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Abstract

Mixture models of the Scheffé polynomial class are standard in several scien-
tific fields. For these models there is a vast literature on the optimal design of
experiments to provide good estimates of the parameters with the use of mini-
mal resources. Contrarily, the optimal design of experiments for general blending
models, generalizing the class of Becker, have not been systematically addressed.
Nevertheless, there are practical examples where the models relating the response
variables, the parameters and the factors include nonlinear blending effects fall
into a general form.

We propose a general formulation to find continuous and exact D– and A–
optimal designs for general blending models. First, we consider designs to esti-
mate the regression coefficients, and then extend the formulations to find locally
optimal continuous designs for estimating both the coefficients and the power
constants. The treatment relies on converting the Optimal Design of Experiments
(ODoE) problem into an optimization problem of the Nonlinear Programming (or
Mixed Integer Nonlinear Programming) class which includes the computation of
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the parameter sensitivities, the Cholesky decomposition of the Fisher Information
Matrix and the equality constraint modeling the summation of component frac-
tions to one. We apply the approach to quadratic and special cubic general blend-
ing models of the H2 class of polynomials introduced by Becker, and to three
examples of practical interest in combustion science and in the characterization of
fuel properties.

Keywords: Model-based optimal designs, Blending models, Continuous designs,
Exact designs, Mixture experiments.

1. Motivation

In many mixtures, at least one component acts as a diluent, the properties of
the mixture depending linearly on the amount of this component. In all but the
simplest cases, the widely used polynomial models for mixtures introduced by
Scheffé [1] do not have this desirable property. We provide algorithms for find-5

ing optimal experimental designs for models in which the blending can be linear,
or can have some other general form specified by the parameters of a nonlinear
model. Although our examples focus on these nonlinear models, our algorithm is
general and can find efficient designs for polynomial mixture models and also for
those with forms of nonlinearity in the mixture variables other than those exem-10

plified here, including Generalized Linear Models (GLM’s).
The optimal design of experiments (ODoE) is a well-established and increas-

ingly important subfield of statistics. Running experiments is costly and users
want to rein in costs without sacrificing the statistical efficiency of inferences. The
literature on the construction of optimal experimental designs for specific models15

(of mechanistic or empirical nature) is extensive [2, 3, 4]. In ODoE, given a statis-
tical model, a fixed total number of observationsN and an optimality criterion, we
seek the optimal number of design points, k, their locations from a pre-specified
compact design space and the number of replicates at each design point subject
to the constraint that the number of replicates sum to N . Such an optimal design20

provides maximal precision for statistical inference at minimum cost [5].
There are two types of design: large sample or continuous designs (also des-

ignated approximate designs) and small sample or exact designs. The former are
essentially probability measures on the design space and are easier to find. In par-
ticular, when the optimality criterion is convex over the design space, we have a25

convex optimization problem [6] and there are algorithms for searching the opti-
mal approximate designs, including analytical tools for studying their properties
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and confirming optimality of the design. In optimal exact design problems, the
numbers of observations at design points are integers and they sum to N . Conse-
quently, we do not have a convex optimization problem in general and, so, finding30

optimal exact designs is computationally more challenging than finding approxi-
mate optimal designs [7].

Herein we find D– and A–optimal experimental designs for general single-
response models applied in mixture experiments

y = f(x, θθθ) + ε, (1a)
s.t. 1ᵀ

nx x = 1, (1b)
0 ≤ x ≤ 1, (1c)

where f(•) ∈ R is a continuously differentiable function (with respect to pa-
rameters), x ∈ X ⊂ Rnx is the set of explanatory variables (or control factors),
y ∈ R the response variable that fully characterizes the results of the experiment,35

θθθ ∈ Θ ⊂ Rnθ the set of parameters, X ≡ [0, 1]nx , and Θ are compact domains
of factors and parameters, respectively, nx the number of control factors and nθ
the number of parameters to be estimated from the experiment. Further, ε is the
observational error described by an independent and identically distributed (i.i.d.)
random variable following the normal distributionN (0, σi), and 1nx is the unitary40

column vector of size nx. The model constraints (1b-1c) put additional complex-
ity to the task of finding optimal designs of experiments as they are constraints
of the design optimization problem. This issue can be overcome by solving the
problem with up-to-date mathematical programming-based algorithms.

In (1) xi, i ∈ JnxK is the fraction of component i in the mixture and nx
the number of components. Scheffé polynomials with independent normally dis-
tributed errors are very often used to represent the responses of mixture experi-
ments. Practically, they are built from regression polynomials by introducing the
restrictions (1b-1c). Brown [8, §2.2.1] exemplifies the blending properties of the
special second-order polynomial with nx = 3

E(y) =
3∑
i=1

βi xi + β1,2x1x2,

where E(y) is the expectation of y. For a fixed value of the ratio x1/x2, the value45

of E(y) is quadratic in x3 as x3 increases from 0 to 1.
Becker [9] introduced a class of homogenous models that generalizes the poly-

nomial models to allow the representation of linear blending in the presence of an
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inert or additive component in the mixture. Cornell [10] provides examples of
applications. Later, Becker [11] proposed the more general model

E(y) =
nx∑
i=1

βi xi +
nx−1∑
i=1

nx∑
j=i

βi,j h(xi, xj) (xi + xj)+

+
nx−2∑
i=1

nx−1∑
j=i

nx∑
k=j

βi,j,k h(xi, xj, xk) (xi + xj + xk), (2)

where the h(•) for the H2 class are

h(xi, xj, xk) =

(
xi

xi + xj + xk

)ri ( xj
xi + xj + xk

)rj ( xk
xi + xj + xk

)rk
(3a)

h(xi, xj) =

(
xi

xi + xj

)ri ( xj
xi + xj

)rj
. (3b)

The coefficients ri allow increased flexibility as they can be used for model-
ing variables described by ratios of proportions. Further generalization can be
achieved when partial sums of components (xi + xj) or (xi + xj + xk), are raised
to powers si,j .50

In this study, the quadratic and the special cubic models of the Becker [11]
H2 class of polynomials are further generalized. Various blending profiles are
generated by raising the partial sums of fractions of interacting components (i, j)
to powers si,j . As in Brown et al. [12], the generalized blending models considered
in our study are: (i) quadratic general blending model (2-COMP)55

E(y) =
nx∑
i=1

βixi +
nx−1∑
i=1

nx∑
j=i+1

βi,j x
ri,j
i x

rj,i
j , (4)

and (ii) special cubic general blending model (3-COMP)

E(y) =
nx∑
i=1

βixi +
nx−1∑
i=1

nx∑
j=i+1

βi,j x
ri,j
i x

rj,i
j (xi + xj)

si,j−ri,j−rj,i+

+
nx−2∑
i=1

nx−1∑
j=i+1

nx∑
k=j+1

βi,j,k x
ri,j,k
i x

rj,k,i
j x

rk,i,j
k . (5)
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An example of the flexibility in blending profiles that such models present is
Brown et al. [12, Figure 1].

While the 2-COMP model includes 5 parameters (3 β’s and 2 exponents),
the 3-COMP model has 19 parameters (7 β’s and 12 exponents). Both mod-
els omit the self-interaction terms as in Brown et al. [12]. Here, βi, βi,j and60

βi,j,k, i, j, k ∈ {1, · · · , nx} are the regression coefficients associated with lin-
ear, second-order and third-order interaction terms, respectively, and ri,j, i, j ∈
{1, · · · , nx}, ri,j,k, i, j, k ∈ {1, · · · , nx}, and si,j, i, j ∈ {1, · · · , nx} are expo-
nents affecting the second and third order terms. The coefficients r and s are real
numbers but in most of the practical cases they fall in [−3, + 3]. Values close to65

0 indicate the lack of sensitivity of the response to the respective base terms.
First in §4, we consider models linear in the parameters where the goal

is to find optimal experimental designs for estimation of the parameters θθθ ≡
{βi, βi,j, βi,j,k : i, j, k ∈ {1, · · · , nx}}. Then, we extend the analysis to
experimental designs to simultaneously estimate the regression coefficients and a70

subset of exponents, θθθ ≡ {βi, βi,j, βi,j,k, ri,j, ri,j,k : i, j, k ∈ {1, · · · , nx}}.
This latter model is nonlinear and we will be interested in locally optimal designs.

