
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=cjas20

Journal of Applied Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/cjas20

A first-order binomial-mixed Poisson integer-
valued autoregressive model with serially
dependent innovations

Zezhun Chen, Angelos Dassios & George Tzougas

To cite this article: Zezhun Chen, Angelos Dassios & George Tzougas (2021): A first-order
binomial-mixed Poisson integer-valued autoregressive model with serially dependent innovations,
Journal of Applied Statistics, DOI: 10.1080/02664763.2021.1993798

To link to this article:  https://doi.org/10.1080/02664763.2021.1993798

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 01 Nov 2021.

Submit your article to this journal 

Article views: 411

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=cjas20
https://www.tandfonline.com/loi/cjas20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02664763.2021.1993798
https://doi.org/10.1080/02664763.2021.1993798
https://www.tandfonline.com/action/authorSubmission?journalCode=cjas20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=cjas20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/02664763.2021.1993798
https://www.tandfonline.com/doi/mlt/10.1080/02664763.2021.1993798
http://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2021.1993798&domain=pdf&date_stamp=2021-11-01
http://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2021.1993798&domain=pdf&date_stamp=2021-11-01


JOURNAL OF APPLIED STATISTICS
https://doi.org/10.1080/02664763.2021.1993798

A first-order binomial-mixed Poisson integer-valued
autoregressive model with serially dependent innovations

Zezhun Chen , Angelos Dassios and George Tzougas†

Department of Statistics, London School of Economics, London, UK

ABSTRACT
Motivated by the extended Poisson INAR(1), which allows inno-
vations to be serially dependent, we develop a new family of
binomial-mixed Poisson INAR(1) (BMP INAR(1)) processes by adding
a mixed Poisson component to the innovations of the classical Pois-
son INAR(1) process. Due to the flexibility of the mixed Poisson
component, the model includes a large class of INAR(1) processes
with different transition probabilities. Moreover, it can capture some
overdispersion features coming from the data while keeping the
innovations serially dependent. We discuss its statistical properties,
stationarity conditions and transition probabilities for different mix-
ing densities (Exponential, Lindley). Then, we derive the maximum
likelihood estimation method and its asymptotic properties for this
model. Finally, we demonstrate our approach using a real data exam-
ple of iceberg count data from a financial system.
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1. Introduction

Modelling the integer-valued count time series has attracted a lot of attention over the
last few years in a plethora of different scientific fields such as the social sciences, health-
care, insurance, economics and the financial industry. The standard ARMA model will
inevitably introduce real-valued results, and so is not appropriate for modelling this type
of data. As a result, many alternative classes of integer-valued time series models have been
introduced and explored in the applied statistical literature. The Integer-valued autore-
gressive process of order one, abbreviated as INAR(1), was proposed by McKenzie [8] and
Al-Osh and Alzaid [1] as a counterpart to the Gaussian AR(1) model for Poisson counts.
This model was derived by manipulating the operation between coefficients and variables,
as well as the innovation term, in such a way that the values are always integers. The rela-
tionship of coefficients and variables is defined as α ◦ Xt = ∑k

i=1 Vi such that Vi are i.i.d
Bernoulli random variables with parameter α and ° denotes the binomial thinning oper-
ator. The binomial thinning is very easy to interpret, and binomial INAR(1) has the same
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autocorrelation structure as the standard AR(1) model and hence can be applied to fit the
count data. For a general review, please see [11,12].

Later on, in order to accommodate different features exhibited by count data, for
example, under-dispersion, overdispersion, probability of observing zero and different
dependent structures, many research studies introduced alternative thinning operators or
varied the distribution of Vi for different needs. The case where Vi are i.i.d geometric ran-
dom variables is analysed by Ristić et al. [10], which is called NGINAR(1). Kirchner [7]
introduced reproduction operators so that Vi are i.i.d Poisson random variables to explore
the relationship between Hawkes process and integer-valued time series. For further vari-
ation, random coefficients thinning is introduced so that Vi are i.i.d Bernoulli with the
parameter α being a random variable. This type of thinning operator was proposed by
McKenzie [8,9] and Zheng et al. [14]; they applied this to a generalized INAR(1) model.
In particular, to accommodate the overdispersion feature, one way is to change the thin-
ning operators from binomial to other types as discussed above. Another way is to replace
the innovation distribution with some other overdispersed distribution; for example, see
[2]. A third approach would be to keep the structure of binomial INAR(1) but to allow the
innovation terms to be serially dependent; see [13].

In this study, motivated byWeiß [13], we develop a new family of binomial-mixed Pois-
son INAR(1) (BMP INAR(1)) processes by adding a mixed Poisson component to the
innovations term of the classical Poisson INAR(1) process. The proposed class of BMP
INAR(1) processes is ideally suited for modelling heterogeneity in count time series data
since, due to the mixed Poisson component which we introduce herein, it includes many
members with different transition probabilities that can adequately capture different levels
of overdispersion in the data while keeping the innovation as independent Poisson.

