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Abstract

We present a closed-form solution to a discounted optimal stopping zero-sum game in a
model based on a generalised geometric Brownian motion with coefficients depending
on its running maximum and minimum processes. The optimal stopping times forming a
Nash equilibrium are shown to be the first times at which the original process hits certain
boundaries depending on the running values of the associated maximum and minimum
processes. The proof is based on the reduction of the original game to the equivalent
coupled free-boundary problem and the solution of the latter problem by means of the
smooth-fit and normal-reflection conditions. We show that the optimal stopping bound-
aries are partially determined as either unique solutions to the appropriate system of
arithmetic equations or unique solutions to the appropriate first-order nonlinear ordinary
differential equations. The results obtained are related to the valuation of the perpetual
lookback game options with floating strikes in the appropriate diffusion-type extension
of the Black—Merton—Scholes model.
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1. Formulation of the problem

For a precise formulation of the problem, let us consider a probability space (€2, F, P) with
a standard Brownian motion B = (B;);>¢. Suppose that the process X = (X;);>0 is given by

t 2 t
X;=x exp (/0 (r— 8(Sy, Ou) — M) du—}—/o o (Su, Qu)dBu>, (1.1)

so that it solves the stochastic differential equation
dX; = (r— 88, Q) Xe dt + o (S, Q) Xi dB,  (Xo = x), (1.2)

where r > 0 is a given constant, (s, g) > 0 and o (s, g) > 0 are continuously differentiable
bounded functions on [0, 00]?, and x > 0 is fixed. We further assume that the function (s, q)
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2 P. V. GAPEEV

is increasing in both variables s and ¢ on [0, 00]?. Here, S = (S)=0 and Q = (Q))s>0 are the
associated with the running maximum and minimum processes of X, respectively defined by

S;=sVv max X, and Q;=¢gA min X, (1.3)

0<u<t O0<u<t

for arbitrary 0 < g <x <. Since the functions §(s, g) and o (s, ¢g) are assumed to be bounded
on [0, 0o]?, it follows from [48, Chapter IV, Theorem 4.8] that there exists a (pathwise) unique
strong solution to the stochastic differential equation in (1.2). It can be assumed that the process
X describes the price of a risky asset on a financial market, where r is the riskless interest rate,
3(s, g) is the dividend rate paid to the asset holders, and o (s, g) is the volatility rate.

The main aim of this paper is to present closed-form solutions to a discounted optimal
stopping zero-sum game with the value

V, = sup i?fE[e—” F(X;, So) I(t <)+ e G(X¢, S¢, Q) (¢ < 1), (1.4)

where we set
Fx,s)=s—Kx and G,s,q9)=(6—Kx)V(g—Lx)=max{s—Kx,q—Lx} (1.5

for all 0 < g <x < s and some given constants 0 < L < K < L + 1, while /( - ) denotes the indi-
cator function. Suppose that the supremum and infimum in (1.4) are taken over all stopping
times 7 and ¢ of the process X, and the expectation there is taken with respect to the risk-
neutral probability measure IP. In that case, the value of (1.4) can be interpreted as the rational
(or no-arbitrage) price of a perpetual lookback game (or Israeli) option with the floating strikes
K X and L X in the diffusion-type extension of the Black—Merton—Scholes model considered
in Gapeev and Rodosthenous [30]-[32]. Such game-type contingent claims were introduced
by Kifer [41] and further studied by Kyprianou [45], Kiihn and Kyprianou [44], Kallsen and
Kiihn [39], Baurdoux and Kyprianou [3]-[5], Gapeev and Kiihn [25], Ekstrém and Villeneuve
[15], Ekstrdm and Peskir [14], Peskir [55]-[56], and Baurdoux et al. [6], among others. We
also refer to Shiryaev [68, Chapter VIII, Section 2a], Peskir and Shiryaev [59, Chapter VII,
Section 25], and Detemple [12] for extensive overviews of the solutions to the American option
pricing problems as well as other related results on optimal stopping problems in financial
mathematics.

The study of discounted optimal stopping problems for certain reward functionals depend-
ing on the running maxima and minima of continuous Markov (diffusion-type) processes was
initiated by Shepp and Shiryaev [64] and further developed by Pedersen [51], Guo and Shepp
[36], Peskir [53], Gapeev [19]-[20], Guo and Zervos [37], Peskir [57]-[58], Glover et al. [33],
Gapeev and Rodosthenous [30]-[32], Kitapbayev [42], Rodosthenous and Zervos [63], Gapeev
et al. [23], Gapeev and Li [27]-[28], Gapeev and Al Motairi [29], Gapeev et al. [24], and
Gapeev [22], among others. The main feature in the analysis of such optimal stopping problems
was that the normal-reflection conditions hold for the value functions at the diagonal planes of
the state spaces of the multi-dimensional continuous Markov processes having the initial pro-
cesses and the running extrema as their components. It was shown, by using the maximality
principle established by Peskir [52] for solutions of optimal stopping problems for maxima of
the original diffusion processes, which is equivalent to the superharmonic characterisation of
the value functions, that the optimal stopping boundaries for the original processes represent
functions of the running values of the associated maxima processes and are characterised by
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Discounted optimal stopping zero-sum games 3

the appropriate extremal solutions of certain first-order nonlinear ordinary differential equa-
tions. In this paper, we continue these developments and study the problem of (1.4) related
to the pricing of the floating-strike lookback game options as the associated optimal stopping
zero-sum game of (2.3) for a three-dimensional (continuous) Markov diffusion-type process
which has the underlying risky asset price X as well as its running maximum § and minimum
Q as their state-space components.

Note that the resulting problems turn out to be necessarily three-dimensional, in the sense
that they cannot be reduced to optimal stopping problems for Markov processes of lower
dimensions. It is shown that the optimal exercise times forming a Nash equilibrium are the
first times at which the original process exits certain two-sided regions restricted by stochastic
boundaries depending on the running values of the associated maximum and minimum pro-
cesses. We apply the smooth-fit and normal-reflection conditions for the value functions to
determine the optimal stopping boundaries as either unique solutions to the appropriate system
of arithmetic equations or unique solutions to the appropriate first-order nonlinear ordinary
differential equations. Optimal stopping problems with the one-sided continuation regions in
similar models based on the original diffusion-type processes with coefficients depending on
the running maximum and the running maximum drawdown were considered in Gapeev and
Rodosthenous [30]-[32]. Other optimal stopping problems in models with spectrally negative
Lévy processes and their running maxima were studied by Asmussen et al. [1], Avram et al.
[2], Ott [50], and Kyprianou and Ott [46], among others.

The dependence of the local drift and diffusion coefficients on the past dynamics of observ-
able diffusion-type processes through certain processes playing the role of sufficient statistics
is often used in financial practice and is well studied in the related literature. For instance,
an increase of the running maximum or decrease of the running minimum of a risky asset
price normally causes a structural change in the local drift representing its expected return and
dividend policy. It also triggers changes in the diffusion coefficient representing the volatility
rate of an asset price with a higher impact under either a maximum increase or a minimum
decrease, rather than either a minimum increase or maximum decrease, respectively. Such
sufficient statistics transparently exhibit the risk levels of the assets and therefore usually influ-
ence the decisions taken by market participants. The demand for option pricing in models with
stochastic interest rates and volatility initiated the development and subsequent calibration of
these models, based on diffusion-type processes with tractable path-dependent coefficients,
which were realised by Henry-Labordere [38] and Ren et al. [61], among others (see also [31]
for further discussion of diffusion-type models for prices of financial assets with coefficients
depending on the running maxima and minima as well as the maxima drawdowns and maxima
drawups).

This paper is organised as follows. In Section 2, we formulate the optimal stopping zero-
sum game for a necessarily three-dimensional continuous Markov process, which has the
underlying asset price and the running values of its maximum and minimum as the state-
space components. The resulting optimal stopping game is reduced to the equivalent coupled
free-boundary problem for the value function which satisfies the smooth-fit conditions at the
stopping boundaries and the normal-reflection conditions at the edges of the state space of the
three-dimensional process. In Section 3, we obtain closed-form expressions for the candidate
value functions, and we derive the appropriate arithmetic equations and first-order nonlin-
ear ordinary differential equations for the candidate stopping boundaries as solutions to the
associated free-boundary problems. We specify the starting conditions for the solutions to
the first-order nonlinear ordinary differential equations and provide a recursive algorithm to
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4 P. V. GAPEEV

determine the value functions and the optimal stopping boundaries, along with their lines of
intersection with the edges of the three-dimensional state space. In Section 4, by applying
change-of-variable formula with local time on surfaces from Peskir [54], we verify that the
resulting solution to the free-boundary problem provides the expressions for the value func-
tion and the optimal stopping boundaries for the underlying asset price process in the original
problem. In Section 5, we give closed-form solutions to some auxiliary optimal stopping prob-
lems in the same model, which give the appropriate bounds for the value functions and optimal
stopping boundaries for the original game. We apply the maximality principle from Peskir
[52] to the framework of the three-dimensional optimal stopping problem under consideration
to show that the optimal stopping boundaries provide the extremal solutions of the associated
first-order nonlinear ordinary differential equations (see also [30, 32, 58] for optimal stopping
problems in other related three-dimensional models). The main results of the paper are stated
in Theorems 1 and 2.

2. The optimal stopping game and free-boundary problem

In this section, we introduce the setting and notation for the three-dimensional optimal
stopping zero-sum game associated with the value of (1.4), which is related to the pricing
of the perpetual floating-strike lookback game options. We specify the structure of the opti-
mal stopping times forming a Nash equilibrium and formulate the equivalent free-boundary
problem.