1.1. Illustrative example
Spark Ignition engine performance is linked to knock phenomena which, in

turn, depend on fuel resistance to auto-ignition, quantified by the octane num-75

ber (Research Octane Number – RON and Motor Octane Number - MON). Fuel
products must meet strict specifications in terms of RON, see European Commi-
sion [13]. The refining industry has to comply with both quality specifications
and also stringent environmental regulations regarding emissions. To optimize
its returns, the industry blends products of different specifications processed in80

different operation lines to assure that the specifications are met. These blend-
ing fractions have different compositions in terms of paraffin, olefin and aromatic
components [14, 15]. The estimation of the properties of the mixture, such as
the RON and Reid Vapor Pressure (RVP), based on the properties of the blending
fractions, follow nonlinear mixing rules because of the group interactions, see Ri-85

azi [16] for the estimation of RON and Gary et al. [17] for the estimation of RVP.
Thus, constructing adequate mathematical models for the estimation of mixture
properties usually requires intensive experimental work. The most common ex-
perimental setup requires measuring the characteristics of mixtures of blending
fractions with various compositions. Practically, there is substantial interest in90

finding optimal experimental designs to characterize general (nonlinear) blending
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models to predict mixture properties. Typically, these studies require a consider-
able amount of resources and experimental plans able to maximize the amount of
information gathered for the available resources are highly desirable.

1.2. Algorithms for finding Optimal Experimental Designs95

Over the last decades, algorithms have been developed and continually im-
proved for generating different types of optimal designs for explicit algebraic
models. Various numerical algorithms developed to construct such designs are
based on exchange methods, originally proposed for the D–optimality criterion
[18, 19, 20]. The numerical efficiency of these Wynn–Fedorov schemes has been100

improved by several authors, including Wu [21], Wu and Wynn [22], Pronzato
[23] and Harman and Pronzato [24]. Some of these algorithms are reviewed,
compared and discussed in Meyer and Nachtsheim [25] and Pronzato [26], among
others. Another approach to finding continuous optimal designs is based on Mul-
tiplicative Algorithms, which have found broad application due to their simplicity105

[27]. The basic algorithm was proposed by Titterington [28] and later exploited
in Pázman [29], Fellman [30], Pukelsheim and Torsney [31], Torsney and Mandal
[32], Mandal and Torsney [33], Dette et al. [34], Torsney and Martı́n-Martı́n [35]
and Yu [36, 37]. Recently, cocktail algorithms, that rely on both exchange and
multiplicative algorithms, have been proposed [38], and improved [39].110

Mathematical programming algorithms can currently solve complex, high–
dimensional optimization problems, especially when they are convex and a self-
concordant barrier is available for the constraints. Examples of applications of
mathematical programming algorithms for finding continuous optimal designs are
Linear Programming [40, 41, 42], Second-Order Conic Programming [43, 44],115

Semidefinite Programming (SDP) [45, 46, 47], Semi Infinite Programming (SIP)
[48, 49], and Nonlinear Programming (NLP) [50, 51]. Applications based on
procedures relying on metaheuristic optimization algorithms are also reported in
the literature, see Heredia-Langner et al. [52] for Genetic Algorithms, Woods [53]
for Simulated Annealing, Chen et al. [54] for Particle Swarm Optimization (PSO)120

and Masoudi et al. [55] for the Imperialist Competitive Algorithm, among others.
Applications of mathematical programming methods for finding optimal ex-

act designs in a general regression setting are less numerous due to the additional
numerical complexity. In Welch [56], the design space is discretized and a convex
optimization algorithm based on branch and bound is used to ensure that the opti-125

mal numbers of replicates of the D–optimal exact designs are integers. Similarly,
Harman and Filová [57] and Sagnol and Harman [44] used, respectively, Mixed-
Integer Quadratic Programming (MIQP) and Mixed-Integer Second-Order Conic
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Programming techniques (MISOCP) to find D–optimal exact designs. Both meth-
ods also require discretizing the design space, ensuring that the global optimal de-130

sign is found on the discretized space. Esteban-Bravo et al. [58] showed that NLP
formulations can be used to find unconstrained and constrained exact designs, and
that Newton-based methods using Interior Point or Filter techniques performed
well for the problem. Duarte et al. [59] formulated optimal exact design for D–
and A–optimality criteria as a Mixed Integer Nonlinear Programming (MINLP)135

problem and solved it employing global and local MINLP solvers. Goos et al.
[60] compared a variable neighborhood search (VNS) algorithm and a MINLP
approach to tackle the problem of identifying D– and I–optimal designs for mix-
ture experiments.

The optimal design of experiments for mixture models was studied in several140

references, see Cornell [10], Atkinson et al. [2], Sinha et al. [61] among oth-
ers. For recent reviews the reader is referred to Piepel [62] and Goos et al. [63].
Various approaches to the construction of optimal designs for mixtures when the
components are constrained have been proposed. For example Welch [64] used an
exchange procedure on a candidate set of points generated from a grid of points145

including the extreme vertices and centroids of the polytope. Algorithms based
on a coordinate-exchange algorithm and a hybrid thereof that take the mixture
variables to be continuous over the polytope have been devised [65]. Approaches
based on PSO were studied by Wong et al. [66]. Coetzer and Haines [67] pro-
posed an approach that involves transforming the search for design points over a150

polytope to a search over a regular simplex with dimension equal to the number
of vertices of the polytope. Syafitri et al. [68] proposed a VNS algorithm which
Goos et al. [60] compare to a MINLP based formulations.

The approach in this study is grounded on mathematical programming. Our
formulations lead to optimization problems of the NLP class for continuous de-155

signs, and MINLP class for exact designs, respectively, and those are solved nu-
merically using specific algorithms. The equations representing the model, in-
cluding the equality (1b), and the parametric sensitivities are embedded in the
optimal design problem as additional constraints. The same holds for matrix alge-
bra operations required for computing D– and A–optimality criteria. This strategy160

allows us to find optimal designs that satisfy the model equations and guarantees
that all the solutions in the convergence process are feasible.

1.3. Novelty and organization
This paper contains three elements of novelty:
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i. the application of systematic mathematical programming-based methodolo-165

gies to find continuous and exact optimal designs of experiments for deter-
mining the regression coefficients in general (nonlinear) blending models
based on Becker [11] H2 class of polynomials;

ii. the provision of algebraic expressions for the D–optimal designs for two-
and three-component models;170

iii. the extension of the approaches to continuous designs for determining both
the coefficients and exponents;

iv. the application of the methodologies to examples of practical interest.

The paper is organized as follows. Section 2 introduces the background and
the notation used to formulate the problem, as well as the fundamentals of nonlin-175

ear and mixed integer nonlinear programming. Section 3 presents the mathemati-
cal programming formulations for finding continuous and approximate designs for
general blending models. Section 4 applies the previous formulations to finding
optimal designs. First, we consider continuous designs for determining the regres-
sion coefficients. Then, we determine exact optimal designs and locally optimal180

continuous designs for parameterizing the regression coefficients and some of the
exponents. Finally, in §5 we test our formulation on three examples of practical
interest. Section 6 offers a summary of the results obtained.

2. Notation and background

This section establishes the nomenclature used in the representation of the185

models. In §2.1 we present the experimental design problems outlined above.
Then, in §2.2, we give an overview of the fundamentals of NLP and MINLP.

2.1. Optimal experimental design
Bold face lowercase letters represent vectors, bold face capital letters contin-

uous domains, blackboard bold capital letters discrete domains and capital let-190

ters matrices. Finite sets containing ι elements are compactly represented by
JιK ≡ {1, · · · , ι}. The transpose operation of a matrix is represented by “ᵀ” and
the trace of matrix by tr(•).

We recall model (1) and consider a continuous design with K support points
at x1,x2, . . . ,xK . Continuous designs are used to represent experimental setups195
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where N → +∞; consequently the weights vary continuously on [0, 1] and rep-
resent the proportion of the total number of observations. Advantages of working
with continuous designs are many, and there is a unified framework for finding
optimal continuous designs for M-bODE problems when the design criterion is a
convex function on the set of all approximate designs [69].200

The weights at the support points are, respectively, w1, w2, . . . , wK where K
is chosen by the user so that K ≥ nθ. To implement the design for a total of N
observations, we take roughly N × wk observations at xk, k ∈ JKK, subject to
N × w1 + · · · + N × wK = N , and each summand is an integer. For models
with nx control factors, we denote the kth support point by xᵀ

k = (xk,1, . . . , xk,nx)205

and represent the continuous design ξcont by K rows (xᵀ
k, wk), k ∈ JKK with∑K

k=1 wk = 1. To discriminate between continuous and exact designs we use the
superscript “cont” for the former, and the superscript “exact” for the later. Since
the theoretical basis on optimal design of experiments was created for continuous
designs, see [70, 71] among others, we also use this setup for presenting the basic210

concepts.
In what is to follow, we let Ξ ≡ XK × Σ be the space of feasible K-point

designs over X where Σ is the K − 1-simplex in the domain of weights Σ =
{wk : wk ≥ 0, ∀k ∈ JKK,

∑K
k=1wk = 1}.