The rest paper is organized as follows. Section 2 defines the Binomial mixed Poisson
INAR(1)model by adding amixed Poisson component in the Poisson INAR(1)model. Sta-
tistical properties and the stationarity condition are derived in Section 3. Section 4 derives
the distribution of the mixed Poisson component based on two different mixing density
functions from the exponential family, namely the Exponential and Lindley distributions.
In Section 5, maximum likelihood estimation is discussed as well as its asymptotic prop-
erties for the estimators. In Section 6, the model is fitted to financial data (iceberg count)
and discuss numerical results. Finally, concluding remarks are provided in Section 7.

2. Construction of binomial mixed Poisson INAR(1)

In [13], the classical Poisson INAR(1) was extended by allowing the innovations ε to
depend on the current state of the model Xt such that εt ∼ Po(aXt−1 + b), where a and
b are some positive constants. The innovation with this definition is separable in the

sense that εt = a ∗ Xt−1 + εt , where a ∗ Xt−1 = ∑Xt−1
i=1 Ui, with Ui

i.i.d∼ Po(a) and εt ∼
Po(b). To introduce further heterogeneity while maintaining serially dependent innova-
tions structure in this model, we extend this by allowingUi to be a mixed Poisson random
variable.

Starting from a Poisson random variable U with parameter θ , we may obtain a large
class of random variables by allowing θ to be another random variable which follows some
classes of density function g(θ | ϕ) where ϕ can be a scalar or a vector; see Karlis [6].
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The random variable U follows a Mixed Poisson distribution with g as a mixing density.
The distribution function of U is defined as

P(U = u) =
∫ ∞

0

e−θiθui
u!

g(θ | ϕ) dθ . (1)

We now construct our model.

Definition 2.1: The Binomial-Mixed Poisson integer-valued Autoregressive model (BMP
INAR(1)) is defined by the following equations:

Xt+1 = p1 ◦ Xt + εt+1

= p1 ◦ Xt + ϕ ∗g Xt + Zt+1,

p1 ◦ Xt =
Xt∑
k=1

Vk, ϕ ∗g Xt =
Xt∑
i=1

Ui,

P(Ui = x) =
∫ ∞

0

e−θiθxi
x!

g(θi | ϕ) dθi,

(2)

where

• ° is a binomial thinning operator such that Vi are i.i.d Bernoulli random variables with
parameter p1 ∈ [0, 1];

• {Zt}t=1,2,... are i.i.d Poisson random variables with rate λ1 > 0;
• ∗g is a reproduction operator such that Ui are independent Mixed Poisson distributed

with mixing density function g(θi | ϕ);
• ∗g and ° are independent of each other so thatUi and Vk are independent of each other.

As we will see shortly, the stationarity condition for this model is simply p1 + μg < 1
where μg is the first moment of Ui. When it comes to interpretation, this model can be
seen as the evolution of a population where the binomial part indicates the survivors from
the previous period, the mixed Poisson part is the total offspring and the innovation part
indicates immigrants. Obviously, this model is a Markov Chain and its transition proba-
bility can be found easily once we know the mixing density g(θ | ϕ). The probability mass
function of Yt+1 = ϕ ∗g Xt is given by

P(Yt+1 = y |Xt = n) = E

[
e−

∑n
i=1 θi(

∑n
i=1 θi)

y

y!

]
, (3)

where the expectation is taken over θ1, θ2, . . . , θn. In order to evaluate the expectation
explicitly, it would be desirable that the random variables θi have an ‘additivity’ property
such that density (or probability mass function) of the sum

∑n
i=1 θi is either itself with dif-

ferent parameters or can be written in a closed form. Many members of the exponential
family have this kind of property. In general, we let g(x | ϕ) be of an exponential family
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form such that

g(x | ϕ) = h(x) exp{η(ϕ)T(x) + ξ(ϕ)}. (4)

Denote the density of the sum Sn = ∑n
i=1 θi as gn(s | ϕ), where θi are i.i.d random variables

with density g(θ | ϕ). The expectation above can be expressed as

P(Yt+1 = y |Xt = n) =
∫

R+

e−ssy

y!
gn(s | ϕ) ds. (5)

The density gn(s | ϕ) is explicitly known in many cases, for example, it can be an Inverse
Gaussian, Exponential, Gamma, Geometric, Bernoulli or Lindley. For the sake of parsi-
mony, we use distributions with a single parameter. In other words, we assume that ϕ is
scalar. Note that, if we let g(θ | ϕ) = δϕ(θ) – a Dirac delta function concentrating at ϕ, the
model will recover to the Extended Poisson INAR(1) in [13].

