
Deep Jump Learning for Off-Policy Evaluation
in Continuous Treatment Settings

Hengrui Cai ∗ † 1, Chengchun Shi ∗ ‡ 2, Rui Song§1, and Wenbin Lu¶ ‖1

1Department of Statistics, North Carolina State University
2Department of Statistics, London School of Economics and Political Science

Abstract

We consider off-policy evaluation (OPE) in continuous treatment settings, such
as personalized dose-finding. In OPE, one aims to estimate the mean outcome under
a new treatment decision rule using historical data generated by a different decision
rule. Most existing works on OPE focus on discrete treatment settings. To handle
continuous treatments, we develop a novel estimation method for OPE using deep jump
learning. The key ingredient of our method lies in adaptively discretizing the treatment
space using deep discretization, by leveraging deep learning and multi-scale change
point detection. This allows us to apply existing OPE methods in discrete treatments
to handle continuous treatments. Our method is further justified by theoretical results,
simulations, and a real application to Warfarin Dosing.

1 Introduction

Individualization proposes to leverage omni-channel data to meet individual needs. Indi-

vidualized decision making plays a vital role in a wide variety of applications. Examples

include individualized treatment regime in precision medicine (Qian and Murphy, 2011;

Chakraborty and Moodie, 2013; Wang et al., 2018; Chen et al., 2020), customized pricing
∗Equal contribution.
†hcai5@ncsu.edu
‡C.Shi7@lse.ac.uk
§rsong@ncsu.edu
¶wlu4@ncsu.edu
‖This paper is accepted at the 35th Conference on Neural Information Processing Systems (NeurIPS

2021). The authors are grateful to the anonymous reviewers for valuable comments and suggestions.

1

strategy in economics (Qiang and Bayati, 2016; Turvey, 2017), personalized recommendation

system in marketing (McInerney et al., 2018), etc. Prior to adopting any decision rule in

practice, it is crucial to know the impact of implementing such a policy. In medical and

public-policy domains, it is risky to apply a treatment decision rule or policy online to

estimate its mean outcome (see, e.g., Murphy et al., 2001; Hirano et al., 2003; Li et al.,

2011). Off-policy evaluation (OPE) thus attracts a lot of attention by estimating the mean

outcome under a new decision rule (or policy), i.e., the value function, using the offline data

generated by a different decision rule.

Despite the popularity of developing OPE methods with finitely many treatment (or

action) options (see e.g., Dudík et al., 2011, 2014; Wang et al., 2012; Zhang et al., 2012,

2013; Luedtke and Van Der Laan, 2016; Jiang and Li, 2016; Swaminathan et al., 2017; Wang

et al., 2017; Farajtabar et al., 2018; Cai et al., 2020; Wu and Wang, 2020; Su, Dimakopoulou,

Krishnamurthy and Dudík, 2020; Kallus and Uehara, 2020a; Shi et al., 2020, 2021), less

attention has been paid to the continuous treatment setting, such as personalized dose

finding (Chen et al., 2016; Zhou et al., 2018; Zhu, Lu, Kosorok and Song, 2020; Zhu, Lu

and Song, 2020), dynamic pricing (den Boer and Keskin, 2020), and contextual bandits

(Chernozhukov et al., 2019). Recently, a few OPE methods have been proposed to handle

continuous treatments (Kallus and Zhou, 2018; Krishnamurthy et al., 2019; Sondhi et al.,

2020; Colangelo and Lee, 2020; Singh et al., 2020; Su, Srinath and Krishnamurthy, 2020;

Kallus and Uehara, 2020b). All these methods rely on the use of a kernel function to extend

the inverse probability weighting (IPW) or doubly robust (DR) approaches developed in

discrete treatment domains (see e.g., Dudík et al., 2011). They suffer from two limitations.

First, the validity of these methods requires the mean outcome to be a smooth

function over the treatment space. This assumption could be violated in applications

such as dynamic pricing, where the expected demand for a product has jump discontinuities

as a function of the charged price (den Boer and Keskin, 2020). Specifically, a product could

attract a new segment of customers if the seller lowers the price below a certain threshold.

Thus, there will be a sudden increase in demand by a small price reduction, yielding a

discontinuous demand function. Second, these kernel-based methods typically use

a single bandwidth parameter. This is sub-optimal in cases where the second-order

2

derivative of the conditional mean function has an abrupt change in the treatment space;

see Section 3.1 for details. Addressing these limitations requires the development of new

policy evaluation tools and theory.

Our contributions are summarized as follows. Methodologically, we develop a deep jump

learning (DJL) method by integrating deep learning (LeCun et al., 2015), multi-scale change

point detection (see e.g., Niu et al., 2016, for an overview), and the doubly-robust value

estimators in discrete domains. Our method does not require kernel bandwidth

selection. It does not suffer from the limitations of kernel-based methods. The

key ingredient of our method lies in adaptively discretizing the treatment space using deep

discretization. This allows us to apply the IPW or DR methods to derive the value estimator.

The discretization addresses the first limitation of kernel-based methods, allowing us to

handle discontinuous value functions. The adaptivity addresses the second limitation of

kernel-based methods. Specifically, it guarantees the optimality of the proposed method

in cases where the second-order derivative of the conditional mean function has an abrupt

change in the treatment space. Theoretically, we derive the convergence rate of the value

estimator under DJL for any policy of interest, allowing the conditional mean outcome to be

either a continuous or piecewise function of the treatment; see Theorems 1 and 2 for details.

Under the piecewise model assumption, the rate of convergence is faster than

kernel-based OPE methods. Under the continuous model assumption, kernel-based

estimators converge at a slower rate when the bandwidth undersmoothes or oversmoothes

the data. Proofs of our theorems rely on establishing the uniform rate of convergence of

deep learning estimators; see Lemma D.1 in the supplementary article. We expect this

result to be of general interest in contributing to the line of work on developing theories for

deep learning methods (see e.g., Imaizumi and Fukumizu, 2019; Schmidt-Hieber et al., 2020;

Farrell et al., 2021). Empirically, we show the proposed deep jump learning outperforms

existing state-of-the-art OPE methods in both simulations and a real data application to

warfarin dosing.

3

2 Preliminaries

We first formulate the OPE problem in continuous domains. We next review some related

literature on the DR value estimator, kernel based evaluation methods, and multi-scale

change point detection.

2.1 Problem Formulation

The observed offline datasets can be summarized into {(Xi, Ai, Yi)}1≤i≤n where Oi =

(Xi, Ai, Yi) denotes the feature-treatment-outcome triplet for the ith individual and n

denotes the total sample size. We assume these data triplets are independent copies of

the population variables (X,A, Y). Let X ∈ Rp and A denote the p dimensional feature

and treatment (or action) space, respectively. We focus on the setting where A is one-

dimensional, as in personalized dose finding and dynamic pricing. A decision rule or policy

π : X → A determines the treatment to be assigned given the observed feature. We use b to

denote the propensity score, also known as the behavior policy, that generates the observed

data. Specifically, b(•|x) denotes the probability density function of A given X = x. Define

the expected outcome function conditional on the feature-treatment pair as

Q(x, a) = E(Y |X = x,A = a).

As standard in the OPE and the causal inference literature (see e.g., Chen et al., 2016;

Kallus and Zhou, 2018), we assume the stable unit treatment value assumption, no unmea-

sured confounders assumption, and the positivity assumption are satisfied. The positivity

assumption requires b to be uniformly bounded away from zero. The latter two assumptions

are automatically satisfied in randomized studies. These three assumptions guarantee that

a policy’s value is estimable from the observed data. Specifically, for a target policy π of

interest, its value can be represented by

V (π) = E[Q{X, π(X)}].

Our goal is to estimate the value V (π) based on the observed data.

4

2.2 Doubly Robust Estimator and Kernel-Based Evaluation

For discrete treatments, Dudík et al. (2011) proposed a DR estimator of V (π) by

1

n

n∑
i=1

ψ(Oi, π, Q̂, b̂) =
1

n

n∑
i=1

[
Q̂{Xi, π(Xi)}+

I{Ai = π(Xi)}
b̂(Ai|Xi)

{Yi − Q̂(Xi, Ai)}

]
, (1)

where I(•) denotes the indicator function, Q̂ and b̂(a|x) denote some estimators for the

conditional mean function Q and the propensity score b, respectively. The second term

inside the bracket corresponds to an augmentation term. Its expectation equals zero when

Q̂ = Q. The purpose of adding this term is to offer additional protection against potential

model misspecification of Q. Such an estimator is doubly-robust in the sense that its

consistency relies on either the estimation model of Q or b to be correctly specified. It can

be semi-parametrically efficient whereas the importance sampling or direct method are not.

By setting Q̂ = 0, equation 1 reduces to the IPW estimator.

In continuous treatment domains, the indicator function I{Ai = π(Xi)} equals zero

almost surely. Consequently, naively applying equation 1 yields a plug-in estimator∑n
i=1 Q̂{Xi, π(Xi)}/n. To address this concern, the kernel-based methods proposed to

replace the indicator function in equation 1 with a kernel function K[{Ai − π(Xi)}/h], i.e.,

1

n

n∑
i=1

ψh(Oi, π, Q̂, b̂) =
1

n

n∑
i=1

[
Q̂{Xi, π(Xi)}+

K{Ai−π(Xi)
h
}

b̂(Ai|Xi)
{Yi − Q̂(Xi, Ai)}

]
. (2)

Here, the bandwidth h represents a trade-off. The variance of the resulting value estimator

decays with h. Yet, its bias increases with h. More specifically, it follows from Theorem 1

of Kallus and Zhou (2018) that the leading term of the bias is equal to

h2
∫
u2K(u)du

2
E

{
∂2Q(X, a)

∂a2

∣∣∣∣
a=π(X)

}
. (3)

To ensure the term in equation 14 decays to zero as h goes to 0, it requires the expected

second derivative of the function Q(x, a) exists, and thus Q(x, a) needs to be a smooth

function of a. However, as commented in the introduction, this assumption could be violated

in certain applications.

5

2.3 Multi-Scale Change Point Detection

To adaptively discretize the treatment space, we leverage ideas from multi-scale change

point detection literature. The change point analysis considers an ordered sequence of

data, Y1:n = {Y1, · · · , Yn}, with unknown change point locations, τ = {τ1, · · · , τK} for some

unknown integer K. Here, τi is an integer between 1 and n − 1 inclusive, and satisfies

τi < τj for i < j. These change points split the data into K + 1 segments. Assume there

are sufficiently many data points lying within each segment such that the expected reward

can be consistently estimated. Within each segment, the expected outcome is a constant

function; see the left panel of Figure 1 for details. A number of methods have been proposed

on estimating change points (see for example, Boysen et al., 2009; Killick et al., 2012; Frick

et al., 2014; Fryzlewicz, 2014, 2020, and the references therein), by minimizing a penalized

objective function:

arg min
τ

(
1

n

K+1∑
i=1

[
C{Y(τi−1+1):τi}

]
+ γnK

)
,

where C is a cost function that measures the goodness-of-the-fit of the constant function

within each segment and γnK penalizes the number of change points. We remark that all

the above cited works focused on either models without features or linear models. Our

proposal goes beyond these works in that we consider models with features and use deep

neural networks (DNN) to capture the complex relationship between the outcome and

features.

3 Deep Jump Learning

In Section 3.1, we use a toy example to demonstrate the limitation of kernel-based methods.

We present the main idea of our algorithm in Section 3.2. Details are given in Section

3.3. For simplicity, we set the action space A = [0, 1]. Define a discretization D for the

treatment space A as a set of mutually disjoint intervals {[τ0, τ1), [τ1, τ2), . . . , [τK−1, τK]}

for some 0 = τ0 < τ1 < τ2 < · · · < τK−1 < τK = 1 and some integer K ≥ 1. The union

of these intervals covers A. We use J(D) to denote the set of change point locations, i.e.,

{τ1, · · · , τK−1}. We use |D| to denote the number of intervals in D and |I| to denote the

6

length of any interval I.

3.1 Toy Example

As discussed in the introduction, existing kernel-based methods use a single bandwidth to

construct the value estimator. Ideally, the bandwidth h in the kernelK[{Ai−π(Xi)}/h] shall

vary with π(Xi) to improve the accuracy of the value estimator. To elaborate this, consider

the function Q(x, a) = 10 max(a2 − 0.25, 0) log(x + 2) for any x, a ∈ [0, 1]. By definition,

Q(x, a) is smooth over the entire feature-treatment space. However, it has different patterns

when the treatment belongs to different intervals. Specifically, for a ∈ [0, 0.5], Q(x, a) is

constant as a function of a. For a ∈ (0.5, 1], Q(x, a) depends quadratically in a. See the

middle panel of Figure 1 for details.

Consider the target policy π(x) = x. We decompose the value V (π) into V (1)(π)+V (2)(π)

where

V (1)(π) = E[Q{X, π(X)}I{π(X) ≤ 0.5}], and V (2)(π) = E[Q{X, π(X)}I{π(X) > 0.5}].

Similarly, denote the corresponding kernel-based value estimators by

V̂ (1)(π;h) =
1

n

n∑
i=1

[ψhI{π(Xi) ≤ 0.5}], and V̂ (2)(π;h) =
1

n

n∑
i=1

[ψhI{π(Xi) > 0.5}],

where ψh := ψh(Oi, π, Q̂, b̂) is defined in equation 2. Since Q(x, a) is a constant function of

a ∈ [0, 0.5], its second-order derivative ∂2Q(x, a)/∂a2 equals zero. In view of equation 14,

when π(x) ≤ 0.5, the bias of V̂ (1)(π;h) will be small even with a sufficiently large h. As

such, a large h is preferred to reduce the variance of V̂ (1)(π;h). When π(x) > 0.5, a small h

is preferred to reduce the bias of V̂ (2)(π;h). A simulation study is provided to demonstrate

the drawback of the kernel-based methods. Specifically, we set X,A ∼ Uniform[0, 1] and

generate Y |X,A ∼ N{Q(X,A), 1}. We apply the kernel-based methods with a Gaussian

kernel to estimate V (1)(π) and V (2)(π) with the sample size n = 300 over 100 replications.

See Table 1 for details of the bias and standard deviation of V̂ (1)(π;h) and V̂ (2)(π;h) with

two different bandwidths h = 0.4 and 1. It can be seen that due to the use of a single

bandwidth, the kernel-based estimator suffers from either a large bias or a large

variance.

