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Abstract
We present an accelerated, or “look-ahead” version of the Newton–Dinkelbach method, a well-known
technique for solving fractional and parametric optimization problems. This acceleration halves the
Bregman divergence between the current iterate and the optimal solution within every two iterations.
Using the Bregman divergence as a potential in conjunction with combinatorial arguments, we obtain
strongly polynomial algorithms in three applications domains: (i) For linear fractional combinatorial
optimization, we show a convergence bound of O(m log m) iterations; the previous best bound was
O(m2 log m) by Wang et al. (2006). (ii) We obtain a strongly polynomial label-correcting algorithm
for solving linear feasibility systems with two variables per inequality (2VPI). For a 2VPI system with
n variables and m constraints, our algorithm runs in O(mn) iterations. Every iteration takes O(mn)
time for general 2VPI systems, and O(m + n log n) time for the special case of deterministic Markov
Decision Processes (DMDPs). This extends and strengthens a previous result by Madani (2002)
that showed a weakly polynomial bound for a variant of the Newton–Dinkelbach method for solving
DMDPs. (iii) We give a simplified variant of the parametric submodular function minimization
result by Goemans et al. (2017).
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1 Introduction

Linear fractional optimization problems are well-studied in combinatorial optimization. Given
a closed domain D ⊆ Rm and c, d ∈ Rm such that d⊤x > 0 for all x ∈ D, the problem is

inf c⊤x/d⊤x s.t. x ∈ D . (1)
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The domain D could be either a convex set or a discrete set D ⊆ {0, 1}m. Classical examples
include finding minimum cost-to-time ratio cycles and minimum ratio spanning trees. One
can equivalently formulate (1) as a parametric search problem. Let

f(δ) = inf{(c− δd)⊤x : x ∈ D} , (2)

be a concave and decreasing function. Assuming (1) has a finite optimum δ, it corresponds
to the unique root f(δ) = 0.

A natural question is to investigate how the computational complexity of solving the
minimum ratio problem (1) may depend on the complexity of the corresponding linear
optimization problem min c⊤x s.t. x ∈ D. Using the reformulation (2), one can reduce
the fractional problem to the linear problem via binary search; however, the number of
iterations needed to find an exact solution may depend on the bit complexity of the input.
A particularly interesting question is: assuming there exists a strongly polynomial algorithm
for linear optimization over a domain D, can we find a strongly polynomial algorithm for
linear fractional optimization over the same domain?

A seminal paper by Megiddo [14] introduced the parametric search technique to solve linear
fractional combinatorial optimization problems. He showed that if the linear optimization
algorithm only uses p(m) comparisons and q(m) additions, then there exists an O(p(m)(p(m)+
q(m)) algorithm for the linear fractional optimization problem. This in particular yielded the
first strongly polynomial algorithm for the minimum cost-to-time ratio cycle problem. On a
very high level, parametric search works by simulating the linear optimization algorithm for
the parametric problem (2), with the parameter δ ∈ R being indeterminate.

A natural alternative approach is to solve (2) using a standard root finding algorithm.
Radzik [18] showed that for a discrete domain D ⊆ {0, 1}m, the discrete Newton method –
in this context, also known as Dinkelbach’s method [4] – terminates in a strongly polynomial
number of iterations. In contrast to parametric search, there are no restrictions on the
possible operations in the linear optimization algorithm. In certain settings, such as the
maximum ratio cut problem, the discrete Newton method outperforms parametric search;
we refer to the comprehensive survey by Radzik [19] for details and comparison of the two
methods.

1.1 Our Contributions
We introduce a new, accelerated variant of Newton’s method for univariate functions. Let
f : R→ R ∪ {−∞} be a concave function. Under some mild assumptions on f , our goal is
to either find the largest root, or show that no root exists. Let δ∗ denote the largest root, or
in case f < 0, let δ∗ denote the largest maximizer of f . For simplicity, we now describe the
method for differentiable functions. This will not hold in general: functions of the form (2)
will be piecewise linear if D is finite or polyhedral. The algorithm description in Section 2
uses a form with supergradients (that can be choosen arbitrarily between the left and right
derivatives).