The information resulting from an experimental design is measured by its
FIM. The elements of the normalized FIM are the negative expectation of the
second order derivatives of the log-likelihood of (1), L(ξcont, θθθ), with respect to
the parameters, given by

M(ξcont, θθθ) = −E
[
∂

∂θθθ

(
∂L(ξcont)

∂θθθᵀ

)]
=

∫
ξcont∈Ξ

M(x, θθθ) d(ξcont) =

=
K∑
k=1

wk M(xk, θθθ), (6)

whereM(ξcont, θθθ) is the global FIM from the design ξcont, M(xk, θθθ) is the local215

FIM from point xk. Let

h(xk, θθθ) = E
[
∂L(ξcont)

∂θθθ

]
xk

(7)

be the first order derivative of the log-likelihood with respect to θθθ at xk. Then, the
local FIM’s are obtained from

M(xk, θθθ) = h(xk, θθθ) [h(xk, θθθ)]
ᵀ. (8)
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Herein, we focus on the class of design criteria proposed by Kiefer [6] where
each member in the class, indexed by a parameter δ, is positively homogeneous220

and defined on the set of symmetric nθ × nθ semi-positive definite matrices given
by

Φδ[M(ξcont)] =

[
1

nθ
tr(M(ξcont)δ)

]1/δ

. (9)

The maximization of Φδ for δ 6= 0 is equivalent to minimizing tr(M(ξcont)δ)
when δ < 0. Practically, Φδ becomes [tr(M(ξcont)−1)]−1 for δ = −1, which is
A–optimality, and [det[M(ξcont)]]1/nθ when δ → 0, which is D–optimality. These
design criteria are suitable for estimating model parameters as they maximize the
FIM in various ways. For the D–optimality criterion, the volume of the confidence
region of θθθ is proportional to det[M−1/2(ξcont)]. Then, maximizing the determi-
nant (or a convenient convex function of the determinant) of the FIM leads to the
smallest possible volume. Consequently, the ODoE problem can be cast as an op-
timization problem. For example, when θθθ is fixed, the locally D– and A–optimal
designs are respectively defined by

ξcont
D = arg max

ξcont∈Ξ
log {det[M(ξcont, θθθ)]} , (10)

ξcont
A = arg min

ξcont∈Ξ
tr[M(ξcont, θθθ)−1], (11)

where the criteria (10-11) are +∞ for designs with singular information matri-
ces. Herein we limit our analysis to D– and A–optimal designs that are the most
commonly used in practical applications.225

When the design criterion is convex (which is the case for the above criteria),
the global optimality of a design ξcont in X can be verified using an equivalence
theorem based on the consideration of the directional derivative of the objective
function [71, 20, 72, 6, 73, 3]. For instance, if we let δδδx be the degenerate design
at the point x ∈ X, the equivalence theorems for D– and A–optimality are as230

follow: (i) ξcont
D is D–optimal if and only if

tr
{

[M(ξcont
D , θθθ)]−1 M(δδδx)

}
− nθ ≤ 0, ∀x ∈ X; (12)

(ii) ξcont
A is globally A–optimal if and only if

tr
{

[M(ξcont
A , θθθ)]−2 M(δδδx, θθθ)

}
− tr

{
[M(ξcont

A , θθθ)]−1
}
≤ 0, ∀x ∈ X. (13)

We call the functions on the left side of the inequalities (12-13) dispersion
functions and denote them by Ψ(x|ξcont). To compare the D–optimal efficiency,
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an indicator of the information content extracted from two different designs, say
ξcont
D and ξref

D , where the latter one is the reference, we use

EffD =

{
det[M(ξcont

D , θθθ)]

det[M(ξref
D , θθθ)]

}1/nθ

, (14)

and, similarly, for the A–optimality criterion, the efficiency of ξcont
A relative to ξref

A

is defined by

EffA =
tr[M−1(ξref

A , θθθ)]

tr[M−1(ξcont
A , θθθ)]

. (15)

Now, we extend the theoretical framework to exact designs. The design space
X is a known compact domain from which the design points are selected to
observe the N outcomes. Here, ξexact is a K−point exact design supported at235

x1, · · · ,xk, · · · ,xK in X with nk replicates at xk subject to
∑K

k=1 nk = N .
Henceforth, we assume the number K of support points in the design sought is
user specified, and an initial estimate for K is the number of parameters in the
model, nθ. In what follows, let n be the vector of all possible replicates at the
design points, let ΩN

k = {nk : 0 ≤ nk < N,
∑K

k=1 nk = N, 1 ≤ k ≤ K}240

and let ΞN
K ≡ XK × ΩN

K be the set of all K−point feasible designs on X. We
assume K ≥ nθ; otherwise, there are not enough support points to estimate all
model parameters. Also, the number of support points is pre-specified by the user
which is sometimes not the case in practice.

2.2. Nonlinear Programming and Mixed-Integer Nonlinear Programming245

In this section we introduce the fundamentals of Nonlinear Programming and
Mixed-Integer Nonlinear Programming (MINLP). NLP is used to solve the design
problems (10-11) and seeks to find the global optimum x of a convex or nonconvex
nonlinear function f : X 7→ R in a compact domain X with possibly nonlinear
constraints. The general structure of the NLP problems is:

min
x∈X

f(x) (16a)

s.t. g(x) ≤ 0 (16b)
h(x) = 0, (16c)

where (16b) represents a set of ri inequalities, and (16c) represents a set of re
equality constraints. The functions f(x), g(x) and h(x) are twice differentiable.
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In our context, the variable x ∈ X includes the location of the support points
as well as the weights quantifying the relative effort required at each one. By
construction X in (16a) is closed which is what we have for Ξ.250

Nested and gradient projection methods are commonly used to solve NLP
problems. Some examples are the General Reduced Gradient (GRG) [74, 75] and
the Trust-Region [76] algorithms. Other methods are Sequential Quadratic Pro-
gramming (SQP) [77] and the Interior-Point (IP) [78]. Ruszczyński [79] provides
an overview of NLP algorithms.255

MINLP is used for solving the exact design problems introduced in §3.3.
MINLP is class of mathematical programming problems where the objective or
some of the constraints are nonlinear and some of the decision variables are con-
strained to integer values. To optimize a function of nx continuous variables, x,
and ny discrete variables, y, the general form of a MINLP is

min
x,y

f(x,y) (17a)

s.t. g(x,y) ≤ 0 (17b)
h(x,y) = 0 (17c)
x ∈ X, y ∈ Y. (17d)

As before, the function (17b) represents a set of ri inequalities and (17c) a set
of equality constraints, X is a compact set containing continuous variables x, Y
contains the discrete variables y and (17a) is the objective function.

Some common algorithms to solve mixed-integer nonlinear programs are the
outer-approximation method [80], the branch and bound method [81] and the ex-260

tended cutting plane method [82]. Floudas [83] reviews the fundamentals of using
MINLP to solve optimization problems and notes that traditional MINLP algo-
rithms guarantee the global optima under certain convexity assumptions.

Optimal design problems may have multiple local optima. To guarantee that
a global optimum is found, a global solver such as BARON must be employed.265

This implements deterministic global optimization algorithms that combine spa-
tial branch-and-bound procedures and bound tightening methods via constraint
propagation and interval analysis in a branch-and-reduce technique [84]. Sahini-
dis [85] showed that these techniques work quite well under fairly general as-
sumptions. In our formulations, those assumptions are satisfied by construction270

as all decision variables are bounded. However, global optimization solvers still
require a long computational time compared to local solvers [86], and this may
limit their utilization to small and average sized problems.
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A way to reduce the CPU time needed is to use a local MINLP solver, such
as, SBB [87], for handling exact design problems. SBB uses CONOPT as a NLP275

solver to handle the relaxed nonlinear programs [74] and CPLEX to solve the
mixed-integer linear programs [87].

3. Formulations for optimal design of experiments

This section introduces NLP formulations for finding K−point, continuous
D–, and A–optimal designs for general blending models. In Sections 3.1 and280

3.2, we respectively present the formulations for finding continuous D– and A–
optimal designs. In Section 3.3, we adapt the formulations to determine exact D–
and A–optimal designs. Section 3.4 provides implementation details.

3.1. Continuous D–optimal designs
A formulation for finding D–optimal continuous designs on Ξ is defined in285

(10).
To maximize log (det[M(ξcont, θθθ)]), we apply the Cholesky decomposition to

the global FIM; that is

M(ξcont, θθθ) = Uᵀ(ξcont, θθθ) U(ξcont, θθθ), (18)

where U(ξcont, θθθ) is an upper triangular matrix and has positive diagonal elements
ui,i when the FIM is positive definite. It follows that290

det(M(ξcont, θθθ)) =

nθ∏
i=1

u2
i,i, (19)

and log[det(M(ξcont, θθθ))] = 2
∑nθ

i=1 log(ui,i). Then, maximizing det(M(ξcont, θθθ))
is equivalent to maximizing the sum of the logarithms of the diagonal elements of
U(ξcont, θθθ).

