| ln(le)). We first consider this for data generated according to our model in
equation (5), first keeping ρ fixed and varying α, then fixing α and varying ρ .

3.2.1 Model with varying α

Figures 4 and 5 show the resulting distributions for varying values of α. We see that an
increase in α results in a decrease in the probability of an edge to remain unchanged for
all values of le, and for larger values of α, the rate of increase of change probability with le

is slightly larger.

3.2.2 Model with varying ρ

Figures 6 and 7 show the distributions when varying ρ . We see here that for increasing ρ ,
the probability of observing no change increases, and also for increasing le, the probability
decreases for a given ρ , at a rate that shows a significant dependence on ρ .

3.2.3 Predictability improvement with α and ρ

As detailed in Sect. 2.3.2, here we apply a logistic regression classifier with single feature
le, to datasets with varying α and ρ . Figures 8 and 9 show the improvement in the test
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Figure 6 Distributions of le value for the case of edge changes vs. no changes when varying ρ

Figure 7 P(�Aij = 0| ln(le)) as a function of ln(le) for 0 < ρ < 2.5

set Precision–Recall Area Under Curve scores for increasing values of each parameter.
We see from these that increasing both parameters improves the predictability of changes
given the value of le, consistent with our observations of the rate of increase of change
probability being positively correlated with both α and ρ .

3.2.4 Static observations in real data
We have seen in the above in application to synthetic networks that our model behaves as
expected, with networks with a large ρ (and α) being more predictable. Now we explore
the performance of our structural influence metric and model through the application to
five real datasets. Firstly, given that our research has been motivated by a need to monitor
risks in a financial setting, we considered a network of country level bilateral trade [48]
and three different capital markets transaction datasets reported under MIFID II regu-
lations. However, our methods can be applied more generally to any temporal networks,
and due to the availability and high volume of research conducted into social networks
(see [10]), we also considered a network of messages sent between College students [49].
A full description of these can be found in the Additional file 1.
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Figure 8 Model prediction performance improvement with ρ

Figure 9 Model prediction performance with α

In order to understand the usefulness of le as a metric for structural importance, we
first examine the edges that rank the highest according to their values of le for the bilateral
trade dataset, since the historical context of international trade can give us an idea of which
edges we might expect to be ‘important’. For the bilateral trade dataset, we see the largest
values of le for the edge between Portugal and Spain in 1872, and considering the sum
across all time, for Greece and Turkey. These are examples of edges with both nodes having
large eigenvector centrality; edges involving only one central node are seen to have lower
values of le. This means that inter-European edges almost exclusively make up the top 100
ranked edges, whereas the lowest ranked le edges occur when one, or both, of the nodes
have very low centrality scores. Similarly, for the other datasets, the highest values of le

were also observed for edges involving nodes with high eigenvector centrality. In general,
we see that the rankings of le are uncorrelated with the rankings of edges according to their
betweenness centrality, or their mean value of �Aij, however do for some cases correlate
with the product of the participating node’s degrees and strengths, as shown in Table 1.

As these datasets contain large numbers of edges (the smallest contained 2785 edges),
we cannot fully explore all of the individual observed values of le as for the toy networks.
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Table 1 Spearman’s rank correlations for le with the rank by edge weight, edge betweenness
centrality and product of nodes’ degrees

Dataset Corr(le , �A) Corr(le , EBC) Corr(le , degn1,n2) Corr(le , Sn1,n2)

Bilateral Trade –0.061 –0.397 0.352 0.786
College Message –0.169 0.035 0.581 0.434
Equity-1 –0.104 0.135 0.717 0.320
Equity-2 –0.047 0.166 0.580 0.265
Equity-3 –0.010 0.041 0.923 0.763

Figure 10 Probability distribution of the values of log(le) for different networks

Instead, we consider the probabilities of observing values of le by making use of Kernel
Density Estimation to estimate the probability density functions from the data.

Figure 10 shows the estimated Probability Density Functions of the logarithm of the
value of le. We see from these that for all networks, the values observed for le tend to be
very small. Omitting the tails of the distributions for diminishingly small values of le, we
see a similarity in the values of le observed across 3 similar equity datasets, and although
across all 5 datasets analysed, the distribution is found to be approximately lognormal, the
social network shows a much broader distribution of le. The peak of the distribution for
the college messaging dataset is also much lower, observed at approximately ln(le) = –8.8,
whereas the bilateral trade dataset shows a peak at –3.3, and the equity datasets at –3,
–2.5 and –4.2.