3. Statistical properties of BMP INAR(1)

3.1. Moments and correlation structure

We first need to derive the moments of Ui.

Lemma 3.1: The first moment and second central moment of Ui with density g(x | ϕ) are
given by

E[Ui] = μg , Var(Ui) = μg + σ 2
g , (6)

where μg = Eg[θi] = ∫
R xg(x | ϕ) dx and σ 2

g = Varg(θi).

Proof: By the conditional expectation argument

E[Ui] = Eg[E[Ui | θi]] = Eg[θi] = μg ,

E[U2
i ] = Eg[E[U2

i | θi]] = Eg[θ2i + θi],

Var(Ui) = E[U2
i ] − (E[Ui])2 = σ 2

g + μg .

�

Proposition 3.1: Assume p1 + μg < 1. The stationary moments of Xt is given by

E[Xt] = μx = λ1

1 − p1 − μg
,

Var(Xt) = σ 2
x = μx

1 − p21 + σ 2
g

1 − (p1 + μg)2
,

Cov(Xt ,Xt−k) = γ (k) = (p1 + μg)
kσ 2

x .

(7)



JOURNAL OF APPLIED STATISTICS 5

Proof: For the first moment, we have

E[Xt] = E[p1 ◦ Xt−1] + E[ϕ ∗g Xt−1] + E[Zt],

μx = p1μx + μgμx + λ1,

μx = λ1

1 − p1 − μg
.

Since the operators ° and ∗g are independent of each other, for the second central moment,
we have

Var(Xt) = Var(p1 ◦ Xt−1 + ϕ ∗g Xt−1) + Var(Zt)

= Var

⎛⎝E

⎡⎣Xt−1∑
i=1

(Vi + Ui) |Xt−1

⎤⎦⎞⎠+ E

⎡⎣Var
⎛⎝Xt−1∑

i=1
(Vi + Ui) |Xt−1

⎞⎠⎤⎦+ λ1

= (p1 + μg)
2σ 2

x + (p1(1 − p1) + σ 2
g + μg)μx + λ1,

σ 2
x = μx

1 − p21 + σ 2
g

1 − (p1 + μg)2
.

Let Ft = σ(Xt ,Xt−1, . . . , ) be the σ -algebra generated by the model Xt up to time t, the
covariance of the model is given by

Cov(Xt ,Xt−k) = Cov(p1 ◦ Xt−1,Xt−k) + Cov(ϕ ∗g Xt−1,Xt−k) + Cov(Zt ,Xt−k).

Again by using conditional expectations, we have

Cov(p1 ◦ Xt−1,Xt−k) = Cov(E[p1 ◦ Xt−1 |Ft−1],E[Xt−k |Ft−1])

+ E[Cov(p1 ◦ Xt−1,Xt−k |Ft−1)]

= Cov(p1Xt−1,Xt−k) + E

⎡⎣Cov
⎛⎝Xt−1∑

i=1
Vi,Xt−k |Ft−1

⎞⎠⎤⎦
= p1γ (k − 1) + 0.

Obviously, Cov(Xt ,Xt−k) = γ (k) = (p1 + μg)γ (k − 1) = (p1 + μg)
kγ (0). �

From the results above, it is clear that this model follows the same correlation structure
as that of standard AR(1) model. Furthermore, unlike equal-dispersed Poisson INAR(1),
BMP INAR(1) is in general an overdispersed model with Fisher index of dispersion

FIx = σ 2
x

μx
= 1 + μ2

g + 2p1μg + σ 2
g

1 − (p1 + μg)2
. (8)
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3.2. Existence of stationary solution

Proposition 3.2: Given that P(Ui = 0) > 0 and p1 + μg < 1 the following infinite
sequence:

fi(θ) = (1 − p1 + p1fi−1(θ))u(fi−1(θ)), i ≥ 1,

f0(θ) = θ , θ ∈ [0, 1],
(9)

where u(θ) is the probability generating function (p.g.f) of Ui, has a limit lim
i→∞fi(θ) = 1

Proof: Define the increment of the sequence

fi(θ) − fi−1(θ) = (1 − p1 + p1fi−1(θ))u(fi−1(θ)) − fi−1(θ)

= (1 − p1 + p1x)u(x) − x x = fi(θ)

=: Q(x).

By the definition of p.g.f, x ∈ [0, 1], the monotonicity of this function is shown by its first
and second derivatives

Q′(x) = p1u(x) + (1 − p1 + p1x)u(x) − 1,

Q′′(x) = 2p1′
u(x) + (1 − p1 + p1x)′′

u(x).

By the definition of p.g.f, ′(x) ≥ 0 and ′′(x) ≥ 0. So Q′′(x) ≥ 0, which implies Q′(x) is
non-decreasing function. Then we have

Q′(x) ≤ Q′(1) = p1 + μg − 1 < 0.

