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Abstract: We derive closed-form solutions to some optimal stopping problems for one-dimensional geometric

Brownian motions with positive discounting rates. It is assumed that the original processes can be trapped or

reflected or sticky at some fixed lower levels and the conditions on the gain functions imply that the the

optimal stopping times turn out to be the first times at which the processes hit some upper level which are to

be determined. The proof is based on the reduction of the original optimal stopping problems to the to the

equivalent free-boundary problems and the solutions of the latter problems by means of the instantaneous-

stopping and smooth-fit conditions for the value functions at the optimal stopping boundaries.

We also obtain explicit expressions for the Laplace transforms or moment generating functions (with positive

exponents or parameters) of the first hitting times for the geometric Brownian motion of given upper levels

under various conditions on the parameters of the model. In particular, we determine the upper bounds for

the hitting levels and given positive exponents or parameters of the Laplace transforms for which the resulting

expectations are finite under various relations between the parameters of the model. Moreover, we determine

the upper bounds for the positive exponents or parameters of the Laplace transforms and given hitting levels

for which the resulting expectations are finite under various relations between the parameters of the model.

The main aim of this short article is to derive closed-form solutions to the optimal stopping problem of (2)

for the geometric Brownian motion X defined in (1) with a positive exponential discounting rate λ > 0. We

assume that the process X can be trapped or reflected or sticky at some level a > 0 and the gain function G(x)
is a twice continuously differentiable positive and strictly increasing concave function on (0,∞). Optimal

stopping problems for one-dimensional diffusion processes with negative exponential discounting rates have

been studied after Dynkin (1963) by many authors in the literature including Fakeev (1970), Mucci (1978),

Salminen (1985), Øksendal and Reikvam (1998), Alvarez (2001), Dayanik and Karatzas (2003), and Lamber-

ton and Zervos (2013) among others (we refer to Øksendal (1998, Chapter X), Peskir and Shiryaev (2006)

and Gapeev and Lerche (2011) for further references). The consideration of optimal stopping problems for

diffusions with positive discounting rates was initiated by Shepp and Shiryaev (1996) and then has been con-

tinued by other authors in the literature (we refer to Gapeev (2019) and Gapeev (2020) for further references).

In this short article, we also present explicit expressions for the Laplace transforms (with positive exponents

or parameters) of the first hitting times of given upper levels under various conditions on the parameters of

the model (see Borodin and Salminen (2002, Part II) for other computations of the Laplace transforms of first

hitting times).

Keywords: Optimal stopping problem, positive discounting rate, Brownian motion, first hitting time, Laplace

transform or moment generating function.
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1 PRELIMINARIES

In this section, we give a formulation of an optimal stopping problem for a geometric Brownian motion with

positive exponential discounting rates.

1.1 The optimal stopping problem

For a precise formulation of the problem, let us consider a probability space (Ω,F , P ) with a standard Brow-

nian motion B = (Bt)t≥0 and its natural filtration (Ft)t≥0. Let us define the process X = (Xt)t≥0 by:

Xt = x exp
(

(

µ− σ2/2
)

t+ σ Bt

)

(1)

where µ ∈ R and σ > 0 are some given constants, and x > a > 0 is fixed. The purpose of the present paper

is to study the optimal stopping problem for the value function V∗(x) = V∗(x; a;λ) given by:

V∗(x) = inf
τ
Ex

[

eλτ G(Xτ )
]

(2)

where G(x) is a twice continuously differentiable positive and strictly increasing concave function on (0,∞),
and λ > 0 is given and fixed. Here, Ex denotes the expectation with respect to the probability measure P
given that the process X starts at some point x ≥ a, for some a > 0 fixed, under the assumptions that the

process X is trapped or reflected or sticky at x = a (see Borodin and Salminen (2002, Part I, Appendix 1)

for the definitions of these notions). Observe from the structure of the reward in the expression of (2) that the

infimum there should be taken over finite stopping times τ of the process X for which the condition:

Ex

[

eλτ
]

< ∞ (3)

holds. We will search for the optimal stopping time τ∗ for the problem of (2) in the form:

τ∗ = inf{t ≥ 0 |Xt ≥ b∗} (4)

for some b∗ > a > 0 to be determined, for which the condition of (3) holds.