2.1. The three-dimensional optimal stopping zero-sum game

Suppose that an investor writes a perpetual lookback game option and sells the contract
to another investor at time 0. The holder of the option can then exercise the contract at some
random time t, which they can choose, by collecting the amount of the running maximum §
and paying the floating strike K X to the writer, for some K > 0. At the same time, the writer of
the option can either recall the contract at some random time ¢, which they choose, by paying
the amount of the running minimum Q to the holder and collecting the floating strike L X,
for some L > 0, when Q — LX > § — KX holds, or agree with the holder on the payment of §
and the collection of K X. Consequently, the holder of the option looks for the exercise time
7, maximising the expected total payoff received from the writer, while, at the same time, the
writer of the contract looks for the recall time ¢, minimising the expected total payoff sent
to the holder. In other words, the perpetual lookback game option pricing problem seeks to
determine the pair of stopping times 1, and ¢, of the process X that corresponds to a saddle
point for the total expected reward functional given by

I, )=E[e™" FXe, S I(t <¢)+e " GX;, S¢, Q) I < 1)), 2.1)

with the functions F(x, s) and G(x, s, ¢) defined in (1.5), for some 0 <L <K <L+ 1 fixed,
which means that the inequalities

Iz, &) < Ity $) < (24, ©) (2.2)

should hold, for any exercise and recall times t and ¢. Such a pair 7, and ¢, satisfying the
inequalities of (2.2) with the functional defined in (2.1) is called a Nash equilibrium in the
optimal stopping zero-sum game of (1.4) (see e.g. [8, 14, 55] for a precise definition of this
notion).
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Discounted optimal stopping zero-sum games 5

It thus follows from the results of [39, 41] that the rational (or no-arbitrage) price of
the game contingent claim described above coincides with the value function V,(x, s, g) of
the optimal stopping zero-sum game for the (time-homogeneous strong) Markov process
X, S, Q) =Xz, S, O1)=0 of the form

Vi(x, s, q) = sup i?fEx,s,q[e—” FXe, S)I(t <) +e"C GXe, S¢, Q) I(C <)), (2.3)
T

where the supremum and infimum are taken over all stopping times t and ¢ with respect to the
natural filtration (F;);>¢ of the process X, and the functions F(x, s) and G(x, s, g) are given by
(1.5), for some 0 < L < K < L + 1 fixed. Here, we denote by [, ; , the expectation with respect
to the probability measure [P under the assumption that the three-dimensional (strong Markov)
process (X, S, Q) defined in (1.1)—(1.2) and (1.3) starts at (x, s, g) € E, and by E ={(x, 5, q) €
R3 |0 < g < x < s} the state space of the process (X, S, Q). It therefore follows from the results
of [11, Theorem 4.1], based on the solutions of the associated (doubly) reflected backward
stochastic differential equations, that the game-type optimal stopping problem of (2.3) has a
value. The existence of the associated Stackelberg equilibria in various optimal stopping games
is proved in the results of [47, 55-56, 69-70], among others. We further establish the existence
and describe the structure of the stopping times 7, and ¢, forming a Nash equilibrium of the
optimal stopping zero-sum game of (2.3).

2.2. The structure of the optimal stopping times

Let us first determine the structure of the stopping times forming a Nash equilibrium in the
optimal stopping game of (2.3).

(i) By means of the results of general optimal stopping theory for Markov processes (see e.g.
[59, Chapter I, Section 2.2]) and the results of the general theory of optimal stopping games
(seee.g. [7-8, 11, 16-17, 43,47, 69], among others), we obtain from the structure of the reward
functional that the stopping times forming a Nash equilibrium in the optimal stopping game of
(2.3) exist and are given by

t,=inf {t > 0| Vi(Xi, Si, Q) =F(X;, S} (2.4)
and
te=inf {t > 0| Vi(X, Sy, Q) = G(X1, Si. O} (2.5)
so that the associated continuation and stopping regions have the forms
Ci={(x,s,q) €E|F(x,s) < Vilx, s, q) < G(x, s, q)} (2.6)
and
D, ={(x, s, q) € E| either Vi(x, s, q) = F(x, s) or Vi(x, s, 9)=G(x, s, ¢)} (2.7)

respectively, where the functions F(x, s) and G(x, s, ¢) are given by (1.5), for some 0 < L <
K < L+ 1 fixed. It can be seen from the results of Theorem 1 below that the value function
Vi(x, s, @) is continuous, so that the set C, is open and the set D, is closed.

It follows from the structure of the payoff functions F(x, s) and G(x, s, g) given by (1.5) that
the inequality F(X;, S7) < G(X, S, Q) holds when X; > (S; — Qy)/(K — L), while the equality
F(X:, Sp) = G(X;, St, Q) holds when X; < (S; — Oy)/(K — L), for any ¢ > 0. Moreover, by virtue
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6 P. V. GAPEEV

of the structure of the processes S and Q in (1.3), we may conclude that the inequalities S; —
KX, > (1 — K)X; > O; — LX; hold when X; > Q;/(L — K + 1), because of the assumption 0 <
L <K < L+ 1, so that the equality F(X;, S;) = G(X;, Sy, Q) is also satisfied in that case, for
any t > 0. Observe that the latter condition in particular holds in the case 0 < L < K < 1, which
is more restrictive but allows us to keep both the payoffs F(X;, S;) and G(X;, S;, O;) positive,
for all #> 0, which also represents an important feature from the point of view of callable
financial contracts. Note that, in the case L > K, the inequality S; — KX; < Q; — LX; cannot be
satisfied for any ¢ > 0, which implies that the solution of the optimal stopping zero-sum game
in (2.3) is trivial in that case, for each 0 < g < s fixed.

Summarising the arguments above, we realise that we are considering the three-dimensional
continuous strong Markov process (X, S, Q) defined in (1.1)—-(1.2) and (1.3) within the
discounted optimal stopping zero-sum game of (2.3) with the continuous payoff functions
F(x, s) and G(x, s, g) from (1.5) such that the equality F(x, s) = G(x, s, g) holds, when
x<(s—¢q)/(K—L)as well as x>¢q/(L— K+ 1), for all (x, s, g) € E, under the assumption
0 <L <K < L+ 1. Observe that the arguments of the proofs from [14, Theorem 2.1] and [55,
Theorem 2.1] (also applicable for continuous strong Markov time-space processes with con-
stant killing rates) can be naturally extended to the case of the discounted optimal stopping
game of (2.3) for the process (X, S, Q) with the second and third components changing only
at the diagonals dj ={(x,s5,q) e R} |0<g<x=s} and dy ={(x,5,¢9) R} |0 <g=x <35},
respectively, of the state space E (see also [56, Theorem 3.1] for the corresponding result in a
model based on a standard Brownian motion in the interval [0, 1] absorbed at either O or 1).
Note that the natural analogues of the conditions of [14, Formula (2.1)] and [55, Formulae (2.9)
and (2.12)] are clearly satisfied for the discounted payoffs e "' F(X;, S;) and e ""G(X;, S;, Oy)
from (1.5) (see e.g. [64, Formula (2.16)]). Hence, by applying the resulting extensions men-
tioned above, we may conclude that the continuation region C, in (2.6) should belong to the
set

E ={(x 59 € R? |0<d(s,q)vg=<x=<sAbs, 9} (2.8)

with
d(s.q)=(—¢q)/(K—-L) and b(s,q)=q/(L—K+1) (2.9)

for 0 < g < s, which represents all points (x, s, g) from the state space E of the process (X,
S, Q) for which the solution of the original problem of (2.3) may be nontrivial, while the
complement E \ E’ surely belongs to the stopping region D, in (2.7), under the assumption
0 <L <K < L+ 1. Therefore, the property 74 A &y <6 (P, 5 4-almost surely (a.s.)) holds, for
7, and ¢, from (2.4) and (2.5) and for any point (x, s, g) € E’, under the assumption 0 < L <
K <L+ 1, where we put

0 =inf {t>0| either X, <d/(S;, Q1) or X, = b'(S;, 01}, (2.10)

which is a stopping time of the process (X, S, Q).

(ii) We now describe the structure of the continuation and stopping regions C, and D,
from (2.6)—(2.7). For this purpose, by means of standard applications of It&’s formula (see
e.g. [48, Theorem 4.4] or [62, Chapter IV, Theorem 3.3]) to the processes e~ "'(S; — KX;) and
e~ "(Q; — LX;), we obtain the representations

t

efrt(S,—KX,)zs—Kx—i—/

t
e (K 8(Sus Qu) Xu — 1 Su) du—i—/ e dS,+N! (2.11)
0 0
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Discounted optimal stopping zero-sum games 7

and

t

e (Qz—LXz)=q—Lx+/

t
e (L8(Su, Ou) Xu — 1 Qu) du+ / e ™ dQ, + N7 (2.12)
0 0

for all # > 0. Here, the processes N' = (N!);>0, for i = 1, 2, defined by
t t
Nl =K / ¢ 5(Su, Ou) Xy dBy and N?=—L / e 6(Sy, 0) XudBy  (2.13)
0 0

are continuous uniformly integrable martingales under the probability measure Py s ;. Then,
inserting t A ¢ in place of ¢ and applying Doob’s optional sampling theorem (see e.g. [48,
Chapter III, Theorem 3.6] and [62, Chapter I, Theorem 3.2]) to the expressions in (2.11) and
(2.12), we get that the equalities

Ersqle™™ St —KX)I(t <) +e " (Qr — LX) I(¢ <71)] (2.14)
=Eesg[e” " (Senc — K Xeng) — e (S =K Xe — Qe + LX) 1 < 7))
=s—Kx—Eysq[e7 (S; —KX; — O + LX) (¢ <7)]

AL
+ Ex,s,ql:/ e (K 8(Su, Qu) Xy — rSu) du +/
0 0

TAL

e ™ dSui|

and
Ersqle™™ (St —KX)I(t <) +e " (Qr — LX) I <71)] (2.15)
=Ersq[e” " (Qene = LXen) + €77 (Se =KXy — Qr + LX) [(T < 0)]
=q—Lx+Eq[e"" (Se —KX: — QO + LX) I(x < )]
TAL
+ Ex,s,q[/ e ™ (L‘S(Su, Ouw) Xu—r Qu) du +/
0 0

TAL

e—ru dQui|

hold, for any stopping times 7 and ¢ such that T A ¢ <6 (Py ;4-a.5.) holds with 6 defined in
(2.10), and for any starting point (x, s, g) € E’ of (X, S, Q). Hence, it follows from the expres-
sions in (2.14) and (2.15) and the structure of the optimal stopping times in (2.4) and (2.5) that
the value function of the optimal stopping game in (2.3) admits the representations

Vi, s, @) =5 —Kx—Ey4[e" Sy, — KXy, — Qr, + LX) I(54 < 7)) (2.16)
TeACx T A\
+ Ex,s,q[/ e (K 8(Sy, On) X, — FSM) du +/ e dSui|
0 0
and
Valx,s,q)=q—Lx+Exsq[e”™ (S, — K Xe, = Qr, + LXr,) (T4 < &) (2.17)
T A To A
+ Ex,s,q[ / e (L8(Sur 0u) Xu — 1 Qu) dut + / o dQu:|
0 0

for the optimal stopping times 7, and ¢, forming a Nash equilibrium in (2.3), because the
property Ty A &x < 6 (Py g 4-a.s.) holds with 6 as defined in (2.10), for any (x, s, q) € E.

Here and subsequently, we denote by 7, =Tt.(x, s, q) and . = {«(x, s, ¢) the optimal
stopping times forming a Nash equilibrium in (2.3) for the starting point (x, s, g) € E' of
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8 P. V. GAPEEV

the process (X, S, Q), where E’ is defined in (2.8) above. Thus, on the one hand, it fol-
lows from the structure of the integrand in the first integral of (2.16) and the fact that the
second integral there increases whenever the process (X, S, Q) is located at the diagonal
di ={(x, s, ¢) € R3 |0 < g < x=s)} that it should not be optimal for the option holder (max-
imiser of the expected reward) to exercise the contract earlier than the option writer recalls it,
when the inequalities a'(Sy, Q;) Vv 1S, /(K8(S;, Or)) < X; < Sy AV (S, Or) hold, for any 7> 0.
Moreover, it follows from the structure of the integrand in first integral of (2.17) and the
fact that the second integral there decreases whenever the process (X, S, Q) is located at the
diagonal d» = {(x, s, q) € R3 | 0 < g =x < s} that it should not be optimal for the option writer
(minimiser of the expected reward) to recall the contract earlier than the option holder exer-
cises it, when the inequalities a'(Sy, Qr) V Oy < X; < rQ;/(L8(S;, Q1)) A V' (S, Oy) hold, for any
t > 0. Since both participants of the contract are acting simultaneously, these facts yield that
the set

C'= {(x, s,q) €E i d(s,q)Vqva(s,q) <x<b(s,q) AsAb(s, q)} (2.18)

with
a(s, q)=rs/(Kd(s,q)) and b(s, q) =rq/(L3(s, q)) (2.19)

for 0 < g < s, which may be nonempty because of the assumption that 0 <L <K <L+ 1
holds, represents a part of the continuation region Cy in (2.6).