Notice that Q(0) = (1 − p1)P(Ui = 0) > 0, Q(1) = 0. Hence we can conclude that Q is a
monotonic decreasing function ranging from 0 toQ(0). In order words, for any i = 1, . . . ,
and θ ∈ [0, 1], the sequence fi(θ) = fi−1(θ) + Q(fi−1(θ)) is increasing with respect to i.
Finally, lim

i→∞fi(θ) = 1. �

Proposition 3.3: Let Xt be the BMP INAR(1) model defined in Definition 2.1. If the
condition P(Ui) > 0 and p1 + μg < 1 holds, then the process Xt has a proper stationary
distribution and Xt is an ergodic Markov Chain. The stationary distribution is x(θ) =∏∞

i=0 z(fi(θ)).

Proof: Denote the p.g.f ofXn and the innovationZn asXn(θ) andz(θ)respectively, then
Xn(θ) can be expressed as following product:

Xn(θ) = E[E[θXn |Xn−1]|X0]

= E[E[θp1◦Xn−1+ϕ∗gXn−1+Zt |Xn−1]|X0]

= E[f1(θ)Xn−1 |X0]z(f0(θ))
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= ...
...

= E[fn(θ)X0 ]
n−1∏
i=0

z(fi(θ)).

To show the existence of the limiting distribution is equivalent to show the limit of the
product as n goes to infinity is something other than 0, which means that we have to show
that the series

LPn = logXn(θ) = logE[fn(θ)X0 ] +
n−1∑
i=0

logz(fi(θ))

is convergent as n → ∞. The convergence of the infinite series
∑∞

i=0 logz(fi(θ)) can be
shown by the ratio test

lim
i→∞

∣∣∣∣ logz(fi(θ))

logz(fi−1(θ))

∣∣∣∣
= lim

x→1

logz((1 − p1 + p1x)u(x))
logz(x)

= lim
x→1

z(x)
′

z(x)
′

z((1 − p1 + p1x)u(x))
z((1 − p1 + p1x)u(x))

(p1u(x) + (1 − p1 + p1x)′
u(x))

= p1 + μg < 1. (10)

Hence limn→∞ LPn > −∞, from which we can infer that limn→∞ Xn(θ) > 0 exists and
the limiting distribution of Xn exists. Furthermore, by the construction of Xn, the chain is
defined on a countable state space S = {0, 1, 2, . . .}. The positivity of transition probability
P(Xn = j |Xn−1 = i) > 0, ∀i, j ∈ S implies that Xn is irreducible and aperiodic. Hence
the limiting distribution x(θ) = limn→∞ Xn(θ) is the unique stationary distribution
for Xn. �

In general, P(Ui = 0) = ∫
R+ e−θg(θ | ϕ) dθ > 0 as long as g(θ | ϕ) > 0, so we just need

to ensure the existence of the first moment to achieve the stationarity of Xn. The infi-
nite product x(θ) = ∏∞

i=0 z(fi(θ)) is the p.g.f of the stationary distribution, which also
satisfies

x(θ) = x((1 − p1 + p1θ)u(θ))z(θ). (11)

4. Distribution function of themixed Poisson component

In order to applymaximum likelihood estimation for the statistical inference of thismodel,
we need to derive the distribution of Yt+1 = ϕ ∗g Xt according to different density func-
tions g. Asmentioned before, we focus on the density g coming from the exponential family.
For expository purposes, we will derive the distribution of Yt+1 based on exponential and
Lindley densities.
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4.1. Mixed by exponential density

If g(θ | ϕ) = 1
ϕ
e−

1
ϕ
θ , then the distribution of Ui is given by

P(Ui = x) =
∫ ∞

0

e−θiθxi
x!

1
ϕ
e−

1
θi
x dθi

= 1
ϕx!

∫ ∞

0
e−(1+ 1

ϕ
)θiθxi dθi

=
(

1
1 + ϕ

)(
ϕ

1 + ϕ

)x
, x = 0, 1, . . . , (12)

which is a geometric distribution with parameter ϕ
1+ϕ

. Then, the distribution function
fϕ(m,Xt) of ϕ ∗g Xt as well as its first and second derivatives are given by

fϕ(m,Xt) = Cm
m+Xt−1

(
1

1 + ϕ

)Xt ( ϕ

1 + ϕ

)m
,

∂fϕ(m,Xt)

∂ϕ
=
(

m
ϕ(1 − ϕ)

− Xt

1 + ϕ

)
fϕ(m,Xt),

∂2fϕ(m,Xt)

∂(ϕ)2
=
((

m
ϕ(1 − ϕ)

− Xt

1 + ϕ

)2
+ Xt

(1 + ϕ)2
− m(1 + 2ϕ)

ϕ2(1 + ϕ)2

)
fϕ(m,Xt).

