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In standardized educational testing, test items are reused in multiple test

administrations. To ensure the validity of test scores, the psychometric prop-

erties of items should remain unchanged over time. In this article, we consider

the sequential monitoring of test items, in particular, the detection of abrupt

changes to their psychometric properties, where a change can be caused by, for

example, leakage of the item or change of the corresponding curriculum. We

propose a statistical framework for the detection of abrupt changes in individual

items. This framework consists of (1) a multistream Bayesian change point

model describing sequential changes in items, (2) a compound risk function

quantifying the risk in sequential decisions, and (3) sequential decision rules

that control the compound risk. Throughout the sequential decision process, the

proposed decision rule balances the trade-off between two sources of errors, the

false detection of prechange items, and the nondetection of postchange items.

An item-specific monitoring statistic is proposed based on an item response

theory model that eliminates the confounding from the examinee population

which changes over time. Sequential decision rules and their theoretical

properties are developed under two settings: the oracle setting where the

Bayesian change point model is completely known and a more realistic setting

where some parameters of the model are unknown. Simulation studies are

conducted under settings that mimic real operational tests.
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1. Introduction

The administration of a standardized educational test typically relies on an

item pool, where items are repeatedly chosen from the pool to assemble test

forms. To maintain the validity and reliability of a standardized test over time, it

is important to ensure that the psychometric properties of items in the pool

remain unchanged. An item may need to be revised or removed from the pool

once its psychometric properties encounter a significant change, which may be

caused by various reasons such as its leakage to the public or change of the

corresponding curriculum. An important and challenging problem that test

administrators face is to periodically review their testing data and detect the

changed items as early as possible (see Chapter 4, American Educational

Research Association et al., 2014).

Following the discussion in Lee and Haberman (2021), we divide educational

tests into two categories—tests with infrequent and frequent testing schedules.

Infrequent tests include college admission tests like American College Test

(ACT) and Scholastic Assessment Test (SAT) and survey assessments like the

National Assessment of Educational Porgress and the Programme for Interna-

tional Student Assessment, where ACT and SAT deliver seven administrations

per year and survey assessments are typically delivered once every a few years.

Frequent tests include both continuous tests that are delivered daily and frequent

but noncontinuous tests that are available once or more times per week. Exam-

ples of continuous tests include the Graduate Record Examinations general test

and the Praxis Core Academic Skills for Educators tests that follow the multi-

stage testing (MST; Yan et al., 2016) and fixed-form testing designs, respec-

tively. Frequent but noncontinuous tests are also very common. For example, the

Test of English for International Communication speaking test had 281 admin-

istrations in 3 years (Qu et al., 2017), and another assessment of English profi-

ciency had 498 administrations in 6 years (Qian & Li, 2021), both of which are

fix-form tests. This article considers item pool monitoring for frequent tests, in

which items are reused more frequently and thus are more likely to be leaked. In

particular, we focus on frequent but noncontinuous tests with a fixed-form

design. Generalization to other frequent test settings is also discussed.

To tackle this problem, we adopt a multistream sequential change point for-

mulation. Each item corresponds to a data stream, for which data are collected

sequentially from test administrations over time. Each data stream is associated

with its own change point. The change point corresponds to a distributional

change in some monitoring statistics which reflect certain psychometric proper-

ties of the item. That is, the monitoring statistics follow one distribution at any

time before the change point and follow a different distribution after the change

point. Roughly speaking, our goal is to detect as many postchange items as

possible at each time point, without making too many false detections of
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prechange items. The detected items will be reviewed by the test developers to

check their validity. Further actions, such as removing items, may follow.

To provide a sensible solution to this change detection problem for item

quality control, we propose a statistical decision framework. This framework

consists of (1) a multistream Bayesian change point model describing the data

streams with change points, (2) a compound risk function quantifying the risk in

sequential decisions, and (3) sequential decision rules that aim at detecting as

many postchange items as possible while controlling the compound risk to be

below a prespecified level. Specifically, our risk function can be viewed as a

measure of the proportion of postchange items among the undetected items given

all the up-to-date information from the monitoring statistics, where the informa-

tion will be formalized by an information filtration (see Section 2.1 for the

definition). We emphasize that this risk function measures the overall item-

pool-level risk, instead of item-level risk. It is thus suitable for the purpose of

controlling item pool quality as a whole. The quality of undetected items can be

guaranteed by controlling their compound risk. Consequently, only the detected

items need a validity check. Our development considers two different settings,

including an oracle setting for which the Bayesian change point model is com-

pletely known and a more realistic setting where only partial information is

available about the model.

The current development is a significant extension of Y. Chen and Li (2021),

where the compound sequential change detection framework is first proposed.

First, a more general model is considered that is more suitable for item quality

control. Specifically, it takes into account item exposure and addition of new

items, two important features of test administration and maintenance. Second, we

extend the development in Y. Chen and Li (2021) to a more realistic setting when

only partial information is available about the Bayesian change point model. A

change detection procedure is proposed that is shown to control the compound

risk. Third, a monitoring statistic is proposed based on an item response theory

(IRT) model. This statistic adjusts for confounding from examinee population

changes, so that changes in item properties can be better detected. Finally,

simulation studies are conducted under settings that mimic the administrations

of operational tests.

The proposed framework is closely related to, but substantially different from,

the classical sequential change detection problem for a single data stream (Page,

1954; Roberts, 1966; Shewhart, 1931; Shiryaev, 1963), as well as recent devel-

opments on change detection for multiple streams (e.g., Mei, 2010; Chan, 2017;

H. Chen, 2019; H. Chen & Zhang, 2015; J. Chen et al., 2020; Xie & Siegmund,

2013). The major difference is that the existing works, except for Y. Chen and Li

(2021) and J. Chen et al. (2020), consider the detection of a single change point,

even with multistream data. Consequently, they do not handle a compound risk

that aggregates information on the change points of different data streams.
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This framework also closely connects to compound decision theory (see, e.g.,

C.-H. Zhang, 2003) which dates back to the seminal works of Robbins (1951,

1956). Specifically, the compound risk that we control at each time point can be

viewed as a local false nondiscovery rate studied in Efron et al. (2001) and Efron

(2004, 2008, 2012) for testing multiple hypotheses. The same risk measure has

been applied in Y. Chen et al. (2019) for the detection of leaked items and

cheating examinees in a single test administration. The proposed method shares

the same scalability as the local false discovery and nondiscovery rates for

multiple testing. That is, no matter how large the item pool is, it is always

sensible to use the proposed procedure without changing the threshold for com-

pound risk, while, on the other hand, error metrics like the familywise error rate

are far less scalable. In the sequential analysis literature, the idea of compound

decision is rarely explored, except in Song and Fellouris (2019) and Bartroff

(2018) where compound decision theory for sequential multiple testing is devel-

oped and in Y. Chen and Li (2021) where the compound decision framework for

multistream change detection is first proposed.