(iii) Let us finally prove the connectivity of the left-hand and right-hand parts of the stopping
region D, from (2.7) which are located outside the region C’ from (2.18). For this purpose, we
first recall from the arguments of Part (i) above that all the points (x/, s, g) and (x”, s, g) of
the set E \ E’, with E’ as defined in (2.8), such that 0 < x’ < d(s, ¢) and x” > b/(s, q) belong to
the stopping region D, for each 0 < ¢ < s fixed, under the assumption 0 < L < K < L+ 1. We
also recall that the process X admits the explicit expression of (1.1) and provides a (pathwise)
unique strong solution of the stochastic differential equation in (1.2) with the processes S and
Q given by (1.3), so that the solutions starting from the different points x > 0 do not intersect
each other over the entire infinite time interval. For ease of presentation, in the rest of this
section we indicate by (X%, §6-¥ 0(4-9) the dependence of the process (X, S, Q) defined in
(1.1)=(1.2) and (1.3) on its starting point (x, s, g) € E'.

Observe that, if we take some (x, s, g) € D, such that d'(s, g) <x <a(s, g) AsAD'(s, q)
holds, for each 0 < g < s fixed, then the arguments of Part (ii) above would imply that it is not
optimal for the option writer to recall the contract earlier than the holder exercises it, so that
the value in (2.3) would admit the representation

Ve, 5, q9) — (s —KX) (2.20)

/ /

Ty / / ’ , T, /
= E|:/0 e (K S(S;M), Qz(;]’x )) XL(lX) — rSl(AS,x )) du + /0 e dsl(ds,x ):|’

where 7, = 7.(¥', s, ¢) denotes the optimal exercise time for the holder in the problem of (2.3)
under the assumption that the process (X, S, Q) starts at (x', s, q), for all d'(s, g) <x’ < x and
each 0 < g < s fixed. Hence, because of the assumption that the function §(s, ¢) is increas-
ing in both the variables s and ¢ on [0, oo]2 and the fact that the process (X, S, Q) started
at (X, s, g) reaches the point (x, s, ¢') for some 0 < ¢’ < g before hitting the upper diago-
nal di ={(x, s, q) € R3 |0 < g <x=s}, we see that the integrand in the first integral in the
right-hand side of (2.20) (and thus the resulting total expected reward functional there) is
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Discounted optimal stopping zero-sum games 9

increasing in x’ for @'(s, ¢) < x’ < x, for each 0 < ¢ < s fixed. Thus, we may conclude that the
inequalities

Vi@, 5,9) — (s —KX)<Vu(x,5,9) — (s —Kx)=0 (2.21)

hold, so that the point (', s, ¢) such that a'(s, ¢) <x’ <x <a(s, g) As AD'(s, g) also belongs
to the left-hand part of the stopping region D, in (2.7).

Similarly, if we take some (x, s, g) € Dy such that d'(s, g) vV g V b(s, q) < x < b'(s, g) holds,
for each 0 < g < s fixed, then the arguments of Part (ii) above would imply that it is not optimal
for the option holder to exercise the contract earlier than the writer recalls it, so that the value
in (2.3) would admit the representation

Ve, s,q)—(q—Lx") (2.22)

/

f; /" 1" " ”" §* "
= E[ fo e (LS(SE), 04 X — r QU4)) du + /0 e dQl >},

where ¢, = £.(x”, s, ¢) denotes the optimal exercise time for the writer in the problem of (2.3)
under the assumption that the process (X, S, Q) starts at (x”, s, g), for all x <x” <b'(s, ¢)
and each 0 < g < s fixed. Hence, by the assumption that the function §(s, ¢) is increasing in
both the variables s and g on [0, c>o]2 and the fact that the process (X, S, Q) started at (x”,
s, q) reaches the point (x, s', g) for some 0 < s < s’ before hitting the lower diagonal d, =
{(x, 5, 9) € R?| 0 < g=x < s}, we see that the integrand in the first integral in the right-hand
side of (2.22) (and thus the resulting total expected reward functional there) is increasing in x”
for x <x” < b'(s, q), for each 0 < g < s fixed. Thus, we may conclude that the inequalities

Vx5, q) —(q—Lx") > Vi(x,5,9) — (g —Lx)=0 (2.23)

hold, so that the point (x”, s, ¢) such that a'(s, g) V g V b(s, q¢) < x <x” <b/(s, ) also belongs
to the right-hand part of the stopping region D, in (2.7).

Combining these arguments with the facts deduced in Parts (i)—(ii) above and noting the
comments in [13, Subsection 3.3] and [52, Subsection 3.3], we conclude that there exist func-
tions a4 (s, g) and by(s, g) satisfying the inequalities d'(s, q) < a.(s, q) <a(s, g) As Ab'(s, q)
and d'(s, @) V q Vv b(s, q) < by(s, q) <b'(s, ), for 0 < g < s, such that the continuation region
C, in (2.6) has the form

Ci={(x,5,9) €E | axls, q) <x < by(s, 9)}, (2.24)
while the stopping region D, in (2.7) is given by
D, = {(x, s,q)€E ’ either x < a.(s, g) or x> b.(s, q)}. (2.25)

(iv) Finally, in order to determine upper and lower bounds for the value function in (2.3) and
optimal stopping boundaries in (2.24) and (2.25), we consider the optimal stopping problems
with the value functions V(x, s, q) and V(x, s, g) from (5.1). It is shown in Section 5 below that
the functions V(x, s, q) and V(x, s, ¢) admit the explicit expressions in (5.11) and (5.12), while
the associated optimal stopping times T and ¢ are given by (5.2), where the boundaries a(s, g)
and b(s, q) are determined as the maximal and minimal solutions of the first-order nonlinear
ordinary differential equations in (3.24) and (3.27) staying below or above the diagonals d; =
{(x, 5,9 € R3|0 < g<x=s}tanddr ={(x, s, q) € R3|0< q = x < s}, respectively. If we sup-
pose that either the inequality a.(s, g) < a(s, g) or the inequality b.(s, q) > b(s, g) holds, then,
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10 P. V. GAPEEV

S
Rok-1(as, by) / /
N X=9
Sok-1
a(s,q) [ a.s,q) b.(s,q)
q + (K hx
Ror(ay)
§5
-
Sk k-1 x

FIGURE 1. A computer drawing of the optimal exercise boundaries a«(s, q), b«(s, q), and a(s, g), for each

q > 0 fixed.
q
; [/ x=q
S
D1 /A
Rorvi(as, by)
s—(K—-L)x
b.(s, ‘)/
"1 \
a.(s,q) e
- Ry(b.)
b(s,q)
a5 Dop41 X

FIGURE 2. A computer drawing of the optimal exercise boundaries a.(s, q), b«(s, g), and E(s, q), for each
s > 0 fixed.

for each given and fixed x > 0 such that either x € (a.(s, q), a(s, g)) or x € (D(s, q), b« (s, q)),
we would have either Vi(x,s, q)>s—Kx= V(x, s, q) or Vi(x,s,q)<q—Lx=V(x,s, q),
respectively, contradicting the obvious fact that the inequalities Vi (x, s, ¢) < V(x, s, ¢) and
Vi(x, s, q) > V(x, s, g) hold for all (x, s, g) € E’. Thus, we may conclude that the inequalities
ax(s, q) > a(s, q) and b,(s, q) < E(s, q) should be satisfied for all 0 < g < s (see Figures 1 and
2 for computer drawings of the optimal stopping boundaries a.(s, g) and b.(s, q), as well as
the estimates a(s, ¢) and b(s, q)).
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Discounted optimal stopping zero-sum games 11

2.3. The three-dimensional coupled free-boundary problem

By means of standard arguments based on an application of Itd’s formula, it can be shown
that the infinitesimal operator LL of the process (X, S, Q) has the form
o (s, q)x2

L:(r—S(S»Q))Xax'i'Taxx in 0<g<x<s, (2.26)

dy=0 at O<g=<x=s, and 9;=0 at O<g=x=<s 2.27)

(see e.g. [52, Subsection 3.1]). In order to find analytic expressions for the unknown value
function V.(x, s, g) from (2.3) and the unknown boundaries a.(s, g) and b.(s, g) from (2.24)—
(2.25), let us build on the results of the general theory of optimal stopping problems for Markov
processes (see e.g. [59, Chapter IV, Section 8]). We can reduce the optimal stopping game of
(2.3) to the equivalent coupled free-boundary problem for V(x, s, ¢) with a(s, g) and b(s, q)
given by

LV —rV)(x,s,q9)=0 for gVa(s,q)<x<b(s, qg)As, (2.28)

Vs, D _ye.pe =5 —KaGs. @) Vs, |y o =4~ L0, ), (2.29)
Vix,s,q)=s—Kx for x<a(s,q), V(,s,9)=qg—Lx for x>b(s,q), (2.30)
s—Kx<Vx,s,q)<q—Lx for a(s,q)<x<Db(s,q), 2.31)

LV —-rV)x,s,9) <0 for x<a(s,q), @LV—-rV)x,s,q) >0 for x>b(s,q),
(2.32)

where the instantaneous-stopping conditions in (2.29) are respectively satisfied when either
a(s, q) > d (s, q) vV q or b(s, q) <s Ab'(s, g) holds, for each 0 < g < s. Moreover, we further
assume that the smooth-fit conditions

WV(x, s, q) K, 3,V s, q) —L (2.33)

x=a(s,g+ x=b(s.q)—

are satisfied, when either a(s, q) > d'(s, q¢) vV g or b(s, q) < s A b'(s, g) holds, while the normal-
reflection conditions

WV(x,s.q)| _, =0, 9,V(x.s, q) 0 (2.34)

x=q+
are satisfied, when either b'(s, g) > b(s, g) > s or d'(s, q) < a(s, q) < g holds, for each 0 <
g < s. On the one hand, when either the inequality a(s, g¢) > d'(s, g) V g or the inequality
b(s, q) <s Ab'(s, g) holds, for some 0 < g < s, the continuous process X can cross the left-
hand boundary a(S, Q) before hitting the lower diagonal d> or cross the right-hand boundary
b(S, Q) before hitting the upper diagonal d;, so that we can assume that the left-hand or
the right-hand smooth-fit conditions of (2.33) are satisfied for the candidate value function
Vi(x, s, q) at a(s, g) or b(s, q), respectively. On the other hand, when either the inequal-
ities b'(s, g¢) > b(s, q) > s or the inequalities d'(s, g) < a(s, g) < g hold, for some 0 < g < s,
the process X can hit the upper diagonal d; = {(x, 5, ¢) € R? | 0 < g < x = s} before crossing
the right-hand boundary b(S, Q) or hit the lower diagonal d) = {(x, s, 9) e R* |0 < g=x <}
before crossing the left-hand boundary a(S, Q), so that we can assume that either the left-
hand or the right-hand normal-reflection conditions of (2.34) are satisfied for V(x, s, q) at d;
or dy, respectively. These properties are verified in the proof of Theorem 1 below, while the
inequalities in (2.32) follow directly from the arguments of Parts (i)—(ii) of Subsection 2.2
above.
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12 P. V. GAPEEV

3. Solutions to the coupled free-boundary problem

In this section, we obtain closed-form expressions for the value function Vi (x, s, g) in (2.3)
associated with the perpetual floating-strike lookback game option and derive first-order non-
linear ordinary differential equations for the optimal stopping boundaries a. (s, g) and b.(s, q)
from (2.24)—(2.25) forming a solution to the free-boundary problem in (2.28)—(2.32) with
(2.33) and (2.34).