The standard Newton method, also used by Radzik, proceeds through iterates δ(1) >

δ(2) > . . . > δ(t) such that f(δ(i)) ≤ 0, and updates δ(i+1) = δ(i) − f(δ(i))/f ′(δ(i)).
Our new variant uses a more aggressive “look-ahead” technique. At each iteration, we

compute δ = δ(i) − f(δ(i))/f ′(δ(i)), and jump ahead to δ′ = 2δ − δ(i). In case f(δ′) ≤ 0 and
f ′(δ′) < 0, we update δ(i+1) = δ′; otherwise, we continue with the standard iterate δ.

This modification leads to an improved and at the same time simplified analysis based
on the Bregman divergence Df (δ∗, δ(i)) = f(δ(i)) + f ′(δ(i))(δ∗ − δ(i))− f(δ∗). We show that
this decreases by a factor of two between any two iterations.
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A salient feature of the algorithm is that it handles both feasible and infeasible outcomes
in a unified framework. In the context of linear fractional optimization, this means that the
assumption d⊤x > 0 for all x ∈ D in (1) can be waived. Instead, d⊤x > 0 is now added as a
feasibility constraint to (1). This generalization is important when we use the algorithm to
solve two variables per inequality systems.

This general result leads to improvements and simplifications of a number of algorithms
using the discrete Newton method.

For linear fractional combinatorial optimization, namely the setting (1) with D ⊆ {0, 1}m,
we obtain an O(m logm) bound on the number of iterations, a factor m improvement
over the previous best bound O(m2 logm) by Wang et al. [25] from 2006. We remark
that Radzik’s first analysis [18] yielded a bound of O(m4 log2 m) iterations, improved to
O(m2 log2 m) in [19].
Goemans et al. [7] used the discrete Newton method to obtain a strongly polynomial
algorithm for parametric submodular function minimization. We give a simple new variant
of this result with the same asymptotic running time, using the accelerated algorithm.
For two variable per inequality (2VPI) systems, we obtain a strongly polynomial label-
correcting algorithm. This will be discussed in more detail next.

1.2 Two Variables Per Inequality Systems

A major open question in the theory of linear programming (LP) is whether there exists a
strongly polynomial algorithm for LP. This problem is one of Smale’s eighteen mathematical
challenges for the twenty-first century [22]. An LP algorithm is strongly polynomial if it only
uses elementary arithmetic operations (+,−,×, /) and comparisons, and the number of such
operations is polynomially bounded in the number of variables and constraints. Furthermore,
the algorithm needs to be in PSPACE, i.e. the numbers occurring in the computations must
remain polynomially bounded in the input size.

The notion of a strongly polynomial algorithm was formally introduced by Megiddo [15]
in 1983 (using the term “genuinely polynomial”), where he gave the first such algorithm for
two variables per inequality (2VPI) systems. These are feasibility LPs where every inequality
contains at most two variables. More formally, let M2(n,m) be the set of n×m matrices
with at most two nonzero entries per column. A 2VPI system is of the form A⊤y ≤ c for
A ∈M2(n,m) and c ∈ Rm.

If we further require that every inequality has at most one positive and at most one
negative coefficient, it is called a monotone two variables per inequality (M2VPI) system. A
simple and efficient reduction is known from 2VPI systems with n variables and m inequalities
to M2VPI systems with 2n variables and ≤ 2m inequalities [5, 10].

Connection between 2VPI and parametric optimization. An M2VPI system has a natural
graphical interpretation: after normalization, we can assume every constraint is of the form
yu− γeyv ≤ ce. Such a constraint naturally maps to an arc e = (u, v) with gain factor γe > 0
and cost ce. Based on Shostak’s work [21] that characterized feasibility in terms of this graph,
Aspvall and Shiloach [2] gave the first weakly polynomial algorithm for M2VPI systems.

We say that a directed cycle C is flow absorbing if
∏

e∈C γe < 1 and flow generating if∏
e∈C γe > 1. Every flow absorbing cycle C implies an upper bound for every variable yu

incident to C; similarly, flow generating cycles imply lower bounds. The crux of Aspvall and
Shiloach’s algorithm is to find the tightest upper and lower bounds for each variable yu.

ESA 2021
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Finding these bounds corresponds to solving fractional optimization problems of the form
(1), where D ⊆ Rm describes “generalized flows” around cycles. The paper [2] introduced
the Grapevine algorithm – a natural modification the Bellman-Ford algorithm – to decide
whether the optimum ratio is smaller or larger than a fixed value δ. The optimum value can
found using binary search on the parameter.