The sequential monitoring of test quality has also been an important topic in

the field of educational testing. For example, to monitor item quality, Veerkamp

and Glas (2000) applied the cumulative sum control chart (CUSUM) method

(Page, 1954) to sequentially detect changes in item difficulty. J. Zhang (2014)

and J. Zhang and Li (2016) proposed a series of sequential statistical hypothesis

tests for monitoring the item pool of a computerised adaptive testing system.

Choe et al. (2018) proposed sequential change detection procedures for the

detection of compromised items based on both item responses and response

times. Lee and Lewis (2021) used CUSUM statistics to monitor item perfor-

mance and detect item preknowledge in continuous testing. The existing methods

focus on detecting changes in individual items, while, as we will discuss in

Section 2.2, the proposed compound decision framework provides better inte-

grative decisions for the entire item pool. To monitor general test quality, Lee

and von Davier (2013) proposed sequential procedures to monitor score stability

and assess scale drift of an educational assessment over time.

The rest of this article is organized as follows. In Section 2, we propose a

general Bayesian change point model and a compound sequential detection

procedure, followed by a specific model that can be easily implemented in

operational tests. The theoretical properties of the proposed decision rule are

established. Section 3 extends the development to a more realistic setting where

some parameters of the Bayesian change point model are unknown. A compound

decision rule is proposed under this setting and its statistical properties are

proved. Section 4 discusses the problem of item quality control and the con-

founding due to the examinee population change over time. A statistic based on

an IRT model is proposed, where this confounding factor is controlled. The

performance of the proposed method is further evaluated in Section 5 via simula-

tion studies. We conclude this article with remarks in Section 6.
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2. Bayesian Change Point Detection

2.1. General Framework

We start with a general statistical framework for change detection in multiple

data streams. For ease of exposition, we consider a frequent but noncontinuous

test with fixed forms. Example tests of this type are discussed in Section 1. As

will be discussed in Section 2.2, the proposed procedure can be generalized to

other frequent tests, such as continuous tests with computerized adaptive testing

(CAT) or MST designs. We use t ¼ 1; 2; ::: to record test administrations; for

example, t ¼ 1 denotes the first test administration. Let St denote the item pool at

time t that contains the items available for the tth test administration. The item

pool is allowed to change over time, due to (1) the deletion of problematic items

(e.g., items detected to have changed) and (2) the addition of new items.

For each item k, we monitor a certain statistic that reflects the psychometric

properties of the item, denoted as Xkt, based on the data from all examinees in the

tth test administration. This statistic may be univariate or multivariate, calculated

based on data from the tth test administration. The monitoring statistic needs to

be constructed carefully to adjust for confounding due to the change of the

examinee population (e.g., seasonal effect), in order to reflect the real changes

in individual items. For example, it is not a good idea to simply monitor the item

percent correct. This is because the item percent correct may significantly

increase in an test administration, due to that its examinee population overall

has higher ability. As will be discussed in Section 4, one possible way to adjust

for population change is by using an IRT model (Lord, 1980; Lord & Novick,

1968). In addition, the value of Xkt may be missing, as only a subset of items from

the item pool St will be used in the test administration. We use S�t � St to denote

the set of items being used in the tth test administration. That is, Xkt is observed, if

and only if k 2 S�t . Figure 1 provides a flowchart illustrating this stochastic

process. For the tth test administration, we start with an item pool St which is

determined by information from the previous test administrations. Then, S�t is

selected from St as the set of items for the tth test administration by test devel-

opers or certain test assembly algorithms. For these items, response data are

collected, leading to monitoring statistics Xkt, k 2 S�t . Historical information will

be used to determine the item pool for the ðt þ 1Þ th administration, by deleting

problematic items and/or adding new items.

Each item k is associated with a change point, denoted by tk , which takes

value in f1; 2; :::g [ f1g. More precisely, tk is the time at which the change in

the monitoring statistic Xkt occurs to item k. Here, we rule out the possibility that

tk ¼ 0 as it is sensible to assume that items can only change after some expo-

sure.1 For example, the change of an item may be due to its leakage to the public

at that time. The change time tk ¼ 1 means that the item never changes.

Throughout this article, we view tk as a random variable, whose prior
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distribution is allowed to vary across different streams. The distribution of Xkt

only depends on the change point tk and is independent of other variables in the

model. That is,

Xktjtk*
pkt if t � tk

qkt if t > tk ;

�
ð1Þ

where pkt and qkt are the density functions of the prechange and postchange

distributions, respectively. For now, we assume pkt and qkt are both known, for

example, two normal distributions whose means and variances are given. We

discuss in Section 3 the situation when only partial information is available about

these two distributions. Note that both the prechange and postdistributions may

depend on t, for example, through the number of examinees in the corresponding

test administration. Once data have been collected at time t, we would like to

detect the postchange items, given all the information that is currently available.

The sequential detection rule can be described by a detection set Dt � St, con-

sisting of items that are likely to have changed. We point out that the proposed

framework is very general, allowing the detected items in Dt to be removed or

kept in the item pool Stþ1 at the next time point.

Figure 2 provides a toy example to illustrate this change point model. In this

example, at t ¼ 1, the item pool only contains Items 1 and 2, and both are used in

FIGURE 1. A flowchart for the stochastic process of sequential test administration.

Item Pool Quality Control in Educational Testing

6



this test administration. As no change has occurred to these two items yet, the

monitoring statistics for both items follow their prechange distributions as indi-

cated by the circles. After the first test administration, a change point occurs to

Item 1, recorded by t1 ¼ 1. At t ¼ 2, Item 3 is added to the item pool, leading to

S2 ¼ f1; 2; 3g. In this test administration, Items 1 and 3 are used and thus

S�2 ¼ f1; 3g. As Item 1 has already changed, the monitoring statistic X12 now

follows a postchange distribution, as indicated by the square. Based on informa-

tion from the first two test administrations, Item 1 is detected and removed from

the pool in this toy example, resulting in S3 ¼ f2; 3g. The process can further

evolve at t ¼ 4; 5; :::, following the flowchart in Figure 1.