Let mi,j, i, j ∈ JnθK be the (i, j)th element of the global FIM M(ξcont, θθθ)
and ui,j the (i, j)th element of U(ξcont, θθθ). The formulation for finding a locally
D–optimal continuous design is

max
x,w

nθ∑
i=1

log(ui,i) (20a)

s.t.1ᵀ
nx xk = 1, k ∈ JKK (20b)

Equations (7-8) (20c)
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mi,j =
K∑
k=1

wk m
loc
i,j,k, i, j ∈ JnθK (20d)

mi,j =

nθ∑
l=1

ul,iul,j, i, j ∈ JnθK, i ≤ j (20e)

ui,i ≥ ζ, i ∈ JnθK (20f)
ui,j = 0, i, j ∈ JnθK, i ≥ j + 1 (20g)
mi,i ≥ u2

i,j, i, j ∈ JnθK (20h)
K∑
k=1

wk = 1 (20i)

x ∈ XK , w ∈ Σ.

Here, ζ is a small positive constant to ensure that the FIM is positive definite. For
all examples in §4, ζ = 1× 10−5. Equation (20c) is the set of equations used to295

determine the sensitivity coefficients, equation (20b) assures that the fraction of
the components sums to 1 for all the support points (see (1b)), equation (20d) fol-
lows from (6), (20e) represents the Cholesky decomposition, (20f) guarantees that
all diagonal elements of U(ξcont, θθθ) are positive and (20g) assures that U(ξcont, θθθ)
is upper triangular. Equation (20h) is a numerical stability condition imposed on300

the Cholesky factorization of positive semidefinite matrices [88, Theorem 4.2.8]
and the constraint (20i) restricts the sum of weights to 1.

3.2. Continuous A–optimal design
Now, we introduce the formulation to determine A–optimal continu-

ous designs modeled by (11). The optimization problem requires inverting305

M−1(ξcont, θθθ), potentially a numerically unstable operation when the FIM is ill-
conditioned. To avoid the explicit computation of the inverse matrix, we ap-
ply the Cholesky decomposition to invert the upper diagonal matrix U(ξcont, θθθ)
that results from the decomposition of M(ξcont, θθθ); the rationale is that invert-
ing an upper triangular matrix obtained by Cholesky factorization is numerically310

more stable than inverting the original matrix [89]. The procedure has three
steps that are handled simultaneously within the optimization problem: (i) ap-
ply the Cholesky decomposition to the FIM, cf. §3.1; (ii) invert the upper trian-
gular matrix U(ξcont, θθθ) using the relation U(ξcont, θθθ) U−1(ξcont, θθθ) = Inθ , where
Inθ is the nθ−dimensional identity matrix; and (iii) compute M−1(ξcont, θθθ) via315

U−1(ξcont, θθθ), i.e. M−1(ξcont, θθθ) = U−1(ξcont, θθθ) × [U−1(ξcont, θθθ)]ᵀ [89], and, fi-
nally, compute tr[M−1(ξcont, θθθ)].
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Let mi,j be the (i, j)th entry of M−1(ξcont, θθθ) and ui,j be the (i, j)th entry of
U−1(ξcont, θθθ) where i, j ∈ JnθK. By construction, U(ξcont, θθθ) is positive defi-
nite and invertible if all the diagonal elements are positive. The same holds for
U−1(ξcont, θθθ). Step (i) is the Cholesky decomposition of the FIM represented by
(20e) and the second step corresponds to inverting U(ξcont, θθθ) formulated as:{∑nθ

l=1 ui,l ul,j = 1 if i = j∑nθ
l=1 ui,l ul,j = 0 if i 6= j,

(21)

with step (iii) represented by

mi,j =

nθ∑
l=1

ui,lul,j, i, j ∈ JnθK, i ≤ j. (22)

A–optimal designs minimize tr(M−1(ξcont, θθθ)) or equivalently, minimize the
sum of all mi,i, i ∈ JnθK. The complete NLP for computing A–optimal designs is

min
x,w

nθ∑
i=1

mi,i (23a)

s.t. 1ᵀ
nx xk = 1, k ∈ JKK (23b)

Equations (7-8) (23c)

mi,j =
K∑
k=1

wk m
loc
i,j,k, i, j ∈ JnθK (23d)

mi,j =

nθ∑
l=1

ul,iul,j, i, j ∈ JnθK, i ≤ j (23e)

nθ∑
l=1

ui,l ul,j = 1, i, j ∈ JnθK, i = j (23f)

nθ∑
l=1

ui,l ul,j = 0, i, j ∈ JnθK, i 6= j (23g)

mi,j =

nθ∑
l=1

ui,lul,j, i, j ∈ JnθK, i ≤ j (23h)

ui,i ≥ ζ, i ∈ JnθK (23i)
ui,i ≥ ζ, i ∈ JnθK (23j)
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ui,j = 0, i, j ∈ JnθK, i ≥ j + 1 (23k)
ui,j = 0, i, j ∈ JnθK, i ≥ j + 1 (23l)
mi,j = mj,i, i, j ∈ JnθK, i ≤ j − 1 (23m)
mi,i ≥ u2

i,j, i, j ∈ JnθK (23n)

mi,i ≥ u2
i,j, i, j ∈ JnθK (23o)

K∑
k=1

wk = 1 (23p)

x ∈ XK , w ∈ Σ.

Equations (23b, 23c, 23d, 23e, 23i, 23k, 23n) and (23p) are similar to those
in the D–optimal design formulation. Equations (23f-23g) reflect the relationship320

(21) and generate U−1(ξcont, θθθ), equation (23h) captures the constraint (22) to pro-
duceM−1(ξcont, θθθ) and equations (23k) and (23l), respectively, impose the lower
triangular structure of U(ξcont, θθθ) and U−1(ξcont, θθθ). Equation (23m) ensures the
symmetry ofM−1(ξcont, θθθ) and equations (23i) and (23j), respectively, ensure that
the diagonal elements of U(ξcont, θθθ) and U−1(ξcont, θθθ) are positive. The conditions325

(23n) and (23o) are the numerical stability insurance for the Cholesky factoriza-
tion ofM(ξcont, θθθ) andM−1(ξcont, θθθ), respectively. The symmetry of the FIM and
its inverse are guaranteed by (23d) and (23m), respectively.

3.3. Exact D– and A–optimal designs
Modifications in problems (20) and (23) required to find exact D– and A–330

optimal designs are overviewed next.
The resulting optimization problems are of Mixed-Integer Nonlinear Program-

ming class [59]. Specifically, the design problems are non-convex and the math-
ematical tools to check optimality do not exist. The adaptation only requires re-
placing (20d) and (23d) by335

mi,j =
K∑
k=1

nk
N

mloc
i,j,k, i, j ∈ JnθK (24)

and (20i) and (23p) by
K∑
k=1

nk = N. (25)

Finally, we recall that exact optimal design problems include the decision vari-
able n instead of w, and n ∈ JNKK ⊂ NK .
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3.4. Implementation aspects
Here we detail the implementation aspects related to the numerical approach340

for solving the optimal design problem.
The continuous optimal design problems are solved with formulations (20)

and (23), respectively. For such a purpose, they are coded in The General
Algebraic Modeling System environment, commonly known by the ini-
tials GAMS [90] which is a general modeling system that supports mathematical345

programming applications in several areas. Upon execution, the code describing
the mathematical program is automatically compiled, symbolically transcribed
into a set of numerical structures, and all information regarding the gradient and
matrix Hessian is generated using the automatic differentiation tool and made
available to the solver. For solving both problems, the NLP solver CONOPT is350

used, which employs the Generalized Reduced Gradient (GRG) algorithm [74].
For the exact optimal design problems in §3.3 we set the number of experi-

ments, N , and use the MINLP solver SBB which uses a branch and bound algo-
rithm combined with a NLP solver – CONOPT. The absolute and relative toler-
ances of the solvers were set equal to 1× 10−5 and 1× 10−6, respectively; the355

absolute tolerance is equal to ζ which is the minimum value allowed for the diag-
onal entries in the FIM so that it is positive definite.