Megiddo’s strongly polynomial algorithm [15] replaced the binary search framework
in Aspvall and Shiloach’s algorithm by extending the parametric search technique in [14].
Subsequently, Cohen and Megiddo [3] devised faster strongly polynomial algorithms for the
problem. The current fastest strongly polynomial algorithm is given by Hochbaum and Naor
[11], an efficient Fourier–Motzkin elimination with running time of O(mn2 logm).

2VPI via Newton’s method. Since Newton’s method proved to be an efficient and viable
alternative to parametric search, a natural question is to see whether it can solve the paramet-
ric problems occuring in 2VPI systems. Radzik’s fractional combinatorial optimization results
[18, 19] are not directly applicable, since the domain D in this setting is a polyhedron and
not a discrete set.1 Madani [13] used a variant of the Newton–Dinkelbach method as a tool
to analyze the convergence of policy iteration on deterministic Markov Decision Processes
(DMDPs), a special class of M2VPI systems (discussed later in more detail). He obtained a
weakly polynomial convergence bound; it remained open whether such an algorithm could
be strongly polynomial.

Our 2VPI algorithm. We introduce a new type of strongly polynomial 2VPI algorithm
by combining the accelerated Newton–Dinkelbach method with a “variable fixing” analysis.
Variable fixing was first introduced in the seminal work of Tardos [23] on minimum-cost
flows, and has been a central idea of strongly polynomial algorithms, see in particular [8, 20]
for cycle cancelling minimum-cost flow algorithms, and [16, 24] for maximum generalized
flows, a dual to the 2VPI problem.

We show that for every iterate δ(i), there is a constraint that has been “actively used”
at δ(i) but will not be used ever again after a strongly polynomial number of iterations.
The analysis combines the decay in Bregman divergence shown in the general accelerated
Newton–Dinkelbach analysis with a combinatorial “subpath monotonicity” property.

Our overall algorithm can be seen as an extension of Madani’s DMDP algorithm. In
particular, we adapt his “unfreezing” idea: the variables yu are admitted to the system
one-by-one, and the accelerated Newton–Dinkelbach method is used to find the best “cycle
bound” attainable at the newly admitted yu in the graph induced by the current variable
set. This returns a feasible solution or reports infeasibility within O(m) iterations. As every
iteration takes O(mn) time, our overall algorithm terminates in O(m2n2) time. For the
special setting of deterministic MDPs, the runtime per iteration improves to O(m+ n logn),
giving a total runtime of O(mn(m+ n logn)).

Even though our running time bound is worse than the state-of-the-art 2VPI algorithm
[11], it is of a very different nature from all previous 2VPI algorithms. In fact, our algorithm
is a label-correcting algorithm, naturally fitting to the family of algorithms used in other com-
binatorial optimization problems with constraint matrices from M2(n,m) such as maximum
flow, shortest paths, minimum-cost flow, and generalized flow problems. We next elaborate
on this connection.

1 The problem could be alternatively formulated with D ⊆ {0, 1}m but with nonlinear functions instead
of c⊤x and d⊤x.
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Label-correcting algorithms. An important special case of M2VPI systems corresponds
to the shortest paths problem: given a directed graph G = (V,E) with target node t ∈ V
and arc costs c ∈ RE , we associate constraints yu − yv ≤ ce for every arc e = (u, v) ∈ E and
yt = 0. If the system is feasible and bounded, the pointwise maximal solution corresponds
to the shortest path labels to t; an infeasible system contains a negative cost cycle. A
generic label-correcting algorithm maintains distance labels y that are upper bounds on
the shortest path distances to t. The labels are decreased according to violated constraints.
Namely, if yu − yv > ce, then decreasing yu to ce + yv gives a smaller valid distance label
at u. We terminate with the shortest path labels once all constraints are satisfied. The
Bellman–Ford algorithm for the shortest paths problem is a particular implementation of the
generic label-correcting algorithm; we refer the reader to [1, Chapter 5] for more details.

It is a natural question if label-correcting algorithms can be extended to general M2VPI
systems, where constraints are of the form yu − γeyv ≤ ce for a “gain/loss factor” γe > 0
associated with each arc. A fundamental property of M2VPI systems is that, whenever
bounded, a unique pointwise maximal solution exists, i.e. a feasible solution y∗ such that
y ≤ y∗ for every feasible solution y. A label-correcting algorithm for such a setting can be
naturally defined as follows. Let us assume that the problem is bounded. The algorithm
should proceed via a decreasing sequence y(0) ≥ y(1) ≥ . . . ≥ y(t) of labels that are all valid
upper bounds on any feasible solution y to the system. The algorithm either terminates with
the unique pointwise maximal solution y(t) = y∗, or finds an infeasibility certificate.