We detect changed items by monitoring existing data at each time point t. More

precisely, the existing information after the tth test administration is recorded by a

sigma-field F t defined recursively as F t ¼ sðF t�1; St; S
�
t ;Xkt; k 2 S�t Þ with

F 1 ¼ sðS1; S
�
1;Xk1; k 2 S�1Þ. Note that the sigma-field F t defines a information

filtration satisfying F s � F t for all s � t, meaning that as time passes, more and

more information becomes available about the stochastic process of Xkt s. Note

that information filtration is a key concept in stochastic processes. We refer the

readers to Florescu (2014) for the mathematical details of an information filtration

and its interpretation as accumulated information up to each time point.

We consider a Bayesian setting where the change points tk are viewed as

random variables, for which the posterior probabilities Pðtk < tjF tÞ can be

evaluated at each time point t for any k 2 St. The detection of postchange items

FIGURE 2. A toy example illustrating the stochastic process of test administration. The

prechange and postchange distributions of a monitoring statistic are indicated by circle

and square, respectively.
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will be based on these posterior probabilities. More precisely, we consider

sequential detection rules Dt that are adaptive to the information filtration F t;

that is, Dt is a random set that is measurable with respect to F t. It means that the

sequential decision Dt is made only based on the information that is currently

available as recorded in F t. We remark that, under this framework, Stþ1 may be

determined not only by the change detection results suggested by statistical

algorithms like the one proposed herein but also by the domain knowledge of

the test developers, which is common practice in the educational testing industry.

That is, the detection results only provide the testing program warnings on

potentially problematic items. These items will be reviewed by the test devel-

opers and then decisions will be made on whether to delete some existing items

from the item pool and whether to add new items.

2.2. Proposed Compound Detection Procedure

We now propose a sequential change detection rule under the above general

model. Following the discussions above, at each time t, it seems natural to flag

the items whose posterior probability Pðtk < tjF tÞ is large, as a larger posterior

probability implies a higher chance of having changed. The question is, what

cutoff value should we choose when making the decision? There is a trade-off

behind this decision. On the one hand, we would like to detect as many post-

change items as possible. On the other hand, we want to avoid making many false

detections of prechange items, as false detections lead to unnecessary labor cost

on item development, review, and maintenance. In what follows, an optimization

program will be proposed to balance this trade-off.

Recall that the goal of our monitoring procedure is to maintain the quality of

an item pool that may be measured by the proportion of postchange items in the

pool at each time t. For example, the quality of St can be measured by

ð
P

k2St
1ftk<tgÞ=jStj. The smaller the proportion, the better the quality of the item

pool. As the change points tk for items k 2 St are unknown, this proportion is

random. At a given time t, the best estimate of this quantity (under the mean

squared error loss) is its conditional mean adaptive to the current information

sigma-field F t.

The same quality measure can be used in the detection procedure. More

precisely, let D � St be the detection set after the tth test administration. The

risk associated with the detection set D adaptive to the information filtration can

be measured by

RðDjF tÞ ¼ E

X
k2StnD

1ftk<tg

maxfjSt n Dj; 1g jF t

0
BB@

1
CCA; ð2Þ
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where the denominator is chosen, so that RðDjF tÞ is well-defined even when

D ¼ St. The smaller value of RðDjF tÞ implies the better quality of the undetected

items and thus a lower risk. Therefore, a reasonable criterion is to control the risk

RðDjF tÞ to be below a prespecified threshold (e.g., 1%). Under this criterion, the

expected proportion of postchange items in the undetected set is below the

threshold and thus the item pool is overall of high quality. Consequently, in

preparation for future test administrations, only the detected items need

investigation.

Following the terminology of compound decision theory (Efron, 2012), we

refer to the ratio ð
P

k2StnD1ftk<tgÞ=maxfjSt n Dj; 1g as the false nondiscovery

proportion (FNP) and the risk RðDjF tÞ as the local false nondiscovery rate

(FNR). Similarly, we define the false discovery proportion (FDP) asP
k2D1ftk�tg=maxf1; jDjg; that is the proportion of prechange items in the detec-

tion set. The local false discovery rate (FDR) is defined as the conditional

expectation of the FDP.

The proposed decision rule at time t is to minimize the size of the detection set

while controlling local FNR to be below a given threshold a, that is,

Dt ¼ arg min
D�St

jDj; s:t:RðDjF tÞ � a: ð3Þ

Minimizing the detection set avoids making too many false detections of

prechange items, and the constraint on local FNR ensures the detection of a

sufficient number of postchange items. The proposed decision rule Dt can be

obtained by Algorithm 1 shown below. With given posterior probabilities, the

computation of Algorithm 1 is dominated by the sorting step whose complexity is

OðjStjlogjStjÞ. The computation of posterior probabilities Wkt ¼ Pðtk < tjF tÞ
under a specific change point model will be discussed in Section 2.3. The detection

rule (3) is adaptive, in the sense that it makes use of up-to-date informationF t. It is

also compound, as the threshold on the posterior probabilities Wkt is determined by

the posterior probabilities of all the items in the current item pool St. The proposed

procedure is optimal in the sense described in Proposition 1.

Proposition 1: The sequential decision rule Dt given by Algorithm 1 satisfies

that RðDtjF tÞ � a. In addition, for any other sequential decision rule D0t � St

that is F t measurable and satisfies RðDt0 jF tÞ � a, we have jDtj � jD0tj and

E
X
k2Dt

1ftk�tg

 !
� E

X
k2D0 t

1ftk�tg

 !
:

Proportion 1 implies that the proposed sequential decision rule minimizes the

expected number of false detections of prechange items at the current step,

among all sequential decision rules that control the local FNR below the same

level. Under some arguably more restrictive assumptions on the change point

model, the proposed decision rule is not only optimal at the current step but also
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uniformly optimal throughout the entire sequential decision process. This optim-

ality result is given in Supplemental Appendix B, available in the online version

of this article.

