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We present a simple model of the paradox of diversity. We focus on diversity within a 

population, such as the diversity created by skill specialisation and the division of 

information and labour. We define diversity as variation in cultural traits across a 

population. These could be practices such as food-processing techniques, access to 

technologies such as the Internet, or technical skills, but also broader traits such as 

language, family structure, and occupation. Previous models have examined the 

evolution of the division of labour, showing how specialisation can lead to more 

successful populations, as measured by, for example, economic value or total yield of 

resources (1,2). We build on this prior work to theorize how a population should divide 

information to optimize cultural complexity and coordination between specialities. 

 

Specialisation and the division of information and labour allow for cultural complexity 

to exceed the abilities of a single brain. As a verbal summary of the formalization below, 

consider a population of individuals with a fixed brain of capacity B, maximized due to 

constraints on brain size, such as the size of the birth canal (3). For ease of explanation, 

let B = 10. In order to survive, these individuals need to have some minimum skill across 

a range of domains M. For example, the ability to find and process food, build clothing 
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and shelter, evade predators, heal the sick, and know the norms and laws of the group. 

Again, for ease of explanation, let M = 10. If everyone in a society has to learn all 10 

domains, each reaches skill level B/M = 10/10 = 1. If, however, everyone had to learn only 

half the domains (5), then each person—and the society as a whole—could reach B/5 = 2. 

If they only had to learn 1 domain, then they would reach skill unit 10, half a domain 

then skill level 20, and so on.  

 

The degree to which one can safely specialize is the degree to which one can rely on 

others to reliably provide the outputs of the knowledge in the remaining domains. This 

is a function of sociality, interdependence, and cooperation (4). That is, there need to be 

enough specialists in each domain to ensure that the information is not lost, and the 

products of labour are sufficient and reliable. For example, in a small town, there may be 

a single general physician who needs to know many, if not all domains of common 

medicine. But in New York, a doctor may specialise in a small part of the renal system 

and get very good at treating that one part. Other specialists will cover other domains. 

However, ongoing specialisation can create a new challenge. Individuals become smarter 

at a few domains and stupider at everything else. Ask an average adolescent in a WEIRD 

society how to grow wheat and you might starve. To summarize, at an individual level, 

specialisation leads to a higher skill level within a domain, but also a siloing of skills. At 

a population level, specialisation leads to a higher average skill level across all domains, 

but creates a coordination challenge that must be overcome for everyone to survive.  

 

We formalize this logic in a model. Our model is predicated on the Cultural Brain 

Hypothesis (5), modelling division of information as a strategy for coping with an ever 

growing cumulative cultural corpus. The Cultural Brain Hypothesis predicts the 

coevolution of brain size, group size, social learning, and life history. Two broad 

strategies for dealing with the growing information are: 

1. Grow larger brains: here we assume that larger brains help humans process and 

store more information (6–8). But there is a fundamental limit to brain size. Larger 
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and more complex brains are more costly than less complex brains because they 

require more calories (9), take longer to develop (6,10,11), and are harder to birth 

(12,13).  

2. Increase transmission fidelity: Increasing transmission fidelity will help humans 

to learn faster and more efficiently. See Section 2.2 in the main text for the variety 

of genetic and cultural innovations that support increased transmission fidelity, 

ranging from better social learning to longer learning periods to media 

communication technologies. 

There are limits to both bigger brains and transmission fidelity. For example, sufficient 

calories and safe, secure childhoods are common in much of the WEIRD world (though 

substantial inequality exists between and within countries), but as Lipschuetz et al. (12) 

show, bigger brains still predict emergency birth interventions such as Caesareans and 

forceps. Caesareans remove this selection pressure, but with other health costs, such as 

those created by the lack of a microbiome transfer (14,15); although new approaches, such 

as “vaginal seeding” may help mitigate these costs (16). Similarly, extending the juvenile 

period into a cultural adolescence for longer learning runs into trade-offs on lifetime 

earnings and reproduction (delayed birth of first child and difficulties reproducing at an 

older age, particularly among females). In contrast, a division of information and labour 

strategy has no limits to increasing cultural complexity, as long as the sociality and 

coordination challenges are met. 

1.1 Model 1: Specialisation 

A population can increase its average skill level by specialising and dividing information 

and labour. To formalize this logic, we assume the following: 

● There are N individuals in the population. 