7

0

1

2

Y

Figure 1: Left panel: example of piece-wise constant function. Middle panel: the oracle conditional
mean function Q on the feature-treatment space for the toy example. Right panel: the green curve
presents the oracle Q{x, π(x)} under target policy π(x) = x in the toy example; and the red curve
is the fitted mean value by DJL and the pink dash line corresponds to the 95% confidence bound.

Table 1: The bias and the standard deviation (in parentheses) of the estimated values for V (1)

and V (2), using DJL and kernel-based methods, for target policy π(x) = x in the toy example.

Methods Indicator Deep Jump Learning Kernel with h = 0.4 Kernel with h = 1

V (1)(π) I{π(X) ≤ 0.5} 0.31 (0.06) 0.50 (0.08) 0.40 (0.05)

V (2)(π) I{π(X) > 0.5} 0.09 (0.19) 0.16 (0.20) 1.09 (0.09)

To overcome this limitation, we propose to adaptively discretize the treatment space into

a union of disjoint intervals such that within each interval I, the conditional mean function

Q can be well-approximated by some functions qI that depend on features but not on the

treatment (constant in a), i.e., Q(•, a) ≈
∑
I∈D{I(a ∈ I)qI(•)}. By the discretization,

one can apply the IPW or DR methods to evaluate the value. The advantage of adaptive

discretization is illustrated in the right panel of Figure 1, where we apply the proposed DJL

method to the toy example. See details of the proposed method and its implementation in

Sections 3.2 and 3.3. When a ≤ 0.5, Q(x, a) is constant in a. It is likely that our procedure

will not further split the interval [0, 0.5]. Consequently, the corresponding DR estimator

for V (1)(π) will not suffer from large variance. When a > 0.5, our procedure will split

(0.5, 1] into a series of sub-intervals, approximating Q by a step function. This guarantees

the resulting DR estimator for V (2)(π) will not suffer from large bias. Consequently, the

proposed value estimator achieves a smaller mean squared error than kernel-based estimators.

See Table 1 for details.

8

3.2 The Main Idea

We consider the following two model assumptions, which cover a variety of scenarios in

practice.

Model 1: Piecewise function. Suppose

Q(x, a) =
∑
I∈D0

{qI,0(x)I(a ∈ I)} , for any x ∈ X , for any a ∈ A, (4)

for some partition D0 of [0, 1] and a collection of functions {qI,0}I∈D0 .

Model 2: Continuous function. Suppose Q is a continuous function of a and x.

Model 1 covers the dynamic pricing example we mentioned in the introduction. In our

simulation studies in Section 5.1, the underlying model is set to be a piecewise function in

Scenarios 1 and 2. Model 2 covers the personalized dose-finding example, Scenarios 3 and 4

in our simulation studies, as well as the real data section in Section 5.2. We next detail

the proposed method, which will work when either Model 1 or 2 holds.

Motivated by Model 1, our goal is to identify an optimal discretization D̂ such that for

each interval I ∈ D̂, Q(x, a) is approximately a constant function of a ∈ I. Specifically,

under Model 1, we assume the function Q(x, a) is a piecewise function on the action space.

Within each segment I, the function Q(x, a) is a constant function of a, but can be any

function of the features x. In other words, Q(x, a1) = Q(x, a2) for any a1, a2 ∈ I. Thus, we

denote the function Q(x, a) at each segment I as qI(x), which yields a piecewise function

Q(x, a) =
∑
I qI(x)I(a ∈ I), as stated in equation 4. In the real applications, the true

function Q(x, a) could be either a continuous function, or a piecewise function. As such,

we propose to approximate the underlying unknown function Q(x, a) by these piecewise

functions of a using the proposed DJL method. Such approximation allows us to derive

the DR estimator based on D̂. The bias and variance of the resulting estimator are largely

affected by the number of intervals in D̂. Specifically, if |D̂| is too small, then the piecewise

approximation is not accurate, leading to a biased estimator. If |D̂| is too large, then D̂ will

contain many short intervals, and the resulting estimator might suffer from a large variance.

To this end, we develop a data-adaptive method to compute D̂. We first divide the

treatment space A into m disjoint intervals: [0, 1/m), [1/m, 2/m), . . . , [(m− 1)/m, 1]. We

9

require the integer m to diverge with the sample size n, such that the conditional mean

function Q can be well-approximated by a piecewise function on these intervals. Note that

these m initial intervals is not equal to D̂, but only serve as the initial candidate intervals.

Yet, D̂ will be constructed by adaptively combining some of these intervals. We find in

our numerical studies that the size of the final partition |D̂| is usually much less than m

(see Table 6 in Appendix B for more details). In practice, we recommend to set the initial

number of intervals m to be proportional to the sample size n, i.e., m = n/c for some

constant c > 0. The performance of the resulting value estimator is not overly sensitive to

the choice of c.

We define B(m) as the set of discretizations D such that each interval I ∈ D corresponds

to a union of some of the m initial intervals. Each discretization D ∈ B(m) is associated

with a set of functions {qI}I∈D. We model these qI using DNNs, to capture the complex

dependence between the outcome and features. When Q(•, a) is well-approximated by∑
I∈D{I(a ∈ I)qI(•)}, we expect the least square loss

∑
I∈D

∑n
i=1[I(Ai ∈ I)

{
Yi−qI(Xi)

}2
],

will be small. Thus, D̂ can be estimated by solving(
D̂, {q̂I : I ∈ D̂}

)
= arg min(

D∈B(m),
{qI∈QI :I∈D}

)
(∑
I∈D

[
1

n

n∑
i=1

I(Ai ∈ I)
{
Yi − qI(Xi)

}2]
+ γn|D|

)
, (5)

for some regularization parameter γn and some function class of DNNs QI . Here, the

penalty term γn|D| in equation 5 controls the total number of intervals in D̂, as in multi-scale

change point detection. A large γn results in few intervals in D̂ and a potential large bias of

the value estimator, whereas a small γn procedures a large number of intervals in D̂, leading

to a noisy value estimator. The theoretical order of γn is detailed in Section 4. In practice,

we use cross-validation to select γn. We refer to this step as deep discretization. Details of

solving equation 5 are given in Section 3.3.

Given D̂ and {q̂I : I ∈ D̂}, we apply the DR estimator in equation 1 to derive the value

estimate for any target policy of interest π, i.e.,

V̂ DR(π) =
1

n

∑
I∈D̂

n∑
i=1

(
I{π(Xi) ∈ I}

[
I(Ai ∈ I)

b̂I(Xi)

{
Yi − q̂I(Xi)

}
+ q̂I(Xi)

])
, (6)

where b̂I(x) is some estimator of the generalized propensity score function Pr(A ∈ I|X = x).

10

We call this method as the deep jump learning. We remark that the proposed method yields

a consistent value estimator allowing the function Q to be either a continuous or piecewise

function of the treatment. Under different model assumptions, we derive the corresponding

rate of convergence of our method in Section 4.

3.3 The Complete Algorithm for Deep Jump Learning

We present the details for DJL in this section. To further reduce the bias of the value

estimator in equation 6, we employ a data splitting and cross-fitting strategy (Chernozhukov

et al., 2017). That is, we use different subsets of data samples to estimate the discretization

D̂ and to construct the value estimator. Our algorithm consists of three steps: data splitting,

deep discretization, and cross-fitting. We detail each of these steps below.

Step 1: data splitting. We divide all n samples into L disjoint subsets of equal

size, where L` denotes the indices of samples in the `th subset for ` = 1, · · · ,L. Let

Lc` = {1, 2, · · · , n} − L` as the complement of L`. Data splitting allows us to use one part

of the data, i.e., Lc`, to train machine learning models for the conditional mean function

and propensity score function, and the remaining part, i.e., L`, to estimate the value. We

aggregate the resulting estimates over different subsets to get full efficiency, as summarized

in the third step.

Step 2: deep discretization. For each ` = 1, · · · ,L, we propose to apply deep

discretization to compute a discretization D̂(`) and {q̂(`)I : I ∈ D̂(`)} by solving a version of

equation 5 using the data subset in Lc` only. We next present the computational details

for solving this optimization. Our algorithm employs the pruned exact linear time method

(Killick et al., 2012) to identify the change points with a cost function that involves DNN

training. Specifically, for any interval I, define q̂(`)I as the minimizer of

arg min
qI∈QI

1

|Lc`|
∑
i∈Lc

`

[
I(Ai ∈ I)

{
qI(Xi)− Yi

}2]
, (7)

where |Lc`| denotes the number of samples in Lc`. Define the cost function C(`)(I) as the

minimum value of the objective function equation 7, i.e,

C(`)(I) =
1

|Lc`|
∑
i∈Lc

`

[
I(Ai ∈ I)

{
q̂
(`)
I (Xi)− Yi

}2]
.

11

Global: data {(Xi, Ai, Yi)}1≤i≤n; number of initial intervals m; penalty term γn;
target policy π.

Local: Bellman function Bell ∈ Rm; partitions D̂; DNN functions {q̂I , b̂I : I ∈ D̂};
a vector τ ∈ Nm; a set of candidate point lists R.

Output: the value estimator for target policy V̂ (π).
I. Split all n samples into L subsets as {L1, · · · ,LL}; V̂ (π)← 0;
II. Initialization:

1. Set even segment on the action space with m pieces:
{I} = {[0, 1/m), [1/m, 2/m), . . . , [(m− 1)/m, 1]};

2. Create a function to calculate cost C with inputs (l, r):
If C(l, r) == NULL:
(i). Let I = [l/m, r/m) if r < m else I = [l/m, 1];
(ii). Fit a DNN regressor: q̂I(·)← I(i ∈ Lc`)I(Ai ∈ I)Yi ∼ I(Ai ∈ I)DNN(Xi);
(iii). Store the cost: C(I)←

∑
i∈Lc

`
I(Ai ∈ I)

{
q̂I(Xi)− Yi

}2;
Return C(l, r);

III. For ` = 1, · · · ,L:
1. Set the training dataset as Lc` = {1, 2, · · · , n} − L`;
2. Bell(0)← −γn; D̂ = [0, 1]; τ ← Null; R(0)← {0};
3. Apply the pruned exact linear time method to get partitions: For v∗ = 1, . . . ,m:
(i).Bell(v∗) = minv∈R(v∗){Bell(v) + C([v/m, v∗/m)) + γn};
(ii). v1 ← arg minv∈R(v∗){Bell(v) + C([v/m, v∗/m)) + γn};
(iii). τ(v∗)← {v1, τ(v1)};
(iv). R(v∗)← {v ∈ R(v∗ − 1) ∪ {v∗ − 1} : Bell(v) + C([v/m, (v∗ − 1)/m)) ≤ Bell(v∗ − 1)};

4. Construct the DR value estimator: r ← m; l← τ [r]; While r > 0:
(i) Let I = [l/m, r/m) if r < m else I = [l/m, 1]; D̂ ← D̂ ∪ I;
(ii) Recall fitted DNN: q̂I(·)← I(i ∈ Lc`)I(Ai ∈ I)Yi ∼ I(Ai ∈ I)DNN(Xi);
(iii) Fit propensity score: b̂I(·)← I(i ∈ Lc`)I(Ai ∈ I) ∼ I(Ai ∈ I)DNN(Xi);
(iv) r ← l; l← τ(r);

6. Evaluation using testing dataset L`:
V̂ (π)+ =

∑
I∈D̂

(∑
i∈L`

I(Ai ∈ I)
[
I{π(Xi)∈I}
b̂I(Xi)

{
Yi − q̂I(Xi)

}
+ q̂I(Xi)

])
;

return V̂ (π)/n .

Algorithm 1: Deep Jump Learning

Computation of D̂(`) relies on dynamic programming (Friedrich et al., 2008). For any integer

1 ≤ v∗ < m, denote by B(m, v∗) the set consisting of all possible discretizations Dv∗ of

12

[0, v∗/m). Set B(m,m) = B(m), we define the Bellman function as

Bell(v∗) = inf
Dv∗∈B(m,v∗)

 ∑
I∈Dv∗

C(`)(I) + γn(|Dv∗| − 1)

 , and Bell(0) = −γn.

Our algorithm recursively updates the Bellman cost function for v∗ = 1, 2, · · · by

Bell(v∗) = min
v∈Rv∗

{
Bell(v) + C(`)([v/m, v∗/m)) + γn

}
, for any v∗ ≥ 1, (8)

whereRv∗ is the candidate change points list. For a given v, the right-hand-side of equation 8

corresponds to the cost of partitioning on a particular point. We then identify the best v

that minimizes the cost. This yields the Bellman function on [0, v∗/m] on the left-hand-side.

In other words, equation 8 is a recursive formula used in our dynamic algorithm to update

the Bellman equation for the locations of change points. It is recursive as the Bellman

function appears on both sides of equation 8. Here, the list of candidate change points Rv∗

is given by

{
v ∈ Rv∗−1 ∪ {v∗ − 1} : Bell(v) + C(`)([v/m, (v∗ − 1)/m)) ≤ Bell(v∗ − 1)

}
, (9)

during each iteration with R0 = {0}. The constraint listed in equation 9 restricts the

research space in equation 8 to a potentially much smaller set of candidate change points,

i.e., Rv∗. The main purpose is to facilitate the computation by discarding change points not

relevant to obtain the final discretization. It yields a linear computational cost (Killick et al.,

2012). In contrast, without these restrictions, it would yield a quadratic computational cost

(Friedrich et al., 2008).

To solve equation 8, we search the optimal change point location v that minimizes

Bell(v∗). This requires deep learning to estimate q̂(`)I and C(`)(I) with I = [v/m, v∗/m)

for each v ∈ Rv∗ . Let v1 be the corresponding minimizer. We then define the change

points list τ(v∗) as the set of change-point locations in [0, v∗/m] computed by the dynamic

programming algorithm. It is computed iteratively based on the update τ(v∗) = {v1, τ(v1)},

which means that during each iteration, it includes the current best change point location

v1 (that minimizes equation 8) and the previous change-point list for the interval [0, v1/m].

This procedure is iterated to compute Bell(v∗) and τ(v∗) for v∗ = 1, . . . ,m, to find the best

13

change-point set for interval [0, 1]. The optimal partition D̂(`) is determined by the values

stored in τ . Specifically, we initialize D̂(`) = [τ(m)/m, 1], r = m and recursively update

D̂(`) by setting D̂(`) ← D̂(`) ∪ [τ(r)/m, r/m) and r ← τ(r), as in dynamic programming

(Friedrich et al., 2008).