The basic label-correcting operation is the “arc update”, decreasing yu to min{yu, ce +
γeyv} for some arc e = (u, v) ∈ E. Such updates suffice in the shortest path setting.
However, in the general setting arc operations only may not lead to finite termination.
Consider a system with only two variables, yu and yv, and two constraints, yu − yv ≤ 0, and
yv − 1

2yu ≤ −1. The alternating sequence of arc updates converges to (y∗
u, y

∗
v) = (−2,−2),

but does not finitely terminate. In this example, we can “detect” the cycle formed by the
two arcs, that implies the bound yu − 1

2yu ≤ −1.
Shostak’s [21] result demonstrates that arc updates, together with such “cycle updates”

should be sufficient for finite termination. Our M2VPI algorithm amounts to the first strongly
polynomial label-correcting algorithm for general M2VPI systems, using arc updates and
cycle updates.

Deterministic Markov decision processes. A well-studied special case of M2VPI systems
in which γ ≤ 1 is known as deterministic Markov decision process (DMDP). A policy
corresponds to selecting an outgoing arc from every node, and the objective is to find a
policy that minimizes the total discounted cost over an infinite time horizon. The pointwise
maximal solution of this system corresponds to the optimal values of a policy.

The standard policy iteration, value iteration, and simplex algorithms can be all inter-
preted as variants of the label-correcting framework.2

Value iteration can be seen as a generalization of the Bellman–Ford algorithm to the
DMDP setting. As our previous example shows, value iteration may not be finite. One
could still consider as the termination criterion the point where value iteration “reveals” the
optimal policy, i.e. updates are only performed using constraints that are tight in the optimal
solution. If each discount factor γe is at most γ′ for some γ′ > 0, then it is well-known
that value iteration converges at the rate 1/(1− γ′). This is in fact true more generally, for
nondeterministic MDPs [12]. However, if the discount factors can be arbitrarily close to 1,

2 The value sequence may violate monotonicity in certain cases of value iteration.

ESA 2021
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then Feinberg and Huang [6] showed that value iteration cannot reveal the optimal policy in
strongly polynomial time even for DMDPs. Post and Ye [17] proved that simplex with the
most negative reduced cost pivoting rule is strongly polynomial for DMDPs; this was later
improved by Hansen et al. [9]. These papers heavily rely on the assumption γ ≤ 1, and does
not seem to extend to general M2VPI systems.

Madani’s previously mentioned work [13] used a variant of the Newton–Dinkelbach method
as a tool to analyze the convergence of policy iteration on deterministic MDPs, and derived
a weakly polynomial runtime bound.

Paper organization We start by giving preliminaries and introducing notation below. In
Section 2, we present an accelerated Newton’s method for univariate concave functions, and
apply it to linear fractional combinatorial optimization and linear fractional programming.
Section 3 contains our main application of the method to the 2VPI problem. Our results on
parametric submodular function minimization and deterministic MDPs can be found in the
full version of the paper. Missing proofs also appear in the full version.

Preliminaries Let R+ and R++ be the nonnegative and positive reals respectively, and
denote R̄ := R ∪ {±∞}. Given a proper concave function f : R → R̄, let dom(f) :=
{x : −∞ < f(x) <∞} be the effective domain of f . For a point x0 ∈ dom(f), denote the
set of supergradients of f at x0 as ∂f(x0) := {g : f(x) ≤ f(x0) + g(x− x0) ∀x ∈ R}. If x0 is
in the interior of dom(f), then ∂f(x0) = [f ′

−(x0), f ′
+(x0)], where f ′

−(x0) and f ′
+(x0) are the

left and right derivatives. Throughout, we use log(x) = log2(x) to indicate base 2 logarithm.
For x, y ∈ Rm, denote x ◦ y ∈ Rm as the element-wise product of the two vectors.

2 An Accelerated Newton–Dinkelbach Method

Let f : R → R̄ be a proper concave function such that f(δ) ≤ 0 and ∂f(δ) ∩ R<0 ≠ ∅ for
some δ ∈ dom(f). Given a suitable starting point, as well as value and supergradient oracles
of f , the Newton–Dinkelbach method either computes the largest root of f or declares that
it does not have a root. In this paper, we make the mild assumption that f has a root or
attains its maximum. Consequently, the point δ∗ := max({δ : f(δ) = 0} ∪ arg max f(δ)) is
well-defined. It is the largest root of f if f has a root. Otherwise, it is the largest maximizer
of f . Therefore, the Newton–Dinkelbach method returns δ∗ if f has a root, and certifies that
f(δ∗) < 0 otherwise.