Remark 1 (comparison with existing procedures): We compare the proposed

change detection framework with existing works on sequential item pool mon-

itoring. Two different approaches are taken in the existing works. Specifically,

Veerkamp and Glas (2000) and Lee and Lewis (2021) apply the CUSUM pro-

cedure to sequential data for each individual item and declare a change once the

CUSUM statistic exceeds a prespecified threshold. J. Zhang (2014), J. Zhang and

Li (2016), and Choe et al. (2018) test the prechange hypothesis for each indi-

vidual item at each time point. A change is declared if the p value from the

hypothesis test is smaller than a prespecified threshold. The posterior probabil-

ities in the current method play a similar role as the CUSUM statistics and

p values in these works to measure the likelihood of each item having changed.

More specifically, we provide the connection between the posterior probabil-

ities monitored by the proposed method and the p values monitored by

the sequential hypothesis testing method. For a given item k and at each time

point t, the sequential hypothesis testing approach tests the null hypothesis H0 :
tk � t versus the alternative hypothesis H1 : tk < t. Following the routine of

frequentist hypothesis testing, a p value is obtained based on some carefully

designed test statistic. If the p value is below a prespecified threshold, H0 is

rejected and the item is declared to have changed. The proposed method tests the

same hypotheses but takes a Bayesian approach. The prior distribution for tk

implies the prior probabilities Pðtk � tÞ and Pðtk < tÞ for the null and alterna-

tive hypotheses, respectively. Given these prior probabilities, together with the

prechange and postchange distributions of data, the Bayes formula provides us

the posterior probabilities of the null and alternative hypotheses. Bayesian

hypothesis testing makes decision based on these posterior probabilities. We

ALGORITHM 1.

Proposed detection rule

Input: Threshold a, the current item pool St, and posterior probabilities ðWktÞk2St
, where

Wkt ¼ Pðtk < tjF tÞ:
1: Sort the posterior probabilities in an ascending order. That is,

Wk1;t � Wk2;t � � � � � WkjSt j;t
;

where St ¼ fk1; :::; kjSt jg. To avoid additional randomness, when there exists a tie

(Wki;t ¼ Wkiþ1;t), we require ki < kiþ1.

2: For n ¼ 1; :::; jStj, define

Vn ¼

Pn
i¼1

Wki ;t

n
:

and define V0 ¼ 0.

3.: Find the largest n 2 f0; 1; :::; jStjg such that Vn � a:
Output: Dt ¼ St n fk1 ; :::; kng if n � 1 and Dt ¼ St if n ¼ 0.
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refer the readers to Wagenmakers et al. (2010) for a discussion on Bayesian

hypothesis testing and a comparison with the frequentist approach. In this sense,

the proposed method can be viewed as a Bayesian version of the sequential

hypothesis testing method.

Although both the CUSUM and the sequential hypothesis testing methods can

effectively detect postchange items, they do not provide an estimate of the number/

proportion of postchange items among the undetected ones. Consequently, they

cannot directly assess and control the quality of the item pool. These methods may

still be able to control a similar risk as in the proposed method by tuning the

corresponding threshold for declaring changes, but choosing a suitable threshold

for this purpose is a challenging task that may require external information about

the number/proportion of postchange items in the pool.

In contrast, the proposed method can directly control the quality of item pool

by controlling the local FNR. As a price, it requires to know the Bayesian model

for change points, including the prior distribution for the change points and the

prechange and postchange distributions for the data streams. As will be explained

in Section 3, the proposed method can be extended to control the local FNR given

only some partial information about the Bayesian change point model.

Remark 2 (application to continuous testing): Item leakage may be more likely to

occur in continuous testing with CAT, MST, and fixed-form testing designs.

Continuous testing implies more frequent item usage from an item pool, for

which monitoring item pool quality may be even more important. In particular,

most of the existing works on the sequential detection of item changes are

developed under a continuous CAT setting (Choe et al., 2018; Veerkamp &

Glas, 2000; J. Zhang, 2014; J. Zhang & Li, 2016) or under a continuous MST

or linear testing setting (Lee & Lewis, 2021).

We point out that the proposed framework is very general that can also be

applied to monitoring the item pool of any continuous test. A setting for frequent

but noncontinuous fixed-form tests is adopted in Section 2.1 for the ease of

exposition, as our main focus is to introduce the new compound sequential

decision framework. To apply the proposed framework to continuous testing,

the meaning of each time point t needs to be slightly different from that in the

existing works concerning a CAT setting. That is, most of the existing works

concerning a CAT setting focus on individual items and examinees, where each

time point for an item corresponds to its admission to an examinee. For example,

for a given item, t ¼ 20 means the item having been administered to 20 exam-

inees. Consequently, the same t does not necessarily correspond to the same

calendar time for different items, as different items may have different exposure

rates. This choice of time t is thus not suitable for defining our compound risk

that measures the item pool quality at some point of calendar time. To apply the

proposed method to continuous testing, we can let each time point correspond to

a fixed period of calendar time, for example, one day or half a day. The duration

of the time period may be chosen based on the test volume to allow adequate

sample sizes in computing the monitoring statistics. The monitoring statistics at a

time point are constructed based on all the item responses collected during the

Chen et al.
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corresponding period. The posterior distributions of change points can be

updated based on the monitoring statistics. The compound risk at each time point

can thus be defined and compound sequential decisions can be made accord-

ingly. See Online Appendix E for a further discussion on applying the proposed

method to continuous testing.

2.3. A Specific Change Point Model

We now provide a specific model for illustration. We assume that the change

point tk satisfies

jfs : k 2 S�s ; s � tkgj ¼ gk ;

where g1, g2, . . . are independent, each of which follows a geometric distribution.

That is,

Pðgk ¼ mÞ ¼ ð1� rkÞm�1rk ;m ¼ 1; 2; :::; ð4Þ

where rk is an item-specific parameter in the open interval ð0; 1Þ. This model

implies that, on average, the status of an item changes (e.g., being leaked) after

being used in 1=rk test administrations (i.e., exposures). We point out that the

geometric distribution is widely used in the Bayesian formulation of sequential

change detection because of its memoryless property. The proposed methods can

be extended to other prior distributions for the change points.

We may further assume that both the prechange and postchange distributions

are univariate normal. Specifically, as will be justified by the possible choices of

the monitoring statistic as in Section 4, we assume that the prechange distribution

pkt is standard normal. The postchange distribution qkt is Nðmkt ; 1Þ. For now, we

consider the case where rk and mkt are both known and leave the unknown case to

Section 3.