(13)

Note that Xt will recover to the NGINAR(1) in [10] if we further let p1 = 0. In general, the
stationarity condition becomes p1 + ϕ < 1 and the probability generating function of Xt
satisfies the equation

x(θ) = x

(
1 − p1 + p1θ
1 + ϕ − ϕθ

)
z(θ). (14)

Wewill now relax the assumption of the innovation termbeingPoisson and let themarginal
distribution of X be a geometric random variable with parameter α

1+α
,α > 0. Using the

relationship of the p.g.f, we can infer the required distribution of Z.

Proposition 4.1: If p1 > ϕ,α > ϕ or p1 < ϕ,α < ϕ and the distribution of {Zt}t=1,2,...
follows a mixed geometric distribution such that

Zt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Geom

(
ϕ

1 + ϕ

)
, W.P.

(p1 − ϕ)α

α − ϕ
,

Geom
(

α

1 + α

)
, W.P. 1 − (p1 − ϕ)α

α − ϕ
,

(15)

then the marginal distribution of X follows a Geom( α
1+α

) distribution.

Proof: By utilizing equation (14), we assume the X has a geometric distribution such that
x(θ) = 1

1+α−αθ
. Then, the probability generating function of Z has the following form:

z(θ) = x(θ)

x(
1−p1+p1θ
1+ϕ−ϕθ

)
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= (1 + ϕ − ϕθ)(1 + α) − α(1 − p1 + p1θ)

(1 + α − αθ)(1 + ϕ − ϕθ)

= (p1 − ϕ)α

α − ϕ

1
1 + ϕ − ϕθ

+
(
1 − (p1 − ϕ)α

α − ϕ

)
1

1 + α − αθ
. (16)

�

4.2. Mixed by Lindley density

Suppose now the density g(θ | ϕ) = ϕ2

1+ϕ
(θ + 1) e−ϕθ is a Lindley density function. The

distribution of Ui is the so-called Poisson–Lindley distribution, see [6], which has the
following probability mass function

P(Ui = x) =
∫ ∞

0

e−θiθxi
x!

ϕ2

1 + ϕ
(θi + 1) e−ϕθi dθi

= ϕ2

(1 + ϕ)x!

(∫ ∞

0
θx+1
i e−(ϕ+1)θi dθi +

∫ ∞

0
θxi e

−(ϕ+1)θi dθi
)

= ϕ2

(1 + ϕ)x!

(
�(x + 2)

(1 + ϕ)x+2 + �(x + 1)
(1 + ϕ)x+1

)
= ϕ2(ϕ + 2 + x)

(1 + ϕ)x+3 , x = 0, 1, . . . . (17)

Under this parameter setting, E[Ui] = μg = ϕ+2
ϕ(ϕ+1) which makes the parameter ϕ less

interpretable. So we adopt the following parameter setting for the mixing density g(θ | ϕ)

g(θ | ϕ) = ϕ̃2

1 + ϕ̃
(θ + 1) e−ϕ̃θ ϕ̃ = 1 − ϕ + �

2ϕ
� =

√
(ϕ − 1)2 + 8ϕ. (18)

Then, μg = ϕ, σg = ϕ2 − 2
(ϕ̃(1+ϕ̃))2

. On the other hand, the additivity of Ui is not that
clear. In order to evaluate the expectation (3), we need to find out the distribution of Sn =∑n

i=1 θi.

Proposition 4.2: Suppose θi are i.i.d Lindley distributed. The density of the sum Sn =∑n
i=1 θi is given by

gn(s | ϕ) =
(

ϕ̃2

1 + ϕ̃

)n

e−ϕ̃s
n∑

k=0

Ck
n

�(n + k)
sn+k−1. (19)

Proof: We can prove this by inverting the Laplace transform. The Laplace transform of θi
is

E[e−νθi] =
∫ ∞

0

ϕ̃2

1 + ϕ̃
(θi + 1) e−(ν+ϕ̃)θi dθi

= ϕ̃2

1 + ϕ̃

ϕ̃ + ν + 1
(ϕ̃ + ν)2

.



10 Z. CHEN ET AL.

Then the Laplace transform of Sn is simply the product of E[e−νθi], which is

E[e−νSn] =
(

ϕ̃2

1 + ϕ̃

)n
(ϕ̃ + ν + 1)n

(ϕ̃ + ν)2n
.

Using a binomial expansion, we have

E[e−νSn] =
(

ϕ̃2

1 + ϕ̃

)n 1
(ϕ̃ + ν)2n

n∑
k=0

Ck
n(ϕ̃ + ν)k

=
(

ϕ̃2

1 + ϕ̃

)n 1
(ϕ̃ + ν)n

n∑
k=0

Cn−k
n (ϕ̃ + ν)−(n−k)

=
(

ϕ̃2

1 + ϕ̃

)n n∑
k=0

Ck
n(ϕ̃ + ν)−(n+k)

=
(

ϕ̃2

1 + ϕ̃

)n n∑
k=0

∫ ∞

0

Ck
n

�(n + k)
sn+k−1 e−ϕ̃s e−νs ds

=
∫ ∞

0
e−νs

(
ϕ̃2

1 + ϕ̃

)n

e−ϕ̃s
n∑

k=0

Ck
n

�(n + k)
sn+k−1 ds.