The algorithm takes as input an initial point δ(1) ∈ dom(f) and a supergradient g(1) ∈
∂f(δ(1)) such that f(δ(1)) ≤ 0 and g(1) < 0. At the start of every iteration i ≥ 1, it maintains
a point δ(i) ∈ dom(f) and a supergradient g(i) ∈ ∂f(δ(i)) where f(δ(i)) ≤ 0. If f(δ(i)) = 0,
then it returns δ(i) as the largest root of f . Otherwise, a new point δ := δ(i) − f(δ(i))/g(i)

is generated. Now, there are two scenarios in which the algorithm terminates and reports
that f does not have a root: (1) f(δ) = −∞; (2) f(δ) < 0 and g ≥ 0 where g ∈ ∂f(δ) is
the supergradient given by the oracle. If both scenarios do not apply, the next point and
supergradient is set to δ(i+1) := δ and g(i+1) := g respectively. Then, a new iteration begins.

To accelerate this classical method, we perform an aggressive guess δ′ := 2δ − δ(i) < δ on
the next point at the end of every iteration i. We call this procedure look-ahead, which is
implemented on Lines 7–10 of Algorithm 1. Let g′ ∈ ∂f(δ′) be the supergradient returned by
the oracle. If −∞ < f(δ′) < 0 and g′ < 0, then the next point and supergradient are set to
δ(i+1) := δ′ and g(i+1) := g′ respectively as δ′ ≥ δ∗. In this case, we say that look-ahead is
successful in iteration i. Otherwise, we proceed as usual by taking δ(i+1) := δ and g(i+1) := g.
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Algorithm 1 Look-aheadNewton.

input : Value and supergradient oracles for a proper concave function f , an initial
point δ(1) ∈ dom(f) and supergradient g(1) ∈ ∂f(δ(1)) where f(δ(1)) ≤ 0
and g(1) < 0.

output : The largest root of f if it exists; report NO ROOT otherwise.

1 i← 1
2 while f(δ(i)) < 0 do
3 δ ← δ(i) − f(δ(i))/g(i)

4 g ∈ ∂f(δ) /* Empty if f(δ) = −∞ */
5 if f(δ) = −∞ or (f(δ) < 0 and g ≥ 0) then
6 return NO ROOT

7 δ′ ← 2δ − δ(i) /* Look-ahead guess */
8 g′ ∈ ∂f(δ′) /* Empty if f(δ′) = −∞ */
9 if −∞ < f(δ′) < 0 and g′ < 0 then /* Is the guess successful? */

10 δ ← δ′, g ← g′

11 δ(i+1) ← δ, g(i+1) ← g

12 i← i+ 1
13 return δ(i)

It is easy to see that δ(i) is monotonically decreasing while f(δ(i)) is monotonically
increasing. Furthermore, g(i) is monotonically increasing except in the final iteration where
it may remain unchanged (Lemma 2.1). Similarly, we have g(i) < 0 except possibly in the
final iteration when f(δ(i)) = 0.

▶ Lemma 2.1. For every iteration i ≥ 2, we have δ∗ ≤ δ(i) < δ(i−1), f(δ∗) ≥ f(δ(i)) >
f(δ(i−1)) and g(i) ≥ g(i−1), where the last inequality holds at equality if and only if g(i) =
infg∈∂f(δ(i)) g, g(i−1) = supg∈∂f(δ(i−1)) g and f(δ(i)) = 0. Moreover,

f(δ(i))
f(δ(i−1))

+ g(i)

g(i−1) ≤ 1 .

Our analysis of the Newton–Dinkelbach method utilizes the Bregman divergence associated
with f as a potential. Even though the original definition requires f to be differentiable and
strictly concave, it can be naturally extended to our setting in the following way.

▶ Definition 2.2. Given a proper concave function f : R → R̄, the Bregman divergence
associated with f is defined as

Df (δ′, δ) :=

f(δ) + sup
g∈∂f(δ)

g(δ′ − δ)− f(δ′) if δ ̸= δ′,

0 otherwise.

for all δ, δ′ ∈ dom(f) such that ∂f(δ) ̸= ∅.