Step 3: cross-fitting. For each interval in the estimated optimal partition D̂(`), let

b̂
(`)
I (x) denote some estimator for the propensity score Pr(A ∈ I|X = x). In a randomized

study, the density function b(a|x) is known to us and we set b̂(`)I (x) =
∫
a∈I b(a|x)da. To deal

with data from observational studies, we estimate the generalized propensity score with

deep learning using the training dataset Lc` as b̂
(`)
I (x). We evaluate the target policy in each

subsample L`, based on the estimators (q̂(`)I , b̂(`)I , and D̂(`)) trained in its complementary

subsamples Lc` = {1, · · · , n}−L`. Denote this value estimator for subset L` as V̂`. The final

proposed value estimator for V (π) is to aggregate over V̂` for ` = 1, · · · ,L via cross-fitting,

given by,

V̂ (π) =
1

n

L∑
`=1

∑
I∈D̂(`)

∑
i∈L`

[
I(Ai ∈ I)

I{π(Xi) ∈ I}
b̂
(`)
I (Xi)

{
Yi − q̂(`)I (Xi)

}
+ I(Ai ∈ I)q̂

(`)
I (Xi)

]
. (10)

Note the samples used to construct V̂ inside bracket are independent from those to estimate

q̂
(`)
I , b̂(`)I and D̂(`). This helps remove the bias induced by overfitting in the estimation of

q̂
(`)
I , b̂(`)I and D̂(`).

We give the full detailed pseudocode in Algorithm 1. The computational complexity

required to implement the proposed approach is O(mCn), where Cn is the computational

complexity of training one DNN model with the sample size n. Detailed analysis is

provided in Section A in Appendix. The code is publicly available at our repository at

https://github.com/HengruiCai/DJL.

4 Theory

We investigate the theoretical properties of the proposed DJL method. All the proofs are

provided in the supplementary article. Without loss of generality, assume the support

X = [0, 1]p. To simplify the analysis, we focus on the case where the behavior policy b is

known to us, which automatically holds for data from randomized studies. We focus on the

14

https://github.com/HengruiCai/DJL

setting where the conditional mean function Q is a smooth function of the features; see A1

below. Specifically, define the class of β-smooth functions, also known as Hölder smooth

functions with exponent β, as

Φ(β, c) =

h : sup
‖α‖1≤bβc

sup
x∈X
|∆αh(x)| ≤ c, sup

‖α‖1=bβc
sup
x,z∈X
x 6=z

|∆αh(x)−∆αh(z)|
‖x− z‖β−bβc2

≤ c

 ,

for some constant c > 0, where bβc denotes the largest integer that is smaller than β

and ∆α denotes the differential operator ∆α denote the differential operator: ∆αh(x) =

∂‖α‖1h(x)/∂xα1
1 · · · ∂x

αp
p , where x = [x1, . . . , xp]. When β is an integer, β-smoothness

essentially requires a function to have bounded derivatives up to the βth order. The Hölder

smoothness assumption is commonly imposed in the current literature (see e.g., Farrell

et al., 2021), which is a special example of the function classes that can be learned by

neural nets. Meanwhile, the proposed DJL method is valid when Q(x, a) is a nonsmooth

function of x as well (see e.g., Imaizumi and Fukumizu, 2019). Our theory thus can be

further generalized to any function class that can be learned by neural nets at a certain

rate. We introduce the following conditions.

(A1.) Suppose b(a|•) ∈ Φ(β, c), and Q(•, a) ∈ Φ(β, c) for any a.

(A2.) Functions {q̂I : I ∈ D̂(`)} are uniformly bounded.

Assumption (A2) ensures that the optimizer would not diverge in the uniform norm

sense. Similar assumptions are commonly imposed in the literature to derive the convergence

rates of DNN estimators (see e.g., Farrell et al., 2021). Combining (A2) with (A1) allows

us to derive the uniform rate of convergence for the class of DNN estimators {q̂I : I ∈ P̂}.

Specifically, q̂I converges at a rate of Op{n|I|−2β/(2β+p)} where the big-O terms are uniform

in I, p is the dimension of features. See Lemma D.1 in the supplementary article for details.

4.1 Properties under Model 1

We first consider Model 1 where the function Q(x, a) takes the form of equation 4. As

commented, this assumption holds in applications such as dynamic pricing. Without loss of

generality, assume qI1,0 6= qI2,0 for any two adjacent intervals I1, I2 ∈ D0. This guarantees

that the representation in equation 4 is unique. Let LI and WI be the number of hidden

15

layers and total number of parameters in the function class of DNNs QI . Assume the

number of change points in D0 is fixed. The following theorem summarizes the rate of

convergence of the proposed estimator under Model 1.

Theorem 1 Suppose equation 4, (A1) and (A2) hold. Suppose m is proportional to n, Y

is a bounded variable and A has a bounded probability density function on [0, 1]. Assume

{γn}n∈N satisfies γn → 0 and γn � n−2β/(2β+p) log8 n. Then, there exist some classes

of DNNs {QI : I} with LI � log(n|I|) and WI � (n|I|)p/(2β+p) log(n|I|) such that the

following events occur with probability at least 1−O(n−2),

(i) |D̂(`)| = |D0|; and (ii) maxτ∈J(D0) minτ̂∈J(D̂(`)) |τ̂ − τ | = O{n−2β/(2β+p) log8 n}.

In addition, for any policy π such that for any τ0 ∈ J(D0), Pr{π(X) ∈ [τ0−ε, τ0+ε]} = O(ε),

(iii) V̂ (π) = V (π) +Op{n−2β/(2β+p) log8 n}+Op(n
−1/2).

We make a few remarks. First, the result in (i) imply that deep discretization correctly

identifies the number of change points. The result in (ii) imply that any change point

in D0 can be consistently identified. In particular, J(D̂(`)) corresponds to a subset of

{1/m, 2/m, · · · , (m − 1)/m}. For any true change point τ in D0, there will be a change

point in D̂(`) that approaches τ at a rate of n−2β/(2β+p) up to some logarithmic factors. Second,

it can be seen from the proof of Theorem 1 that the two error terms O{n−2β/(2β+p) log8 n}

and O(n−1/2) in (iii) correspond to the bias and standard deviation of the proposed value

estimator, respectively. When 2β > p, the bias term is negligible. A Wald-type confidence

interval can be constructed to infer V (π). The assumption 2β > p allow the deep learning

estimator to converge at a rate faster than n−1/4. Such a condition is commonly imposed

in the literature for inferring the average treatment effect (see e.g., Chernozhukov et al.,

2017; Farrell et al., 2021). When β < p, i.e., the underlying conditional mean function Q is

not smooth enough, the proposed estimator suffers from a large bias and might converge

at a rate that is slower than the usual parametric rate. This concern can be addressed by

employing the A-learning method (see e.g., Murphy, 2003; Schulte et al., 2014; Shi et al.,

2018). The A-learning method is more robust and requires weaker conditions to achieve the

parametric rate. Specifically, it only requires the difference Q(x, 1)−Q(x, 0) to belongs to

Φ(β, c). This is weaker than requiring both Q(x, 1) and Q(x, 0) to belongs to Φ(β, c). Third,

16

to ensure the consistency of the proposed value estimator, we require that the distribution

of the random variable π(X) induced by the target policy does not have point-masses at the

change point locations. This condition is mild. For nondynamic policies where π(X) = π0

almost surely, it requires π0 /∈ J(D0). We remark that the set J(D0) has a zero Lebesgue

measure on [0, 1]. For dynamic policies, it automatically holds when π(X) has a bounded

density on [0, 1].

4.2 Properties under Model 2

We next consider Model 2 where the function Q(x, a) is continuous in the treatment space.

Theorem 2 Assume Q(x, a) is Lipschitz continuous, i.e., |Q(x, a1)−Q(x, a2)| ≤ L|a1−a2|,

for all a1, a2 ∈ [0, 1], x ∈ X , and some constant L > 0. Assume (A1) and (A2), and m is

proportional to n and γn is proportional to max{n−3/5, n−2β/(2β+p) log9 n}. Then for any

target policy π,

V̂ (π)− V (π) = Op(n
−1/5) +Op{n−2β/(6β+3p) log3 n}.

When 4β > 3p, the convergence rate is given by Op(n
−1/5). We remark that the above

upper bound is valid for any target policy π. The convergence rate in Theorem 2 may not

be tight. To the best of our knowledge, no formal lower bounds of the value estimator have

been established in the literature in the continuous treatment setting. In the literature on

multi-scale change point detection, there are lower bounds on the estimated time series (see

e.g., Boysen et al., 2009). However, they considered settings without baseline covariates

and it remains unclear how the rate of convergence of the estimated piecewise function can

be translated into that of the value. We leave this for future research.

Finally, we clarify our theoretical contributions compared with the deep learning theory

established in Farrell et al. (2021). First, Farrell et al. (2021) considered a single DNN,

whereas we established the uniform convergence rate of several DNN estimators, since

our proposal requires to train multiple DNN models. Establishing the uniform rate of

convergence poses some unique challenges in deriving the results of Theorems 1 and 2. We

need to control the initial number of the intervals m to be proportional to n and the order

17

of penalty term γn, so that uniform convergence rate can be established across all intervals.

To address this difficulty, we derive the tail inequality to bound the rate of convergence

of the DNN estimator and use the Bonferroni’s correction to establish the uniform rate of

convergence.

4.3 Comparison with Kernel-Based Methods

To simplify the analysis, we assume the kernel function is symmetric, the nuisance function

estimators Q̂ and b̂ are set to their oracle values Q and b, and that 4β > 3p. Suppose Model

1 holds. In Appendix C, we show that the convergence rate of kernel-based methods is

given by Op(n
−1/3) with optimal bandwidth selection. In contrast, the proposed estimator

converges at a faster rate of Op(n
−1/2). Suppose Model 2 holds. In Appendix C, we show

that the convergence rate of kernel-based methods is given by Op(h)+Op(n
−1/2h−1/2). Thus,

kernel-based estimators converge at a slower rate when the bandwidth undersmoothes or

oversmoothes the data. In addition, as we have commented in Section 3.1, in cases where

the second-order derivative of Q has an abrupt change in the treatment space, kernel-based

methods suffer from either a large bias, or a large variance. Specifically, when h is either

much larger than n−1/5 or much smaller than n−3/5, our estimator converges at a faster

rate. Kernel-based estimators could converge at a faster rate when Q has a uniform degree

of smoothness over the entire treatment space and the optimal bandwidth parameter is

correctly identified.

5 Simulation Studies

In this section, we investigate the finite sample performance of the proposed method on the

simulated and real datasets, in comparison to three kernel-based methods. The computing

infrastructure used is a virtual machine in the AWS Platform with 72 processor cores and

144GB memory.

18

50 100 200 300
Sample Size

0

1

2

3

4

5

6

7

8

9
Bi

as
Scenario = 1

50 100 200 300
Sample Size

Scenario = 2

50 100 200 300
Sample Size

Scenario = 3

50 100 200 300
Sample Size

Scenario = 4

Method
Deep Jump Learning
SLOPE
Kallus & Zhou
Colangelo & Lee

Figure 2: The box plot of the estimated values under the optimal policy via the proposed DJL
method and three kernel-based methods for Scenario 1-4. The target values are 1.33, 1, 4.86 and
1.6, respectively.

5.1 Simulation Settings

Simulated data are generated from the following model:

Y |X,A ∼ N{Q(X,A), 1}, b(A|X) ∼ Uniform[0, 1] and X(1), . . . , X(p) iid∼ Uniform[−1, 1],

where X = [X(1), · · · , X(p)]. Consider the following different scenarios:

S1: Q(x, a) = (1 + x(1))I(a < 0.35) + (x(1) − x(2))I(0.35 ≤ a < 0.65) + (1− x(2))I(a ≥ 0.65);

S2: Q(x, a) = I(a < 0.25) + sin(2πx(1))I(0.25 ≤ a < 0.5) + {0.5− 8(x(1) − 0.75)2}I(0.5 ≤

a < 0.75) + 0.5I(a ≥ 0.75);

S3 (toy example): Q(x, a) = 10 max{a2 − 0.25, 0} log(x(1) + 2);

S4: Q(x, a) = 0.2(8 + 4x(1) − 2x(2) − 2x(3))− 2(1 + 0.5x(1) + 0.5x(2) − 2a)2.

The function Q(x, a) is a piecewise function of a under Scenarios 1 and 2, and is continuous

under Scenarios 3 (toy example considered in Section 3.1) and 4. We set the target policy

to be the optimal policy that achieves the highest possible mean outcome. The dimension

of the features is fixed to p = 20. We consider four choices of the sample size, corresponding

to n = 50, 100, 200 or 300.

We compare the proposed DJL method with three kernel-based methods (Kallus and

Zhou, 2018; Colangelo and Lee, 2020; Su, Srinath and Krishnamurthy, 2020). In our

implementation, we set QI to the class of multilayer perceptrons (MLP) for each I. This is

a commonly used architecture in deep learning (Farrell et al., 2021). The optimization in

equation 7 is solved via the MLP regressor implemented by Pedregosa et al. (2011) using a

stochastic gradient descent algorithm, with tuning parameters set to the default values. In

19

addition, we estimate the propensity score function using MLP as well. We set m = n/10

to achieve a good balance between the bias and the computational cost (see Figure 3 in

Appendix B for details). The averaged computational time are summarized in Table 3 with

additional results under large sample sizes n = 1000 ∼ 10000 in Table 4, in Appendix B.

Overall, it takes a few minutes (less than 1 min for n = 50 and 14 mins for n = 300) to

implement DJL, whereas the runtime of Kallus and Zhou (2018)’s method is 365 mins for

sample size n = 50 and over 48 hours for n = 300. Thus, as suggested in Kallus and Zhou

(2018), to implement their method, we first compute h∗ using data with sample size n0 = 50.

To accommodate data with different n, we adjust h∗ by setting h∗{n0/n}0.2. To implement

Colangelo and Lee (2020)’s estimator, we consider a list of bandwidths suggested in their

paper, given by h = cσAn
−0.2 with c ∈ {0.5, 0.75, 1.0, 1.5} and σA is the standard deviation

of the treatment. We then manually select the best bandwidth such that the resulting value

estimator achieves the smallest mean squared error. The kernel-based method (SLOPE)

by Su, Srinath and Krishnamurthy (2020) adopted the Lepski’s method for bandwidth

selection. In their implementation, they used the IPW estimator to evaluate the value. For

a fair comparison, we replace it with DR to make the resulting estimator more efficient.