1.2 The free-boundary problem

In order to find closed-form expressions for the unknown value function V∗(x) from (2), we may use the results

of general theory of optimal stopping problems for continuous time Markov processes (see, e.g. Shiryaev

(1978, Chapter III, Section 8) and Peskir and Shiryaev (2006, Chapter IV, Section 8)) and formulate the

associated free-boundary-value problem for the infinitesimal operator L of the process X from (1) of the

form:

(LV )(x) ≡ µxF ′(x) + ((σ2 x2)/2)F ′′(x) = −λV (x) for a < x < b (5)

V (b−) = G(b) and V ′(b−) = G′(b) (6)

αV ′′(a+) = β V ′(a+)− γ V (a+) (7)

V (x) = G(x) for x > b (8)

V (x) < G(x) for a < x < b (9)

(LV )(x) ≡ µxF ′(x) + ((σ2 x2)/2)F ′′(x) > −λV (x) for x > b (10)

for some α, β, γ > 0 given and fixed. Here, we have the instantaneous-stopping and smooth-fit conditions of

(6), and the condition of (7) at the point x = a, which reflects the properties of the infinitesimal operator L.

2 SOLUTIONS TO THE FREE-BOUNDARY PROBLEM

We now look for functions which solve the boundary-value problems. For this purpose, we consider three

separate cases based on the different relations between the parameters of the model.

2.1 The general solution to the ordinary differential equation and other conditions

The general solution to the second-order ordinary differential equation in (5) has the form:

V (x) = C1 U1(x) + C2 U2(x) (11)
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where Ci, for i = 1, 2, are some arbitrary constants. Here, the functions Ui(x), for i = 1, 2, represent

fundamental solutions (independent particular solutions) of the ordinary differential equation in (5) (see, e.g.

Rogers and Williams (1987, Chapter V, Section 50)). Then, by applying the conditions of (6)-(7) to the

function in (11), we see that the equations:

C1 U1(b) + C2 U2(b) = G(b) and C1 U
′
1(b) + C2 U

′
2(b) = G′(b) (12)

α
(

C1 U
′′
1 (a) + C2 U

′′
2 (a)

)

= β
(

C1 U
′
1(a) + C2 U

′
2(a)

)

− γ
(

C1 U1(a) + C2 U2(a)
)

(13)

should hold, for 0 < a < b < ∞. Hence, solving the system of equations in (12)-(13), we obtain:

V (x; a, b) = C1(a, b)U1(x) + C2(a, b)U2(x) (14)

for a < x < b, with

C1(a, b) = −
αU ′′

2 (a)− βU ′
2(a) + γU2(a)

(αU ′′
1 (a)− βU ′

1(a) + γU1(a))U2(b)− U1(b)(αU ′′
2 (a)− βU ′

2(a) + γU2(a))
(15)

and

C2(a, b) =
αU ′′

1 (a)− βU ′
1(a) + γU1(a)

(αU ′′
1 (a)− βU ′

1(a) + γU1(a))U2(b)− U1(b)(αU ′′
2 (a)− βU ′

2(a) + γU2(a))
(16)

as well as

−
C2(a, b)

C1(a, b)
≡

αU ′′
1 (a)− βU ′

1(a) + γU1(a)

αU ′′
2 (a)− βU ′

2(a) + γU2(a)
=

G(b)U ′
1(b)−G′(b)U1(b)

G(b)U ′
2(b)−G′(b)U2(b)

(17)

for 0 < a < b < ∞.

2.2 The expressions for the candidate value function and optimal stopping boundary

Let us now consider three different cases of fundamental systems Ui(x), i = 1, 2, of solutions of the second-

order ordinary differential equation in (5) for (11) under certain relations on the parameters of the model.