Under this model, the posterior distribution Pðtk < tjF tÞ can be computed in

an analytic form. To simplify the notation, we denote Wkt ¼ Pðtk < tjF tÞ. This

posterior probability can be obtained by a simple updating rule, summarized in

the following proposition.

Proposition 2: Assume gk follows a geometric prior described in Equation 4

and let ekt ¼
Pt

i¼11fk2S�
i
g be the number of exposure of item k up to time t. Then,

Wkt ¼ Ukt

Uktþ1=rk
, where Ukt is computed through the following updating rule,

if ekt � 1;Ukt ¼ 0; elseUkt ¼
Uk;t�1 if k 2 St n S�t ;

ð1þ Uk;t�1Þ
qktðXktÞ

ð1� rkÞpktðXktÞ
if k 2 S�t :

8><
>: ð5Þ

Recall that pkt and qkt are the density functions of the prechange and post-

change distributions, respectively, defined in Equation 1. In particular, if

pkt*Nð0; 1Þ and qkt*Nðmkt ; 1Þ, then

Item Pool Quality Control in Educational Testing
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if ekt � 1;Ukt ¼ 0; elseUkt ¼
Uk;t�1 if k 2 St n S�t

1

1� rk

ð1þ Uk;t�1ÞexpfmktXkt �
m2

kt

2
g if k 2 S�t :

8><
>: ð6Þ

In the above proposition, the statistic Ukt is a modification of a classic sequen-

tial change detection statistic (Shiryaev, 1963) which gives optimal sequential

change detection for a single data stream under a Bayesian decision framework.

We point out that Ukt is not updated until item k is exposed at least twice (i.e.,

ekt > 1), because we do not allow tk ¼ 0. According to Equation 5, the update of

the posterior probabilities Wkt is straightforward when the prechange and post-

change distributions are known. These distributions are not necessarily normal,

though it may be convenient to make the normality assumption in the current

application as discussed in Section 4.

3. When Model Is Not Completely Known

Now, we consider the situation in which only partial information is available

about the change point model. More precisely, we focus on the specific change

point model given in Section 2.3. Recall that the change point tk follows a

geometric distribution (Equation 4) with parameter rk . It is further assumed that

the prechange distribution pkt is known, for example, a standard normal distri-

bution. In addition, it is assumed that the postchange distribution qkt can be

parameterized as

qktðxÞ ¼ hktðxjpkÞ;

where hkt is a known function and pk is an item-specific parameter vector. This

parametrization of qkt will be justified under an IRT model in Section 4.

In practice, rk and pk are unknown, but prior information may be available.

Specifically, 1=rk represents the average number of exposures (i.e., number of

times the item is used) for the item to change. Although it is hard to know 1=rk

precisely, a reasonable lower bound is often available, which leads to an upper

bound for rk , denoted by r � rk , for all k. In addition, as will be further justified

in Section 4, we assume that pk 2 Y, where Y is a known compact set. In what

follows, we propose a method that controls the compound risk RðDtjF tÞ, when

only knowing �r, pkt, and Y.

Let Wktðr;pÞ denote the posterior probability Pðtk < tjF tÞ when the under-

lying parameters are rk ¼ r and pk ¼ p, and define W kt as

W kt ¼ sup
r2ð0;r�;p2Y

Wktðr; pÞ: ð7Þ

Note that W kt is not a posterior probability, but an upper bound of the posterior

probability Wktðrk ; pkÞ. We now provide Algorithm 2 that replaces Wkt in

Chen et al.
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Algorithm 1 by W kt. As shown in Theorem 1, the decision rule given by Algo-

rithm 2 controls the compound risk RðDtjF tÞ at any time t.

Theorem 1: Suppose that rk � r and pk 2 Y for all k. Then, the proposed decision

rule given in Algorithm 2 guarantees that RðDtjF tÞ � a for all t ¼ 1; 2; . . .

It remains to find a way to compute W kt, as it is defined by an optimization

over an iteratively defined object. Proposition 3 provides guidance to this

problem.

Proposition 3: Let ekt ¼
Pt

i¼11fk2S�
i
g be the number of exposures of item k up

to time t. Define Uktðr; pÞ according to the following iterations,

if ekt � 1;Uktðr; pÞ ¼ 0; elseUktðr; pÞ ¼
Uk;t�1ðr; pÞ if k 2 St n S�t ;

1

1� �r
ð1þ Uk;t�1ðr; pÞÞ

hktðXktjpÞ
pktðXktÞ

if k 2 S�t :

8><
>:

ð8Þ

Let Rkt ¼ supp2YUktðr; pÞ. Then, W kt ¼ Rkt

Rktþ1=r
.

It can be shown that Wktðr; pÞ is monotone increasing with respect to r.

Therefore, to obtain W kt, Proposition 3 plugs r into Wktðr; pÞ. When the dimen-

sion of p is very low (e.g., one or two), we can discretize the set Y by grid points,

update Uktðr; pÞ on the grid points in parallel, and then approximate W kt accord-

ingly. When the number of parameters in p is not very low, by making use of

Equation 8, the gradient of Uktðr; pÞ with respect to p can be computed itera-

tively. Thus, Rkt can be computed, for example, by a gradient ascent algorithm.

ALGORITHM 2

Proposed detection rule

Input: Threshold a, the current item pool St, and W kt defined in (7).

1: Sort the W kt in an ascending order. That is,

W k1;t � W k2 ;t � � � � � W kjSt j ;t
;

where St ¼ fk1 ; :::; kjSt jg. To avoid additional randomness, when there exists a tie

(W ki;t ¼ W kiþ1;t), we require ki < kiþ1.

2: For n ¼ 1; :::; jStj, define

Vn ¼

Pn
i¼1

W ki ;t

n
:

and define V0 ¼ 0.

3: Find the largest n 2 f0; 1; :::; jStjg such that Vn � a:
Output: Dt ¼ St n fk1 ; :::; kng if n � 1 and Dt ¼ St if n ¼ 0.

Item Pool Quality Control in Educational Testing
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4. Monitoring Statistic in IRT-Based Testing

In principle, the monitoring statistic Xkt can be any statistic whose distribution

is different before and after the change point. In practice, we suggest to choose

Xkt to be a Wald-type statistic, so that we can approximate the prechange and

postchange distributions by normal distributions to simplify the computation. In

what follows, we give an example of such a monitoring statistic and explain how

confounding due to changing examinee population is adjusted in this statistic.