Since f is concave, the Bregman divergence is nonnegative. It is again easy to see that
Df (δ∗, δ(i)) is monotonically decreasing except in the final iteration where it may remain
unchanged (Lemma 2.3).

▶ Lemma 2.3. For every iteration i ≥ 2, we have Df (δ∗, δ(i)) ≤ Df (δ∗, δ(i−1)) which holds
at equality if and only if g(i−1) = infg∈∂f(δ(i−1)) g and f(δ(i)) = 0.

ESA 2021
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If look-ahead is successful, then we have made significant progress. Otherwise, by our
choice of δ′, we learn that we are not too far away from δ∗. The next lemma demonstrates
the advantage of using the look-ahead Newton–Dinkelbach method. It exploits the proximity
to δ∗ to produce a geometric decay in the Bregman divergence of δ(i) and δ∗.

▶ Lemma 2.4. For every iteration i > 2 in Algorithm 1, we have Df (δ∗, δ(i)) <
1
2Df (δ∗, δ(i−2)).

In the remaining of this section, we apply the accelerated Newton–Dinkelbach method
to linear fractional combinatorial optimization and linear fractional programming. The
application to parametric submodular function minimization is in the full version.

2.1 Linear Fractional Combinatorial Optimization
The problem (1) with D ⊆ {0, 1}m is known as linear fractional combinatorial optimization.
Radzik [18] showed that the Newton–Dinkelbach method applied to the function f(δ)
as in (2) terminates in a strongly polynomial number of iterations. Recall that f(δ) =
minx∈D(c − δd)⊤x. By the assumption d⊤x > 0 for all x ∈ D, this function is concave,
strictly decreasing, finite and piecewise-linear. Hence, it has a unique root. Moreover, f(δ) < 0
and ∂f(δ) ∩ R<0 ̸= ∅ for sufficiently large δ. To implement the value and supergradient
oracles, we assume that a linear optimization oracle over D is available, i.e. it returns an
element in arg minx∈D(c− δd)⊤x for any δ ∈ R.

Our result for the accelerated variant improves the state-of-the-art bound O(m2 logm)
by Wang et al. [25] on the standard Newton–Dinkelbach method. We will need the following
lemma, given by Radzik and credited to Goemans in [19]. It gives a strongly polynomial
bound on the length of a geometrically decreasing sequence of sums.

▶ Lemma 2.5 ([19]). Let c ∈ Rm
+ and x(1), x(2), . . . , x(k) ∈ {−1, 0, 1}m. If 0 < c⊤x(i+1) ≤

1
2c

⊤x(i) for all i < k, then k = O(m logm).

▶ Theorem 2.6. Algorithm 1 converges in O(m logm) iterations for linear fractional com-
binatorial optimization problems.

Proof. Observe that Algorithm 1 terminates in a finite number of iterations because f is
piecewise linear. Let δ(1) > δ(2) > · · · > δ(k) = δ∗ denote the sequence of iterates at the start
of Algorithm 1. Since f is concave, we have Df (δ∗, δ(i)) ≥ 0 for all i ∈ [k]. For each i ∈ [k],
pick x(i) ∈ arg minx∈D(c− δ(i)d)⊤x which maximizes d⊤x. This is well-defined because f is
finite. Note that −d⊤x(i) = min ∂f(δ(i)). As f(δ∗) = 0, the Bregman divergence of δ(i) and
δ∗ can be written as

Df (δ∗, δ(i)) = f(δ(i))+ max
g∈∂f(δ(i))

g(δ∗ −δ(i)) = (c−δ(i)d)⊤x(i) −d⊤x(i)(δ∗ −δ(i)) = (c−δ∗d)⊤x(i) .