(i). Let us first assume that 0 < λ < (µ − σ2/2)2/(2σ2) and µ > σ2/2 holds. In this case, we have

Ui(x) = xηi , for i = 1, 2, in (11) and (12)-(13), where ηj , for j = 1, 2, are given by:

ηj =
1

2
−

µ

σ2
− (−1)j

√

(

1

2
−

µ

σ2

)2

−
2λ

σ2
(18)

so that η2 < η1 < 0. Then, by applying the conditions in (12)-(13), we obtain that the candidate value function

has the form:

V (x; a, b) =
1

η1 − η2

(

(

bG′(b)− η2 G(b)
)

(x

b

)η1

+
(

η1 G(b)− bG′(b)
)

(x

b

)η2

)

(19)

while the candidate optimal stopping boundary should solve the arithmetic equation:

η1G(b)− bG′(b)

η2G(b)− bG′(b)
=

(a

b

)η1−η2 αη1(η1 − 1)− βη1a+ γa2

αη2(η2 − 1)− βη2a+ γa2
(20)

for some 0 < a < b < ∞.

(ii). Let us now assume that λ = (µ − σ2/2)2/(2σ2) and µ > σ2/2 holds. In this case, we have U1(x) =
xν lnx and U2(x) = xν in (11) and (12)-(13), where ν is given by:

ν =
1

2
−

µ

σ2
(21)

so that ν < 0. Hence, by applying the conditions in (12)-(13), we get that the candidate value function has the

form:

V (x; a, b) =
(

bG′(b)− ν G(b)
)

(x

b

)ν

ln
(x

b

)

+G(b)
(x

b

)ν

(22)

while the candidate optimal stopping boundary should solve the arithmetic equation:

G(b)(ν ln b+ 1)−G′(b)b ln b

νG(b)− bG′(b)
=

α(ν(ν − 1) ln a+ 2ν − 1)− βa(ν ln a+ 1) + γa2

αν(ν − 1)− βνa+ γa2
(23)

for some 0 < a < b < ∞.



P. V. Gapeev, Optimal stopping problems and Laplace transforms of first hitting times ...

(iii). Let us finally assume that λ > (µ− σ2/2)2/(2σ2) holds. In this case, we have U1(x) = xν sin(θ lnx)
and U2(x) = xν cos(θ lnx) in (11) and (12)-(13), where ν is defined in (21) and θ is given by:

θ =

√

2λ

σ2
−

(

1

2
−

µ

σ2

)2

. (24)

Thus, by applying the conditions in (12)-(13), we obtain that the candidate value function has the form:

V (x; a, b) =
(

bG′(b)− ν G(b)
)

(x

b

)ν

sin
(

θ ln
(x

b

))

+ θ G(b)
(x

b

)ν

cos
(

θ ln
(x

b

))

(25)

while the candidate optimal stopping boundary should solve the arithmetic equation:

(νG(b)− bG′(b)) tan(θ ln b)− θG(b)

νG(b)− bG′(b)− θG(b) tan(θ ln b)
(26)

=
(α(ν(ν − 1)− θ2)− βνa+ γa2) tan(θ ln a) + α(2ν − 1)θ − βθa

α(ν(ν − 1)− θ2)− βνa+ γa2 − (α(2ν − 1)θ − βθa) tan(θ ln a)

for some 0 < a < b < ∞.

3 MAIN RESULTS (VERIFICATION)

Theorem 1. Let the process X be geometric Brownian motion given by (1) with µ ∈ R and σ > 0, which

is trapped or reflected or sticky with the rates α, β, γ > 0 at some point a > 0 given and fixed. Assume that

the payoff function G(x) is a twice continuously differentiable positive and strictly increasing convex function,

and the threshold b∗ is a minimal solution of the arithmetic equation in (17) which admits its particular cases

(20) or (23) or (26) on the interval (a,∞). Assume that the resulting candidate function:

V (x) =

{

V (x; a, b∗), if a ≤ x < b∗

G(x), if x ≥ b∗
(27)

where V (x; a, b) is given by (11) which admits its particular cases (19) or (22) or (25), satisfies the inequalities

in (9)-(10). Then, the function V (x) from (27) provides the value function V∗(x) of the optimal stopping

problem in (2), while the first hitting time τ∗ from (4) is optimal, whenever is satisfies the condition of (3), for

λ > 0 given and fixed.