● There are M domains to be learned. The aggregation of all individuals in the 

society must cover the full M range to ensure survival. Excellence in tool 

manufacturing is of little help if you have lost the ability to make food. 
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● For each domain, learners must learn the same basic level of knowledge (K) before 

they can specialize further. This means that the first K amount an individual 

spends learning a domain overlaps with all other learners of that domain, as they 

must learn the basics first, and thus this K amount only contributes to the societies 

level of knowledge in the domain once. Above this amount K, learners can 

specialize in sub-domains, and so two learners can each contribute to increase the 

societal knowledge of the domain. This is equivalent to all engineering majors 

requiring some minimum mathematical training regardless of speciality.  

○ For example, if K = 0.4 and two people invest 1 point worth of knowledge 

into the same domain, then the societal knowledge of that domain would 

be 1.6. This is because both people learn the same basic 0.4 worth of 

information, plus they both learn a unique 0.6 of information in that 

domain, resulting in 0.4 + 0.6 + 0.6 = 1.6 

● Learners have a fixed capacity B to learn new things, a function of brain size and 

time, which we assume is equal across the population and set at B=1.  

 

Variable Explanation Type and Range 

N Population size Integer, N > 0 

M Number of domains Integer, M > 0 

B Capacity to learn domains 1 

K Basic knowledge threshold 0 < K < 1 

Table 1: Summary of variables 

In our model, the societal knowledge of a domain is the sum of knowledge spent above 

the threshold K by each learner of the domain, plus this threshold K. If no learner surpasses 

the threshold K, then it is the maximum of the knowledge spent by each learner of the 

domain. We make some simplifying assumptions in our model. 

First, since we are not modelling comparative advantage between societies or cultural 

clusters, the total societal knowledge is the minimum of the societal knowledge of all the 

domains. This means a society’s knowledge is only as great as it’s least known domain.  
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Second, since we are modelling skill specialization at a societal level and not the individual 

level, we treat domains of knowledge as being discrete. In reality this is likely not the case, 

as the boundary between domains may be fuzzy and some skills may be interchangeable 

between domains. 

Third, we assume an implicit optimization for comparative advantage. No domain is 

worth more than any other, but we try to equalize the number of individuals within any 

one domain. To achieve this, each individual will be assigned to ⌊
2𝑀

𝑁
⌋ domains1 and the 

remainder of this division, or M (mod N), will be assigned to an additional domain. It is 

then possible to ensure each individual spreads their efforts across all the domains they 

know such that the societal knowledge of each domain, and in turn the total knowledge 

level of the society, is: 

Societal Knowledge =
𝑁−2∗𝑀∗𝐾

𝑀
+ 𝐾 (1) 

1.1.1 Predictions 

The results from the model illustrate a simple logic: ceteris paribus, with an increase in 

population size, specialisation can increase, or equivalently the number of domains 

learnt per person can decrease (see Figure 1a). Individuals can focus on learning fewer 

skills very well, as there are enough other people to learn the remaining skills. This is 

consistent with evidence that the benefits of diversity are more likely to emerge in larger 

groups (17).  

Similarly, if the number of domains of knowledge increases (see Figure 1b), the 

population needs to learn more domains. However, there is an obvious trade-off: as the 

population and specialisation levels grow, coordination costs will emerge (18,19). In the 

next section, we model these coordination costs. 

 
1 If ⌊

2𝑀

𝑁
⌋ = 0, then we instead assign C individuals per domain, where C is the smallest number such that 

⌊
𝐶∗𝑀

𝑁
⌋ = 1. This changes equation (1) to 

𝑁−𝐶∗𝑀∗𝐾

𝑀
+ 𝐾. 
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a  b  

Figure 1. Domain division. For both figures we show the number of domains learnt per person, as we vary either 

population size (a) or total number of domains (b). We show the minimum number of domains each person must 

specialise in, recalling that some people will also have to specialise in one extra domain. In Figure 1a, given a fixed 

number of domains (M = 20), when the population size increases the number of domains each person specialises in 

decreases. In Figure 1b, for a fixed population size (N = 20), when the number of domains increases the number of 

each person specialises in also increases. 

1.2 Model 2: Coordination 

To model this coordination problem, we introduce network structure. We construct a 

network such that difficulty in coordinating is proportional to network path distance. If 

Person A and Person B share a skill set, then they should be able to coordinate with no 

issues and so have a direct link in our network. If Person A and Person B do not share a 

skill set, they have to go through mutual connections based on overlapping skill sets.  

To capture the coordination cost for the population as a whole, we can measure the 

efficiency of the network using Average Dyadic Efficiency (𝐴𝐷𝐸 =
1

𝑁(𝑁−1)
∑

1

𝑑𝑖,𝑗

𝑁
𝑖≠𝑗 ) (20), 

where 𝑑𝑖,𝑗 is path distance. A larger ADE represents a more efficient network.  