The average estimated value and its standard deviation over 100 replicates are illustrated

in Figure 2 for different methods, with detailed values reported in Table 5 in Appendix B.

In addition, we provide the size of the final estimated partition under DJL in Table 6 in

Appendix B, which is much smaller than m in most cases. It can be seen from Figure 2

that the proposed DJL method is very efficient and outperforms all competing methods in

almost all cases. We note that the proposed method performs reasonably well even when

the sample size is small (n = 50). In contrast, kernel-based methods fail to accurately

estimate the value even in some cases when n = 300. Among the three kernel-based OPE

approaches, we observe that the method developed by Su, Srinath and Krishnamurthy

(2020) performs better in general. A potential limitation of our method is that it takes a

longer computational time than the method of Colangelo and Lee (2020). To speed up the

dynamic programming algorithm, for instance, the total variation or group-fused-lasso-type

penalty can be used as a surrogate of the L0 penalty to reduce the computational complexity

(see e.g., Harchaoui and Lévy-Leduc, 2010).

20

Table 2: The bias, the standard deviation, and the mean squared error of the estimated values
under the optimal policy via different methods for the Warfarin data. The target value is given by
−0.278.

Methods Bias Standard deviation Mean squared error

Deep Jump Learning 0.259 0.416 0.240

SLOPE (Su, Srinath and Krishnamurthy, 2020) 0.611 0.755 0.943

Kallus and Zhou (2018) 0.662 0.742 0.989

Colangelo and Lee (2020) 0.442 1.164 1.550

5.2 Real Data: Personalized Dose Finding

Warfarin is commonly used for preventing thrombosis and thromboembolism. We use the

dataset provided by the International Warfarin Pharmacogenetics (Consortium, 2009) for

analysis. We choose p = 81 features considered in Kallus and Zhou (2018). This yields

a total of 3964 with complete records. The outcome is defined as the absolute distance

between the international normalized ratio (INR, a measurement of the time it takes for

the blood to clot) after the treatment and the ideal value 2.5, i.e, Y = −|INR − 2.5|.

We use the min-max normalization to convert the range of the dose level A into [0, 1].

To compare among different methods, we calibrate the dataset to generate simulated

outcomes. This allows us to use simulated data to calculate the bias and variance of

each value estimator. Specifically, we first estimate the function Q(x, a) via the MLP

regressor using the whole dataset. The goodness-of-the-fit of the fitted model under the

MLP regressor is reported in Table 7 in Appendix B. We next use the fitted function Q̂(X,A)

to simulate the data. For a given sample size N , we first randomly sample N feature-

treatment pairs {(aj, xj) : 1 ≤ j ≤ N} from {(A1, X1), · · · , (An, Xn)} with replacement.

Next, for each j, we generate the outcome yj according to N{Q̂(xj, aj), σ̂
2}, where σ̂ is the

standard deviation of the fitted residual {Yi − Q̂(Xi, Ai)}i. This yields a simulated dataset

{(xj, aj, yj) : 1 ≤ j ≤ N}. We are interested in evaluating the mean outcome under the

optimal policy as π?(X) ≡ arg maxa∈[0,1] Q̂(X, a).

We apply the proposed DJL method and the three kernel-based methods to the calibrated

Warfarin dataset. Biases, standard deviations, and mean squared errors of the estimated

21

values under the optimal policy are reported in Table 2 over 20 replicates with different

evaluation methods. It can be observed from Table 2 that our proposed DJL method

achieves much smaller bias (0.259) and standard deviation (0.416) than the three kernel-

based methods. The mean square error of the three competing estimators are at least

3 times larger than DJL. The bias and standard deviation of Kallus and Zhou (2018)’s

estimator and of the SLOPE in Su, Srinath and Krishnamurthy (2020) are approximately

the same, due to that the bandwidth parameter is optimized. The estimator developed by

Colangelo and Lee (2020)’s performs the worst. It suffers from a large variance, due to the

suboptimal choice of the bandwidth. All these observations are aligned with the findings in

our simulation studies.

6 Discussion

We proposed a brand-new OPE algorithm in continuous treatment domains. Combining our

theoretical analysis and experiments, we are more confident that our proposed DJL method

offers a practically much more useful policy evaluation tool compared to existing kernel-based

approaches. There are some potential alternative directions to address the limitation of

kernel-based approaches. Majzoubi et al. (2020) proposed a tree-based discretization to

handle continuous actions in policy optimization for contextual bandits. Extending the

tree-based discretization with adaptive pruning in OPE is a possible direction to handle our

problem. Second, our proposed method can be understood as a special local kernel method

with the boxcar kernel function, as we adaptively discretize the action space into a set of

non-overlapping intervals. It would be practically interesting to investigate how to couple

our procedure with general kernel functions.

22

References

Adamczak, R. et al. (2008), ‘A tail inequality for suprema of unbounded empirical processes

with applications to markov chains’, Electronic Journal of Probability 13, 1000–1034.

Boysen, L., Kempe, A., Liebscher, V., Munk, A., Wittich, O. et al. (2009), ‘Consistencies

and rates of convergence of jump-penalized least squares estimators’, The Annals of

Statistics 37(1), 157–183.

Cai, H., Lu, W. and Song, R. (2020), On validation and planning of an optimal decision rule

with application in healthcare studies, in ‘International Conference on Machine Learning’,

PMLR, pp. 1262–1270.

Chakraborty, B. and Moodie, E. (2013), Statistical methods for dynamic treatment regimes,

Vol. 2, Springer.

Chen, G., Zeng, D. and Kosorok, M. R. (2016), ‘Personalized dose finding using outcome

weighted learning’, Journal of the American Statistical Association 111(516), 1509–1521.

Chen, Y., Zeng, D., Xu, T. and Wang, Y. (2020), ‘Representation learning for inte-

grating multi-domain outcomes to optimize individualized treatments’, arXiv preprint

arXiv:2011.00094 .

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C. and Newey, W.

(2017), ‘Double/debiased/neyman machine learning of treatment effects’, American

Economic Review 107(5), 261–65.

Chernozhukov, V., Chetverikov, D., Kato, K. et al. (2014), ‘Gaussian approximation of

suprema of empirical processes’, The Annals of Statistics 42(4), 1564–1597.

Chernozhukov, V., Demirer, M., Lewis, G. and Syrgkanis, V. (2019), ‘Semi-parametric effi-

cient policy learning with continuous actions’, Advances in Neural Information Processing

Systems 32, 15065–15075.

23

Colangelo, K. and Lee, Y.-Y. (2020), ‘Double debiased machine learning nonparametric

inference with continuous treatments’, arXiv preprint arXiv:2004.03036 .

Consortium, I. W. P. (2009), ‘Estimation of the warfarin dose with clinical and pharmaco-

genetic data’, New England Journal of Medicine 360(8), 753–764.

den Boer, A. V. and Keskin, N. B. (2020), ‘Discontinuous demand functions: estimation

and pricing’, Management Science 66(10), 4516–4534.

Dudík, M., Erhan, D., Langford, J., Li, L. et al. (2014), ‘Doubly robust policy evaluation

and optimization’, Statistical Science 29(4), 485–511.

Dudík, M., Langford, J. and Li, L. (2011), ‘Doubly robust policy evaluation and learning’,

arXiv preprint arXiv:1103.4601 .

Farajtabar, M., Chow, Y. and Ghavamzadeh, M. (2018), More robust doubly robust off-policy

evaluation, in ‘International Conference on Machine Learning’, PMLR, pp. 1447–1456.

Farrell, M. H., Liang, T. and Misra, S. (2021), ‘Deep neural networks for estimation and

inference’, Econometrica 89(1), 181–213.

Frick, K., Munk, A. and Sieling, H. (2014), ‘Multiscale change point inference’, J. R. Stat.

Soc. Ser. B. Stat. Methodol. 76(3), 495–580. With 32 discussions by 47 authors and a

rejoinder by the authors.

Friedrich, F., Kempe, A., Liebscher, V. and Winkler, G. (2008), ‘Complexity penalized

m-estimation: fast computation’, Journal of Computational and Graphical Statistics

17(1), 201–224.

Fryzlewicz, P. (2014), ‘Wild binary segmentation for multiple change-point detection’, Ann.

Statist. 42(6), 2243–2281.

Fryzlewicz, P. (2020), ‘Narrowest significance pursuit: inference for multiple change-points

in linear models’, arXiv preprint arXiv:2009.05431 .

24

Harchaoui, Z. and Lévy-Leduc, C. (2010), ‘Multiple change-point estimation with a total

variation penalty’, Journal of the American Statistical Association 105(492), 1480–1493.

Hirano, K., Imbens, G. W. and Ridder, G. (2003), ‘Efficient estimation of average treatment

effects using the estimated propensity score’, Econometrica 71(4), 1161–1189.

Imaizumi, M. and Fukumizu, K. (2019), Deep neural networks learn non-smooth functions

effectively, in ‘The 22nd International Conference on Artificial Intelligence and Statistics’,

PMLR, pp. 869–878.

Jiang, N. and Li, L. (2016), Doubly robust off-policy value evaluation for reinforcement

learning, in ‘International Conference on Machine Learning’, PMLR, pp. 652–661.

Kallus, N. and Uehara, M. (2020a), ‘Double reinforcement learning for efficient off-policy

evaluation in markov decision processes.’, J. Mach. Learn. Res. 21, 167–1.

Kallus, N. and Uehara, M. (2020b), ‘Doubly robust off-policy value and gradient estimation

for deterministic policies’, Advances in Neural Information Processing Systems 33.

Kallus, N. and Zhou, A. (2018), Policy evaluation and optimization with continuous

treatments, in ‘International Conference on Artificial Intelligence and Statistics’, PMLR,

pp. 1243–1251.

Killick, R., Fearnhead, P. and Eckley, I. A. (2012), ‘Optimal detection of changepoints with a

linear computational cost’, Journal of the American Statistical Association 107(500), 1590–

1598.

Krishnamurthy, A., Langford, J., Slivkins, A. and Zhang, C. (2019), Contextual bandits

with continuous actions: Smoothing, zooming, and adapting, in ‘Conference on Learning

Theory’, PMLR, pp. 2025–2027.

LeCun, Y., Bengio, Y. and Hinton, G. (2015), ‘Deep learning’, nature 521(7553), 436–444.

Li, L., Chu, W., Langford, J. and Wang, X. (2011), Unbiased offline evaluation of contextual-

bandit-based news article recommendation algorithms, in ‘Proceedings of the fourth ACM

international conference on Web search and data mining’, pp. 297–306.

25

Lu, Z., Banerjee, M. and Michailidis, G. (2017), ‘Intelligent sampling for multiple

change-points in exceedingly long time series with rate guarantees’, arXiv preprint

arXiv:1710.07420 .

Luedtke, A. R. and Van Der Laan, M. J. (2016), ‘Statistical inference for the mean outcome

under a possibly non-unique optimal treatment strategy’, Annals of statistics 44(2), 713.

Majzoubi, M., Zhang, C., Chari, R., Krishnamurthy, A., Langford, J. and Slivkins, A. (2020),

‘Efficient contextual bandits with continuous actions’, Advances in Neural Information

Processing Systems 33.

Massart, P. et al. (2000), ‘About the constants in talagrand’s concentration inequalities for

empirical processes’, Annals of Probability 28(2), 863–884.

McInerney, J., Lacker, B., Hansen, S., Higley, K., Bouchard, H., Gruson, A. and Mehrotra,

R. (2018), Explore, exploit, and explain: personalizing explainable recommendations

with bandits, in ‘Proceedings of the 12th ACM Conference on Recommender Systems’,

pp. 31–39.

Murphy, S. A. (2003), ‘Optimal dynamic treatment regimes’, Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 65, 331–355.

Murphy, S. A., van der Laan, M. J., Robins, J. M. and Group, C. P. P. R. (2001), ‘Marginal

mean models for dynamic regimes’, Journal of the American Statistical Association

96(456), 1410–1423.

Niu, Y. S., Hao, N. and Zhang, H. (2016), ‘Multiple change-point detection: A selective

overview’, Statistical Science pp. 611–623.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

D., Brucher, M., Perrot, M. and Duchesnay, E. (2011), ‘Scikit-learn: Machine learning in

Python’, Journal of Machine Learning Research 12, 2825–2830.

26

Qian, M. and Murphy, S. A. (2011), ‘Performance guarantees for individualized treatment

rules’, Annals of statistics 39(2), 1180.

Qiang, S. and Bayati, M. (2016), ‘Dynamic pricing with demand covariates’, Available at

SSRN 2765257 .

Schmidt-Hieber, J. et al. (2020), ‘Nonparametric regression using deep neural networks with

relu activation function’, Annals of Statistics 48(4), 1875–1897.

Schulte, P. J., Tsiatis, A. A., Laber, E. B. and Davidian, M. (2014), ‘Q-and a-learning

methods for estimating optimal dynamic treatment regimes’, Statistical science: a review

journal of the Institute of Mathematical Statistics 29(4), 640.

Shi, C., Fan, A., Song, R. and Lu, W. (2018), ‘High-dimensional a-learning for optimal

dynamic treatment regimes’, Annals of statistics 46(3), 925.

Shi, C., Lu, W. and Song, R. (2020), ‘Breaking the curse of nonregularity with subagging:

inference of the mean outcome under optimal treatment regimes’, Journal of Machine

Learning Research .

Shi, C., Zhang, S., Lu, W. and Song, R. (2021), ‘Statistical inference of the value function

for reinforcement learning in infinite-horizon settings’, Journal of the Royal Statistical

Society. Series B: Statistical Methodology .

Singh, R., Xu, L. and Gretton, A. (2020), ‘Kernel methods for policy evaluation: Treatment

effects, mediation analysis, and off-policy planning’, arXiv preprint arXiv:2010.04855 .

Sondhi, A., Arbour, D. and Dimmery, D. (2020), Balanced off-policy evaluation in general

action spaces, in ‘International Conference on Artificial Intelligence and Statistics’,

pp. 2413–2423.

Su, Y., Dimakopoulou, M., Krishnamurthy, A. and Dudík, M. (2020), Doubly robust off-

policy evaluation with shrinkage, in ‘International Conference on Machine Learning’,

PMLR, pp. 9167–9176.