Proof. In order to verify the assertions stated above, we recall that the function V (x) from (27) solves the

ordinary differential equation of (5) and satisfies the conditions of (6)-(8) by construction. Then, applying the

local time-space formula from Peskir and Shiryaev (2006, Chapter II, Section 3.5) to the process eλtV (Xt),
we get:

eλt V (Xt) = V (x) +

∫ t

0

eλu (LV + rV )(Xu) I(Xu 6= a,Xu 6= b∗) du+Mt (28)

where the process M = (Mt)t≥0 defined by:

Mt =

∫ t

0

eλu V ′(Xu) I(Xu 6= a)σ(Xu) dBu (29)

for all t ≥ 0, is a continuous local martingale with respect to Px, which is a probability measure under which

the process X starts at x ≥ a. Note that, since the time spent by the process X at the levels x = a and x = b∗ is

of Lebesgue measure zero (see, e.g. Borodin and Salminen (2002, Chapter II, Section 1)), the indicators which

appear in the formulas of (28) and (29) can be ignored (see also Shiryaev (1999, Chapter VIII, Section 2) and

Gapeev (2019) for further arguments).

By using the assumptions of the theorem that the inequalities in (9)-(10) hold with the boundary b∗ specified

above, we conclude from the conditions in (6) and (8) that the inequality (LV + λV )(x) ≥ 0 holds, for any

x > a such that x 6= b∗, as well as the inequality V (x) ≤ G(x) holds, for all x > 0. It therefore follows from

the expression in (28) that the inequalities:

eλτ G(Xτ ) ≥ eλτ V (Xτ ) ≥ V (x) +Mτ (30)
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hold for any stopping time τ of the process X started at x ≥ a.

Now, consider the localising sequence (τn)n∈N for the local martingale M from (29) such that τn = inf{t ≥
0 | |Mt| ≥ n}, for each n ∈ N. Then, inserting τ ∧ τn instead of τ in (30) and taking the expectations with

respect to the probability measure Px there, by means of Doob’s optional sampling theorem (see, e.g. Liptser

and Shiryaev (2001, Chapter III, Theorem 3.6)), we get that the inequalities:

Ex

[

eλ(τ∧τn) G(Xτ∧τn)
]

≥ Ex

[

eλ(τ∧τn) V (Xτ∧τn)
]

≥ V (x) + Ex

[

Mτ∧τn

]

= V (x) (31)

hold any stopping time τ satisfying the condition of (3) and all x > a. Hence, letting n go to infinity and apply-

ing the Lebesgue dominated convergence theorem under the condition of (3), we obtain that the inequalities:

Ex

[

eλτ G(Xτ )
]

≥ Ex

[

eλτ V (Xτ )
]

≥ V (x) (32)

hold, for any stopping time τ satisfying the condition of (3) and all x > a. By virtue of the structure of the

stopping time in (4), it is readily seen that the equalities in (32) hold with τ∗ instead of τ when x ≥ b∗.

It remains to show that the equalities are attained in (32) when τ∗ replaces τ for a ≤ x < b∗. By virtue of the

fact that the function V (x; a, b∗) and the boundaries a and b∗ satisfy the conditions in (5) and (6), it follows

from the expression in (28) and the structure of the stopping time in (4) that the equalities:

eλ(τ∗∧τn) V (Xτ∗∧τn ; a, b∗) = V (x; a, b∗) +Mτ∗∧τn (33)

are satisfied for all a ≤ x < b∗. Hence, taking into account the assumption of the theorem that the stopping

time τ∗ from (4) satisfies the condition of (3) and letting n go to infinity as well as using the condition of (6),

we apply again the Lebesgue dominated convergence theorem to obtain the equalities:

Ex

[

eλτ∗ G(Xτ∗)
]

= Ex

[

eλτ∗ V (Xτ∗ ; a, b∗)
]

= V (x) (34)

for all a ≤ x < b∗. The latter, together with the inequalities in (32), implies the fact that the candidate function

V (x) from (27) coincides with the value function V∗(x) from (2).