Obviously, the density function of Sn is the integrand except e−νs. �

Then, the distribution of Yt+1 = θ ∗g Xt is given by the following proposition.

Proposition 4.3: The probability mass function of Yt+1 = ϕ ∗g Xt as well as its derivatives
are given by

fϕ(y, n) = P(Yt+1 = y |Xt = n) =
(

ϕ̃2

1 + ϕ̃

)n n∑
k=0

Ck
nC

y
n+k+y−1(1 + ϕ̃)−(n+k+y),

∂fϕ(y, n)
∂ϕ̃

= n
(
2
ϕ̃

− 1
1 + ϕ̃

)
fϕ(y, n) − (y + 1)fϕ(y + 1, n),

∂2fϕ(y, n)
∂ϕ̃2 =

(
n2
(
2
ϕ̃

− 1
1 + ϕ̃

)2
− n

(
2
ϕ̃2 − 1

(1 + ϕ̃)2

))
fϕ(y, n)

− 2n(y + 1)
(
2
ϕ̃

− 1
1 + ϕ̃

)
fϕ(y + 1, n) + (y + 1)(y + 2)fϕ(y + 2, n),

∂fϕ(y, n)
∂ϕ

= ∂fϕ(y, n)
∂ϕ̃

∂ϕ̃

∂ϕ
,

∂2fϕ(y, n)
∂ϕ2 = ∂2fϕ(y, n)

∂ϕ̃2

(
∂ϕ̃

∂ϕ

)2
+ ∂fϕ(y, n)

∂ϕ̃

∂2ϕ̃

∂ϕ2 ,

(20)
where

∂ϕ̃

∂ϕ
= − 1

2ϕ
+ ϕ + 3

2ϕ�
− 1 − ϕ + �

2ϕ2 ,
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∂2ϕ̃

∂ϕ2 = 1
ϕ2 + 1

2ϕ�
+ 1 − ϕ + �

ϕ3 − (ϕ + 3)2

2ϕ�3 − ϕ + 3
ϕ2�

.

Proof:

P(Yt+1 = y |Xt = n) = E

[
e−

∑n
i=1 θi(

∑n
i=1 θi)

y

y!

]

=
∫ ∞

0

e−ssy

y!

(
ϕ2

1 + ϕ

)n

e−ϕs
n∑

k=0

Ck
n

�(n + k)
sn+k−1 ds

=
(

ϕ2

1 + ϕ

)n n∑
k=0

Ck
n

�(n + k + y)
�(n + k)�(y + 1)

(1 + ϕ)−(n+k+y)

=
(

ϕ2

1 + ϕ

)n n∑
k=0

Ck
nC

y
n+k+y−1(1 + ϕ)−(n+k+y).

�

5. Maximum likelihood estimation and its asymptotic property

In general, the transition probability can be written down explicitly as

P(Xt+1 = i|Xt = j) =
min(i,j)∑
m=0

Cm
j p

m
1 (1 − p1)j−mP(Yt+1 + Zt+1 = i − m)

=
min(i,j)∑
m=0

i−m∑
x=0

Fp1(m, j)fϕ(x, j)Fλ1(i − m − x),

Fp1(m, j) = Cm
j p

m
1 (1 − p1)j−m,

fϕ(x, j) =
∫

R+

e−ssx

x!
gj(s | ϕ) ds,

Fλ1(i − m − x) = e−λ1λi−m−x
1

(i − m − x)!
.

(21)

The log likelihood function is simply �(p1,ϕ,α) = ∑n−1
t=0 logP(Xt+1|Xt).

Proposition 5.1: Suppose we have a random sample {X1,X2, . . . ,Xn}. Let p = (p1,ϕ, λ1)
denote the parameters vector for the stationary BMP INAR(1) model. The maximum likeli-
hood estimator p̂ has the following asymptotic distribution:

√
n(p̂ − p) ∼ N(0, I−1), (22)

where

H =
⎧⎨⎩

�p1p1 �p1ϕ �p1λ1
�ϕp1 �ϕϕ �ϕλ1

�λ1p1 �p1ϕ �λ1λ1

⎫⎬⎭ , I = −E[H], (23)
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∂P(Xt+1|Xt)

∂p1
=

min(Xt+1,Xt)∑
m=0

Xt+1−m∑
x=0

∂Fp1(m,Xt)

∂p1
fϕ(x,Xt)Fλ1(Xt+1 − m − x),

∂2P(Xt+1|Xt)