3.2.5 Dynamic observations in real networks
We now address the central concept of the relationship of le observed for our real networks
and the probability of an edge to change. Figure 11 shows the distributions of the ln(le)
values observed for non-changing edges in comparison to changing edges. We see that
in all cases, there is a shift in the mean value of ln(le) towards higher values for edges
which do change, which would be suggestive of a positive ρ parameter, and potentially
the ability to predict the presence of changes given the value of le. The smallest shifts are
observed for the Bilateral Trade dataset and Equity-3, which show negligible differences
in the mean and quartiles of the values of le for changes and no changes, suggesting that
we might not expect predictability of changes from the values of le in these cases. In all
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Figure 11 Boxplots showing the distribution of le values observed according to the presence or absence of
an edge subsequently changing

Figure 12 P(�Aij = 0| ln(le)) as a function of ln(le) for the 5 real datasets

cases, the differences in the mean values of le for change vs. no change is significant, with
a two-sided t-test showing p < 0.05 for all datasets.

To further understand how the value of le relates to the probability for edges to change,
we look at the distributions of P(�Aij = 0|le) as shown in Fig. 12. Here we see a decreasing
probability of �Aij = 0 for the bulk of the distribution for increasing le for the bilateral trade
and Equity-3 datasets, however the rarely observed edges with le > 0.3 for these datasets
show larger probabilities to remain unchanged. We again see a slight initial decrease for
Equity-1 and 2 datasets however the relationship is clearly non-linear for large le. The
college messaging dataset shows a much larger probability in general for edges to remain
unchanged, and shows a very slight decrease in probability to remain unchanged for very
small le values, however is dominated by noise for le > 0.05.

Referring back to Sect. 3.2, we considered the ideal cases of linear positive, neutral and
negative relationships between le and the probability of edge changes. In reality, as shown
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Table 2 Estimated α and ρ for the 5 real datasets

Dataset Estimated α Estimated ρ

Bilateral trade 0.783± 1.08× 10–4 0.072± 1.21× 10–5

College messaging 0.033± 3.03× 10–6 0.270± 2.76× 10–6

Equity-1 0.392± 2.74× 10–4 0.030± 2.82× 10–5

Equity-2 0.401± 3.13× 10–5 0.016± 4.93× 10–5

Equity-3 0.465± 2.57× 10–4 0.036± 4.21× 10–5

in Fig. 12, we see things are more complex, with different relationships apparent for dif-
ferent le ranges. In particular, for edges with lower values of le, the negative relationship
between the value of le and the probability of an edge to remain unchanged suggests that
a parameterisation of our model with positive value of ρ would be effective in capturing
the behaviour of the bulk of the network. However changes to the small handful of edges
with the largest values of le are less likely. These observations could suggest that there are
a few structurally important edges which act to stabilise a system which would otherwise
move towards a regime of instability.

3.2.6 Estimation of α and ρ from data
In Table 2, we present the values of α and ρ estimated for our 5 different datasets. The
errors on these estimations are given by the inverse hessian of the Log-Likelihood, which is
found by numerical approximation. In comparison with Figs. 5 and 12, we see the ordering
of the estimated value of α appears to agree with the positions of the college messaging
dataset and the equity datasets. The parameter ρ appears to correspond with the overall
gradients observed in Fig. 12 for the bulk of the distributions observed for low values of le.
These observations suggest that our model is mostly capturing the imbalance of observed
changes in the parameter ρ , and the overall average change probability for each dataset in
the parameter α.

3.2.7 Edge change predictability
Given the non-zero estimated values of the parameters α and ρ , it is natural to assess
the performance of using the value of le to predict a subsequent change. Figures 13 and 14
show the Receiver Operating Characteristic and Precision-Recall Curves for the 5 different
datasets, and Table 3 shows the corresponding Area Under Curve and balanaced accuracy
scores.

All datasets are seen to perform slightly better than the dummy model, with better per-
formance seen for the College Messaging dataset and Equity-1 and 2, which also show
larger differences in the distribution of le across change vs. no change in Fig. 6. Poorer per-
formance is seen for the bilateral trade and Equity-3 datasets, which show similar shaped
distributions in Fig. 12 with an initial steep decrease in probability to remain unchanged
for increasing le, however this trend appears to reverse for le > 0.3. These datasets also
show little difference in the distribution of values observed in Fig. 6 and are found to have
low values of ρ . Although the college messaging dataset shows the best performance, par-
ticularly in the left hand side of the ROC curve, this is driven by the significant class imbal-
ance with only 5% of the observations showing a non-zero �Aij, as opposed to the bilateral
trade dataset which shows a 20% proportion of non-zero changes. This is also reflected
in the Precision-Recall AUC score for the College Messaging dataset being close to the
upper margin of error for the null model.
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Figure 13 ROC curves for a logistic regression classifier making use of ln(le) to predict �Aij = 1. The dashed
lines and shaded areas represent the mean 95% confidence intervals for the dummy model