3.1. The candidate value function

We first observe that the general solution of the second-order ordinary differential equation
in (2.28) has the form

V(x, s, q) = Ci(s, ) x"' D 4 Cy(s, g) x?D, 3.1

where Cj(s, g), for i =1, 2, are some continuously differentiable functions and y;(s, gq), for
i=1, 2, are given by

PR Bt (G BRI 1 R S OF ) A S
yils, q) = (—1) \/<2 62(“1)) Tt (3.2)

so that y1(s, g) <0 < 1 < y1(s, g) holds for all 0 < g < s. Then, by applying the instantaneous-
stopping conditions from (2.29) to the function in (3.1), we get that the equalities

Ci(s, @) a"9(s, q) + Ca(s, q) a?* (s, ¢) = s — K a(s, ), (3.3)

Ci(s, q) "D (s, g) + Ca(s, q) b2 SD(s, g) =g — Lb(s, q) (3.4)

are satisfied when a(s, ¢) > d'(s, q) vV g and b(s, q) < s A b'(s, q) respectively hold, for each
0 < g < s. Hence, by using the smooth-fit conditions from (2.33), we obtain that the equalities

Ci(s, @) v1(s, @) @D (s, ) + Cals, g) yals, @) a”?D(s, q) = —K a(s, q),  (3.5)

Ci(s, @) yi(s, @) D"V (s, q) + Cals, @) yals, @ b2V (s, q) = —Lb(s,q)  (3.6)

are satisfied when a(s, g) > d'(s, q) vV q and b(s, q) < s A b'(s, q) respectively hold, for each
0 < g < s. Thus, by applying the normal-reflection conditions from (2.34) to the function in
(3.1), we obtain that the equalities

2

> (8Cis, @) 5709 + Cits, @ di(s, @) 7D Ins) =0, (3.7)
i=1

2
> (3Cits. @ 49 + Cits. @) 04viGs, 9 4"V Ing) =0 (3:8)

i=1

are satisfied when b'(s, g¢) > b(s, ¢) > s and d'(s, q) < a(s, q) < g respectively hold, for each
0 < g < s. Here, the partial derivatives d;y;(s, q) and 9,;(s, q) take the form

l)i(p(sa ‘I)(Vl (S’ ‘I) + VZ(Sv Q))G3(5a ‘]) - 4V8SO'(S, Q)
o2(s, OV (165, @) + 12(s, 9)202(s, g) + 8r

dsyi(s, @) = @(s, q) — (= (3.9)
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Discounted optimal stopping zero-sum games 13

Y (s, Q1(s, @)+ va(s, @)o>(s, ) — 4rdgo (s, q)

qvi(s, @) =Y (s, ) — (=1) (3.10)
! 0205, v (1G5, @)+ 125, )*0 (5. @) + 87
fori=1, 2, and the functions ¢(s, g) and ¥ (s, g) are defined by
(s, q) = o (s, @)0s8(s, q) 4;32((; ;)5(8, q))050 (s, 6])’ G
Vs, q) = o (s, @)948(s, q) 4;2((; ;)5(& 4)40 (s, q) (3.12)

forO0<g<s.
Now, by solving the system of equations in (3.3)—(3.4), we obtain that the function in (3.1)
admits the representation

2
V(x, 5, g als, q), b(s, @) = Y Cils, g; als, g), b(s, @) X9 (3.13)
i=1

for d'(s, q) V g < a(s, q) <x < b(s, g) < s Ab'(s, q), where

(s — Ka(s, @)b"3-19(s, ) — (g — Lb(s, )"~ D (s, q)

Ci(s, q; a(s, q), b(s, q)) = ayi(y’q)(s, q)by3,i(‘y,q)(s’ q) — byi(s,q)(s’ q)ayg,i(s,q)(s, q)

(3.14)

when d'(s, q) V g < a(s, q) < b(s, q) < s AD'(s, g) holds, for every i =1, 2. Then, by solving
the system of equations in (3.3) and (3.5), we obtain that the function in (3.1) admits the
representation

V(x, s, ¢; a(s, ) = Ci(s, ¢; als, @) 1D + Ca(s, g; als, ) x> (3.15)
ford'(s, q) vV g <a(s, q) <x <s < b(s, q) <b'(s, q), where

v3—i(s, ¢)(s — Ka(s, q)) + Ka(s, q)
(v3—=i(s, ) — vi(s, 9))arD(s, q)

Ci(s, g a(s, ) = (3.16)

when d'(s, q) vV g < a(s, q) <s < b(s, q) < b'(s, g) holds, for every i =1, 2. Also, by solving
the system of equations in (3.4) and (3.6), we obtain that the function in (3.1) admits the
representation

V(x, s, ¢; b(s, @) = Ci(s, g; b(s, @) x"'CD + Ca(s, g; b(s, g)) X729 (3.17)
fora'(s, q) < a(s, q) < q<x <b(s, q) <s Ab'(s, g), where
v3—i(s, )(g — Lb(s, q)) + Lb(s, q)
(3=i(s, @) — vi(s, @b (s, q)

when d'(s, q) < a(s, q) < q < b(s, q) <s Ab'(s, g) holds, for every i =1, 2.

Finally, by means of straightforward computations, it can be deduced from the expression in
(3.13) that the first-order and second-order partial derivatives 0,V (x, s, g; a(s, q), b(s, g)) and
o V(x, s, q; a(s, q), b(s, q)) of the function V(x, s, q; a(s, q), b(s, g)) take the forms

Ci(s, g: b(s, ) = (3.18)

2
A V(x, 5, g; als, q), b(s, @) =Y _ Cils, g als, @), bls, @)) yi(s, q) /97! (3.19)

i=1
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14 P. V. GAPEEV

and

2
0 V(x, s, gia(s. q). bs. @) =Y _ Cils. g: a(s. q). b(s. q)) yi(s. Q(yi(s. q) — 1) 19 =2
i=1
(3.20)

ford'(s, q) V g < a(s, q) <x < b(s, q) <s AD'(s, g). Note that the same first-order and second-
order partial derivatives of the functions V(x, s, ¢; a(s, q)), for d'(s, q) vV g <a(s,q) <s <
b(s, q) <b'(s, q), and V(x, s, q; b(s, q)), for d'(s, q) < a(s, q) < q < b(s, q) <s Ab'(s, g), from
(3.15) with (3.16) and (3.17) with (3.18) are computed similarly.

3.2. The candidate stopping boundaries
We now apply the conditions of (3.5)—(3.6) to the functions Cj(s, g; a(s, q), b(s, q)), for

i=1,2,1n (3.14) to obtain the equalities

vi(s, )(s — Ka(s, @) + Ka(s, ¢) _ (a(s, q)>73i(s,q)
vi(s, )(g — Lb(s, q)) + Lb(s, q) b(s, q)

ford'(s, q) VvV g < a(s, q) <b(s,q) <sAb'(s,q)and i = 1, 2. Then we set b(s, g) = b'(s, q) and
apply the condition of (3.5) to the same functions to obtain the equality

(3.21)

yi(s, @) @ D(s, q) (3.22)

22: (s — Kas. )b *9(s, g) — (¢ = LV/(5, )@~ s, g)
a0, b0 (s, g) — BTV (s, gars-i0)(s, )

for d'(s, q) vV g <a(s, q) <s AbD'(s, q) < b(s, q). Also, we set a(s, g) =d'(s, g) and apply the
condition of (3.6) to the same functions to obtain the equality

i (s — Ka/(s. )b~ (s, q) — (g = Lb(s, 9))a* (s, g)

= qmD(s, @br-i:9)(s, q) — bria(s, a9 (s, g)
=-L b(s9 51)

yi(s, @) BV (s, q) (3.23)

for a(s, q) < d'(s, q) vV g < b(s, q) <s Ab'(s, q).

The existence and uniqueness of solutions of the system of arithmetic equations in (3.21)
as well as of the equations in (3.22) and (3.23) on the admissible intervals follow from the
arguments of Subsection 3.4 below. Observe that the system of arithmetic equations in (3.21)
and the equation in (3.23) satisfy the conditions of the classical (two-dimensional) implicit
function theorem, so that the resulting solutions a. (s, ¢) and b.(s, g) turn out to be continuously
differentiable. Furthermore, assuming that the candidate boundary functions a(s, g) and b(s, q)
are continuously differentiable, we apply the condition of (3.7) to the functions C;(s, g; a(s, g)),
for i=1, 2, in (3.16) to conclude that the candidate boundary a(s, g) satisfies the ordinary
differential equation

deas, d) = 22: Cils. g: a(s, ))dsyi(s, @)s" P Ins + Wy i(a(s, q). s, g)(s/als, )"
T @y (als, q), 5, @)(s/als, @)D — (s/a(s, q))2D)

j=1
(3.24)
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Discounted optimal stopping zero-sum games 15

ford'(s, q) vV g < a(s, q) <s < b(s, q) <b'(s, q), where we set

By(x. 5. q) = 165, @) + v2(s, @)K + y1(s, @)y2(s, ¢)(s — Kx)/x (3.25)

7208, @) — v1(s, @)

and

W1 5, ) = 05y3—i(s, @)(s — Kx) + v3-i(s, q) (3.26)
y3—i(sv CI) - )/i(s, C])
_ (Kx+y3-i(s, @)(s — KxX)(3syils, ¢) Inx + 95 In (y3-i(s, g) — vi(s, 9)))

v3—i(s, @) — ¥i(s, q)

for all 0 < g <x <s and every i =1, 2. We also apply the condition of (3.8) to the functions
Ci(s, q; b(s, q)), fori =1, 2, in (3.18) to conclude that the candidate boundary b(s, g) satisfies
the ordinary differential equation
2 , ,
dbis =3 Ci(s, ¢; b(s, )3q(s, g7 9 In g + W2 i(b(s, q), 5, 9)(q/b(s, @)
o Da(b(s, ), 5, P(q/b(s, 1D — (q/b(s, @))72D)

i=1
(3.27)

for d'(s, q) < a(s, q) < q < b(s, q) < s Ab'(s, q), where we set

Do, 5. ) = i1(s, @) + v2(s, Q)L + y1(s, Qya(s, @)(q — Lx)/x (3.28)