4.1. Standardized Item Residual (SIR) Statistic

Let Nt be the number of people taking the test at time t. Let Yktn 2 f0; 1g
denote the nth examinee’s response to item k at time t, where Yktn ¼ 1 indicates a

correct response and Yktn ¼ 0 otherwise.

Let �Y kt ¼ ð
PNt

n¼1YktnÞ=Nt be the percent correct for item k at time t. Suppose

that a change has not yet occurred. Then, �Y kt has expected value

x0
kt :¼ Eð �Y ktjtk � tÞ. If x0

kt is known and let SEð �Y ktÞ be the standard error of

�Y kt, then the standardized residual ð �Y kt � x0
ktÞ=SEð �Y ktÞ is approximately standard

normal when the change has not yet occurred and Nt is sufficiently large. Note

that this statistic can adjust for the examinee population change when x0
kt is

defined under the IRT framework.

In practice, we typically do not know x0
kt. Specially, when the examinee

population changes overtime, x0
kt needs to be estimated based on both historical

information and data from the tth test administration. Now suppose that we have

a consistent estimator of x0
kt, denoted as x̂

0

kt. The way obtaining x̂
0

kt will be

discussed in Section 4.2. Then, the SIR statistic is defined as

Xkt ¼
�Y kt � x̂

0

kt

SEð �Y kt � x̂
0

ktÞ
;

where SEð �Y kt � x̂
0

ktÞ is the standard error of the numerator. Under mild condi-

tions and given that tk � t, Xkt is approximately standard normal for sufficiently

large Nt. Similarly, given that tk < t, Xkt is asymptotically Nðmkt ; 1Þ, where mkt

characterizes the mean change of the SIR statistic. The normal approximation

can be justified in sense that Xkt can be decomposed as Xkt ¼ mkt þ Z þ opð1Þ,
where Z is a standard normal random variable. This holds even when mkt

diverges. When focusing on change points due to item leakage, it is reasonable

to further assume that mkt > 0.

In general, the SIR statistics Xkt, k 2 St, are not independent as assumed in our

Bayesian change point model. Specifically, the SIR statistics constructed under

an IRT model tend to have weak positive correlations, brought by individual-
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specific latent factors. As shown in Section 5, with such dependence, the pro-

posed method still controls the compound risk.

4.2. SIR Statistic Under IRT Framework

In what follows, we describe an IRT model for item response data Yktn. Under

this model, the SIR statistic Xkt can be computed and the mean change mkt can be

expressed as a function of the parameters in the IRT model.

4.2.1. IRT model for prechange items. IRT provides a popular method in educa-

tional testing for linking different test administrations with potentially different

examinee populations. In the current context, it is sensible to model item

responses using a unidimensional IRT model for prechange items. A unidimen-

tional IRT model assumes that each item is characterized by one or multiple

parameters that do not change over time, denoted by bk , and that each examinee n

in test administration t is characterized by one parameter, denoted by ytn. The

parameter ytn is typically interpreted as the ability of the examinee.

Under this model, the probability of an examinee answering item k correctly is

completely determined by the item parameters and the person parameter in the

form

PðYktn ¼ 1jytn; bkÞ ¼ f ðytnjbkÞ;

where f is a prespecified inverse-link function that is monotonically increasing in

ytn. For example, one of the most commonly used models in educational testing

is the so-called two-parameter logistic (2PL) model (Birnbaum, 1968). Under the

2PL model,

f ðytnjbkÞ ¼
expðbk0 þ bk1ytnÞ

1þ expðbk0 þ bk1ytnÞ
;

where bk0 and bk1 > 0 are known as the easiness and discrimination parameters,

respectively, and bk ¼ ðbk0; bk1Þ. Given the person and item parameters, an

examinee’s responses to different items are assumed to be independent, known

as the local independence assumption.

In this article, the item parameters bk are treated as fixed parameters that do

not change over time. The person parameters ytn are treated as random variables.

Specifically, yt1 ; :::; yt;Nt
are assumed to be independent and identically distrib-

uted (i.i.d.) samples from a distribution Nðmt ; 1Þ, where the mean is time depen-

dent to reflect the population change over time (e.g., seasonal effect) and the

variance is fixed to be one to bypass the scale-indeterminacy. Under the IRT

model, the expected percent correct can be calculated as

x0
kt ¼

Z
f ðyjbkÞ

1ffiffiffiffiffiffi
2p
p expð�ðy� mtÞ2=2Þdy: ð9Þ
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4.2.2. IRT model for postchange items. We now describe an IRT model for

response data involving item preknowledge. The same model has been adopted

in Lee and Lewis (2021) who developed CUSUM statistics based on this model

to monitor item performance and detect item preknowledge. For each k satisfying

t > tk , we use hktn 2 f0; 1g to denote preknowlege about the item. That is,

hktn ¼ 1 indicates that the examinee has preknowledge about the item and hktn ¼
0 otherwise. We assume that the indicators hktn are i.i.d., following a Bernoulli

distribution with Pðhktn ¼ 1Þ ¼ pk , and hktn is independent of ytn. That is,

whether an individual has preknowlege about a leaked item is independent of

their ability. We further assume that when examinee n has preknowledge about

item k, their answer is always correct. That is, Yktn ¼ 1, given that hktn ¼ 1.

Finally, it is assumed that when examinee n does not cheat on item k, that is,

hktn ¼ 0, then Yktn given hktn and ytn still follows the same IRT model as if the

item has not changed. This postchange model yields x1
kt ¼ ð1� pkÞx0

kt þ pk and

therefore x1
kt � x0

kt ¼ pkð1� x0
ktÞ.

4.2.3. Estimation of x0
kt. In practice, the expected prechange percent correct x0

kt

is unknown due to the unknown mean mt which needs to be estimated based on

data from the prechange items in the tth test administration. Suppose that there

exists a nonempty subset S
y
t � S�t that is known to only contain prechange items.

For example, S
y
t can be the items that have not been exposed before. Then, mt can

be consistently estimated by maximizing the marginal likelihood

m̂t ¼ argmax
mt

XNt

n¼1

log

Z Y
k2S

y
t

f ðyjbkÞYktnð1� f ðyjbkÞÞ1�Yktn 1ffiffiffiffiffiffi
2p
p expð�ðy� mtÞ2=2Þdy

0
@

1
A:
ð10Þ

Accordingly, x0
kt can be estimated by plugging in m̂t. The standard error

SEð �Y kt � x̂
0

ktÞ can also be computed easily; see the details in Online Appendix B.