∂(p1)2
=

min(Xt+1,Xt)∑
m=0

Xt+1−m∑
x=0

∂2Fp1(m,Xt)

∂(p1)2
fϕ(x,Xt)Fλ1(Xt+1 − m − x),

∂2P(Xt+1|Xt)

∂p1∂ϕ
=

min(Xt+1,Xt)∑
m=0

Xt+1−m∑
x=0

∂Fp1(m,Xt)

∂p1
∂fϕ(x,Xt)

∂ϕ
Fλ1(Xt+1 − m − x),

�xy =
T−1∑
t=0

∂2P(Xt+1|Xt)

∂x∂y
1

P(Xt+1|Xt)
− ∂P(Xt+1|Xt)

∂x
∂P(Xt+1|Xt)

∂y
1

P(Xt+1|Xt)2
,

(24)

where x, y ∈ {p1,ϕ, λ1}. The first and second derivatives of each distribution function is given
by

∂Fp1(m,Xt)

∂p1
= m − p1Xt

p1(1 − p1)
Fp1(m,Xt),

∂fϕ(m,Xt)

∂ϕ
= ∂

∂ϕ

∫
R+

e−ssx

x!
gXt (s | ϕ) ds,

∂Fλ1(m)

∂λ1
=
(
m
λ1

− 1
)
Fλ1(m)

∂2Fp1(m,Xt)

∂(p1)2
=
(
m(m − 1 − (Xt − 1)p1)

p21(1 − p1)
− (Xt − m)(m − (Xt − 1)p1)

p1(1 − p1)2

)
Fp1(m,Xt),

∂2fϕ(m,Xt)

∂ϕ2 = ∂2

∂ϕ2

∫
R+

e−ssx

x!
gXt (s | ϕ) ds,

∂2Fλ1(x)
∂(λ1)2

=
(
1 − 2x

λ1
+ x(x − 1)

λ21

)
Fλ1(x).

Proof: FromProposition 3.3, we know that theXn is stationary and ergodic and its station-
ary distribution is characterized by the p.g.fx(θ) = ∏∞

i=0 z(fi(θ)). Then score functions
and information matrix I are also stationary and ergodic. Then the proof for asymptotic
normality is similar to the proof of Theorem 4 in Appendix A of [3]. �

The expectation of information matrix I can be calculated numerically by finding out
unconditional distribution P(Xt) and joint distribution P(Xt−1,Xt). However, this would
be computational intensive when the sample size n is large. In practice, since the process
Xt is stationary and ergodic, I ≈ −H when n is large.

To verify the asymptotic normality of the maximum likelihood estimators, we conduct
a Monte Carlo experiment. This experiment is based on 2000 replications. For each repli-
cation, a time series of BMP-INAR(1) with chosen mixing density, either Exponential or
Lindley, of size n = 100, 200, . . . , 500 is generated. The parameters are set as p1 = ϕ =
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Figure 1. Quantile–Quantile plots for maximum likelihood estimators of BMP-INAR(1) model. The left
panel shows plots for the Exponential mixing density, while the right panel depicts the plots for the
Lindley mixing density.

0.3, λ1 = 2 for both mixing densities and they are estimated via the maximum likelihood
method. The biases and standard errors of the estimated parameters are shown in Tables 1
and 2.We observe that the biases of the estimators are either reasonably small or decreasing
with respect to the sample size n. And it is clear that the standard error is also decreasing
with respect to n. Finally, in order to graphically inspect the distribution of estimators,
normal quantile-quantile plots are provided in Figure 1.
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Table 1. The bias of Maximum likelihood estimators of BMP-INAR(1) model
with respect to different sample size n.

Bias(p̂) n = 100 n = 200 n = 300 n = 400 n = 500

Exponential p1 0.0022 −0.0021 0.0019 −0.0003 −0.0003
φ −0.0284 −0.0104 −0.0110 −0.0072 −0.0059
λ1 0.1089 0.0526 0.0384 0.0366 0.0279

Lindley p1 −0.0008 0.0004 −0.0015 −0.0020 −0.0011
φ −0.0209 −0.0143 −0.0085 −0.0050 −0.0039
λ1 0.0387 0.0227 0.0141 0.0144 0.0101

Table 2. The standard error ofMaximum likelihood estimators of BMP-INAR(1)
model with respect to different sample size n.

S.E.(p̂) n = 100 n = 200 n = 300 n = 400 n = 500

Exponential p1 0.1303 0.0965 0.0752 0.0663 0.0576
φ 0.1384 0.0970 0.0783 0.0670 0.0581
λ1 0.3982 0.2858 0.2276 0.2012 0.1764

Lindley p1 0.1319 0.0991 0.0854 0.0711 0.0630
φ 0.1432 0.1054 0.0880 0.0729 0.0661
λ1 0.2050 0.1515 0.1166 0.0999 0.0911

Table 3. Descriptive statistics of iceberg count.