27

Su, Y., Srinath, P. and Krishnamurthy, A. (2020), Adaptive estimator selection for off-policy

evaluation, in ‘International Conference on Machine Learning’, PMLR, pp. 9196–9205.

Swaminathan, A., Krishnamurthy, A., Agarwal, A., Dudik, M., Langford, J., Jose, D. and

Zitouni, I. (2017), Off-policy evaluation for slate recommendation, in ‘Advances in Neural

Information Processing Systems’, pp. 3632–3642.

Turvey, R. (2017), Optimal Pricing and Investment in Electricity Supply: An Esay in

Applied Welfare Economics, Routledge.

Van Der Vaart, A. W. and Wellner, J. A. (1996), Weak convergence, in ‘Weak convergence

and empirical processes’, Springer, pp. 16–28.

Wang, L., Rotnitzky, A., Lin, X., Millikan, R. E. and Thall, P. F. (2012), ‘Evaluation of

viable dynamic treatment regimes in a sequentially randomized trial of advanced prostate

cancer’, Journal of the American Statistical Association 107(498), 493–508.

Wang, L., Zhou, Y., Song, R. and Sherwood, B. (2018), ‘Quantile-optimal treatment regimes’,

Journal of the American Statistical Association 113(523), 1243–1254.

Wang, Y.-X., Agarwal, A. and Dudık, M. (2017), Optimal and adaptive off-policy evaluation

in contextual bandits, in ‘International Conference on Machine Learning’, pp. 3589–3597.

Wu, Y. and Wang, L. (2020), ‘Resampling-based confidence intervals for model-free robust

inference on optimal treatment regimes’, Biometrics .

Zhang, B., Tsiatis, A. A., Laber, E. B. and Davidian, M. (2012), ‘A robust method for

estimating optimal treatment regimes’, Biometrics 68, 1010–1018.

Zhang, B., Tsiatis, A. A., Laber, E. B. and Davidian, M. (2013), ‘Robust estimation

of optimal dynamic treatment regimes for sequential treatment decisions’, Biometrika

100(3), 681–694.

Zhou, W., Zhu, R. and Zeng, D. (2018), ‘A parsimonious personalized dose finding model

via dimension reduction’, arXiv preprint arXiv:1802.06156 .

28

Zhu, L., Lu, W., Kosorok, M. R. and Song, R. (2020), Kernel assisted learning for personalized

dose finding, in ‘Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining’, pp. 56–65.

Zhu, L., Lu, W. and Song, R. (2020), Causal effect estimation and optimal dose suggestions

in mobile health, in ‘International Conference on Machine Learning’, PMLR, pp. 11588–

11598.

29

A Analysis of Computational Complexity of DJL

We analyze the computational complexity for the proposed method as follows. There are

three main dominating parts of the computation: the adaptive discretization, the estimations

of conditional mean function and the propensity score function, and the construction of the

final value estimator.

First, for the adaptive discretization on the treatment space (the main part of DJL, see

Algorithm 1 Part III.3), we use the pruned exact linear time (PELT) method in Killick

et al. (2012) to solve the dynamic programing. This step requires at least O(m) computing

steps and at most O(m2) steps (Friedrich et al., 2008). According to Theorem 3.2 in Killick

et al. (2012), the expected computational cost is O(m).

Second, for each step in the linear complexity of adaptive discretization, we need to train

the deep neural network for the conditional mean function and the propensity score function

to calculate the cost function. Here, the time and space complexity of training a deep

learning model varies depending on the actual architecture used. In our implementation,

we employ the commonly used multilayer perceptron (MLP) to estimate the function Q

and the propensity score in each segment. Suppose we use the standard fully connected

MLPs of w width and d depth with feedforward pass and back-propagation under total e

epochs. Then according to the complexity analysis of neural networks, the computational

complexity of modeling the function Q and the propensity score is O{2 ∗ ne(d− 1)w2}.

For the last part, the construction of the final value estimator based on L-fold cross

fitting, which repeats the above two steps L times. Therefore, by putting the above

results together, the total expected computational complexity of the proposed DJL is

O{L ∗m ∗ 2 ∗ ne(d− 1)w2}. Note that the computation for the last part (i.e., cross-fitting)

can be easily implemented in parallel computing, and thus the total expected computational

complexity of the proposed DJL can be reduced to O{m ∗ 2 ∗ ne(d− 1)w2}.

30

B Additional Experimental Results

We include additional experimental results in this section. First, the number of initial

intervals m represents a trade-off between the estimation bias and the computational cost,

as illustrated in Figure 3. In practice, we recommend to set m = n/10. When n is small,

the performance of the resulting value estimator is not overly sensitive to the choice of c as

long as c is not too large. See the left panel of Figure 3 for details. When n is large, we

further investigate the computational capacity of the proposed method by setting m = n/10

for large sample sizes and report the corresponding computational time in Table 4. We

use Scenario 1 and consider the sample size chosen from n ∈ {1000, 2000, 5000, 10000} for

illustration. It turns out that such a choice of c can still handle datasets with a few thousand

observations. Here, we use parallel computing to process each fold, as our algorithm employs

data splitting and cross-fitting. This largely facilitates the computation, leading to shorter

computation time compared to those listed in Table 3. Finally, when n is extremely large,

setting m = n/10 might be computationally intensive. In addition to parallel computing,

there are some other techniques we can use to handle datasets with large sample size. For

instance, in the change-point literature, Lu et al. (2017) proposed an intelligence sampling

method to identify multiple change points with long time series data. Their method would

not lose much statistical efficiency, but is much more computationally efficient. It is possible

to adopt such an intelligence sampling method to our setting for adaptive discretization.

This would enable our method to handle large datasets.

Table 3: The averaged computational cost (in minutes) under the proposed deep jump learning
and three kernel-based methods for Scenario 1.

Methods Deep Jump Learning SLOPE Kallus and Zhou (2018) Colangelo and Lee (2020)

n = 50 < 1 <1 365 < 1

n = 100 3 <1 773 < 1

n = 200 7 1 > 1440 (24 hours) < 1

n = 300 14 2 > 2880 (48 hours) < 1

31

Table 4: The averaged computational cost under the proposed deep jump learning for Scenario 1
with large sample settings.

Sample Size n = 1000 n = 2000 n = 5000 n = 10000

Computational time 15.92 minutes 30.40 minutes 1.32 hours 2.86 hours

Table 5: The bias and the standard deviation (in parentheses) of the estimated values under the
optimal policy via the proposed deep jump learning and three kernel-based methods for Scenario 1
to 4.

n 50 100 200 300

Scenario 1 Deep Jump Learning 0.445(0.381) 0.398(0.391) 0.253(0.269) 0.209(0.210)

V = 1.33 SLOPE 0.392(0.377) 0.385(0.549) 0.329(0.400) 0.344(0.209)

Kallus and Zhou (2018) 0.656(0.787) 0.848(0.799) 1.163(0.884) 0.537(0.422)

Colangelo and Lee (2020) 1.285(1.230) 1.473(1.304) 1.826(1.463) 0.934(0.730)

Scenario 2 Deep Jump Learning 0.696(0.376) 0.502(0.311) 0.400(0.219) 0.411(0.168)

V = 1.00 SLOPE 0.620(0.634) 0.859(0.822) 0.749(0.878) 1.209(0.435)

Kallus and Zhou (2018) 1.061(1.124) 1.363(1.131) 1.679(1.032) 1.664(0.792)

Colangelo and Lee (2020) 1.827(1.371) 2.292(1.458) 2.429(1.541) 2.264(1.062)

Scenario 3 Deep Jump Learning 2.014(0.865) 1.410(0.987) 1.184(0.967) 1.267(0.933)

V = 4.86 SLOPE 3.660(0.496) 3.185(0.592) 2.897(0.781) 2.037(0.401)

Kallus and Zhou (2018) 2.196(2.369) 2.758(2.510) 3.573(2.862) 1.151(1.798)

Colangelo and Lee (2020) 2.586(2.825) 3.172(3.027) 3.949(3.391) 1.367(2.110)

Scenario 4 Deep Jump Learning 0.494(0.485) 0.412(0.426) 0.349(0.383) 0.321(0.315)

V = 1.60 SLOPE 0.586(0.337) 0.537(0.279) 0.483(0.272) 0.483(0.143)

Kallus and Zhou (2018) 2.192(1.210) 2.740(1.034) 3.354(1.324) 1.555(0.500)

Colangelo and Lee (2020) 2.975(1.789) 3.282(1.525) 3.921(1.927) 1.853(0.751)

Table 6: The averaged size of the final estimated partition (|D̂|) in comparison to the initial
number of intervals (m) under the proposed DJL for Scenario 1 to 4.

|D̂| / m n =50 n =100 n =200 n =300

Scenario 1 3 / 5 4 / 10 6 / 20 6 / 30

Scenario 2 4 / 5 6 / 10 9 / 20 11 / 30

Scenario 3 4 / 5 6 / 10 8 / 20 10 / 30

Scenario 4 4 / 5 6 / 10 8 / 20 10 / 30

32

8 10 12 14 16
Initial number of intervals (m)

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

Bi
as

8 10 12 14 16
Initial number of intervals (m)

2

3

4

5

Ti
m

e
Co

st
 (M

in
ut

es
)

Figure 3: The bias of the estimated value and the computational cost (in minutes) under the
DJL with different initial number of intervals (m) when n = 100 in Scenario 1.

Table 7: The mean squared error (MSE)1, the normalized root-mean-square-deviation (NRMSD)2,
the mean absolute error (MAE)3, and the normalized MAE (NMAE)4of the fitted model under the
multilayer perceptrons regressor, linear regression, and the random forest algorithm, via ten-fold
cross-validation.

Method Multilayer Perceptrons Regressor Linear Regression Random Forest
MSE 0.06 0.09 0.08

NRMSD 0.13 0.16 0.15
MAE 0.19 0.23 0.22
NMAE 0.10 0.12 0.12

33

C Rate of Convergence of Kernel-Based Estimators

C.1 Convergence Rate under Model 1

Consider the following piecewise constant function Q

Q(x, a) =

{
0, if a ≤ 1/2,
1, otherwise.

Define a policy π such that the density function of π(X) equals
4/3, if 1/4 ≤ π(x) ≤ 1/2,
2/3, else if 1/2 ≤ π(x) < 4/3,
0, otherwise.

We aim to show for such Q and π, the best possible convergence rate of kernel-based

estimator is n−1/3.

We first consider its variance. Suppose the conditional variance of Y |A,X is uniformly

bounded away from 0. Similar to Theorem 1 of Colangelo and Lee (2020), we can show

the variance of kernel based estimator is lower bounded by O(1)(nh)−1 where O(1) denotes

some positive constant.

We next consider its bias. Since the behavior policy is known, the bias is equal to

E

(
K[{A− π(X)}/h]

hb(A|X)
[Y −Q{X, π(X)}]

)
= E

(
K[{A− π(X)}/h]

hb(A|X)
[Q(X,A)−Q{X, π(X)}]

)
= E

(∫ π(X)+h/2

π(X)−h/2
K

{
a− π(X)

h

}
[I{π(X) ≤ 1/2 < a} − I{a ≤ 1/2 < π(X)}]da

)
.

Using the change of variable a = ht+ π(X), the bias equals

E

(∫ 1/2

−1/2
K(t)[I{π(X) ≤ 1/2 < π(X) + ht} − I{π(X) + ht ≤ 1/2 < π(X)}]dt

)
.

Consider any 0 < h ≤ ε for some sufficiently small ε > 0. The bias is then equal to

4

3

∫ 1/2

1/2−ε/2

∫ 1/2

−1/2
K(t){I(a ≤ 1/2 < a+ ht)− I(a+ ht ≤ 1/2 < a)}dtda

+
2

3

∫ 1/2+ε/2

1/2

∫ 1/2

−1/2
K(t){I(a ≤ 1/2 < a+ ht)− I(a+ ht ≤ 1/2 < a)}dtda.

1MSE = 1
n

∑n
i=1(Yi − Ŷi)2. See https://en.wikipedia.org/wiki/Mean_squared_error.

2NRMSD =
√
MSE

max(Y)−min(Y) . See https://en.wikipedia.org/wiki/Root-mean-square_deviation.
3MAE = 1

n

∑n
i=1 |Yi − Ŷi|. See https://en.wikipedia.org/wiki/Mean_absolute_error.

4NMAE = MAE
max(Y)−min(Y) . See https://en.wikipedia.org/wiki/Root-mean-square_deviation.

34

https://en.wikipedia.org/wiki/Mean_squared_error.
https://en.wikipedia.org/wiki/Root-mean-square_deviation.
https://en.wikipedia.org/wiki/Mean_absolute_error.
https://en.wikipedia.org/wiki/Root-mean-square_deviation.

Under the symmetric condition on the kernel function, the above quantity is equal to

2

3

∫ 1/2

1/2−h/2

∫ 1/2

(1−2a)/2h
K(t)dtda ≥ 2

3

∫ 1/2−h/4

1/2−h/2

∫ 1/2

(1−2a)/2h
K(t)dtda

≥ 2

3

∫ 1/2−h/4

1/2−h/2

∫ 1/2

1/4

K(t)dtda =
h

6

∫ 1/2

1/4

K(t)dt.

Consequently, the bias is lower bounded by O(1)h where O(1) denotes some positive

constant.

To summarize, the root mean squared error of kernel based estimator is lower bounded

by O(1){(nh)−1/2 + h} where O(1) denotes some positive constant. The optimal choice

of h that minimizes such lower bound would be of the order n−1/3. Consequently, the

convergence rate is lower bounded by O(1)n−1/3.

C.2 Convergence Rate under Model 2

Similar to the case under Model 1, we can show the variance of kernel-based estimator is

lower bounded by O(n−1h−1) in cases where the conditional variance of Y given (A,X) is

uniformly bounded away from zero.

Consider the conditional mean function Q

Q(x, a) = Ch−1K

{
a− π(x)

h

}
,

for some constant C > 0. We aim to derive the bias of kernel-based estimator under such

a choice of the conditional mean function Q. Using similar arguments in the case where

Model 1 holds, we can show the bias equals

E

(
C−1

K2[{A− π(X)}/h]

h2b(A|X)

)
≥ C−1E

(
K2[{A− π(X)}/h]

h2

)
.

Similarly, we can show the right-hand-side is lower bounded by O(1)h. This implies that

the convergence rate is at least O(1)(n−1h−1 + h) under Model 2.