7208, @) — v1(5, @)

and

9qy3—i(s, 9)(g — Lx) + y3-i(s, )

V3—i(s, @) — vi(s, @)
_ (Lx+ y3-ils, @(g — L)) (g yi(s, @) Inx + 35 In (y3-i(s. q) — vi(s. @)
V3—i(s, @) — vi(s, @)

W i(x, s, q) = (3.29)

for all 0 < g <x <s and every i = 1, 2. Note that, by virtue of the assumptions on the coeffi-
cients §(s, g¢) > 0 and o (s, g) > 0 of the diffusion-type process X from (1.1)—(1.2) and (1.3), the
right-hand sides of the expressions in (3.24) with (3.25)—(3.26) and in (3.27) with (3.28)—(3.29)
are (locally) continuous in (s, g, a(s, g)) and (s, g, b(s, q¢)) and (locally) Lipschitz in a(s, g) and
b(s, q), for each 0 < g < s fixed. Thus, by the classical results on the existence and uniqueness
of solutions for first-order nonlinear ordinary differential equations, the equations in (3.24)
and (3.27) admit (locally) unique solutions, which can be constructed by means of Picard’s
method of successive approximations (see Subsection 5.3 below for further constructions and
references).

3.3. The structure of the continuation region

In order to specify the optimal exercise boundaries for the floating-strike lookback game
options, let us consider the functions a.(s, g) and b.(s, g), which provide a unique solution to
the system of arithmetic equations in (3.21) such that a'(s, q) < a«(s, q) < b4« (s, q) <b'(s, q), or
the function a, (s, ) < b«(s, ¢) = b'(s, q) represents the largest root of the equation in (3.22), or
the function by (s, q) > a.(s, q) = d'(s, q) represents the largest root of the equation in (3.23),
or otherwise the properties a.(s, g) =d'(s, q¢) and b.(s, g) = b'(s, ¢) hold, for each 0 < g < s
fixed.
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16 P. V. GAPEEV

On the one hand, we can set sj(q) =o0c and define the functions s3, (q) = sup{s <
$5k_2(@) | bi(s, @) > s} and 53,(q) = sup{s < 53, _,(q) | b«(s, @) < s}, whenever they exist, and
put s3,_,(q) = s3;(q) = 0 otherwise, so that the inequalities 0 < 53, _(¢q) < s3;_,(¢) < 0o hold,
for all ke N, and each g > 0 fixed. In other words, the boundary b.(s, g) exits the region
E from the side of the diagonal di ={(x,s, q) € R’ |0 < g <x=s} passing through the
points (s3;_;(q), 53,_,(¢), @) and comes back to E from the side of d; passing through the
points (s3,(q), $3,(q), @), for k € N, for each g > 0 fixed. Hence, the candidate value function
V(x, s, q; ax(s, q), b«(s, g)) admits the representation of (3.13) with (3.14) and the candidate
stopping boundaries a.(s, g) and b, (s, g) solve the system of arithmetic equations in (3.21) in
the regions

Ror—1(as, b)) ={(x, s, @) € E' | sh_1(q) <5 <55 _,(@)}, (3.30)

while the candidate value function V(x, s, g; a.(s, ¢)) admits the representation of (3.15) with
(3.16) and the candidate stopping boundary a.(s, g) either solves the first-order nonlinear
ordinary differential equation in the regions

Ror(a) ={(x, s, @) € E' | s5(q) <5 < s5_1(9)) (3.31)

both representing subsets of the continuation region Cy in (2.24), or coincides with @’ (s, q),
for each ¢ > 0 fixed, and every k € N. Furthermore, we observe that the process (X, S, Q)
can enter the region Rzk 1(ax, by) in (3.31) from the region Rzk(a*) in (3.30) only through
the point (s2k_l(q), szk_l(q), q), for any k € N, by hitting the plane d; = {(x, s, q) € R3 |0 <
g <x=s}, that is, by increasing its second component S. Therefore, the candidate value
function should satisfy the instantaneous-stopping and smooth-fit conditions at the points
(554_1(@)s 55;_1(@), @), which are expressed by the equalities

2
Y Cilsh 1 (@ @ axlsy_ 1 (@)= @) (3 (@) 21 @) (3.32)
i=1

= V(5 1(@). 31D, @ as(s3_1 (@), @), bs(s5_1 (), ),

2
Y Ci(sh 1 (@)= @ ax(s3 1 (@—. ) Vilsh_1 (@)= @) (5, (@)1 @9 (3.33)
i=1

=55 1(@) 0V (55 1(D): S5 1 (@), @ ax(53,_1 (@), @), bs(5,_1 (@), 9))

where the functions Ci(s, g; a«(s, q)), for i=1,2, are given by (3.16) and the function
Vi(x, s, q; ax(s, q), b«(s, q)) has the form of (3.13) with (3.14), while the boundary a.(s, q)
provides a unique solution of the first-order nonlinear ordinary differential equation in (3.24)
in the region kz;{(a*) from (3.31) satisfying the (starting) conditions of (3.32)—(3.33) above,
for each ¢ > 0 fixed, and every k € N, respectively.

On the other hand, we can set q(“;(s) =0, define the functions qél_l(s) =inf{q >
@3_»(8) | ax(s, @) < g} and g5,(s) =inf{g > g3,_,(s) | a«(s, g) > g}, whenever they exist, and
put g5,_,(s) = g5,(s) = oo otherwise, so that the inequalities 0 < g3,_,(s) < g3,_,(s) < oo hold
for all /e N and each s > 0 fixed. In other words, the boundary a.(s, g) exits the region E
from the side of the diagonal d = {(x, 5, ¢) € R? | 0 < g = x < s} passing through the points
(q’z‘l_l(s), s, qﬁl_l(q)) and comes back to E from the side of the diagonal d> passing through
the points (‘131—1(3)’ S, qjl_ 1(s)), for ke N, for each s > 0 fixed. Hence, the candidate value
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Discounted optimal stopping zero-sum games 17

function V(x, s, g; a«(s, q), b«(s, q¢)) admits the representation of (3.13) with (3.14), and the
candidate stopping boundaries a. (s, g) and b.(s, g) solve the system of arithmetic equations in
(3.21) in the regions

Ro—1(as, b)) ={(x, s, @) € E' | g5_5(s) < g < g5_1 ()}, (3.34)

while the candidate value function V(x, s, ¢; b4 (s, ¢)) admits the representation of (3.17) with
(3.18), and the candidate stopping boundary b.(s, g) solves the first-order nonlinear ordinary
differential equation in the regions

Ro(bs) = {(x, s,q)eE ‘ G_1(5) <g =< qzl(s)}, (3.35)

both representing subsets of the continuation region Cy in (2.24), for each s > 0 fixed and every
!/ € N. Furthermore, we observe that the process (X, S, Q) can enter the region ﬁzl_l(a*, by)
in (3.35) from the region Ryi(by) in (3.34) only through the point (g5,_,(s), s, g5;_,(s)), for
any / € N, by hitting the plane d» = {(x, s, g) € R3 | 0 < g =x < s}, that is, by decreasing its
third component Q. Therefore, the candidate value function should satisfy the instantaneous-
stopping and smooth-fit conditions at the points (¢3,_,(s), 5, g5,_,(s)), which are expressed by
the equalities

2
Y Cils g31-1(9) + 3 buls. g3 (5) ) (g3 ()1 B ) (3.36)
i=1

= V(@31-1(9)s 8, @311 (93 @x(s, @511 (9)), buls, @511 (5)),

2
D Cils @yi_1(9) + 3 bals, @311 () ) Vils. 1 () (gy_y ()2 (3.37)
i=1
= ‘131_1(5) axV(qz_l(s), s, 431_1(5); ax(s, q;l_l(s)), by (s, Q§1_1(S))),

where the functions Ci(s, g; b«(s, q)), for i=1,2, are given by (3.18) and the function
V(x, s, q; ax(s, q), b«(s, q)) has the form of (3.13) with (3.14), while the boundary b.(s, )
provides a unique solution of the first-order nonlinear ordinary differential equation in (3.27)
in the region ﬁy(b*) from (3.35) satisfying the (starting) conditions of (3.36)—(3.37) above, for
each s > 0 fixed and every k € N. Note that the process (X, S, Q) cannot come from the region
RZk(a*) in (3.31) directly to the region Rzl(b*) in (3.35), or vice versa, without crossing the
region ng(a*, b,) in (3.30) or Rzl(a*, by) in (3.34), respectively, for every k, [ € N.

Finally we observe that if we have y;(s, ¢) = yi(q), for i =1, 2, in (3.2), then the appropri-
ate left-hand exercise boundary for the floating-strike lookback game option in (2.24)—(2.25)
takes the form a.(s, g) = d'(s, q) V g«(g)s with some function 0 < g.(q) < 1, while, if we have
vi(s, g) = yi(s), fori =1, 2, in (3.2), then the appropriate right-hand exercise boundary for that
contract there takes the form b, (s, g) = b'(s, ) A hy (s)q with some function A,(s) > 1, for all
O<g<s. In these cases, we have solely the regions Rl(a*, by), Rz(a*) in (3.30)—(3.31) with
k=1 and Rl(a*, by), Rz(b*) in (3.34)—(3.35) with [ =1, respectively. Moreover, if we have
yi(s, @) =y, for i=1, 2, in (3.2), then we have a.(s, ) =d'(s, q) V as(s) =d'(s, q) V g«s and
bi(s, q) =b'(s, ¢) A by(q) =b'(s, @) A hyq with some constants 0 < g, < 1 and h, > 1, for all
0 < g < s. The latter property can be explained by the fact that the original problem of (1.4), and
thus the three-dimensional problem of (2.3), can be reduced to an optimal stopping zero-sum
game for the process (S/X, Q/X) = (S;/X:, O:/X:)r=0 representing a two-dimensional Markov
diffusion process with reflection, by means of the change-of-measure arguments from [65] (see
also [21]).
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18 P. V. GAPEEV

3.4. The system of arithmetic equations for the boundaries

Let us now extend the arguments from [26, Example 4.2] (see also [18, Section 3] and [60,
Theorem 1]) to show that the system of arithmetic power equations in (3.21) admits a unique
solution. For this purpose, by virtue of straightforward calculations, we first observe that the
system of equations in (3.21) is equivalent to the following one:

Bila(s, q); s, @) =Yi(b(s, 9); 5, q) (3.38)
for d'(s, q) vV g < a(s, q) < b(s, q) <s Ab'(s, q), where we set

Yi(s, @)(s — Ka) + Ka Yi(s, ¢)(g — Lb) + Lb
- and Yi(b;s, q)= -
aV3-i(s.q) bY3-i(s.9)

Bi(a;s, q) =

(3.39)

forall0 <g<a<b<sandeveryi=1,2.