To reduce CPU time, we provide consistent initial guesses to the NLP solver.
This means that the initial solution ξ(0) has to be consistent, i.e., it satisfies all
constraints of the problem [91]. To construct ξ(0), we first choose a point centrally360

located in X and then select the other grid points using the relation xi = xi−1+∆x
where ∆x = (maxx − minx)/(K − 1) and K is the number of support points
selected by the user. The replicates are then distributed so that the weights wi
are all equal to 1/K. Next, we compute the elemental and the global FIM for
ξ(0), Uᵀ(ξ(0), θθθ) and M−1(ξ(0), θθθ) and let the solver iterate until it converges to365

the optimum. To construct consistent initial solutions for the MINLP problems
for finding exact designs we use the continuous optimal design to determine the
(integer) number of replicates at each support point assuring that

∑K
i=1 ni = N

with ni = round(N wi) and round(•) being the rounding operation to the nearest
integer. Then, the elemental and global FIM’s are computed as well as all other370

required information.
All computations in §4 used an Intel Core i7 machine running a 64 bits Win-

dows 10 operating system with a 2.80 GHz processor.
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4. Results

This section presents D– and A–optimal designs calculated employing the for-375

mulations derived in §3. In Section 4.1 we consider continuous D– and A–optimal
designs and use the formulations in §3.1 and §3.2, respectively. Section 4.2 re-
ports exact D– and A–optimal designs; the formulation in §3.3 is used. Finally,
Section 4.3 presents continuous locally D– and A–optimal designs for parameter-
izing both the β’s and the exponents and uses the formulations in §3.1 and §3.2.380

All the designs presented in the following sections were obtained with the number
of support points equal to the number of parameters, i.e. K = nθ. We check that
this is the optimal number of support points.

The optima reported for each design in all the tables are for log[det(M(ξ, θθθ))]
and tr[M−1(ξ, θθθ)] for D– and A–optimality criteria, respectively (note the first is385

a maximizer and the second a minimizer). The efficiency of D– and A–optimal
designs is determined from (14) and (15). We call a design uniformly distributed
when the weights of all support points are equal to 1/nθ. To help in the interpre-
tation of the results, each of the columns of the optimal designs is for a support
point; the first nx lines correspond to component fractions in the mixture and the390

last line is for the corresponding weight (or number of replicates).
To demonstrate the generality of the proposed formulations we use both the

2-COMP and 3-COMP models and two sets of exponent parameters. Finding the
locally D– and A–optimal designs in §4.3 requires specifying some of the val-
ues of the regression coefficients, βββ. In all cases we set them to unitary values.395

For clarification purposes let us call θθθfit,model the set of parameters that are to be
estimated from the experimental design, and θθθfix,model the set of parameters taken
as fixed or known; the superscript “fit” is for estimation, “fix” is for fixed and
“model” is for the model description. We note that nθ = card(θθθfit,model). Sec-
tion 4.3 reports continuous locally optimal designs for nonlinear models. Those400

were obtained by fixing θθθfit,model to a singleton point in Θ.
For 2-COMP model θθθfit,2-COMP ≡ {β1, β2, β1,2}, and θθθfix,2-COMP ≡ {r1,2, r2,1}.

Two singletons are considered for simulating θθθfix,2-COMP: (i) the first is denoted
Θ2-COMP

1 ≡ {0.72} × {0.72}; and (ii) the second is Θ2-COMP
2 ≡ {1.0} × {0.5}. In

turn, for 3-COMP model the set of parameters for estimation in §4.1 and §4.2 is405

θθθfit,3-COMP ≡ {β1, β2, β3, β1,2, β1,3, β2,3, β1,2,3}, and the set of fixed parameters is
θθθfix,3-COMP ≡ {r1,2, r1,3, r2,3, r2,1, r3,1, r3,2, r1,2,3, r2,3,1, r3,1,2, s1,2, s1,3, s2,3}. Two
singletons are also considered for the values of θθθfix,3-COMP: (i) Θ3-COMP

1 ≡ {0.8} ×
{0.4}×{0.8}×{1.2}×{0.6}×{1.2}×{0.9}×{0.9}×{1.2}×{3.0}×{3.0}×
{3.0}; and (ii) Θ3-COMP

2 ≡ {0.36}×{0.24}×{0.45}×{1.68}×{0.96}×{1.54}×410
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{1.2} × {1.2} × {0.6} × {2.6} × {2.0} × {2.0}. Since the models considered
in §4.1 and §4.2 are linear, the optimal designs do not require setting θθθfit,2-COMP or
θθθfit,3-COMP. In contrast, the designs in §4.3 require the specification of a singleton
point for the parameters to be estimated.

4.1. Continuous optimal designs415

Here we present the approximate optimal designs for 2-COMP and 3-COMP
models, respectively.

Table 1 presents the continuous optimal designs for 2-COMP model and Ta-
ble 2 for the 3-COMP model. As expected, the D–optimal designs are uniformly
distributed. All the D– and A–optimal designs include the support points cor-420

responding to pure components. We set the number of support points for these
designs to K = 2nx − 1 and observe that nx of them are for experiments
with pure components. The location of the remaining K − nx support points
vary as do their weights in A–optimal designs. For the D–optmality criterion
the center support point that is (x1, x2) = (r1,2/(r1,2 + r2,1), r2,1/(r1,2 + r2,1));425

this result is verified using analytical algebra in Appendix A, where we extend
the result to D–optimal design of experiments for 3-COMP model using sym-
bolic algebra. Here, the D–optimal design is uniform and formed by 7 support
points: (i) three of them are (1, 0, 0), (0, 1, 0) and (0, 0, 1); (ii) three of them are
on the axis (i.e., each one is a mixture of only two components), and they are430

(x1, x2, x3) = (r1,2/(r1,2 + r2,1), r2,1/(r1,2 + r2,1), 0), (x1, x2, x3) = (r1,3/(r1,3 +
r3,1), 0, r3,1/(r1,3+r3,1)) and (x1, x2, x3) = (0, r2,3/(r2,3+r3,2), r3,2/(r2,3+r3,2));
and (iii) the center is (x1, x2, x3) = (r1,2,3/(r1,2,3 + r2,3,1 + r3,1,2), r2,3,1/(r1,2,3 +
r2,3,1 + r3,1,2), r3,1,2/(r1,2,3 + r2,3,1 + r3,1,2)).

The results for the 3-COMP models show one support point formed by a mix-435

ture of all components and nx points involving mixtures of two components. In
all cases the D–optimal designs obtained for 2-COMP and 3-COMP agree with
the theoretical results.

[Table 1 about here.]

[Table 2 about here.]440

The optimizer convergence ensures the global optimality of all the designs
obtained in §4.1 and §4.3. Nonetheless, the optimality of designs was checked
graphically by plotting the dispersion function (see (12) and (13) for D– and
A–optimality, respectively) and validating the equivalence theorems. Here, for
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demonstration purposes we consider the continuous D– and A–optimal designs445

for 3-COMP model for singleton Θ3-COMP
1 (first line of the Table 2). The display

in the domain X ≡ {(x1, x2) : x1 + x2 ≤ 1, 0 ≤ x1, x2 ≤ 1, x3 = 1− x1 − x2}
is shown in Figure 1. Figure 1(a) shows the dispersion function for the D–optimal
design and Figure 1(b) is for A–optimality. In both cases the dispersion func-
tion is bounded from above by zero and is maximized at the support points, so450

the designs are indeed optimal. Similar plots were constructed for all continuous
designs obtained and all satisfy the optimality conditions.

[Figure 1 about here.]

4.2. Exact optimal designs
This Section reports the exact optimal designs for 2-COMP and 3-COMP455

models obtained with the formulation in §3.3.
The designs were obtained for N = 3 × nθ; thus, N = 9 for 2-COMP model

and 21 for 3-COMP model. Table 3 shows the exact optimal designs for 2-COMP
model, and Table 4 for the 3-COMP model. The D–optimal designs for both 2-
COMP and 3-COMP models are also uniform and coincide with the approximate460

designs obtained in §4.1. The reason is that the number of experiments, N , is a
multiple of the number of support points and ni/N = wi, i ∈ JKK. In contrast, the
A–optimal designs are not uniform and there are support points at which ni/N 6=
wi.

[Table 3 about here.]465

To compare the efficiency of the exact designs relative to approximate designs
we use Equations (14) and (15). The reference designs, ξref, are those obtained
in §4.1 for similar models and parameters; see Tables 1 and 2. For all the D–
optimal designs the optima of exact and approximate designs are equal; conse-
quently, the efficiency of exact designs is 100 %. The efficiency of the A–optimal470

design for the 2-COMP model and Θ2-COMP
1 (see Table 3) is 98.09 %; for Θ2-COMP

2

is 99.98 %. For 3-COMP model, considering the singleton Θ3-COMP
1 (see Table 4)

the efficiency is 98.90 %. Finally, for the second set of parameters (Θ3-COMP
2 ) the

efficiency is 99.30 %. In all cases the efficiency of exact designs is high.

[Table 4 about here.]475
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4.3. Continuous locally optimal designs for finding the regression coefficients and
exponents

This section extends the results in §4.1 to optimal designs to fit both the linear
regression coefficients (β’s) and some of the exponents in the mixture model (r’s).