4.2.4. Prechange and postchange distributions of SIR statistic. The SIR statistic

Xkt constructed above is approximately standard normal when tk � t and is

approximately normal Nðmkt ; 1Þ when tk < t, where

mkt ¼
x1

kt � x0
ktffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varð �Y kt � x̂
0

ktÞ
q :

The value of x1
kt is determined by the postchange model introduced above and

the value of x0
kt is determined by the prechange model that can be estimated from

data. Given the leakage proportion pk , mkt can be approximated by

Chen et al.

17



m̂ktðpkÞ ¼
pkð1� x̂

0

ktÞ
SEð �Y kt � x̂

0

ktÞ
:

In practice, pk is usually unknown and hard to estimate, though it may be

known by prior knowledge that pk s locate in a certain interval Y. With such

information, we can run Algorithm 2 with

hktðxjpkÞ ¼ 1ffiffiffiffiffiffi
2p
p exp �ðx� m̂ktðpkÞÞ2

2

� �
: ð11Þ

5. Simulation Study

5.1. Study I

5.1.1. Known change point model. We start with a simple simulation setting to

illustrate the proposed method. We consider an item pool originally containing

jS1j ¼ 500 items. During the process, once a subset of items are detected, they

will be removed, and the same number of new items will be added to ensure

jStj ¼ 500 for all t. We also assume that 50 items are randomly selected from the

item pool for each test administration, that is, jS�t j ¼ 50.

The parameter rk in the change time distribution is generated from a uniform

distribution over the interval ½0; 0:1� for different k. It is further assumed that the

monitoring statistic Xkt follows Nð0; 1Þ when tk � t and follows Nðmk ; 1Þ when

tk < t. We generate mk from a uniform distribution over the interval ½1; 2� for

different k.

We investigate the situation when rk and mk are known. We run 1,000 inde-

pendent simulations. In each simulation, we apply Algorithm 1, for t ¼ 1; :::; 50,

where the threshold a for the compound risk is set to be 0.01. To evaluate the

method, three metrics are calculated at each time t, including (a) the FNPX
k2StnDt

1ftk<tg

maxf1; jSt n Dtjg
;

(b) the FDP X
k2Dt

1ftk�tg

maxf1; jDtjg
;

and (c) the number of detections jDtj. Our results are shown in Figure 3, where

panels (a)–(c) show the three metrics, respectively. In each panel, the x-axis

shows time t and the y-axis shows the 5%, 25%, 50%, 75%, and 95% quantiles

of the empirical distribution of the metric based on 1,000 independent

simulations.
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We take a closer look at the medians of these metrics over time. The median

FNP is zero at the beginning, because at time t ¼ 1, all the items are new (i.e.,

never exposed before). It increases as time goes on and stabilizes at the targeted

level 0.01 after about 10 time points. The median FDP is also zero at the begin-

ning but then increases dramatically. It stabilizes around the level 0.8 after about

20 time points. Finally, the median detection size also increases with time t and

becomes stable around 10 after about 20 time points.

5.1.2. Unknown change point model. We now look at the situation when rk and

mk are unknown under the same simulation setting as above. We again run 1,000

independent simulations. In each simulation, we apply Algorithm 2, for

t ¼ 1; :::; 50, where the threshold a ¼ 0:01. When applying Algorithm 2, we

only know that the prechange distribution is Nð0; 1Þ, rk 2 ð0; 0:1� and

mk 2 ½1; 2�. The results are shown in Figure 4 which take a similar form as those

given in Figure 3. As we can see, when the change point model is unknown, the

decision given by Algorithm 2 still controls the FNP under the targeted level.

However, when comparing the current results with those from Algorithm 1

above, we see that the decision rule given by Algorithm 2 is more conservative,

which is a price paid for not knowing the parameters in both the geometric

distribution for change points and the postchange distribution. As a result of the

conservativeness in the decision (i.e., smaller FNP), the FDP and the number of

detections are both larger comparing with the results in Figure 3.

5.1.3. Under model misspecification. We further look at the situation when the

change point model is misspecified. Specifically, we consider the case when the

monitoring statistics Xkt, k 2 S�t , are correlated. More precisely, we assume ðXkt :

k 2 S�t Þ given tk , k 2 S�t is multivariate normal distribution, for which the mar-

ginal prechange distribution of Xkt is still standard normal and the marginal

postchange distribution is Nðmk ; 1Þ, and the covariance between Xkt and Xk0t is

0.1 for k 6¼ k0. The rest of the setting is the same as above.

We apply Algorithm 1, assuming that rk and mk are known and pretending

that the data streams are independent. The results are shown in Figure 5. Com-

paring the results in Figures 3 and 5, it seems that the performance metrics are

only slightly affected when we simply run Algorithm 1, ignoring the weak

positive dependence between the data streams. We further apply Algorithm 2,

with knowledge that all the rk s lie in the interval ð0; 0:1� and that all the mk s lie

in the interval ½1; 2�. Again, when running Algorithm 2, we pretend that the data

streams are independent. The results are shown in Figure 6. Similar to the results

when given the known model, the effect of ignoring the weak positive depen-

dence in data also seems small when the change point model is not completely

known.
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5.2. Study II: Educational Testing With Time-Varying Population

5.2.1. Simulation setting. We now evaluate the proposed method under an IRT

setting that mimics operational tests. The setting is almost the same as above,

except for the way the monitoring statistics are obtained. More precisely, pre-

change item response data are simulated using the 2PL model introduced in

Section 4.2. Each item k is assumed to be associated with item parameters bk0

and bk1, where the discrimination parameter bk1 is generated from a uniform

distribution ½1; 1:5�, and the easiness parameter bk0 is generated from a uniform

distribution ½�2; 2�. We assume that the item parameters are known in our

sequential decision procedure, because in practice these parameters can usually

be accurately precalibrated, before their operational use. At each time t, the

number of examinees Nt is generated from a uniform distribution over the set

f1001; 1002; :::; 3000g. Each examinee n at time t is associated with an ability

parameter ytn, generated from normal distribution Nðmt ; 1Þ, where the population

mean mt is generated from a uniform distribution over the interval ½�0:5; 0:5�.
The postchange item response data are simulated using the mixture model

described in Section 4.2. The leakage proportion pk is generated from a uniform

distribution over the interval ½0:05; 0:1�.
The simulated item pool originally contains jS1j ¼ 500 items. During the

process, once a subset of items are detected, they will be removed, and the same

number of new items will be added to maintain the size of the item pool. In

addition, we add new items to St when necessary to ensure that St always contains

at least five new items that have not been exposed before. This is because, we

include at least five new items in S�t for the estimation of mt, the mean of the

population ability distribution at time t. The rest of the simulation setting is the

same as that of Study I.