Figure 14 PR curves for a logistic regression classifier making use of ln(le) to predict �Aij = 1. The dashed
lines represent the results for a stratified random allocation of labels

Table 3 Values of Area Under Curve scores for ROC and Precision-Recall curves. Numbers in brackets
represent the score achieved by a model which randomly predicts 1 or 0 in proportion to the dataset
prior, averaged over 100 trials

Dataset Balanced accuracy ROC AUC Precision-Recall AUC

Bilateral trade 0.542 (0.5±0.0011) 0.554 (0.5±0.0013) 0.628 (0.595±0.0021)
College messaging 0.623 (0.5±0.0027) 0.678 (0.5±0.0029) 0.017 (0.005±0.0045)
Equity-1 0.568 (0.5±0.0039) 0.576 (0.5±0.0046) 0.365 (0.313±0.0062)
Equity-2 0.566 (0.5±0.0061) 0.579 (0.5±0.0073) 0.430 (0.351±0.010)
Equity-3 0.527 (0.5±0.0025) 0.542 (0.5±0.0045) 0.424 (0.381±0.0030)

3.3 Relationship of between le and size of weight changes
We now consider if the value of le is observed to have an affect on the scale of subsequent
edge changes. As in Sect. 3.2, we again consider data generated according to the model
in equation (5), and we choose to take U t

ij = N (μ = 0,σ = βlγe ). This introduces two new
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Figure 15 Distributions of P(ln(1 +�Aij), ln(le) for fixed β = 0.008, –1 < γ < 1

Figure 16 Distributions of P(ln(1 +�Aij), ln(le) for fixed γ = –0.5, 0.001 < β < 0.005

parameters, β which controls the width of the distribution of edge changes, and γ which
controls the level to which le influences the variance of the edge change distribution.

3.3.1 Variation of γ

Figure 15 shows the distributions of P(ln(1 + �Aij), le) for a range of values of γ . We see
here that for positive γ , the width of the distribution widens for larger le. For negative γ ,
we see the opposite, that the width of the distribution becomes narrower for larger le.

3.3.2 Variation of β

Figure 16 shows the distributions of P(ln(1 + �Aij), le) for a range of values of β . We see
here that as β increases, the width of the distributions increase.

3.3.3 Weight distributions for real networks
We now consider the same 5 real datasets considered in Sect. 3.2.5. Figure 17 shows the
distributions of P(ln(1 + �Aij), ln(le)) for the case of edges that do change, i.e. �Aij �= 0 for
the five real networks. Note that �Aij refers to the relative change in the value of the edge
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Figure 17 Contours showing the distributions of P(ln(1 +�A), ln(le) for the 5 real datasets. Underlying
observations of ln(le) and ln(1 +�Aij) represented by the dots underlying these

Table 4 Estimated β and γ for the 5 real different datasets

Dataset Estimated β Estimated γ

Bilateral trade 1.11× 10–4 ± 8.93× 10–18 1.93± 1.10× 10–27

College messaging 7.77× 10–5 ± 1.10× 10–16 1.15± 3.07× 10–27

Equity-1 1.51× 10–5 ± 4.55× 10–24 1.35± 2.55× 10–36

Equity-2 1.42× 10–4 ± 1.36× 10–26 1.32± 5.81× 10–37

Equity-3 1.63× 10–4 ± 2.20× 10–26 1.42± 1.43× 10–36

weight from t0 to t1, which takes values in the interval [–1,∞], and le is measured at time t0.
Infinite values for �Aij, corresponding to the case of a new edge appearing, were observed
but are not captured in the plots. The prominence of these across the different datasets
are 4.7% of the bilateral trade dataset, 0.086% of the college messaging dataset, 0.012%,
0% and 0.0028% of the equity datasets.4 We see a slight widening of the distributions for
larger values of le for Equity-1 and 2 datasets, and to a larger extent for the third equity
dataset. The bilateral trade dataset shows initial widening as le increases, however narrows
again for the largest le edges. The college messaging dataset shows two distinct peaks,
corresponding to changes in edge weight of ±1, which are over-represented in this dataset
as it is unweighted, and the edge weight solely represents the count of interactions in the
time window of consideration. The slight widening for larger le for all datasets is suggestive
of a positive relationship between the value of le and the variance of the distribution of
subsequent edge changes.

3.3.4 Parameter estimation for β and γ

The estimated values of the parameters β and γ for the different datasets are shown in
Table 4. All 5 datasets show positive values of γ , suggestive of a relationship between the
width of the distribution of edge changes and the value of le. The dataset with the highest
values for γ , the bilateral trade dataset, also shows the largest level of bias towards larger
change distribution width for higher le in Fig. 17. Correspondingly, the lowest γ value is
seen for the college messaging dataset, which shows the least bias towards larger changes

4The prominence of new edges has been significantly reduced by focusing on the giant component.
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occurring for larger values of le. The values for β are similar across the 5 datasets, and all
relatively low. It is difficult to draw conclusions from these, as the behaviours controlled by
the two parameters cannot be separated and observed alone in the distributions in Fig. 17.