4 COMPUTATIONS OF THE LAPLACE TRANSFORMS

We now compute the Laplace transforms (or moment generating functions) under particular relations between

the parameters of the model. We therefore assume that G(x) = 1 in (2).

(i). Let us first consider the case α = β = 0 and γ = 1, so that the geometric Brownian motion X from

(1) is trapped at the point a. Such a situation appears in the perpetual American barrier call option problem

for selling short (see Gapeev (2019)). Then, under 0 < λ ≤ σ2ν2/2 and ν < 0, the expression in (14) with

(15)-(16) which takes the form of (19) and (22) is finite, for all a ≤ x ≤ b < ∞, where ν is given by (21).

On the other hand, under λ > σ2ν2/2, the expression in (14) with (15)-(16) takes the form of (25) which is

equivalent to:

V1(x; a, b;λ) (35)

=
(x

b

)ν sin(θ ln(x/a))

sin(θ ln(b/a))
with b̄(λ) = a exp

(

π

2θ(λ)

)

and λ̄ =
πσ2

4 ln(b/a)
+

σ2ν2

2

for all a ≤ x ≤ b < ∞, where θ = θ(λ) is given by (24). Hence, the expression in (35) is finite if and

only if −π/(2θ) < ln(x/a) ≤ ln(b/a) < π/(2θ), so that we can determine b̄ = b̄(λ, a) from the equation

ln(b/a) = π/(2θ) which represents the upper bound for the thresholds a ≤ b < b̄ such that the expectation in

(3) is finite, for λ > σ2ν2/2 and a > 0 given and fixed. Thus, we can also determine λ̄ = λ̄(b, a) as the upper

bound for the Laplace exponents σ2ν2/2 < λ < λ̄ such that the expectation in (3) is finite, for 0 < a < b < ∞
given and fixed.

(ii). Let us now consider the case α = γ = 0 and β = 1, so that the process X is reflected at the point

a. Such a situation appears in the contract of the dual Russian call option introduced in Shepp and Shiryaev

(1996) (see also Gapeev (2019) and Gapeev (2020)) with a = 1. Then, under 0 < λ ≤ σ2ν2/2 and ν < 0,

the expression in (14) with (15)-(16) which takes the form of (19) and (22) is finite, for all a ≤ x ≤ b < ∞,
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where ν is given by (21). On the other hand, under λ > σ2ν2/2, the expression in (14) with (15)-(16) takes

the form of (25) which is equivalent to:

V2(x; a, b;λ) =
(x

b

)ν ν sin(θ ln(x/a))− θ cos(θ ln(x/a))

ν sin(θ ln(b/a))− θ cos(θ ln(b/a))
=

(x

b

)ν sin(θ ln(x/c2))

sin(θ ln(b/a2))
(36)

for all a ≤ x ≤ b < ∞, where θ = θ(λ) is given by (24) and we set:

a2 ≡ a2(λ) = a exp

(

1

θ(λ)
arctan

(

θ(λ)

ν

))

(37)

when ν 6= 0. Hence, the expression in (36) is finite if and only if −π/(2θ) < ln(x/a2) ≤ ln(b/a2) < π/(2θ),
so that we can determine b̄ = b̄(λ, a) from the equation ln(b/a2) = π/(2θ) which represents the upper bound

for the thresholds a ≤ b < b̄ such that the expectation in (3) is finite, for λ > σ2ν2/2 and a > 0 fixed. Thus,

we can also determine λ̄ = λ̄(b, a) as the upper bound for the Laplace exponents σ2ν2/2 < λ < λ̄ such that

the expectation in (3) is finite, for 0 < a < b < ∞ given and fixed. In this case, we have:

b̄(λ) = a2(λ) exp

(

π

2θ(λ)

)

and λ̄ =
πσ2

4 ln(b/a2(λ̄))
+

σ2ν2

2
(38)

where λ̄ is the appropriate root of the arithmetic equation in (41) and a2(λ) is given by (37).