D Technical Proof

Throughout the proof, we use c, C, c0, c̄, c∗, etc., to denote some universal constants whose

values are allowed to change from place to place. Let Oi = {Xi, Yi} denote the data

35

summarized from the ith observation. For any two positive sequences {an}n and {bn}n.

The notation an � bn means that there exists some universal constant c > 1 such that

c−1bn ≤ an ≤ cbn for any n. The notation an ∝ bn means that there exists some universal

constant c > 0 such that an ≤ cbn for all n.

Proofs of Theorems 1 and 2 rely on Lemmas D.1, D.2 and D.3. In particular, Lemma

D.1 establishes the uniform convergence rate of q̂(`)I for any I whose length is no shorter

than o(γn) and belongs to the set of intervals:

I(m) = {[i1/m, i2/m) : for some integers i1 and i2 that satisfy 0 ≤ i1 < i2 < m}

∪ {[i3/m, 1] : for some integers i3 that satisfy 0 ≤ i3 < m}.

To state this lemma, we first introduce some notations. For any such interval I, define the

function qI,0(x) = E(Y |A ∈ I, X = x). It is immediate to see that the definition of qI,0

here is consistent with the one defined in equation 4 for any I ⊆ D0.

Lemma D.1 Assume either conditions in Theorem 1 or 2 are satisfied. Then there exists

some constant C̄ > 0 such that the following holds with probability at least 1−O(n−2): For

any 1 ≤ ` ≤ L, I ∈ I(m) and |I| ≥ cγn,

E[|qI,0(X)− q̂(`)I (X)|2{Oi}i∈Lc
`
] ≤ C̄(n|I|)−2β/(2β+p) log8 n. (11)

Here, the expectation in equation 11 is taken with respect to a testing sample X.

Lemma D.2 Assume either conditions in Theorem 1 or 2 are satisfied. Then there exists

some constant C̄ > 0 such that the followings hold with probability at least 1−O(n−2): For

any 1 ≤ ` ≤ L, I ∈ I(m) and |I| ≥ cγn,

∑
I∈D̂(`)

∣∣∣∣∣∣
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}{q̂(`)I (Xi)− qI,0(Xi)}

∣∣∣∣∣∣ ≤ C̄(n|I|)p/(2β+p)log8n.

Lemma D.3 Assume either conditions in Theorem 1 or 2 are satisfied. Then the following

events occur with probability at least 1−O(n−2): there exists some constant c > 0 such that

minI∈D̂(`) |I| ≥ cγn for any 1 ≤ ` ≤ L.

We first present the proofs for these three lemmas. Next we present the proofs for Theorems

1 and 2.

36

D.1 Proof of Lemma D.1

The number of folds L is bounded. It suffices to derive the uniform convergence rate for

each `. By definition, q̂(`)I is the minimizer of the least square loss, arg minq∈QI
∑

i∈Lc
`
I(Ai ∈

I)|Yi − q(Xi)|2. It follows that∑
i∈Lc

`

I(Ai ∈ I)|Yi − q̂(`)I (Xi)|2 ≤
∑
i∈Lc

`

I(Ai ∈ I)|Yi − q(Xi)|2,

for all q ∈ QI . Recall that qI,0(x) = E(Y |A ∈ I, X = x), we have E[I(A ∈ I){Y −

qI,0(X)}|X] = 0. A simple calculation yields∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q̂(`)I (Xi)|2 ≤
∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q(Xi)|2

+2
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}{q̂(`)I (Xi)− qI,0(Xi)},

for any q and I.

The first term on the right-hand-side measures the approximation bias of the class of

deep neural networks. Since E[I(A ∈ I){Y − qI,0(X)}|X] = 0, the second term corresponds

to the stochastic error. The rest of the proof is divided into three parts. In Part 1, we bound

the approximation error. In Part 2, we bound the stochastic error. Finally, we combine

these two parts together to derive the uniform convergence rate for q̂(`)I .

Part 1. Under the given condition, we have Q(•, a) ∈ Φ(β, c), b(a|•) ∈ Φ(β, c) for some c > 0

and any a. We now argue that there exists some constant C > 0 such that qI,0 ∈ Φ(β, C)

for any I. This can be proven based on the relation that

qI,0(x) =

∫
I Q(x, a)b(a|x)da∫

I b(a|x)da
.

Specifically, we have that supx |qI,0(x)| ≤ supa,x |Q(x, a)| ≤ c. Suppose β ≤ 1. For any

x1, x2 ∈ X , consider the difference |qI,0(x1) − qI,0(x2)|. Under the positivity assumption,

37

we have infa,x b(a|x) ≥ c∗ for some c∗ > 0. It follows that

|qI,0(x1)− qI,0(x2)| ≤
∫
I |Q(x1, a)−Q(x2, a)|b(a|x1)da∫

I b(a|x1)da

+

∫
I |Q(x2, a)||b(a|x1)− b(a|x2)|da∫

I b(a|x1)da
+

∫
I |Q(x2, a)|b(a|x2)da

∫
I |b(a|x1)− b(a|x2)|da∫

I b(a|x1)da
∫
I b(a|x2)da

≤ c‖x1 − x2‖β−bβc + 2
c2

c∗
‖x1 − x2‖β−bβc.

Consequently, qI,0 ∈ Φ(β, c+ 2c2/c2∗).

Suppose β > 1. Then both Q(•, a) and b(a|•) are bβc-differentiable. By changing the

order of integration and differentiation, we can show that qI,0(x) is bβc-differentiable as

well. As an illustration, when β < 2, we have bβc = 1. According to the chain rule, we have

∂qI,0(x)

∂xj
=

∫
I{∂Q(x, a)/∂xj}b(a|x)da∫

I b(a|x)da
+

∫
I Q(a|x){∂b(a|x)/∂xj}da∫

I b(a|x)da

−
∫
I Q(a|x)b(a|x)da

∫
I{∂b(a|x)/∂xj}da

{
∫
I b(a|x)da}2

.

Moreover, using similar arguments in proving qI,0 ∈ Φ(β, c+ 2c2/c2∗) when β < 1, we can

show that all the partial derivatives of qI,0(x) up to the bβcth order are uniformly bounded

for all I. In addition, all the bβcth order partial derivatives are Hölder continuous with

exponent β − bβc. This implies that qI,0 ∈ Φ(β, C) for some constant C > 0 and any I.

It is shown in Lemma 7 of Farrell et al. (2021) that for any ε > 0, there exists a deep

neural network architecture that approximates qI,0 with the uniform approximation error

upper bounded by ε, and satisfies WI ≤ C̄ε−p/β(log ε−1 + 1) and LI ≤ C̄(log ε−1 + 1) for

some constant C̄ > 0. These upper bounds will be used later in Part 2. The detailed value

of ε will be specified below. It follows that for any I, the bias term can be upper bounded

by ∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q(Xi)|2 ≤ ε2
∑
i∈Lc

`

I(Ai ∈ I). (12)

We next provide an upper bound for the right-hand-side. Since A has a bounded probability

density function, the variance Var{I(Ai ∈ I)} is upper bounded by
√
EI(Ai ∈ I) ≤ c̄

√
|I|

38

for some universal constant c̄ > 0. It follows from Bernstein’s inequality that

Pr

∑
i∈Lc

`

I(Ai ∈ I)− |Lc`|EI(A ∈ I) ≥ t

 ≤ exp

(
− t2/2

c̄2|Lc`||I|+ t/3

)
,

for any t and I. Set tI = 6 max(c̄
√
n|I| log n, |I| log n), the right-hand-side is upper

bounded by n−4. Since m � n and the number of intervals I in I(m) is upper bounded by

m2, it follows from Bonferroni’s inequality that

Pr

 ⋃
I∈I(m)

∑
i∈Lc

`

I(Ai ∈ I)− |Lc`|EI(A ∈ I) ≥ tI

 ≤ m2n−4 = O(n−2).

As such, with probability at least 1−O(n−2), we have that
∑

i∈Lc
`
I(Ai ∈ I)− |Lc`|EI(A ∈

I) ≤ tI uniformly for all I, or equivalently,
∑

i∈Lc
`
I(Ai ∈ I) ≤ |Lc`|c̄|I| + tI . Consider a

subset of intervals I with |I| ≥ cγn for any constant c > 0. Under the given conditions on

γn, we have ∑
i∈Lc

`

I(Ai ∈ I) ≤ nc̄∗|I|, for any I such that |I| ≥ cγn, (13)

for some constant c̄∗ > 0. It follows from equation 12 that the following holds with

probability at least 1−O(n−2): for any I ∈ I(m) such that |I| ≥ cγn, we have∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q(Xi)|2 ≤ c̄∗ε2n|I|.

Set ε to (n|I|)−β/(2β+p), it follows that∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q(Xi)|2 ≤ c̄∗(n|I|)−2β/(2β+p)(n|I|). (14)

WI and LI are upper bounded by C̄(n|I|)p/(2β+p)(β log(n|I|)/(2β+p)+1) and C̄(β log(n|I|)/(2β+

p) + 1), respectively. This completes the proof for Part 1.

Part 2. For the function class of deep neural networks QI , we use θI to denote the parameters

in deep neural networks. This allows us to represent QI as {qI(•, θI) : θI} We will apply

the empirical process theory (see e.g., Van Der Vaart and Wellner, 1996) to bound the

stochastic error. Let θ̂I be the estimated parameter in q̂(`)I . Define

σ2(I, θ) = E
{
I(A ∈ I)|qI,0(X)− qI,0(X, θ)|2

}
,

39

for any θ and I. Consider two separate cases, corresponding to σ(I, θ̂I) ≤ |I|1/2(n|I|)−β/(2β+p)

and σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p), respectively. We focus our attentions on the latter class

of intervals. In Part 3, we will show that for those intervals,

σ(I, θ̂I) ≤ O(1)|I|1/2(n|I|)−β/(2β+p) log4 n,

for some universal constant O(1). This implies that for any I, we have

σ(I, θ̂I) ≤ O(1)|I|1/2(n|I|)−β/(2β+p) log4 n. (15)

We consider bounding a scaled version of the stochastic error,

1

σ(I, θ̂I)

∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}{q̂(`)I (Xi)− qI,0(Xi)}.

Its absolute value can be upper bounded by

Z(I) ≡ sup
θ

∣∣∣∣∣∣ 1

σ(I, θ)
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}{qI,0(Xi, θ)− qI,0(Xi)}

∣∣∣∣∣∣ ,
where the supremum is taken over all θ such that σ(I, θ) > |I|1/2(n|I|)−β/(2β+p).

For a given θ, the empirical sum has zero mean. Under the boundedness assump-

tion on Y , its variance is upper bounded by some universal constant. In addition, each

quantity σ−1(I, θ)I(Ai ∈ I){Yi − qI,0(Xi)}{qI,0(Xi, θ) − qI,0(Xi)} is upper bounded by

O(1)|I|−1/2(n|I|)β/(2β+p) for some universal constant O(1). This allows us to apply the

tail inequality developed by Massart et al. (2000) to bounded the empirical process. See

also Theorem 2 of Adamczak et al. (2008). Specifically, for all t > 0 and I that satisfies

σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p), we obtain with probability at least 1− exp(t) that

Z(I) ≤ 2EZ(I) + c̄
√
tn+ tc̄|I|−1/2(n|I|)β/(2β+p), (16)

for some constant c̄ > 0. By setting t = 3 log n, the probability 1− exp(t) = 1−n−3. Notice

that the number of intervals I is upper bounded by O(n2), under the condition that m

is proportional to n. By Bonferroni’s inequality, we obtain that equation 16 holds with

probability at least 1−O(n−2) for any I. Under the given condition on γn, for any interval

40

I such that |I| ≥ cγn, the last term on the right-hand-side of equation 16 is o(
√
n). It

follows that the following occurs with probability 1−O(n−2),

Z(I) ≤ 2EZ(I) + 2c̄
√
n log n, (17)

for all I such that |I| ≥ cγn and σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p).

We next provide an upper bound for EZ(I). Toward that end, we will apply the

maximal inequality developed in Corollary 5.1 of Chernozhukov et al. (2014). We first

observe that the class of empirical sum indexed by θ belongs to the VC subgraph class

with VC-index upper bounded by O(WILI log(WI)). It follows that for any I such that

|I| ≥ cγn, σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p),

EZ(I) ∝
√
nWILI log(WI) log n+WILI log(WI) log n.

Based on the upper bounds on WI and LI developed in Part 1, the right-hand-side is upper

bounded by

O(1)(n|I|)p/(4β+2p)

√
n log4 n+O(1)|I|−1/2(n|I|)p/(2β+p) log4 n,

where O(1) denotes some universal constant. It is of the order O{n1/2(n|I|)p/(4β+2p) log4 n}.

This yields that

EZ(I) ∝ n1/2(n|I|)p/(4β+2p) log4 n.

This together with equation 16 and equation 17 yields that with probability at least

1− O(n−2), the scaled stochastic error is upper bounded by n1/2(n|I|)p/(4β+2p) log4 n. As

such, with probability at least 1−O(n−2), we obtain that∣∣∣∣∣∣
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}{q̂(`)I (Xi)− qI,0(Xi)}

∣∣∣∣∣∣ ∝ σ(I, θ̂I)n1/2(n|I|)p/(4β+2p) log4 n,

for any I such that |I| ≥ cγn, σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p). By Cauchy-Schwarz inequal-

ity, the left-hand-side can be further upper bounded by

nσ2(I, θ̂I)
4

+O(1)(n|I|)p/(2β+p) log8 n,

41

where O(1) denotes some universal positive constant. This completes the proof for Part 2.

Part 3. Combining the results in Part 1 and Part 2, we obtain that for any I such that

|I| ≥ cγn, σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p),

∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q̂(`)I (Xi)|2 ≤
nσ2(I, θ̂I)

4
+O(1)(n|I|)p/(2β+p) log8 n,

with probability at least 1−O(n−2). As for the left-hand-side, we notice that∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q̂(`)I (Xi)|2

≥ |Lc`|σ2(I, θ̂I)−

∣∣∣∣∣∣
∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q̂(`)I (Xi)|2 − |Lc`|σ2(I, θ̂I)

∣∣∣∣∣∣ .
Using similar arguments in Part 2, we can show that the second line is upper bounded by

nσ2(I, θ̂I)/8 +O(1)(n|I|)p/(2β+p) log8 n, with probability at least 1−O(n−2), for any I such

that |I| ≥ cγn, σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p). Since Lc` ≥ n/2, we obtain(
1

2
− 1

4
− 1

8

)
σ2(I, θ̂I) =

1

8
σ2(I, θ̂I) ∝ (n|I|)−2β/(2β+p) log8 n.