In order to show the existence and uniqueness of a solution of the system of arithmetic
power equations in (3.38) with (3.39), we develop the ideas used to prove the existence and
uniqueness of solutions to the systems of arithmetic power equations in [26, Example 4.2] (see
also the systems (4.73)—(4.74) in [67, Chapter IV, Section 2], the system (3.16)—(3.17) in [18,
Section 3], and [60, Theorem 1]). For this purpose, we observe that, for the derivatives of the
functions E;(a) and Y;(b), for i =1, 2, defined in (3.38), the equations

"@s.q _ G, @) = D, @) — DK(a — (s, 9))

Ei(a; s, q) R TS (3.40)
and
(1(s, @) — D(ya(s, q) — DL(b — b(s, q))
10h. _
Y/(bss, q) = T (341)
hold, so that the inequalities
Ela;s,q)>0 for a<a(s,q) and Y/(b;s,q)<0 for b>b(s,q) (3.42)

are satisfied, for d'(s,q)Vg<a<b<sAb'(s,q) and every i=1, 2, where the functions
d'(s, q) and D'(s, q) are given by (2.9). Hence, we may conclude that the following prop-
erties hold, for each 0 < g < s fixed. The function Ei(a;s, ¢g) is increasing on the interval
(0, a(s, gq)), with E1(0+3;s, g) =0 and Ei(a(s, q); s, g) > 0, so that the range of its values is
given by the interval (0, E1(a(s, q); s, g¢)). The function Y (b; s, q) is decreasing on the interval
(b(s, q), 00), with Y1(b(s, q); s, g) > 0 and Y(00; s, g) = —00, so that the range of its values
is given by the interval (—oo, Y1(b(s, q); s, g¢)). The function Ej(a; s, g) is increasing on the
interval (0, a(s, q)) with E2(0 + ; s, ¢) = —oo and Ej(a(s, q); s, g) > 0, so that the range of its
values is given by the interval (—oo, Ea(a(s, q); s, q)). The function Y (b; s, g) is decreasing
on the interval (b(s, g), o0) with Y2(b(s, q); s, g) > 0 and Y3(00; s, ¢) = 0, so that the range of
its values is given by the interval (0, Y2(b(s, q); s, q)).

We _now observe that, when E;(a(s, q); s, q¢) < Yi(b(s, q); s, q) holds, one can determine
some b; i(s, q) > b(s, q) from the equation E;(a(s, q);s, q) = T(b (s, 9); s, g), while, when
Bi(a(s, q); s, q) = Yi(b(s, q); s, g) holds, one can determine some da;(s, g) < a(s, g) from the
equation Z;(a;(s, q); s, q) = Yi(b(s, q); s, q), for each 0 <g <s fixed, and every i=1, 2.
Hence, it follows from the equations in (3.38) with (3. 39) that, for each a € (a(s, q), ai(s, g) A
a(s, q)), there exists a unique number b € (b(s, q)\/bl(s q), b(s, q)), while, for each ae€
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b(s.q)V by

b(s,q)V by :

| I | |
T T T T

a d @ as,q) NG als,q) Ad a
FIGURE 3. A computer drawing of the boundary functions b1 (a) and b, (a) in the case @' (s, q) < a«(s, q) <
by(s, q) <b'(s, q), for each 0 < g < s fixed.

(a(s, ), ax(s, g) Aa(s, q)), there exists a unique number b € (b(s, q) vi;z(s, q), b(s, q)), for
each 0 < g < s fixed. (Recall that the values a(s, q) and b(s, g) are specified in Part (ii) of
Subsection 2.2 above and given by the expressions in (2.19), while the values a(s, ¢) and b(s, q)
are determined in Theorem 2 below, for each 0 < g < s fixed.)

In other words, we may conclude that the first and second equations in (3.38), respec-
tively, un1quely determine the function by(a) on (a(s, q), ai(s, g) Aa(s, g)) with the range
b(s,q) v b bi(s, q), b(s ¢)) and the function by(a) on (a(s, q), ax(s, q) A a(s, g)) with the range
(b(s, @) \/bz(s q), b(s q)), for each 0 < g < s fixed. These arguments also imply that the
expression b(s, q)\/bl(s q) < bi(a(s, q)) < b(s, q) < by(a(s, ¢)) holds. Moreover, the same
arguments and assumptions directly yield that there exists exactly one intersection point, with
the coordinates a.(s, g) and b.(s, g), of the curves associated with the functions bj(a) and
b>(a) on the interval a € (a(s, q), a2 (s, g) A a(s, g)) such that b(s, q) V?;l (s, q) < b1(a«(s, q) =
by(s, q) = ba(ax(s, q)) < b(s, g) holds, for each 0 < g < s fixed (see Figure 3 above).

More precisely, let us assume that there exist at least two intersection points,
(ax(s, q), bs(s, @)) and (a(s, q), b(s q)), of the curves bi(a) and by(a), such that a(s, q) <
(s, q) < axls, q) <als, ) A@(s. ) and b(s, )V bi(s, q) < b(s. q) < bls, g) <b(s, q) (o
als, q) < ax(s, q) <a(s, q) <a(s, q) Nax(s, q) and  b(s, @)V bi(s, @) < bu(s, ) < b(s, q) <
b(s, q)), as well as by(a) > bi(a), for a € (a(s, q), ax(s, ¢)) and any 0 < g < s fixed. Observe
that, by virtue of the assumptions made above and according to the implicit function theorem,
it follows from the representations in (3.40)—(3.41) that the expressions

Ei(a)  K(a—als, q)) (é)mi(s’q)ﬂ 0
Y/(b)  L(b—b(s, q) -

bl(a)= (3.43)

hold, for every i = 1, 2, for all a € (@(s, q), ax(s., ¢)) and b € (b(s, ), bs(s, ¢)), from which it
directly follows that the inequality
b(a) _ (é)?l(w)yz(s,q)
b (a)

> 1 (3.44)

a
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20 P. V. GAPEEV

is satisfied for all a € (d(s, g), ax(s, ¢)). Since the derivatives b}(a), for i = 1, 2, from (3.43) are
continuous functions on (a(s, q), ax(s, q)), we may conclude that there exists an open interval
(a(s, q) — &, (s, q) + ¢), for some relatively small & > 0, such that the inequality b/,(a) > b (a)
holds, so that the inequality b»(a) > b(a) should hold for a € (a(s, g) — &, a(s, q) + &) too
However, the latter fact contradicts the assumption that the equality by (a(s, ¢)) = ba(a(s, g))
holds, which means that the curves bj(a) and b>(a) may have only one intersection point; this
completes the proof of the claim.

Furthermore, we recall that the functions a.(s, ¢) and b.(s, g¢) determined by means of the
arguments above provide the candidate optimal stopping boundaries whenever the inequalities
d'(s, q) < ax(s, q) < by(s, q) < b'(s, g) hold for the solution of the system in (3.38) with (3.39),
with ' (s, ¢) and b’ (s, g) from (2.9), for each 0 < g < s fixed. Otherwise, on the one hand, it
can be shown by means of arguments similar to the ones used above that, if the inequalities
d'(s, q) < ax(s, q) < b'(s, q) < by(s, ¢) hold for the solution of the system in (3.38) with (3.39),
then the right-hand candidate stopping boundary b, (s, ¢) should coincide with b’ (s, g), while
the the left-hand candidate stopping boundary a.(s, g) < b'(s, g) represents the smallest root
(or the minimal solution) of the arithmetic equation in (3.22), which takes the form

i (v3-i(s, @)s a(s, q)) (a(s, q)>—m(x,q)
- L=ys-its. ) K 3.45
Z( ) ( ) + (1 = y3-i(s, ) AT (3.45)

= (7/1 (s, q) — va(s, @) (q/b'(s, @) — L)

for 0 < g < s. On the other hand, it can be shown by means of arguments similar to the ones
used above that, if the inequalities a.(s, g) < d'(s, q) < bs(s, g) < b'(s, ¢) hold for the solution
of the system in (3.38) with (3.39), then the left-hand candidate stopping boundary a.(s, q)
should coincide with d’ (s, g), while the the right-hand candidate stopping boundary b, (s, q) >
d'(s, q) represents the largest root (or the maximal solution) of the arithmetic equation in (3.23),
which takes the form

_ , b(s, —vi(s,q)
P (s, ) (s, q)/) \d(s, q)

=W1(s, @) — ya(s, @) (s/d (s, ) — K)

for 0 < g < s. We finally note that, in the case in which neither the system of arithmetic equa-
tions in (3.38) with (3.39) nor the equations in (3.45) and (3.46) admit solutions for which
either the inequalities a.(s, ¢) > d'(s, q) or b.(s, q¢) < b'(s, g) hold, respectively, we may con-
clude that both the candidate stopping boundaries a.(s, g) and b.(s, g) should coincide with
the boundaries @’ (s, ¢) and b’ (s, g), for 0 < g < s, respectively.

4. Main results and proofs

In this section, building on the facts proved above, we formulate and prove the main result
of the paper, which concerns the three-dimensional optimal stopping zero-sum game of (2.3)
in the model from (1.1)—(1.2) and (1.3).

Theorem 1. Let the process (X, S, Q) be defined in (1.1)—(1.2) and (1.3), where r >0 is a
constant, and (s, q) > 0 and o (s, q) > 0 are continuously differentiable bounded functions on
[0, 0o]?. Assume that the function §(s, q) is increasing in both the variables s and q on [0, oo]?.

Downloaded from https://www.cambridge.org/core. IP address: 81.111.198.116, on 07 Feb 2025 at 15:59:43, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2024.41


https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2024.41
https://www.cambridge.org/core

Discounted optimal stopping zero-sum games 21

a'(s,q) a.«s,q) s/K bi«(s,q) D'(s,q) q/L «x

FIGURE 4. A computer drawing of the value function V.(x, s, ¢) and optimal exercise boundaries
d'(s, q) < ax(s, q) < by(s, q) <b/(s, g), for each 0 < g < s fixed.