(iii). Let us now consider the case α = 0, β = 1, and γ > 0, so that the process X from (1) is trapped or

reflected at the point a. Then, under 0 < λ ≤ σ2ν2/2 and ν < 0, the expression in (14) with (15)-(16) which

takes the form of (19) and (22) is finite, for all a ≤ x ≤ b < ∞, where ν is given by (21). On the other hand,

under λ > σ2ν2/2, the expression in (14) with (15)-(16) takes the form of (25) which is equivalent to:

V3(x; a, b;λ) =
(x

b

)ν (ν − γa) sin(θ ln(x/a))− θ cos(θ ln(x/a))

(ν − γa) sin(θ ln(b/a))− θ cos(θ ln(b/a))
=

(x

b

)ν sin(θ ln(x/a3))

sin(θ ln(b/a3))
(39)

for all a ≤ x ≤ b < ∞, where θ = θ(λ) is given by (24) and we set:

a3 ≡ a3(λ) = a exp

(

1

θ(λ)
arctan

(

θ(λ)

ν − γa

))

(40)

when ν 6= γa. Hence, the expression in (39) is finite if and only if −π/(2θ) < ln(x/a3) ≤ ln(b/a3) <
π/(2θ), so that we can determine b̄ = b̄(λ, a) from the equation ln(b/a3) = π/(2θ) which represents the

upper bound for the thresholds a ≤ b < b̄ such that the expectation in (3) is finite, for λ > 0 and a > 0 fixed.

Thus, we can also determine λ̄ = λ̄(b, a) as the upper bound for the Laplace exponents 0 < λ < λ̄ such that

the expectation in (3) is finite, for 0 < a < b < ∞ given and fixed. In this case, we have:

b̄(λ) = a3(λ) exp

(

π

2θ(λ)

)

and λ̄ =
πσ2

4 ln(b/a3(λ̄))
+

σ2ν2

2
(41)

where λ̄ is the appropriate root of the arithmetic equation in (41) and a3(λ) is given by (40).

(iv) Let us now consider the case α = 1 and β = γ = 0, so that the process X is sticky at the point a. Then,

under 0 < λ ≤ σ2ν2/2 and ν < 0, the expression in (14) with (15)-(16) which takes the form of (19) and

(22) is finite, for all a ≤ x ≤ b < ∞, where ν is given by (21). On the other hand, under λ > σ2ν2/2, the

expression in (14) with (15)-(16) takes the form of (25) which is equivalent to:

V4(x; a, b;λ) (42)

=
(x

b

)ν (ν(ν − 1)− θ2) sin(θ ln(x/a))− ((2ν − 1)θ) cos(θ ln(x/a))

(ν(ν − 1)− θ2) sin(θ ln(b/a))− ((2ν − 1)θ) cos(θ ln(b/a))
=

(x

b

)ν sin(θ ln(x/a4))

sin(θ ln(b/a4))

for all a ≤ x ≤ b < ∞, where θ = θ(λ) is given by (24) and we set:

a4 ≡ a4(λ) = a exp

(

1

θ(λ)
arctan

(

(2ν − 1)θ(λ)

ν(ν − 1)− θ2(λ)

))

(43)
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when ν(ν − 1) 6= θ2. Hence, the expression in (39) is finite if and only if −π/(2θ) < ln(x/a4) ≤ ln(b/a4) <
π/(2θ), so that we can determine b̄ = b̄(λ, a) from the equation ln(b/a4) = π/(2θ) which represents the upper

bound for the thresholds a ≤ b < b̄ such that the expectation in (3) is finite, for λ > σ2ν2/2 and a > 0 fixed.

Thus, we can also determine λ̄ = λ̄(b, a) as the upper bound for the Laplace exponents σ2ν2/2 < λ < λ̄ such

that the expectation in (3) is finite, for 0 < a < b < ∞ given and fixed. In this case, we have:

b̄(λ) = a4(λ) exp

(

π

2θ(λ)

)

and λ̄ =
πσ2

4 ln(b/a4(λ̄))
+

σ2ν2

2
(44)

where λ̄ is the appropriate root of the arithmetic equation in (44) and a4(λ) is given by (43).
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