This yields the desired uniform upper bound for σ2(I, θ̂I). We thus obtain equation 15

holds with probability at least 1−O(n−2).

Under the assumption that the density function b(a|x) is uniformly bounded away from

zero, we obtain

σ2(I, θ̂I) ≤ c|I|E|qI,0(X)− q̂(`)I (X)|2,

for some constant c > 0. This assertion thus follows.

D.2 Proof of Lemma D.2

The assertion can be proven in a similar manner as Part 2 of the proof of Lemma D.1. We

omit the details to save space.

42

D.3 Proof of Lemma D.3

Consider a given interval I ∈ D̂(`). Suppose |I| < cγn. The value of the constant c will be

determined later. Then, for sufficiently large n, we can find some interval I ′ ∈ I(m) ∩ D̂(`)

that is adjacent to I. Thus, we have I ∪ I ′ ∈ I(m), and hence

1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 +
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I ′){Yi − q̂(`)I′ (Xi)}2 (18)

≤ 1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I ∪ I ′){Yi − q̂(`)I∪I′(Xi)}2 − γn.

Notice that the left-hand-side of the above expression is nonnegative. It follows that

γn ≤
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I ∪ I ′){Yi − q̂(`)I∪I′(Xi)}2.

By definition, we have

q̂
(`)
I∪I′ = arg min

qI∈QI

1

n

∑
i∈Lc

`

I(Ai ∈ I ∪ I ′){Yi − qI(Xi)}2.

It follows that

1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I ∪ I ′){Yi − q̂(`)I∪I′(Xi)}2 ≤
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I ∪ I ′){Yi − q̂(`)I′ (Xi)}2.

By equation 18, this further implies that

1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 ≤
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I′ (Xi)}2 − γn,

and hence

γn ≤
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I′ (Xi)}2.

Under (A2), the function q̂I′ is uniformly upper bounded from above. It thus follows from

Cauchy-Schwarz inequality that

γn ≤
2

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Y 2
i + q̂2I′(Xi)} ≤ c0n

−1
∑
i∈Lc

`

I(Ai ∈ I),

43

for some constant c0 > 0. Using similar arguments in showing equation 13, we can show

that with probability at least 1−O(n−2), the following evens hold for all I ∈ I(m),

n−1
∑
i∈Lc

`

I(Ai ∈ I) ≤ c1(
√
n−1|I| log n+ |I|),

for some constant c1 > 0. The right-hand-side shall be larger than or equal to γn. Conse-

quently, we have either |I| ≥ c2γn or |I| ≥ c2nγ
2
n/ log n for some constant c2 > 0. Under

the given condition on γn, we obtain that |I| ≥ c2γn for sufficiently large n. The proof is

hence completed.

D.4 Proof of Theorem 1

Since the number of folds L is a fixed integer. We will show the assertions in (i) and (ii)

holds for each `, with probability at least 1 − O(n−2). The proof is divided into three

parts. In Part 1, we show the consistency of the estimated change point locations and that

|D̂(`)| ≥ |D0| with probability at least 1− O(n−2). In Part 2, we prove that |D̂(`)| = |D0|

with probability at least 1− O(n−2) and derive the rate of convergence of the estimated

change point locations and the estimated function Q. In Part 3, we derive the rate of

convergence for the value estimator.

Part 1. We first show the consistency of the estimated change-point locations. Assume

|D0| > 1. Otherwise, the assertion |D̂(`)| ≥ |D0| trivially hold. Consider the partition

D = {[0, 1]} which consists of a single interval and a zero function Q. By definition, we have

∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2
+ |Lc`|γn|D̂(`)| ≤

∑
i∈Lc

`

Y 2
i + |Lc`|γn.

Under the boundedness assumption on Y , we obtain that |Lc`|γn|D̂(`)| ≤ C0(|Lc`|+ γn) for

some constant C0 > 0 and hence

|D̂(`)| ≤ 2C0γ
−1
n , (19)

for sufficiently large n, as γn → 0.

44

Notice that∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 ≥
∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}2︸ ︷︷ ︸
η∗1

+
∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){q̂(`)I (Xi)− qI,0(Xi)}2

−2
∑
I∈D̂(`)

∣∣∣∣∣∣
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}{q̂(`)I (Xi)− qI,0(Xi)}

∣∣∣∣∣∣ .
The second line is non-negative. Under Lemmas D.2 and D.3, the third line is lower

bounded by −C1

∑
I∈D̂(`)(n|I|)p/(p+2β) log8 n for some constant C1 > 0 with probabil-

ity at least 1 − O(n−2). In view of equation 19, it can be further lower bounded by

−2C0C1γ
−1
n np/(p+2β) log8 n. By equation 19 and the given condition on γn, the third line is

o(n). It follows that∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 ≥ η∗1 + o(n), (20)

with probability at least 1−O(n−2).

Similar to equation 13, we can show that the following events occur with probability at

least 1−O(n−2), ∣∣∣∣∣∣ 1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi −Q(Xi, Ai)}{Q(Xi, Ai)− qI,0(Xi)}

∣∣∣∣∣∣ (21)

≤ c0

[
n−1/2

√
EI(A ∈ I){Q(X,A)− qI,0(X)}2 log n+ n−1 log n

]
,∣∣∣∣∣∣ 1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Q(Xi, Ai)− qI,0(Xi)}2 − EI(A ∈ I)|Q(X,A)− qI(X)|2
∣∣∣∣∣∣ (22)

≤ c0

[
n−1/2

√
EI(A ∈ I){Q(X,A)− qI,0(X)}2 log n+ n−1 log n

]
,

for some constant c0 > 0. For any interval I, the two upper bounds in equation 21 and

equation 22 are o(1).

45

It follows that

η∗1 =
∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi −Q(Xi, Ai)}2 +
∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Q(Xi, Ai)− qI,0(Xi)}2

+2
∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi −Q(Xi, Ai)}{Q(Xi, Ai)− qI,0(Xi)}

=
∑
i∈Lc

`

|Yi −Q(Xi, Ai)|2 + |Lc`|
∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI(X)|2 + o(n),

with probability at least 1−O(n−2). It follows from equation 20 that∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 ≥
∑
i∈Lc

`

|Yi −Q(Xi, Ai)|2︸ ︷︷ ︸
η∗2

+|Lc`|
∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI(X)|2 + o(n),

(23)

with probability at least 1−O(n−2).

Let us consider η∗2. We observe that

η∗2 =
∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I)|Yi − qI,0(Xi)|2.

By the uniform approximation property of deep neural networks, there exists some q∗I ∈ QI
such that ∑

i∈Lc
`

|qI,0(Xi)− q∗I(Xi)|2 ∝ n(n|I|)−2β/(2β+p).

See Part 1 of the proof of Lemma D.1 for details. Similar to equation 13, we can show that

the following events occur with probability at least 1−O(n−2),∣∣∣∣∣∣ 1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI(Xi)}{qI(Xi)− q∗I(Xi)}

∣∣∣∣∣∣ ≤ c0
√
|I| log n√
n

(n|I|)−β/(2β+p),

for some constant c0 > 0 and any I ∈ D0. It follows that

η∗2 −
∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I)|Yi − q∗I(Xi)|2 ≥ −
∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q∗I(Xi)|2

−2
∑
I∈D0

∣∣∣∣∣∣
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI(Xi)}{qI(Xi)− q∗I(Xi)}

∣∣∣∣∣∣ ≥ −c̄np/(2β+p),
46

for some constant c̄ > 0. This together with equation 23 yields that∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 ≥
∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I)|Yi − q∗I(Xi)|2

+|Lc`|
∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 + o(n) +O{np/(2β+p)},
(24)

with probability at least 1−O(n−2).

Let K = |D0|. For any integer k such that 1 ≤ k ≤ K − 1, let τ ∗0,k be the change point

location that satisfies τ ∗0,k = i/m for some integer i and that |τ0,k − τ ∗0,k| < m−1. Denoted by

D∗ the oracle partition formed by the change point locations {τ ∗0,k}K−1k=1 . Set τ
∗
0,0 = 0, τ ∗0,K = 1

and q∗∗[τ∗0,k−1,τ
∗
0,k)

= q∗[τ0,k−1,τ0,k)
for 1 ≤ k ≤ K − 1. Let ∆k = [τ ∗0,k−1, τ

∗
0,k) ∩ [τ0,k−1, τ0,k)

c for

1 ≤ k ≤ K − 1 and ∆K = [τ ∗0,K−1, 1]∩ [τ0,K−1, 1]c. The length of each interval ∆k is at most

m−1. It follows that ∑
I∈D∗

∑
i∈Lc

`

I(Ai ∈ I){Yi − q∗∗I (Xi)}2
+ γn|Lc`||D∗|

−

∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I){Yi − q∗I(Xi)}2
+ γn|Lc`||D0|

≤ 2

K∑
k=1

∑
i∈Lc

`

I(Ai ∈ ∆k)

{
Y 2
i + sup

I⊆[0,1]
q∗2I (Xi)

}
.

Since Y is a bounded variable, q∗I is uniformly bounded for any I. The right-hand-side

is upper bounded by
∑K

k=1

∑
i∈Lc

`
I(Ai ∈ ∆k). Similar to equation 13, The later is upper

bounded by O(log n), with probability at least 1−O(n−2).It follows that∑
I∈D∗

∑
i∈Lc

`

I(Ai ∈ I){Yi − q∗∗I (Xi)}2
+ γn|Lc`||D∗|

 (25)

−

∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I){Yi − q∗I(Xi)}2
+ γn|Lc`||D0|

 ≤ O(log n),

with probability at least 1−O(n−2). By definition,∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 + γn|Lc`||D̂(`)|

≤
∑
I∈D∗

∑
i∈Lc

`

I(Ai ∈ I){Yi − q∗∗I (Xi)}2 + γn|Lc`||D∗|.
(26)

47

Combining this together with equation 25 yields that∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 + γn|Lc`||D̂(`)|

≤
∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I){Yi − q∗I(Xi)}2 + γn|Lc`||D0|+O(log n).

It follows from equation 24 and the condition γn → 0 that∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 = o(1), (27)

with probability at least 1 − O(n−2). Under the event defined above, we show that

maxτ∈J(D0) minτ̂∈J(D̂(`)) |τ̂ − τ | ≤ δ for any constant δ > 0. This yields the consistency of

our estimated change point locations.

Specifically, under the condition that qI1,0 6= qI2,0 for any adjacent I1, I2 ∈ D0, we have

E|qI1,0(X) − qI2,0(X)|2 > 0. Let δ0 denote the minimum distance between two change

point locations. Since the change points are fixed, δ0 is a fixed positive value. For a given

0 < δ < δ0, suppose maxτ∈J(D0) minτ̂∈J(D̂(`)) |τ̂ − τ | > δ. Then there exists a change point

τ0 and I ∈ D̂(`) such that τ0 ∈ I, |I| ≥ 2δ and that min(|a − τ0|, |b − τ0|) ≥ δ where a, b

correspond to the endpoints of the interval I. Under the event defined in equation 27, we

have

EI(A ∈ [a, b])|Q(X,A)− qI,0(X)|2 = o(1). (28)

Since δ0 > δ, the conditional mean function Q is a piecewise function of A in the intervals

[a, τ0] and [τ0, b]. The left-hand-side thus equals

EI(A ∈ [τ0, b])|q[τ0,b],0(X)− qI,0(X)|2 + EI(A ∈ [a, τ0])|q[a,τ0],0(X)− qI,0(X)|2.

The function qI,0 that minimizes the above objective is given by

{EI(A ∈ [a, b]|X)}−1[q[a,τ0],0(X)E{I(A ∈ [a, τ0])|X}+ q[τ0,b],0(X)E{I(A ∈ [τ0, b])|X}].

Consequently, the left-hand-side of equation 28 is greater than or equal to

E{I(A ∈ [τ0, b])|X}{I(A ∈ [a, τ0])|X}|q[τ0,b],0(X)− q[a,τ0],0(X)|2,

48

which is not to decay to zero since min(|a − τ0|, |b − τ0|) ≥ δ and that qI1,0 6= qI2,0

for any adjacent I1, I2 ∈ D0. This contradicts equation 28. As such, we obtain that

maxτ∈J(D0) minτ̂∈J(D̂(`)) |τ̂ − τ | ≤ δ for any sufficiently small δ. This yields the consistency

of the estimated change point locations. It also implies that |D̂(`)| ≥ |D0| with probability

at least 1−O(n−2). This completes the proof of Part 1.

Part 2. In this part, we show |D̂(`)| = |D0| with probability at least 1−O(n−2) and derive

the rate of convergence of the estimated change point locations. Similar to equation 24 and

equation 25, with a more refined analysis (see Part 1 of the proof), we obtain that∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
∑
I∈D∗

∑
i∈Lc

`

I(Ai ∈ I)|Yi − q∗∗I (Xi)|2

+|Lc`|
∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 − C1|D̂(`)|β/(2p+β)np/(p+2β) log8 n+O(np/(2β+p))

−2c0|Lc`|1/2
∑
I∈D̂(`)

√
EI(A ∈ I){Q(X,A)− qI,0(X)}2 log n− 2c0|D̂(`)| log n.

with probability at least 1−O(n−2). By Cauchy-Schwarz inequality, the third line is lower

bounded by

−|L
c
`|

2

∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 − 2(c0 + c20)|D̂(`)| log n.

It follows that∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
∑
I∈D∗

∑
i∈Lc

`

I(Ai ∈ I)|Yi − q∗∗I (Xi)|2

+
|Lc`|
2

∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 − C1|D̂(`)|β/(2p+β)np/(p+2β) log8 n

−2(c0 + c20)|D̂(`)| log n+O(np/(2β+p)).

This together with equation 26 yields that

|Lc`|
2

∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 ≤ C1|D̂(`)|β/(2p+β)np/(p+2β) log8 n

+O(np/(2β+p)) + nγn(|D0| − |D̂(`)|) + 2(c0 + c20)|D̂(`)| log n.

Under the given condition on γn, we obtain that |D̂(`)| ≤ |D0|. Combining this together

49

with |D̂(`)| ≥ |D0|, we obtain that |D̂(`)| = |D0|. As such, we have that∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 ∝ n−2β/(p+2β) log8 n

Using similar arguments in establishing the consistency of the estimated change point

locations, we can show that under the above event, we have that maxτ∈J(D0) minτ̂∈J(D̂(`)) |τ̂−

τ | ∝ n−2β/(p+2β) log8 n. This completes the proof of this part.