We construct an SIR statistic for each data stream using the method intro-

duced in Section 4.2. Both the prechange and postchange distributions are

approximated by normal distributions. We point out that the signal under the

current setting is stronger than that under Study 1. In particular, the 25%, 50%,

and 75% quantiles of the empirical distribution for m̂ktðpkÞ are 2.3, 3.9, and 5.1,

respectively. Two cases are considered. In the first case (Case I), both parameters

rk and leakage proportions pk are treated as known. We run Algorithm 1 with the

prechange distribution being standard normal and the postchange distribution

being estimated as in Equation 11. In the second case (Case II), both rk and

pk are treated as unknown, which is usually the case in practice. We assume that

we only know these parameters lying in the intervals ð0; 0:1� and ½0:05; 0:1�,
respectively. We run Algorithm 2, with the prechange distribution being standard

normal and the postchange distribution being estimated as in Equation 11.

5.2.2. Results. The results for Case I are presented in Figure 7. As we can see, the

proposed method still performs reasonably well under this setting. Specifically,
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the median FNP is slightly larger than the targeted level 0.01 after 20 time points,

but it never exceeds 0.013. This slight overshoot is likely due to the normal

approximation and the estimation of the population distribution at each time

point. The FDP is quite small, with the median FDP always being zero. This is

because, the signal of the change points is quite strong, given the sample sizes

and the leakage proportions. Moreover, the number of detections remains low

overtime. In fact, the median number of detection is always below 3.

The results for Case II are given in Figure 8. Similar to the results of Algo-

rithm 2 as in Study I, the FNPs in Case II are smaller than those in Case I,

meaning that Algorithm 2 again makes more conservative decisions. Specifi-

cally, the median FNP is always below the 0.004 level. The FDP values are

acceptable but are much larger than those in Case I. Specifically, the median

FDP is always below 0.73. Finally, the numbers of detections are still reasonably

low, with the median number of detections always below 7. It would be afford-

able for the testing program to review detected items when detection size is of

this scale.

6. Concluding Remarks

In this article, we provide a compound change detection framework for

sequential item quality control, one of the most important problems in educa-

tional testing. A Bayesian change point model is proposed in both general and

specific forms. Compound decision rules are proposed when the Bayesian

change point model is completely known and when only partial information is

available about the model. Theoretical properties of these decision rules are

established and their empirical performance is evaluated by simulations under

various settings. Our simulation studies show that the proposed method reason-

ably controls the proportion of postchange items among the undetected ones

without making too many false detections of prechange items, suggesting that

the proposed method may be applicable to operational tests for their quality

control. Our simulation results also show that the proposed method is quite robust

against model misspecification. More specifically, although our method is devel-

oped under a change point model assuming independent monitoring statistics, it

still performs well when there exists weak positive dependence among the mon-

itoring statistics.

We clarify that the proposed method controls local FNR but does not control

local FDR. The local FDR in each step of our procedure is a result of the signal of

the data and the threshold we use for local FNR. Given a threshold for our local

FNR and an IRT setting, there is no simple way to characterize the relationship

between the sample size and the local FDR, as the signal in the data depends on

many different factors, not only the sample size but also the number of test takers

to whom each postchange item is leaked, population of test takers, the number of

items in a test, and the characteristics of the items in the pool (e.g., the
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distributions of the discrimination and difficulty parameters). For a real test, we

would suggest to run simulation studies to understand how the local FDR

depends on these factors, given the parameters of the items in the pool and the

target level for local FNR.

One limitation of the current work lies in the simulation study. As discussed in

Section 2.2, the proposed method can be generalized to continuous tests, for

which item pool monitoring may be more important than frequent but noncon-

tinuous tests. The current simulation only considers settings for frequent but

noncontinuous tests. Its results do not imply the performance of the proposed

method under settings for continuous tests, where the monitoring statistic for

each stream is likely obtained from small and varying sample sizes. Simulation

studies under real continuous test settings will be conducted in future research.

Another limitation is that the specific model with independent geometric

change points may not be flexible enough. For example, the change points are

likely correlated, driven by some events such as the leakage of a set of items to

the public or the change of curriculum that may affect multiple items. A chal-

lenge from removing the independent geometric distribution assumption is that

the posterior probabilities Pðtk < tjF tÞ typically do not have an analytic form.

Several questions are worth future investigation. First, can we still control the

compound risk using a misspecified independent geometric model? Second, can

we develop methods for approximating these posterior probabilities, such as

variational approximation and certain Bayesian filters (e.g., Chapter 10, Bishop,

2006)?

In practice, there is always unknown information in the Bayesian change point

model, especially the distribution of change points and the postchange distribu-

tion. The current solution is to take a conservative approach that makes decision

under essentially the worst-case model. This approach guarantees the control of

the compound risk for a finite sample, but there might be a sacrifice in making

more false detections of prechange items. An alternative is to take an online

estimation approach that estimates the unknown model parameters sequentially

together with the sequential change detection process. The unknown parameters

can be treated as random variables and estimated by a Bayesian approach or as

fixed parameters and estimated by a likelihood-based approach. Similar to the

multiarmed bandit problem (e.g., Robbins, 1952; Sutton & Barto, 2018), this

approach also faces an exploration–exploitation trade-off dilemma, that is, the

trade-off between the efforts to achieve a more accurate estimation and to make

better decision. This problem is left for future investigation.

Many sequential change detection applications involve multiple data streams,

such as the detection of customer behavior change in e-commence, the detection

of changed sensors in engineering, and the detection of abnormal change in

stocks. For such problems, it may be more sensible to control FDR- or FNR-

type compound risks than individual risks for single data streams. Although this

article focuses on item quality control in educational testing, the proposed
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methodological framework is very general and applicable to many other multi-

stream change detection problems in different fields. In fact, the proposed pro-

cedure can be easily modified to control local FDR.
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