Contrarily to models considered in previous sections, the models480

are nonlinear (w.r.t. some of the parameters), and we find locally op-
timal designs. For 2-COMP model the set of parameters to estimate is
θθθfit,2-COMP

ext ≡ {β1, β2, β3, β1,2, r1,2, r2,1}, and for 3-COMP model is θθθfit,3-COMP
ext ≡

{β1, β2, β3, β1,2, β1,3, β2,3, β1,2,3, r1,2, r1,3, r2,3, r2,1, r3,1, r3,2, r1,2,3, r2,3,1, r3,1,2};
the subscript “ext” is used for designate the extended set of parameters. The set of485

fixed parameters is empty for 2-COMP model, and is θθθfix,3-COMP ≡ {s1,2, s1,3, s2,3}
for the 3-COMP model. For the 3-COMP model we again obtained designs
for two singletons. To distinguish the values of the parameters to be estimated
from those that are fixed, we encapsulate the former in singletons θθθfit,2-COMP

ext and
θθθfit,3-COMP

ext , respectively, and the latter in singletons Θfix,2-COMP
ext which is empty, and490

Θfix,3-COMP
ext . The computation of locally optimal designs requires setting the values

of the regression coefficients βββ because the derivatives ∂L(ξcont)/∂rᵀ depend on
them, and we use 1.0 in all cases. For clarity, the singletons used for finding the
optimal designs addressed in this Section are listed in Table 5.

[Table 5 about here.]495

Table 6 reports the locally optimal designs for 2-COMP model and Table 7
for 3-COMP model. We notice that the number of support points is 5 in the
former case and 16 in the second for a model with 19 parameters, so that the
experimental plans obtained do not allow fitting the vector s’s involved in the
model as exponents. The reason for fixing the parameters s is that the FIM is500

nearly singular and its inversion required by A–optimality becomes numerically
unstable. Typically, this trend indicates that the model is unidentifiable, or at least
includes a set of unidentifiable parameters.

[Table 6 about here.]

[Table 7 about here.]505

5. Application to realistic examples

We now apply the formulation to three practical problems from the fields of
combustion science and gasoline characterization. All examples were chosen to
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demonstrate that, in practice, general blending models may have application in
laboratory experiments. The structure used for tabulating ξ∗ is similar to that em-510

ployed in the previous examples; the first nx lines contains the levels of the control
variables for all support points, and the last the weight of the corresponding sup-
port point. The global optimality of the designs presented in this section was
checked plotting the dispersion functions as in §4, and they were all demonstrated
to be globally optimal. In all cases, we report the optimal designs for finding the515

regression coefficients.
The first and second examples represent flammability metrics used to charac-

terize the ignition properties of mixtures of kinds of natural litter on forest floors
that may sustain forest fires [92]. Here, x1 is the fraction of cladodes (leaf-like
stems), x2 the fraction of other small components such as bark fragments and dry520

woody fruits, x3 the fraction of twigs, x4 the fraction of leaves and x5 the fraction
of decomposed material. One of the flammability metrics proposed by Gormley
et al. [92] is bulk density for which the model is

E(y) =
5∑
i=1

βi xi + β6
x1 x

0.5
2

x1 + x2 + 0.001
+ β7 x

3
2 x

3
3. (26)

The second metric is Residual Mass Fraction (RMF), when the model is

E(y) = β1 x2 + β2 x3 + β3 x4 + β4
x3

1 x
1.5
2

(x1 + x2 + 0.001)3
+ β5 x

3
1 x

3
2. (27)

The RMF is independent of x5, so the experimental designs have only four re-525

gressors and the summation constraint is
∑4

i=1 xi = 1. We also note that both
models include terms x1 + x2 in the denominator. To prevent the occurrence of
E(y)→ +∞ when x1 + x2 → 0 a constant equal to 0.001 is added; in both cases
si,j − ri,j − rj,i = 0.

Finally, we consider the 7-parameter linear (w.r.t parameters) model proposed530

by Yuan et al. [93] to represent the RON of Toluene Reference Fuels (TRFs)
blended with Ethanol. Here, x1 is the mole fraction of isooctane, x2 the mole
fraction of n-heptane, x3 mole fraction of toluene and x4 the mole fraction of
ethanol. The model is

E(y) =
4∑
i=1

βi xi + β5 x1 x4 + β6 x3 x4 + β7 x2 x4 (x2 − x4). (28)

Model (28) does not quite fall into the general class of blending models ad-535

dressed in this study, but still illustrates the use of the method in designing mixture
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experiments for nonlinear models in the regressors, including the additional com-
plexity of dealing with negative elements in the FIM. Table 8 reports the continu-
ous optimal designs for fitting the parameters of models (26-28). The D–optimal
designs are uniform and all involve experiments with pure components. Table 9540

is for exact optimal designs obtained with N = 3 nθ. The D–optimal efficiencies
of the exact designs using the continuous designs for reference are again 100 %.
Since the A–optimal designs are not uniform, the A–optimal efficiencies deter-
mined with Eq. (15) are not 100 %. For model (26) the value is 87.90 %, 88.14 %
for model (27), and 98.09 % for model (28). In all cases the efficiency of the exact545

designs is relatively high.

[Table 8 about here.]

[Table 9 about here.]

6. Conclusions

We have considered the continuous and exact optimal design of experiments550

for general blending models for mixtures using mathematical programming-based
approaches. We have addressed specifically the quadratic and special cubic blend-
ing models of the Becker [11] H2 class of polynomials. These models allow a
large degree of generalization in describing nonlinear blending effects. This class
of design problems presents additional computational issues due to non-linearity555

of terms and the requirement that the support points form a simplex in the space
of component concentrations.

Our formulations address the D– and A–optimality criteria and includes: (i)
the generation of the sensitivity coefficients; (ii) the Cholesky decomposition of
the global FIM; and (iii) the computation of the determinant of FIM (or the trace560

of its inverse) within the optimization problem which is of NLP class for contin-
uous optimal designs and MINLP class for exact optimal designs. The constraint
representing the summation of fractions to one is included in the optimization
problem as an additional equality.

We found continuous optimal designs for parametrizing the regression coeffi-565

cients for two- and three-component general blending models in §4.1 and locally
optimal designs for parametrizing both the regression coefficients and some of
the power coefficients in §4.3. The former models are linear with respect to the
parameters while the latter are nonlinear. Additionally, we also obtained (i) exact
optimal designs for parametrizing the regression coefficients (in §4.2); and (ii)570
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continuous and exact designs for three examples of practical interest found in lit-
erature, see §5. The efficiency of exact designs relative to equivalent continuous
designs is relatively high, being 100 % for D–optimality criterion and a correctly
chosen size of the experiment. Further, the continuous D-optimal designs ob-
tained for linear models are in agreement with theoretical results. In Appendix A575

we generalize the theoretical form of continuous D–optimal designs for (linear
in parameters) 2- and 3-COMP models. These general forms serve to assess the
accuracy of designs obtained numerically.
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Appendix A

A.1. Construction of D–optimal designs for 2-COMP model
It is possible to make some analytical progress with the D-optimal design for

the two–component model. Let us assume that the set of support points of the
design is (

1
0

)
,

(
0
1

)
,

(
x

1− x

)
.

Then, the vectors h(xk, θθθ) are1
0
0

 ,

0
1
0

 ,

 x
1− x

xr1,2(1− x)r2,1

 ,

where x is the fraction of component 1.
Now, considering the design is uniform (wk = 1/3, k ∈ JKK), the

local FIMs are obtained with Eq. (8), and aggregated into the global FIM,815

M(ξcont, θθθ), using (6). Under such conditions the optimality criterion is
det[M(ξcont, θθθ)] which is differentiable and strictly convex in [0, 1]. The neces-
sary conditions for establishing global optimality are (i) ∇x det[M(ξcont,∗, θθθ)] =
0; and (ii) ∇2

x det[M(ξcont,∗, θθθ)] being a semidefinite positive matrix; where
∇x det[M(ξcont,∗, θθθ)] is the gradient and∇2

x det[M(ξcont,∗, θθθ)] the Hessian matrix.820

In this specific case det[M(ξcont, θθθ)] = 1/27 x2r1,2 (1− x)2r2,1 .
To find the design maximizing the objective function ξcont,∗ we use the nec-

essary condition (i). Thus, the value of x is obtained solving a nonlinear al-
gebraic equation resulting from ∇x det[M(ξcont,∗, θθθ)] = 2/27 x2r1,2−1 (1 −
x)2r2,1−1 (r1,2 (1 − x) + r2,1 x) = 0. This equation is satisfied for (i) x = 0;825

(ii) x = 1; and (iii) x = r1,2/(r1,2 + r2,1). Then, the third design point in the
optimal design is x1 = r1,2/(r1,2 + r2,1) and x2 = r2,1/(r1,2 + r2,1). Substituting
this result in the 1×1 Hessian matrix we observe that it is always positive, and this
design is globally optimum. There is a clear relationship to the optimal designs for
3–COMP; the support points for mixtures of two-components in 3–COMP model830

are expected to follow the rule established for 2-component models.
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A.2. Construction of D–optimal designs for 3-COMP model
Now we extend the strategy to three-component models. Let si,j = ri,j +

rj,i, i ∈ J2K, j > i; the set of support points of the design is1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

 x4,1

1− x4,1

0

 ,
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0
1− x5,1

 ,

 0
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1− x6,1

 ,
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1− x7,1 − x7,2

 .