Minimum Maximum Median Mean Variance FI

0 9 1 1.407 2.184 1.552

6. Real data example: iceberg order data

The iceberg order counts concern the Deutsche Telekom shares traded in the XETRA sys-
tem of Deutsche Börse, and the concrete time series gives the number of iceberg orders (for
the ask side) per 20min for 32 consecutive trading days in the first quarter of 2004. The
special feature of iceberg orders is that only a small part of the order (tip of the iceberg)
is visible in the order book and the main part of the order is hidden. For detail descrip-
tion, please see the [4,5]. This dataset is also analysed in [13], where the Extended Poisson
INAR(1) is applied to fit the data.

A table of descriptive statistics, a time series, as well as the ACF and PACF plots are
shown in Table 3 and Figure 2. The variance of the iceberg count is higher than its mean,
which indicates the data is overdispersed. The level of dispersion is described by the Fisher
index of dispersion FI > 1. Evidence of the applicability of a first-order autoregressive
model is indicated by the empirical ACF and PACF graphs. They illustrate a clear decay
for ACF and cut-off at lag = 1 for PACF.

The likelihood function is constructed as in (21) with different fϕ(x, j) (mixed by Expo-
nential or Lindley). It is then maximized through ‘optim’ in R with ‘method = BFGS’
(quasi-Newton method) while the standard deviations of MLEs are calculated through
inverting the negative observed information matrix in Proposition 5.1 based on MLEs.
To access the goodness of fit, we adopt the information criteria AIC and BIC as well as



JOURNAL OF APPLIED STATISTICS 15

Figure 2. Time series plot of iceberg data and its empirical ACF PACF plots. The dash line lines are the
95% confident bands by assuming the series to be a white noise process.

the (standardized) Pearson residuals. If the model is correctly specified, Pearson residuals
for BMP-INAR(1) are expected to have a mean and variance close to 0 and 1, respectively,
with no significant autocorrelation. The Pearson residuals are calculated by the following
formula:

et = xt − E[Xt | xt−1]√
Var(Xt | xt−1)

, (25)

where xt denotes the observed value.
TheACF plots of the Pearson residuals in Figure 3 indicate that the BMP-INAR(1)mod-

els are appropriate for fitting the iceberg data. The estimated parameters shown in Table
4 are significantly different from 0, which is indicated by their estimated standard devia-
tion. Compared to the Dirac delta case, which is actually the Extended Poisson INAR(1)
of [13], the other two cases do show some improvement with smaller AIC, BIC values
and larger fitted Fisher index of dispersion F̂Ix which, however, is slightly smaller than the
empirical FI. On the other hand, it seems that there is little difference between the other
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Figure 3. Autocorrelation of Standardized Pearson residuals for three different mixing densities.

Table 4. The results for the BMP INAR(1) model mixed by different density functions.

Pearson residuals

Mixing density p̂1 ϕ̂ λ̂1 AIC BIC Mean Variance F̂Ix

Dirac delta 0.410 0.188 0.567 2212 2226 −0.001 1.159 1.295
(0.058) (0.059) (0.040)

Exponential 0.434 0.167 0.563 2208 2222 −0.002 1.154 1.315
(0.044) (0.044) (0.040)

Lindley 0.434 0.167 0.563 2208 2222 −0.002 1.154 1.314
(0.043) (0.043) (0.040)

Note: The results of Dirac delta case are from Table 2 of [13]. The estimated standard deviations for all models
are in brackets.

two cases as they have very similar AIC and BIC values. This is due to the fact that the
value of ϕ̂ is identical for both densities. Finally, it should be noted that the variance of the
Pearson residuals is visibly larger than 1. As it was previously mentioned, the exponential
and Lindley mixing densities were considered for expository purposes. Therefore, since
the proposed family of BMP INAR(1) models is quite general, another mixing distribu-
tion could potentially more efficiently capture the observed dispersion structure for this
data.
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Overall, the mixed Poison component in the BMP INAR(1) model efficiently captures
the overdispersion in this type of financial data.

7. Concluding remarks

The BMP INAR(1) is an extension of the classical Poisson INAR(1) model obtained by
adding an additional mixed Poisson component and hence it can capture the level of
overdispersion coming from the data. The exponential family is a desired choice for the
mixing density due to its ‘additivity’ property. The choice of the mixing density can control
the dispersion level to some extent, although the BMP INAR(1) Xt is always overdispersed
in general. Furthermore, due to its simplicity, Xt is actually a Markov chain and the maxi-
mum likelihood estimationmethod can be applied easily. The real data analysis shows that
BMP INAR(1) can be a potential choice for modelling financial count data that exhibit
standard AR(1) structure and overdispersion.
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