For our purposes we will be randomly creating networks with different sets of 

parameters. We do so by randomly assigning A individuals to each domain, where A is 

an integer greater than 2. By assigning at least 2 individuals per domain, we can ensure 

that our network can be connected. We do this assignment while ensuring that every 

individual is assigned to at least ⌊
𝐴∗𝑀

𝑁
⌋ domains, AxM (mod N) individuals learns one 

additional domain, and no individual learns the same domain twice. This algorithm can 
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be made more efficient by ensuring that individuals who already connected in one 

domain will not share any additional domains, but this algorithm is computationally 

expensive, hard to scale up to large values of A, and not necessarily realistic to how real-

world skill specialization occurs, so we ignore this possibility. We try different values for 

A to test which ones best improve network efficiency without harming the performance 

of the society. Societal knowledge is measured as:  

Societal Knowledge ≈
𝑁−𝐴∗𝑀∗𝐾

𝑀
+ 𝐾 (2) 2 

 

In the case where A = 2 equation (2) is the same as equation (1) above as they both 

represent having 2 individuals learning each domain. 

 
2 Equation (2) may not be exact as we do not ensure the same constraints as for equation (1), such as 

separating individuals learning the same number of domains as much as possible. However, it provides a 

close enough estimate to demonstrate the relationship between societal knowledge and efficiency. 
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a  b  

c  d  

Figure 2. Network Efficiency. We draw 4 networks randomly generated following the instructions explained above 

using different sets of parameters. All networks have 10 individuals (N = 10). The remaining network parameters 

are: (a) M = 15, A = 2; (b) M = 25, A = 2; (c) M = 15, A = 3; (d) M = 25, A = 3. These networks have the following 

Average Dyadic Efficiency (ADE): (a) ADE = 0.533; (b) ADE = 0.719; (c) ADE = 0.867; (d) ADE = 0.922. The difference 

between (a) vs (b) and (c) vs (d) is the introduction of more domains of knowledge to be learnt (M = 15 to M = 25). 

When there are more domains of knowledge then everyone is responsible for learning more domains (see Figure 1). 

This in turn creates more connections between people and also increases the network efficiency. The difference 

between (a) vs (c) and (b) vs (d) is the requirement for more people to learn each domain (A = 2 to A = 3). This 

creates more links as individuals are connected to two others in every domain, rather than only one other. It also 

requires each person to learn more domains, which further increases the number of connections in the network. 

Both these reactions increase network efficiency. 
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1.2.1 Predictions 

We simulate how different population sizes, number of domains, and values for A affect 

the network efficiency for 10,000 randomly generated networks constructed with the 

constraints described above3. The following predictions hold: 

1. When population size increases for a constant number of domains, then the 

efficiency of our network decreases (see Figure 3a).  

2. When the number of domains increases for a constant population size, then 

the efficiency of the network increases (see Figure 3b).  

3. When the number of people learning each domain (A) increases, then 

network efficiency increases and societal knowledge decreases.  

Overall, this creates a trade-off between the knowledge level of a population and the 

coordination cost within the population. As population size increases the knowledge 

level increases, but network efficiency decreases (or coordination costs increase). To keep 

this coordination cost in check, the number of domains (M) should increase, but this will 

lower the knowledge level of our population. There may be many strategies to optimize 

this trade-off in the diversity of domains, such as those verbally described in the main 

text. Our formalization offers a framework for making more specific predictions about 

these in future work.  

 
3 See code in Supplementary. Also available at: https://github.com/schnelleric/Knowledge-Diversity-Model  

https://github.com/schnelleric/Knowledge-Diversity-Model
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a  b  

c  d  

Figure 3. Network Efficiency. For all figures we show the network efficiency, as calculated by the Average Dyadic 

Efficiency (ADE) alongside societal knowledge as calculated in equation (2). We vary either population size (a and 

c) or total number of domains (b and d). For all figures K = 0.1 and for Figures 3a and 3b A = 2, whereas for figures 

3c and 3d A = 4. The distribution of networks is randomly assigned per the rules listed above and the value in the 

graphs are the average ADE over 10,000 runs with error bars representing the standard deviation. In Figure 1a and 

1c, given a fixed number of domains (M = 30), when population size increases the network efficiency decreases and 

societal knowledge increases. In Figure 1b and 1d, for a fixed population size (N = 30), when the number of domains 

increases the network efficiency also increases and societal decreases. When A is larger, Figures 3c and 3d as 

compared to 3a and 3b, Network efficiency is higher but societal knowledge is lower. 
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