Part 3. For any target policy π, we define a random policy πD̂(`) according to the partition

D̂(`) as follows:

πD̂(`)(a|x) =
∑
I⊆D̂(`)

I{π(x) ∈ I, a ∈ I} b(a|x)

b(I|x)
,

where b(I|x) denotes the propensity score function Pr(A ∈ I|X = x). Note that
∫ 1

0
πD̂(`)(a|x)da =∑

I⊆D̂(`) I{π(x) ∈ I} = 1 for any x. Consequently, πD̂(`) is a valid random policy.

Since the behavior policy is known, the proposed doubly-robust estimator corresponds to

an unbiased estimator for L−1
∑L

`=1 V (πD̂(`)). Using similar arguments in the causal inference

literature on deriving the asymptotic property of doubly-robust estimators (Chernozhukov

et al., 2017), we can show that

V̂ (π)− 1

L

L∑
`=1

V (πD̂(`)) = Op(n
−1/2).

It suffices to show L−1
∑L

`=1{V (πD̂(`)) − V (π)} = Op{n−2β/(2β+p) log8 n}, or equivalently,

V (πD̂(`))− V (π) = Op{n−2β/(2β+p) log8 n}.

Based on the results obtained in the first two parts, it follows from Cauchy-Schwarz

inequality that∑
I∈D̂(`)

E
[
I(A ∈ I)|Q(X,A)− q̂(`)I (X)|2|X

]
≤ 2

∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2

+2
∑
I∈D̂(`)

E
[
I(A ∈ I)|q̂(`)I (X)− qI,0(X)|2|X

]
∝ n−2β/(p+2β) log8 n.

(29)

Note that

V (πD̂(`)) = E

∫
[0,1]

Q(X, a)
∑
I⊆D̂(`)

I{π(X) ∈ I, a ∈ I} b(a|X)

b(I|X)
da

=
∑
I0∈D0

EqI0(X)
∑
I⊆D̂(`)

I{π(X) ∈ I}b(I ∩ I0|X)

b(I|X)
.

50

Similarly, we can show

V (π) =
∑
I0∈D0

EqI0(X)I{π(X) ∈ I0}.

It follows that

|V (πD̂(`))− V (π)| ≤
∑
I0∈D0

E|qI0(X)|

∣∣∣∣∣∣I{π(X) ∈ I0} −
∑
I⊆D̂(`)

I{π(X) ∈ I}b(I ∩ I0|X)

b(I|X)

∣∣∣∣∣∣ .
As qI0 is uniformly bounded, the left-hand-side is upper bounded by

∑
I0∈D0

E

∣∣∣∣∣∣I{π(X) ∈ I0} −
∑
I⊆D̂(`)

I{π(X) ∈ I}b(I ∩ I0|X)

b(I|X)

∣∣∣∣∣∣ . (30)

Based on the results obtained in Part 2, for each I0 ∈ D0, there exists some I(`)0 where

the Lebesgue measure of the difference I0 ∩ (I(`)0)c + Ic0 ∩ I
(`)
0 is upper bounded by

O{n−2β/(2β+p) log8 n}, with probability at least 1 − O(n−2). The upper bound in equa-

tion 30 is O{n−2β/(2β+p) log8 n}, under the positivity assumption and the assumption that

Pr(π(X) ∈ [τ0 − ε, τ0 + ε]) = O(ε) for any τ0 ∈ J(D0) and sufficiently small ε > 0. This

completes the proof.

D.5 Proof of Theorem 2

We break the proof into two parts. In Part 1, we introduce an auxiliary lemma and present

its proof. In Part 2, we derive the convergence rate of the proposed value estimator.

Part 1. We first introduce the following lemma.

Lemma D.4 For any interval I ∈ I(m) with |I| � γn and any interval I ′ ∈ D̂(`) with

I ⊆ I ′, we have with probability approaching 1 that

E|qI,0(X)− qI′,0(X)|2 ≤ C̄|I|−1γn,

for some constant C̄ > 0.

We next prove Lemma D.4. For a given interval I ′ ∈ D̂(`), the set of intervals I considered

in Lemma D.4 can be classified into the following three categories.

51

Category 1: I = I ′. It is immediate to see that qI = qI′ and the assertion automatically

holds.

Category 2: There exists another interval I∗ ∈ I(m) that satisfies I ′ = I∗ ∪ I. Notice that

the partition D̂(`)∗ = D̂(`) ∪ {I∗} ∪ I − {I ′} forms another partition. By definition, we have

1

|Lc`|
∑
i∈Lc

`

∑
I0∈D̂(`)∗

I(Ai ∈ I0){Yi − q̂I0(Xi)}2 + γn|D̂(`)∗|

≥ 1

|Lc`|
∑
i∈Lc

`

∑
I0∈D̂(`)

I(Ai ∈ I0){Yi − q̂I0(Xi)}2 + γn|D̂(`)|,

and hence

1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 +
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I∗){Yi − q̂I∗(Xi)}2

≥ 1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I ′){Yi − q̂I′(Xi)}2 − γn.

It follows from the definition of q̂I∗ that

1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I∗){Yi − q̂I∗(Xi)}2 ≤
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I∗){Yi − q̂I′(Xi)}2.

Therefore, we obtain

1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I′(Xi)}2 − γn. (31)

Category 3: There exist two intervals I∗, I∗∗ ∈ I(m) that satisfy I ′ = I∗ ∪ I ∪ I∗∗. Using

similar arguments in proving equation 31, we can show that

1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I′(Xi)}2 − 2γn.

Hence, regardless of whether I belongs to Category 2, or it belongs to Category 3, we have

1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I′(Xi)}2 − 2γn. (32)

52

Notice that for any interval I0,
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I0){Yi − q̂I0(Xi)}2 − E[I(A ∈ I0){Y − q̂I0(X)}2|{Oi}i∈Lc
`
]

=
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I0){q̂I0(Xi)− qI0,0(Xi)}{qI,0(Xi)− q̂I0,0(Xi)}2

+
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I0){Yi − q̂I0(Xi)}2 − E[I(A ∈ I0){q̂I0(Xi)− q̂I0(X)}2|{Oi}i∈Lc
`
].

Using similar arguments in bounding the stochastic error term in Part 2 of the proof of

Lemma D.1, we can show with probability approaching 1 that the right-hand-side is of

the order O{n−2β/(2β+p) log8 n}, for any I0 ∈ I(m). As such, we obtain with probability

approaching 1 that
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 = E[I(A ∈ I){Y − q̂I(X)}2|{Oi}i∈Lc
`
]

+O(1)|I|(n|I|)−2β/(2β+p) log8 n,

1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I′(Xi)}2 = E[I(A ∈ I){Y − q̂I′(X)}2|{Oi}i∈Lc
`
]

+O(1)|I|(n|I|)−2β/(2β+p) log8 n,

where O(1) denotes some universal positive constant. Combining these together with

equation 32 yields

E[I(A ∈ I){Y − q̂I(X)}2|{Oi}i∈Lc
`
] ≥ E[I(A ∈ I){Y − q̂I′(X)}2|{Oi}i∈Lc

`
]

−2γn +O(1)|I|(n|I|)−2β/(2β+p) log8 n,

for any I and I ′, with probability approaching 1. Note that qI,0 satisfies E[I(A ∈ I){Y −

qI,0(X)}|X] = 0. We have

E[I(A ∈ I){qI,0(X)− q̂I(X)}2|{Oi}i∈Lc
`
] ≥ E[I(A ∈ I){qI,0(X)− q̂I′(X)}2|{Oi}i∈Lc

`
]

−2γn +O(1)|I|(n|I|)−2β/(2β+p) log8 n.

Consider the first term on the right-hand-side. Note that

E[I(A ∈ I){qI,0(X)− q̂I′(X)}2|{Oi}i∈Lc
`
] = E[I(A ∈ I){qI,0(X)− qI′(X)}2|{Oi}i∈Lc

`
]

+E[I(A ∈ I){q̂I′(X)− qI′,0(X)}2|{Oi}i∈Lc
`
]

−2E[I(A ∈ I){qI,0(X)− qI′,0(X)}{q̂I′(X)− qI′,0(X)}|{Oi}i∈Lc
`
].

53

By Cauchy-Schwarz inequality, the last term on the right-hand-side can be lower bounded

by

−1

2
E[I(A ∈ I){qI,0(X)− qI′,0(X)}2|{Oi}i∈Lc

`
]− 2E[I(A ∈ I){q̂I′(X)− qI′,0(X)}2|{Oi}i∈Lc

`
].

It follows that

E[I(A ∈ I){qI,0(X)− q̂I′(X)}2|{Oi}i∈Lc
`
] ≥ 1

2
E[I(A ∈ I){qI,0(X)− qI′,0(X)}2|{Oi}i∈Lc

`
]

−3E[I(A ∈ I){q̂I′(X)− qI′,0(X)}2|{Oi}i∈Lc
`
],

and hence
1

2
E[I(A ∈ I){qI,0(X)− qI′,0(X)}2|{Oi}i∈Lc

`
]− 2γn +O(1)|I|(n|I|)−2β/(2β+p) log8 n

≤ E[I(A ∈ I){qI,0(X)− q̂I(X)}2|{Oi}i∈Lc
`
] + 3E[I(A ∈ I){qI′,0(X)− q̂I′(X)}2|{Oi}i∈Lc

`
].

By Lemma D.1, Lemma D.3 and the positivity assumption, the right-hand-side is upper

bounded by O(1)|I|(n|I|)−2β/(p+2β) log8 n for some universal positive constant O(1), with

probability approaching 1. We obtain with probability approaching 1 that

E[I(A ∈ I){qI(X)− qI′(X)}2|{Oi}i∈Lc
`
] = 4γn +O(1)|I|(n|I|)−2β/(2β+p) log8 n,

uniformly for any I and I ′, or equivalently,

E

[
b(I|X)

|I|
{qI(X)− qI′(X)}2|{Oi}i∈Lc

`

]
=

4γn
|I|

+O(1)(n|I|)−2β/(2β+p) log8 n.

By the positivity assumption, we have with probability approaching 1 that

E[{qI(X)− qI′(X)}2|{Oi}i∈Lc
`
] = O(γn|I|−1) +O{(n|I|)−2β/(2β+p) log8 n},

uniformly for any I and I ′. The proof is hence completed by noting that γn is at least of

the order O(n−2β/(2β + p)) log8 n.

Part 2. Consider the bias of the proposed estimator first. Similar to Part 3 of the proof of

Theorem 1, the bias is given by L−1
∑L

`=1 V (πD̂(`))− V (π). By definition,

V (πD̂(`))− V (π) =
∑
I∈D̂(`)

∫
I
EQ(X, a)I(π(X) ∈ I)

b(a|X)

b(I|X)
da− EQ{X, π(X)}

=
∑
I∈D̂(`)

∫
I
E{Q(X, a)−Q{X, π(X)}}I(π(X) ∈ I)

b(a|X)

b(I|X)
da

=
∑
I′∈D̂(`)

E{qI,0(X)−Q{X, π(X)}}I(π(X) ∈ I).

54

It follows that

|V (πD̂(`))− V (π)| ≤ sup
I′∈D̂(`),a∈I′

E|Q(X, a)− qI′(X)|. (33)

For any I ′ ∈ D̂(`). Consider two separate cases, corresponding to |I ′| ≤ γ
1/3
n and |I ′| > γ

1/3
n ,

respectively.

In Case 1, it follows from the Lipschitz property of the conditional mean function Q

that |Q(x, a1)−Q(x, a2)| ≤ Lγ
1/3
n , for any a1, a2 ∈ I ′ and x. By definition, the function qI′

can be represented as qI′(x) =
∫
I′ Q(x, a)ω(a, x)da for some weight function ω such that∫

I′ ω(a, x)da = 1. It follows that the right-hand-side of equation 33 is upper bounded by

Lγ
1/3
n .

In Case 2, for any a ∈ I ′, we can find an interval I ⊆ I ′, a ∈ I with length proportional

to γ1/3n . Using similar arguments in Case 1, we can show that |Q(x, a)− qI,0(x)| ≤ Lγ
1/3
n .

By Lemma D.4 and the Cauchy-Schwarz inequality, we have

E|qI,0(X)− qI′,0(X)| ≤
√
C̄γ

2/3
n = C̄1/2γ1/3n ,

with probability approaching 1. It follows that the right-hand-side of equation 33 is upper

bounded by (L+
√
C̄)γ

1/3
n , with probability approaching 1.

As such, the bias of the proposed estimator is upper bounded by

(L+
√
C̄)γ1/3n ,

with probability approaching 1.

We next consider the standard deviation of our estimator. The proposed estimator is

can be represented by L−1
∑L

`=1 V̂
`(π) where V̂ `(π) is the value estimator constructed based

on the samples in {Oi}i∈L`
. Since the propensity score function is known to us, each V̂ `(π)

is unbiased to V (πD̂(`)). Under the positivity assumption and the boundedness assumption

on Y and q̂I , the variance of V̂ `(π) is upper bounded by |L`|−1 infI∈D̂(`) |I|−1. By Lemma

D.3, it is upper bounded by O(n−1γ−1n). As such, the standard deviation of our estimator is

upper bounded by O(n−1γ−1n).

As such, the convergence rate is given by Op(γ
1/3
n + n−1/2γ

−1/2
n). By setting γn = n−3/5,

the rate is given by Op(n
−1/5). The proof is hence completed.

55

	Introduction
	Preliminaries
	Problem Formulation
	Doubly Robust Estimator and Kernel-Based Evaluation
	Multi-Scale Change Point Detection

	Deep Jump Learning
	Toy Example
	The Main Idea
	The Complete Algorithm for Deep Jump Learning

	Theory
	Properties under Model 1
	Properties under Model 2
	Comparison with Kernel-Based Methods

	Simulation Studies
	Simulation Settings
	Real Data: Personalized Dose Finding

	Discussion
	Analysis of Computational Complexity of DJL
	Additional Experimental Results
	Rate of Convergence of Kernel-Based Estimators
	Convergence Rate under Model 1
	Convergence Rate under Model 2

	Technical Proof
	Proof of Lemma D.1
	Proof of Lemma D.2
	Proof of Lemma D.3
	Proof of Theorem 1
	Proof of Theorem 2