Conversely, the vectors h(xk, θθθ) are
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.

Let the weights be wk = 1/7, k ∈ JKK and the vector x =(
x4,1, x5,1, x6,1, x7,1, x7,2

)ᵀ include the unknowns of the design problem. The
optimality criterion is strictly convex in [0, 1]5. Again, the necessary condi-835

tions for establishing local optimality are (i) ∇x det[M(ξcont,∗, θθθ)] = 0; and (ii)
∇2

x det[M(ξcont,∗, θθθ)] being a semidefinite positive matrix. Consequently, the
values of x are obtained solving a set of 5 nonlinear algebraic equations, i.e.
∇x det[M(ξcont,∗, θθθ)] = 0. The problem was solved employing symbolic algebra
and we obtain x4,1 = r1,2/(r1,2 +r2,1), x5,1 = r1,3/(r1,3 +r3,1), x6,1 = r2,3/(r2,3 +840

r3,2), x7,1 = r1,2,3/(r1,2,3 + r2,3,1 + r3,1,2) and x7,2 = r2,3,1/(r1,2,3 + r2,3,1 + r3,1,2).
Afterwards, the semidefinite positiveness of the solution was confirmed.
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(a) (b)

Figure 1: Dispersion functions for the continuous optimal designs for 3-COMP model for: (a) D–
optimal design; (b) A–optimal design. Set of parameters to estimate: θθθfit,3-COMP. Fixed Parameters:
Θ3-COMP

1 ≡ {0.8} × {0.4} × {0.8} × {1.2} × {0.6} × {1.2} × {0.9} × {0.9} × {1.2} × {3.0} ×
{3.0} × {3.0}.
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Table 1: Continuous optimal designs for 2-COMP model (Set of parameters to estimate:
θθθfit,2-COMP).

Criterion Design Optimum

Fixed Parameters: Θ2-COMP
1 ≡ {0.72} × {0.72}

D–

0.0000 0.5000 1.0000
1.0000 0.5000 0.0000
0.3333 0.3333 0.3333

 −2.6461

A–

0.0000 0.5000 1.0000
1.0000 0.5000 0.0000
0.2770 0.4460 0.2770

 37.0137

Fixed Parameters: Θ2-COMP
2 ≡ {1.0} × {0.5}

D–

0.0000 0.6667 1.0000
1.0000 0.3333 0.0000
0.3333 0.3333 0.3333

 −2.6027

A–

0.0000 0.6507 1.0000
1.0000 0.3493 0.0000
0.2283 0.4395 0.3322

 35.0063
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Table 2: Continuous optimal designs for 3-COMP model (Set of parameters to estimate:
θθθfit,3-COMP).

Criterion Design Optimum

Fixed Parameters: Θ3-COMP
1 ≡ {0.8} × {0.4} × {0.8} × {1.2} × {0.6} × {1.2} × {0.9}×

×{0.9} × {1.2} × {3.0} × {3.0} × {3.0}

D–


0.0000 0.0000 0.3000 0.0000 0.4000 0.4000 1.0000
1.0000 0.4000 0.3000 0.0000 0.6000 0.0000 0.0000
0.0000 0.6000 0.4000 1.0000 0.0000 0.6000 0.0000
0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

 −13.4424

A–


0.0000 0.0000 0.0002 0.4224 0.4915 0.3059 1.0000
0.0000 1.0000 0.4194 0.5775 0.0000 0.3090 0.0000
1.0000 0.0000 0.5804 0.0001 0.5085 0.3851 0.0000
0.0451 0.0518 0.1590 0.1172 0.1477 0.4376 0.0418

 3.6084× 103

Fixed Parameters: Θ3-COMP
2 ≡ {0.36} × {0.24} × {0.45} × {1.68} × {0.96} × {1.54} × {1.2}×

×{1.2} × {0.6} × {2.6} × {2.0} × {2.0}

D–


0.0000 0.0000 0.1765 0.4000 0.2000 0.0000 1.0000
1.0000 0.2261 0.8235 0.4000 0.0000 0.0000 0.0000
0.0000 0.7739 0.0000 0.2000 0.8000 1.0000 0.0000
0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

 −12.5903

A–


0.0000 0.3943 0.0107 0.4322 0.2622 0.0000 1.0000
1.0000 0.4060 0.2651 0.0016 0.7378 0.0000 0.0000
0.0000 0.1998 0.7242 0.5661 0.0000 1.0000 0.0000
0.0615 0.4422 0.0892 0.0913 0.1702 0.0434 0.1022

 2.8942× 103
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Table 3: Exact optimal designs for 2-COMP model (Set of parameters to estimate: θθθfit,2-COMP).
Criterion Design Optimum

Fixed Parameters: Θ2-COMP
1 ≡ {0.72} × {0.72}

D–

0.0000 0.5000 1.0000
1.0000 0.5000 0.0000

3 3 3

 −2.6461

A–

0.0000 0.5241 1.0000
1.0000 0.4759 0.0000

2 4 3

 37.7332

Fixed Parameters: Θ2-COMP
2 ≡ {1.0} × {0.5}

D–

0.0000 0.6667 1.0000
1.0000 0.3333 0.0000

3 3 3

 −2.6027

A–

0.0000 0.6521 1.0000
1.0000 0.3479 0.0000

2 4 3

 35.0138
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Table 4: Exact optimal designs for 3-COMP model (Set of parameters to estimate: θθθfit,3-COMP).
Criterion Design Optimum

Fixed Parameters: Θ3-COMP
1 ≡ {0.8} × {0.4} × {0.8} × {1.2} × {0.6} × {1.2} × {0.9}×

×{0.9} × {1.2} × {3.0} × {3.0} × {3.0}

D–


0.0000 0.0000 0.3000 0.0000 0.4000 0.4000 1.0000
1.0000 0.4000 0.3000 0.0000 0.6000 0.0000 0.0000
0.0000 0.6000 0.4000 1.0000 0.0000 0.6000 0.0000

3 3 3 3 3 3 3

 −13.4424

A–


0.0000 0.0002 0.2977 0.0000 0.4206 0.4795 1.0000
1.0000 0.4220 0.3082 0.0000 0.5793 0.0000 0.0000
0.0000 0.5778 0.3942 1.0000 0.0001 0.5205 0.0000

1 4 9 1 2 3 1

 3.6482× 103

Fixed Parameters: Θ3-COMP
2 ≡ {0.36} × {0.24} × {0.45} × {1.68} × {0.96} × {1.54} × {1.2}×

×{1.2} × {0.6} × {2.6} × {2.0} × {2.0}

D–


0.0000 0.0000 0.1765 0.4000 0.2000 0.0000 1.0000
1.0000 0.2261 0.8235 0.4000 0.0000 0.0000 0.0000
0.0000 0.7739 0.0000 0.2000 0.8000 1.0000 0.0000

3 3 3 3 3 3 3

 −12.5903

A–


0.0000 0.2771 0.0095 0.0000 0.3921 0.4472 1.0000
1.0000 0.7229 0.2781 0.0000 0.4094 0.0011 0.0000
0.0000 0.0000 0.7124 1.0000 0.1986 0.5517 0.0000

1 4 2 1 9 2 2

 2.9147× 103
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Table 5: Singletons used for used for finding the optimal designs to fit both the linear regression
coefficients (β’s) and some of the exponents in the mixture model (r’s).