4 Discussion & conclusion
The ability to understand how microscopic changes in networks affect the macroscopic
evolution across time is one of the key challenges in dynamic network analysis. In this
study we have begun to explore the use of derivatives of network spectra to capture this.
We derive a measure of edge based structural influence, le, and explore the extent to which
the value is indicative of future changes. We first of all demonstrated that for small and
isolated perturbations applied to the network, the eigenvalue derivative is approximated
well by equation (2). However, we observe the approximation breaks down for multiple
changes happening during the same time snapshot, suggesting that the measure may be
more suited to a continuous or pseudo-continuous representation of network evolution,
in which each time snapshot contains a single edge change.

Considering the 5 real datasets, we observe lognormal distributions of the values of le,
indicating structural influence dominated by a small handful of edges. We propose a model
in which the probability for an edge to change is given by αlρe . This model allows us to con-
trol the extent to which le dictates the propensity for an edge to change, and also controls
the scale of a subsequent change. Focusing on the former, we observe similarities in the
shapes of the distributions of P(�Aij = 0, ln(le)) when generating synthetic networks ac-
cording to this model and those observed in the data, and the values observed for α and
ρ are suggestive of a relationship between the value of le and the subsequent presence of
change. In using le in a logistic regression classifier to predict change, we see that le is
slightly predictive of change in all cases, but only marginally so for the case of the bilateral
trade and Equity-3 datasets. This corresponds with our observations of small values of ρ

for these datasets, along with similar, non-linear distributions shapes for the probability
of no change for increasing le. These observations indicate that the static structural im-
portance can be indicative of the presence of a subsequent change, however more work
is needed to understand the shape of the distribution and the identification of different
le regimes. We will also consider taking a similar approach with other measures of edge
importance, for example edge gravity [18]. More work is also needed to understand the
subsequent impact on the global network structure of an edge changing. It may be that
a change to an influential edge could act to destabilise a system; conversely, the change
could move the system towards a state of stability. We will look to investigate this in fu-
ture analyses.

We note here that α and ρ themselves are useful parameters that could be used to clas-
sify networks according to their growth stability. A large value of α would be an indicator
for larger levels of overall network activity. A network with very large ρ would be charac-
terised by changes occurring to the edges with the largest le, conversely, a network with
very small ρ would see changes distributed across all edges, regardless of the value of le.
In the context of financial markets, these contrasting situations would require different
approaches, and ρ could be used by policy makers to inform which asset classes should
be monitored as a whole (for the case of small ρ) or following an approach targeting those
edges with the highest le.

Our model doesn’t account for edges appearing and disappearing in the network, and
assumes that edge changes are independent of each other. For the first limitation, we note
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that edge appearance and disappearance would be unlikely to heavily influence the be-
haviour of the Equity networks, as we observed very low percentages (0.012%, 0% and
0.0028%) of new edges appearing,5 but for the other two networks this behaviour is much
more prominent at 4.7% for the bilateral trade network and 0.086% for the college mes-
saging network. The measure le itself is able to assess the importance of an edge that sub-
sequently disappears, and also those that appear between two existing nodes, so under-
standing how these appearances and disappearances can be captured in a model for net-
work growth would be highly beneficial for future work. On the second point, we noted
in our exploration of toy networks that the ability of our approximation of the eigenvalue
derivative breaks down for multiple edge changes present. Conversely, many works such
as Bandi et al. have noted that predictability is aggregation scale specific. In future work
we will thus investigate the trade-off between improved approximation of le for the quasi-
continuous limit in which each time snapshot contains a single edge change, and improved
predictability for larger aggregation scales. In addition to this, further analysis is needed to
assess the effectiveness of le as an indicator for risk, as so far we understand that the value
of le bears some relationship to how the network subsequently changes, but we have not
yet considered the resultant changes of edges with high values of le, and how these have an
effect on the rest of the network in terms of risk and stability. This is another area we will
pursue in future work. We will also consider extending our methods to consider structural
node importance, which is of use to policy makers who may wish to monitor which players
could have an adverse impact on markets. It is also worth noting that although using raw
transaction data gives us the lowest granularity view of the data, our work has so far not
considered the higher order effects of trading behaviour on price. Such an effect results
in the influence of edges reaching disconnected components, which cannot be captured
by our methods, so we will consider generalising our methods to allow for networks with
disconnected components. Finally, we will consider using our methods for classification
of a large number of networks, and also extend our methods to understand the parameters
which control the resultant weight changes.
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