Then the value function in (2.3) of the perpetual floating-strike lookback game option takes the

form
V(x, s, q;ax(s, @), bi(s, @), if 0<g=<ax(s,q) <x<bi(s,q) <s,
Vi(x, s, q; a«(s, q)), if 0<g=a.s,q) <x=s<bis, q),
Vix, s, q) = V(x, 5, ¢, bu(s, ), if 0<au(s,q) <g=x<bus,q) <s, (41)
F(x,s), if O<g<x<a.(s,q)<s,
G(x, s, q), if 0<qg<by(s,qg)<x<s,

where the functions F(x, s) and G(x, s, q) are defined in (1.5), for some 0 <L <K <L+ 1
given and fixed, and the optimal exercise times forming a Nash equilibrium in the game are
given by

no=inf{r>0]X <auS. 0} and &=inf{r>0]X >b.S. 00}, (42

where the stopping boundaries satisfy the inequalities a'(s, q) V a(s, q) < ax(s, g) < a(s, q) A
sAY(s,q) and d'(s, q)V gV b(s, q) < by(s, ) <b(s, @) Ab'(s, @), with a’(s, q) and b’(s, q)
given by (2.9) and with a(s, q) and b(s, q) given by (2.19), while a(s, q) and b(s, q) are
determined in Theorem 2 below. The candidate value functions are further specified as follows:

(1) The function V(x, s, q; a«(s, q), b«(s, q)) is given by (3.13)—(3.14), while either the
boundaries a.(s, q) and by(s, q) provide a unique solution to the system of arith-
metic equations in (3.21) whenever d'(s, q) < a4(s, q) < bs(s, q) <b'(s, q) (see Figure 4
above); or b.(s, q) =Db'(s, q) and a.(s, q) provides the smallest root of the arith-
metic equation in (3.22) whenever d'(s, q) < a.(s, q) < b'(s, q) (see Figure 5 above);
or a(s, q) = d'(s, q) and b.(s, q) provides the largest root of the arithmetic equation in
(3.23) whenever b'(s, q) > by(s, q) > d'(s, q) (see Figure 6 above); or a.(s, q) = d'(s, q)
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a.(s,q) =a’(s,q) s/K b.(s,q) b'(s,q) q/L x

FIGURE 5. A computer drawing of the value function V.(x, s, ¢) and optimal exercise boundaries
d' (s, q) = ax(s, q) < by(s, q) <b/(s, g), for each 0 < g < s fixed.

a’'(s,q) a«(s,q) s/K b.(s,q) =b'(s,q) q/L x

FIGURE 6. A computer drawing of the value function V,(x, s, ¢g) and optimal exercise boundaries
d'(s, q) < as(s, q) < by(s, q) =b/(s, g), for each 0 < g < s fixed.

and by(s, q) =b'(s, q), in the regions 1~22k_1(a*, b,) and ﬁgl_l(a*, b,) from (3.30) and
(3.34), fork,leN, forO< g <s.

(ii) The function V(x, s, q; ax(s, q)) is given by (3.15)—(3.16), while the boundary a.(s, q)
either provides a unique solution to the first-order nonlinear ordinary differential equa-
tion in (3.24) started at (s5,_(q), $5;,_,(q), q), whenever a,(s, q) > d'(s, q), or coincides
with a’(s, q), in the regions I~?2k(a*)from (3.31), forkeN, forO<g<s.
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Discounted optimal stopping zero-sum games 23

(iii) The function V(x, s, q; by (s, q)) is given by (3.17)—(3.18), while the boundary b (s, q)
either provides a unique solution to the first-order nonlinear ordinary differential equa-
tion in (3.27) started at (q%;_,(5), s, g5,_(5)), whenever b(s, q) < b'(s, q), or coincides
with b’(s, q), in the regions ﬁzl(bl’-‘)from (3.35), forleN, forO<g <s.

Observe that we can put s = g = x to obtain the value of the original perpetual floating-strike
lookback game option pricing problem of (1.4) from the value function of the optimal stopping
zero-sum game of (2.3).

Proof. In order to verify the assertion stated above, it remains for us to show that the func-
tion defined in (4.1) coincides with the value function in (2.3) and that the stopping times 7, and
¢« in (4.2) form a Nash equilibrium with the boundaries a. (s, ¢) and b, (s, q) specified in the
previous section. For this purpose, let us denote by V(x, s, g) the right-hand side of the expres-
sion in (4.1) associated with these boundaries a. (s, g) and b.(s, g). Then it follows from the
straightforward calculations presented in the previous section that the function V(x, s, g) solves
the system of (2.28)—(2.30), while the smooth-fit and normal-reflection conditions of (2.33)—
(2.34) are satisfied in the appropriate regions kzk_l(a*, by), kzk(a*) from (3.30)-(3.31), for
keN, and ﬁzz_l(a*, by), ﬁzl(b*) from (3.34)—(3.35), for I € N, respectively. We also observe
that the function V(x, s, q) is C% 11 on the closure C, of C, from (2.24) and D, from (2.25), by
construction. Hence, taking into account the fact that the boundaries a.(s, g) and b.(s, q) are
assumed to be continuously differentiable, for 0 < g < s, by applying the change-of-variable
formula from [54, Theorem 3.1] (see also [59, Chapter II, Section 3.5] for a summary of the
related results and further references) to the process e”(“e)V(Xmg, Sing, Orng), we deduce
that

e "0 V(Xing, Stnes Oino) =V(x, s, @) +Ming *3)

7]
+ f e "LV = rV)Xy, Su, Qu) I(Xu 7 Su, Xu 7 Qus Xu 7 ax(Su, Qu)s Xu 7 bs(Su, Qu)) du
0

tAO

17
+ /0 e 0sV(Xu, Su, Qu) I(Xy, = S,) dSy + /() e aqV(Xus Sus Ouw) I(Xy = Ou) dQy,

for all > 0, holds with 6 defined in (2.10). Here, the process (M;xg)s>0 defined by

NG
Mipg = / ¢ V(Ko Sue O (X # Sus X £ 0u) 0(Sus Q) Xu dBy  (4d)
0

is a continuous local martingale under the probability measure PPy 4. Note that, since the
time spent by the process (X, S, Q) at the boundary surfaces {(x, s, g) € E' | x = a(s, ¢)}
and {(x, 5, q) € E' | x = b,(s, g)} and at the planes d; = {(x, s, q) € R3|0< g<x=s}anddr =
{(x,5,9) e R} |0<g=x<s}is of Lebesgue measure zero (see e.g. [10, Chapter II, Section
1]), the indicators in the second line of the formula of (4.3) and in the formula of (4.4) can be
ignored. Moreover, since the process S increases only when the process (X, S, Q) is located
on the plane d;, while the process Q decreases only when the process (X, S, Q) is located on
the plane d», the indicators in the third line of (4.3) can be set equal to one. Finally, taking
into account the fact that the candidate value function V(x, s, ¢) satisfies the normal-reflection
conditions of (2.34) at the diagonals d; and d> in the regions 1~?2k(a*), for k e N, in (3.35) and
/Iézl(b*), for [ € N, we may conclude that the integrals in the third line of (4.3) are actually equal
to zero.
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By using straightforward calculations and the arguments from the previous section, it can
be verified that the inequality (LV — rV)(x, s, ¢) < 0 holds for all d'(s, g) < x < b4(s, g) such
that x # a.(s, q), and the inequality (LV — rV)(x, s, ¢) > 0 holds for all x > a.(s, ¢) such that
x £ by (s, q), as well as x # s and x # g. Moreover, we observe directly from the expressions
in (3.13), (3.15), and (3.17) that the function V(x, s, g) — (s — Kx) is increasing in the variable
x on the interval g V a.(s, g) <x < by(s, g) A s, from 0 (when a.(s, g) > g) to the value g —
s+ (K — L)b.(s, q) (when b,(s, g) <s), because the expression 9,V (x, s, g) + K for the first-
order partial derivative in (3.19) is positive there, for (x, s, g) € E’. We also note from the
expressions in (3.13), (3.15), and (3.17) that the function V(x, s, ¢) is convex in the variable
x in a left-hand neighborhood of g V a.(s, g) and concave in a right-hand neighborhood of
b.(s, g) A s, because its second-order partial derivative 9y, V(x, s, q) is positive in a left-hand
neighborhood of ¢ V a.(s, ¢) and negative in a right-hand neighborhood of b.(s, g) A s, for
(x, s, @) € E'. Thus, we may conclude that the inequalities in (2.31) hold, which together with
the conditions of (2.29)—(2.30) and (2.33) imply that the inequalities s — Kx < V(x, s, q) <
q — Lx are satisfied, for all (x, s, ¢) € E/, under 0 < L < K < L + 1 given and fixed. It therefore
follows from the expression in (4.3) that the inequalities

e TN B(X o pe, s Sene,) <€D V(X ne,, Sencs Oene,) < VX, 8, @)+ Mepe,  (4.5)
and

e GXpong, Stungs Orone) = € "D VXpng, Seungs Orone) = VX, 5, @) + Meng
4.6)
hold for any stopping times 7 and ¢ of the process (X, S, Q), because T, A &y <6 (Py54-2.8.)
holds with 6 as defined in (2.10).

Now, consider the localising sequence (3¢,;),en for the local martingale (Mirg)i=0 from
(4.4) such that s, = inf{t > 0| [M x| > n}, for each n € N. Then, inserting t A 3¢, and ¢ A 3¢,
instead of T and ¢ in (4.5) and (4.6) and taking the expectations with respect to the probability
measure Py ; , in (4.5) and (4.6), by means of Doob’s optional sampling theorem, we get

Ev.q[e ™ T (F(Xopsys Sease) 1T A sty < 8) + G(Xe,, Se,, Q) 16 < T A 52)) ]
4.7
=< Ex,s,q[e_r(rA;*/\%n) V(X‘L'/\{*/\%na SrAg*A%,la Q‘[/\{*/\%n)]

<Vix,s, Q) + Ex,s,q[MrA{*A%n] =V, s, ‘I)

and
By q[e ™M (FXe, S2,) T < & A 5t) + G gy St sy Qense) I(E A stn < 7))
4.8)
> ]Ex,s,q[e_r(r*AZA%n) V(X‘[*/\C/\%n s ST*/\§/\%n , QT*/\é'/\%n )]
> V(x, 8, @)+ Ex s.g[Mengnse, | = Vx5, q)

for all (x, s, g) € E' and each n € N. Observe that, taking into account the arguments from [64,
pp. 635-636], it follows from the structure of the stopping times 7, and ¢, in (4.2) that the

property

E}c,s,q[ sup e~ (BALIAD Smmw] _ Ex,s,q[ sup e AN (X S)] <00 (4.9)
>0 >0
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holds, and the variables e "% (Sy 1o, — KXy nz,) and e "N (Qp p, — LXr, ng,) are
finite on the set {7, A { = 00} (Py 5 4-a.s.); moreover, Py ,(74 A &y < 00)=1forall (x, 5, q) €
E’. Hence, letting n go to infinity and using Fatou’s lemma, we obtain that the inequalities

Exsqle” ) (F(Xe, SO (T < &) + GXe,.. Se,. Q) (6 < 1)) < V(x, 5. 9)  (4.10)
and
Ersqle” ™) (FXe,, Se) It < )+ G(Xe, S, Q) I <1) | = V(x,s.q)  (4.11)

hold for any stopping times 7 and ¢ such that t A ¢ <6 (P 5 4-a.s.) holds, and for all (x, s, g) €
E'. Therefore, using the fact that the function V(x, s, ¢) and the continuously differentiable
boundaries a.(s, g) and b, (s, g) solve the second-order ordinary differential equation in (2.28)
and satisfy the conditions of (2.29)—(2.30) and (2.33)—(2.34), inserting 7 in place of T and ¢,
in place of ¢ into (4.10) and (4.11), we obtain that the equality

By s.q[e N (F(Xe,, Se) (T < 64) + G(Xe,, Sp,., Qe) 16 < 10)) | =Vix, 5, 9)  (4.12)

holds, so that the candidate function V(x, s, g) coincides with the value function V,(x, s, q)
of the optimal stopping game in (2.3) for all (x, s, ¢) € E’, and the optimal stopping times T,
and ¢, form a Nash equilibrium of the zero-sum game. Finally, we recall from the results
of Part (ii) of Subsection 2.2 above, which are implied by standard comparison arguments
applied to the value functions of the appropriate optimal stopping problems, that the inequal-
ities a'(s, ) V a(s, ) < ax(s, q) <a(s, ) AsAD' (s, q) and d'(s, q) vV qV b(s, ) < by(s, q) <
b(s, g) A b'(s, g) should hold, for 0 < g < s. This completes the verification. [

5. Appendix

In this section, we derive closed-form expressions for the value functions and optimal stop-
ping boundaries of some auxiliary optimal stopping problems, which provide upper and lower
bounds for the value function and optimal stopping boundaries of the original optimal stopping
zero-sum game of (2.3).