Model Case Singleton Values

2-COMP 1 Θfit,2-COMP
1,ext {1.0} × {1.0} × {1.0} × {0.72} × {0.72}

Θfix,2-COMP
ext ∅

2 Θfit,2-COMP
2,ext {1.0} × {1.0} × {1.0} × {1.0} × {0.5}

Θfix,2-COMP
ext ∅

3-COMP 1 Θfit,3-COMP
1,ext {1.0} × {1.0} × {1.0} × {1.0} × {1.0} × {1.0} × {1.0} × {0.8} × {0.4}×

×{0.8} × {1.2} × {0.6} × {1.2} × {0.9} × {0.9} × {1.2}
Θfix,3-COMP

1,ext {3.0} × {3.0} × {3.0}

2 Θfit,3-COMP
2,ext {1.0} × {1.0} × {1.0} × {1.0} × {1.0} × {1.0} × {1.0} × {0.36} × {0.24}×

×{0.45} × {1.68} × {0.96} × {1.54} × {1.2} × {1.2} × {0.6}
Θfix,3-COMP

2,ext {2.6} × {2.0} × {2.0}
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Table 6: Continuous locally optimal designs for 2-COMP model (Set of parameters to estimate:
θθθfit,2-COMP

ext ).
Criterion Design Optimum

Fitted Parameters: Θfit,2-COMP
1,ext ≡ {1.0} × {1.0} × {1.0} × {0.72} × {0.72}

Fixed Parameters: Θfix,2-COMP
1,ext ≡ ∅

D–

0.0000 0.0914 0.5000 0.9086 1.0000
1.0000 0.9086 0.5000 0.0914 0.0000
0.2000 0.2000 0.2000 0.2000 0.2000

 −7.6765

A–

0.0000 0.0711 0.5000 0.9289 1.0000
1.0000 0.9289 0.5000 0.0711 0.0000
0.1332 0.2359 0.2617 0.2359 0.1332

 572.4961

Fitted Parameters: Θfit,2-COMP
2,ext ≡ {1.0} × {1.0} × {1.0} × {1.0} × {0.5}

Fixed Parameters: Θfix,2-COMP
2,ext ≡ ∅

D–

0.0000 0.1944 0.6676 0.9684 1.0000
1.0000 0.8056 0.3324 0.0316 0.0000
0.2000 0.2000 0.2000 0.2000 0.2000

 −7.5415

A–

0.0000 0.1628 0.6581 0.9766 1.0000
1.0000 0.8372 0.3419 0.0234 0.0000
0.1598 0.2607 0.2564 0.2151 0.1080

 566.1355
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Table 7: Continuous locally optimal designs for 3-COMP model (Set of parameters to estmate:
θθθfit,3-COMP

ext ).
Criterion Design Optimum

Fitted Parameters: Θfit,3-COMP
1,ext ≡ {1.0} × {1.0} × {1.0} × {1.0} × {1.0} × {1.0} × {1.0} × {0.8} × {0.4}×

×{0.8} × {1.2} × {0.6} × {1.2} × {0.9} × {0.9} × {1.2}
Fixed Parameters: Θfix,3-COMP

1,ext ≡ {3.0} × {3.0} × {3.0}

D–



0.0000 0.0000 0.0000 0.0000 0.4068 0.0297 0.4375 0.0000
0.0000 1.0000 0.3999 0.0790 0.0689 0.0000 0.4376 0.8034
1.0000 0.0000 0.6000 0.9210 0.5243 0.9703 0.1249 0.1966
0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625
0.4087 0.2997 0.0790 0.0689 0.3999 0.8034 0.9104 1.0000
0.0000 0.2997 0.9210 0.4068 0.6000 0.1966 0.0000 0.0000
0.5913 0.4006 0.0000 0.5244 0.0000 0.0000 0.0896 0.0000
0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625


−49.3166

A–



0.0001 0.0000 0.0000 0.3037 1.0000 0.0460 0.4924 0.0529
0.4292 0.0000 0.7685 0.3004 0.0000 0.0000 0.0000 0.4153
0.5708 1.0000 0.2315 0.3959 0.0000 0.9540 0.5076 0.5318
0.0607 0.0209 0.0343 0.1881 0.0153 0.0126 0.0719 0.1381
0.0000 0.4191 0.8235 0.4182 0.7818 0.0008 0.4862 0.0865
1.0000 0.5808 0.0000 0.4830 0.2165 0.0833 0.0515 0.9135
0.0000 0.0001 0.1765 0.0988 0.0016 0.9160 0.4623 0.0000
0.0220 0.0628 0.0221 0.1351 0.0265 0.0248 0.1434 0.0214


4.5346× 105

Fitted Parameters: Θfit,3-COMP
2,ext ≡ {1.0} × {1.0} × {1.0} × {1.0} × {1.0} × {1.0} × {1.0} × {0.36} × {0.24}×

×{0.45} × {1.68} × {0.96} × {1.54} × {1.2} × {1.2} × {0.6}
Fixed Parameters: Θfix,3-COMP

2,ext ≡ {2.6} × {2.0} × {2.0}

D–



0.0000 0.0000 0.0000 0.0003 0.0055 0.0136 0.0571 0.0571
0.0284 1.0000 0.6500 0.0000 0.2239 0.0115 0.6559 0.9429
0.9716 0.0000 0.3500 0.9996 0.7706 0.9749 0.2870 0.0000
0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625
0.2275 0.2988 0.2988 0.5116 0.6180 0.6180 0.7666 1.0000
0.0000 0.4868 0.7000 0.1495 0.3820 0.3479 0.0001 0.0000
0.7725 0.2143 0.0012 0.3389 0.0000 0.0341 0.2334 0.0000
0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625


−47.5488

A–



0.0000 0.0272 0.0180 0.1781 0.0124 0.0013 0.8321 0.8321
0.0001 0.4684 0.9816 0.0000 0.0000 0.0048 0.0000 0.0000
0.9999 0.5043 0.0004 0.8219 0.9876 0.9939 0.1679 0.1679
0.0181 0.0100 0.0751 0.0403 0.0100 0.0139 0.1194 0.0100
0.2093 0.7172 0.9982 0.8321 0.5233 0.6230 0.0028 0.3710
0.7843 0.2827 0.0018 0.0000 0.4767 0.1111 0.3776 0.3050
0.0064 0.0000 0.0000 0.1679 0.0000 0.2658 0.6197 0.3240
0.1284 0.1347 0.0638 0.0100 0.1554 0.1213 0.0185 0.0712


3.1584× 105
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Table 8: Continuous optimal designs for finding the regression coefficients for models (26-28).
Model Criterion Design Optimum

(26) D–


0.0000 1.0000 0.6667 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.3333 0.0000 0.0000 0.5000 1.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.5000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

 −11.9253

A–


0.0000 1.0000 0.5796 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.4204 0.0000 0.0000 0.5000 1.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.5000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0074 0.0137 0.0198 0.0074 0.2379 0.4756 0.2381

 1.8105× 104

(27) D–


0.0000 0.0000 0.4937 0.8762 0.0000
0.0000 0.0000 0.5063 0.1238 1.0000
1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000
0.2000 0.2000 0.2000 0.2000 0.2000

 −9.6570

A–


0.0000 0.0000 0.4824 0.8960 0.0000
0.0000 0.0000 0.5176 0.1040 1.0000
1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000
0.0082 0.0082 0.5357 0.1900 0.2580

 1.4917× 104

(28) D–


0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.5000
0.2377 0.0000 0.0000 0.8873 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.5000 1.0000 0.0000
0.7623 0.0000 1.0000 0.1127 0.5000 0.0000 0.5000
0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

 −11.8587

A–


0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.4582
0.2492 0.0000 0.0000 0.7584 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.4582 1.0000 0.0000
0.7508 0.0000 1.0000 0.2416 0.5418 0.0000 0.5418
0.2735 0.0712 0.2155 0.0953 0.1366 0.0712 0.1366

 8.6923× 102
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Table 9: Exact optimal designs for finding the regression coefficients for models (26-28), N =
3 nθ.

Model Criterion Design Optimum

(26) D–


0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.6667
0.0000 0.0000 0.0000 1.0000 0.5000 0.0000 0.3333
0.0000 1.0000 0.0000 0.0000 0.5000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

3 3 3 3 3 3 3

 −11.9253

A–


1.0000 0.0000 0.0000 0.0000 0.0000 0.6091 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000 0.3909 0.5000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.5000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

1 4 4 1 1 1 9

 2.0597× 104

(27) D–


0.0000 0.0000 0.4937 0.8762 0.0000
0.0000 0.0000 0.5063 0.1238 1.0000
1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000

3 3 3 3 3

 −9.6570

A–


0.0000 0.0000 0.4900 0.8903 0.0000
0.0000 0.0000 0.5100 0.1029 1.0000
1.0000 0.0000 0.0000 0.0034 0.0000
0.0000 1.0000 0.0000 0.0034 0.0000

1 1 7 3 3

 1.6824× 104

(28) D–


1.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000
0.0000 1.0000 0.0000 0.1127 0.0000 0.0000 0.7623
0.0000 0.0000 1.0000 0.0000 0.0000 0.5000 0.0000
0.0000 0.0000 0.0000 0.8873 0.5000 0.5000 0.2377

3 3 3 3 3 3 3

 −11.8587

A–


1.0000 0.0000 0.0000 0.0000 0.4744 0.0000 0.0000
0.0000 0.7553 0.0000 0.0000 0.0000 0.0000 0.2517
0.0000 0.0000 1.0000 0.0000 0.0000 0.4744 0.0000
0.0000 0.2447 0.0000 1.0000 0.5256 0.5256 0.7483

2 2 2 4 3 3 5

 8.8670× 102
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