5.1. The optimal stopping and free-boundary problems

In order to provide the upper and lower bounds for the value functions and optimal stopping
boundaries in the optimal stopping game of (2.3) above, let us introduce the value functions
V(x, s, q) and V(x, s, g) of the optimal stopping problems

V(x, s, g) = sup Ex,s,q[e_” (S — KXt)] and V(x,s,q)= ifgf]Ex,s,q[e_r{ (Qr —LX; )]
T

5.1)
for some given constants K, L > 0, where the supremum and infimum are taken with respect to
all stopping times t and ¢ of the process X. It can be shown by means of arguments similar to
the ones used in Part (ii) of Subsection 2.2, based on the representations (2.14) and (2.15) for
the reward functional, under the assumptions { = 0o and T = 00, respectively, or by using the
(easily proved) convexity and concavity of the value functions V(x, s, ¢) and V(x, s, ¢), that
the optimal stopping times in the problems of (5.1) have the form

T=inf{r>0|X,<aS;, Q)} and ¢=inf{r>0|X,>b(S, 0} (5.2)
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with some functions a(s, g) and b(s, q), for 0 < g < s, to be determined (see [36, 51] as well as
[23, Section 3] and [21]). By means of arguments similar to the ones applied in [13, Subsection
3.2] and [52, Proposition 2.1], the existence of such boundaries a(s, ¢) and b(s, g) can be
explained by the facts that the costs for the holder (maximiser of the expected discounted
payoff) of waiting until the process X from (1.1) coming from a small x > 0 increases to the
current value of the running maximum process S and the costs for the writer (minimiser of the
expected discounted payoff) of waiting until the process X coming from a large x > 0 decreases
to the current value of the running minimum process Q may be too large, owing to the structure
of the integrands in the reward functionals of (2.16) and (2.17), respectively.

Extending the arguments from [36, 51] (see also [23, Section 3] and [21]) to the three-
dimensional model under consideration here, we may conclude that the unknown value
functions V(x, s, ¢) and V(x, s, g) from (5.1) and the unknown boundaries a(s, ¢) and b(s, q)
from (5.2) should solve the equivalent free-boundary problems

LV —rV)x,s,9)=0 for gVva(s,g)<x<s or 5.3)

LV —rV)x,s,q)=0 for g<x<b(s,qg)As, 64

V(x, s, q)|x:a(w)_|r =s—Ka(s,q), Vs, q)|x:b(s’q)_ =q—Lb(s, q), (5.5)
A V(x, s, ‘1)|x=a<s,q) L=—K Vs, q)|x:b(w)_ =-L, (5.6)

WV(x,s.q)| _, =0, 9,V(x. s, q) 0, (5.7

x=q+ =

Vix,s,q)=s—Kx for x<a(s,q), Vi,s,q99=q—Lx for x>b(s,q), (5.8)

Vix,s,q)>s—Kx for a(s,q)<x<s, Vx,s,9)<q—Lx for qg=<x<b(s,q),
5.9)

LV —-rV)x,s,9) <0 for x<a(s,q), @LV—-rV)x,s,q) >0 for x>b(s,q),
(5.10)

where the conditions in (5.5)—(5.7) are satisfied, for each 0 < g < s.

5.2. Solutions to the free-boundary problems

It follows from the arguments of [36, 51] (see also [23, Section 3] and [21]) that the solution
to the left-hand system in (5.3) and (5.5)—(5.10) has the form of (3.15) with (3.16), for 0 < g <
a(s, q) < x < s, while the boundary a(s, q) solves the first-order nonlinear ordinary differential
equation in (3.24), for any ¢ > 0 fixed. We also see that the solution to the right-hand system
in (5.4) and (5.5)-(5.10) has the form of (3.17) with (3.18), for 0 < g <x < b(s, g) < s, while
the boundary b(s, g) solves the first-order nonlinear ordinary differential equation in (3.27), for
any s > 0 fixed.

We further define the maximal and minimal admissible solutions of the first-order nonlinear
ordinary differential equations as the largest and smallest possible solutions a(s, ¢) and b(s, ¢)
of the equations in (3.24) and (3.27) which satisfy the inequalities a(s, g) < s and b(s,q)>q
for all 0 < g < s. By virtue of the classical results on the existence and uniqueness of solutions
for first-order nonlinear ordinary differential equations, we may conclude that these equations
admit (locally) unique solutions, in view of the fact that the right-hand sides in (3.24) and
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(3.27) are (locally) continuous in (s, g, a(s, g)) and (s, g, b(s, ¢)) and (locally) Lipschitz in
a(s, q) and b(s, g), for each (s, g) fixed (see [52, Subsection 3.9] for similar arguments based on
the analysis of other first-order nonlinear ordinary differential equations). It can then be shown
by means of technical arguments based on Picard’s method of successive approximations that
there exist unique solutions a(s, g) and b(s, g) to the equations in (3.24) and (3.27), started at
some points (sg, so, g) and (s, go, go) such that so > 0 and g¢ > 0, for each 0 < g < s fixed (see
also [34, Subsection 3.2] and [52, Example 4.4] for similar arguments based on the analysis of
other first-order nonlinear ordinary differential equations).

Hence, in order to construct the appropriate functions a(s, ) and b(s, ¢) which satisfy the
equations in (3.24) and (3.27) and stay strictly above or below the appropriate diagonal for 0 <
q < s, we can follow the arguments from [58, Subsection 3.5] (among others), which are based
on the construction of sequences of so-called bad—good solutions which intersect the diagonals.
For this purpose, for any positive sequences (sk, gx)reN and (s;, g1)ien such that s; 1 oo as
k — oo and ¢q; | 0 as [ — oo, we can construct the sequence of solutions ax(s, q), for k € N, and
bi(s, g), for [ € N, to the equations (3.24) and (3.27) such that ax(sk, gx) = sk and b;(s;, q1) = qi
holds, for each k, I € N. It follows from the structure of the equations in (3.24) and (3.27)
that the properties d;ax(sk, gx) < 1 and 94b;(s;, g;) > 1 hold, for each k, /€ N (see also [51,
pp. 979-982] for the analysis of solutions of the non-parametrised version of the first-order
nonlinear differential equation of (3.24)). Observe that, by virtue of the uniqueness of solutions
mentioned above, we know that the two curves s — ai(s, g) and s — a,,(s, g) cannot intersect,
and similarly g +— b(s, g) and g — by(s, g) cannot intersect, for /, k, m, n € N such that k #
m and [ # n; thus, the sequence (ax(s, q))ieN 1s increasing and the sequence (b;(s, q))eN 1S
decreasing, so that the limits a(s, g) = limy_, oo ax(s, ¢) and b(s, ) = lim_ o bi(s, q) exist, for
each 0 < ¢ < s. We may therefore conclude that a(s, ¢) and b(s, g) provide the maximal and
minimal solutions to the equations in (3.24) and (3.27) such that g,(s, g) < s holds for each
k e N and by(s, g) > g holds for each [ € N, for all 0 < g < s.

Moreover, since the right-hand sides of the first-order nonlinear ordinary differential equa-
tions in (3.24) and (3.27) are (locally) Lipschitz in s and g, for each 0 < g < s, one can deduce
by means of Gronwall’s inequality that the functions ax(s, ¢) and b;(s, g), for each k, [ € N,
are continuous, so that the functions a(s, ¢) and b(s, ¢) are continuous too. The appropriate
maximal admissible solutions of first-order nonlinear ordinary differential equations, and the
associated maximality principle for solutions of optimal stopping problems, which is equiva-
lent to the superharmonic characterisation of the payoff functions, were established in [52] and
further developed in [5, 20, 23, 30, 32-37, 46, 50-51, 57-58, 63], as well as other subsequent
papers (see [59, Chapter I; Chapter V, Section 17] for further references).

5.3. The results

Summarising the facts shown above, we state the following result, which can be proved by
means of the same arguments as used for Theorem 1 above, in combination with the arguments
from [21] (see [64]-[66] for the original derivation and [20]—-[23] for the related comparison
arguments).

Theorem 2. Let the process (X, S, Q) be as defined in (1.1) and (1.3), where r > 0 is a constant,
and 8(s, q) > 0 and o (s, q) > 0 are continuously differentiable bounded functions on [0, 00]>.
Assume that the function 8(s, q) is increasing in both the variables s and q on [0, 00]*. Then
the following assertions hold:
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(i) The value function V(x, s, q) of the left-hand optimal stopping problem in (5.1) with
K > 0 takes the form

Vx,s, qg;a(s, q)), if O0<a(s,q) <x<s,

Vix, s, q)= (5.11)

s—Kx, if 0<x<af(s,q),

and the optimal stopping time T has the form of (5.2), where the function
Vix, s, q;a(s, q)) is given by (3.15)—(3.16), while the optimal stopping boundary
a(s, @l < rs/(Kd(s, q))] provides the maximal solution of the first-order nonlinear ordi-
nary differential equation in (3.24) staying below the diagonal di = {(x, s, q) e R3 | 0 <
g<x=s}, for0<qg<s.

(ii) The value function V(x, s, q) of the right-hand optimal stopping problem in (5.1) with
L > 0 takes the form

V(x, s, q;b(s, @), if 0<g=<x<Db(s, q),

. = (5.12)
q— Lx, if x>b(s, q),

Z(xv S, CI) =

and the optimal stopping time ¢ has the form of (5.2), where the function
V(x, s, q;b(s, q)) is given by (3.17)—(3.18), while the optimal stopping boundary
b(s, @l = rq/(Lé(s, q))] provides the minimal solution of the first-order nonlinear ordi-
nary differential equation in (3.27) staying above the diagonal d» = {(x, s, q) e R | 0 <
qg=x=<s}, for0<qg<s.
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