According to Lemma 2.4, (c−δ∗d)⊤x(i) = Df (δ∗, δ(i)) < 1
2Df (δ∗, δ(i−2)) = 1

2 (c−δ∗d)⊤x(i−2)

for all 3 ≤ i ≤ k. By Lemma 2.3, we also know that Df (δ∗, δ(i)) > 0 for all 1 ≤ i ≤ k − 2.
Thus, applying Lemma 2.5 yields k = O(m logm). ◀

2.2 Linear Fractional Programming
We next consider linear fractional programming, an extension of (1) with the assumption
that the domain D ⊆ Rm is a polyhedron, but removing the condition d⊤x > 0 for x ∈ D.
For c, d ∈ Rm, the problem is

inf c⊤x/d⊤x s.t. d⊤x > 0, x ∈ D . (F)
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For the problem to be meaningful, we assume that D ∩
{
x : d⊤x > 0

}
̸= ∅. The common

form in the literature assumes d⊤x > 0 for all x ∈ D as in (1); we consider the more general
setup for the purpose of solving M2VPI systems in Section 3. It is easy to see that any linear
fractional combinatorial optimization problem on a domain X ⊆ {0, 1}m can be cast as a linear
fractional program with the polytope D = conv(X ) because c⊤x̄/d⊤x̄ ≥ minx∈X c⊤x/d⊤x

for all x̄ ∈ D. The next theorem characterizes when (F) is unbounded.

▶ Theorem 2.7. If D ∩
{
x : d⊤x > 0

}
̸= ∅, then the optimal value of (F) is −∞ if and only

if at least one of the following two conditions hold:
1. There exists x ∈ D such that c⊤x < 0 and d⊤x = 0;
2. There exists y ∈ Rm such that c⊤y < 0, d⊤y = 0 and x+ λy ∈ D for all x ∈ D, λ ≥ 0.

▶ Example 2.8. Unlike in linear programming, the optimal value may not be attained even if
it is finite. Consider the instance given by inf(−x1 +x2)/(x1 +x2) subject to x1 +x2 > 0 and
−x1 + x2 = 1. The numerator is equal to 1 for any feasible solution, while the denominator
can be made arbitrarily large. Hence, the optimal value of this program is 0, which is not
attained in the feasible region.

We use the Newton–Dinkelbach method for f as in (2), that is, f(δ) = infx∈D(c− δd)⊤x.
Since D ≠ ∅, f(δ) <∞ for all δ ∈ R. By the Minkowski–Weyl theorem, there exist finitely
many points P ⊆ D such that f(δ) = minx∈P (c − δd)⊤x for all δ ∈ dom(f). Hence, f is
concave and piecewise linear. Observe that f(δ) > −∞ if and only if every ray y in the
recession cone of D satisfies (c − δd)⊤y ≥ 0. For f to be proper, we need to assume that
Condition 2 in Theorem 2.7 does not hold. Moreover, we require the existence of a point
δ′ ∈ dom(f) such that f(δ′) = (c−δ′d)⊤x′ ≤ 0 for some x′ ∈ D with d⊤x′ > 0. It follows that
f has a root or attains its maximum because dom(f) is closed. We are ready to characterize
the optimal value of (F) using f .

▶ Lemma 2.9. Assume that there exists δ′ ∈ dom(f) such that f(δ′) = (c− δ′d)⊤x′ ≤ 0 for
some x′ ∈ D with d⊤x′ > 0. If f has a root, then the optimal value of (F) is equal to the
largest root and is attained. Otherwise, the optimal value is −∞.

3 Monotone Two Variables per Inequality Systems

Recall that an M2VPI system can be represented as a directed multigraph G = (V,E)
with arcs costs c ∈ Rm and gain factors γ ∈ Rm

++. For a u-v walk P in G with E(P ) =
(e1, e2, . . . , ek), its cost and gain factor are defined as c(P ) :=

∑k
i=1

(∏i−1
j=1 γej

)
cei

and

γ(P ) :=
∏k

i=1 γei respectively. If P is a single vertex, then c(P ) := 0 and γ(P ) := 1.
The walk P induces the valid inequality yu ≤ c(P ) + γ(P )yv, implied by the sequence of
arcs/inequalities in E(P ). It is also worth considering the dual interpretation. Dual variables
on arcs correspond to generalized flows: if 1 unit of flow enter the arc e = (u, v) at u, then
γe units reach v, at a shipping cost of ce. Thus, if 1 unit of flow enter a path P , then γ(P )
units reach the end of the path, incurring a cost of c(P ).

Given node labels y ∈ R̄n, the y-cost of a u-v walk P is defined as c(P ) + γ(P )yv. Note
that the y-cost of a walk only depends on the label at the sink. A u-v path is called a shortest
u-v path with respect to y if it has the smallest y-cost among all u-v walks. A shortest path
from u with respect to y is a shortest u-v path with respect to y for some node v. Such a
path does not always exist, as demonstrated in the full version.

If P is a u-u walk such that its intermediate nodes are distinct, then it is called a cycle
at u. Given a u-v walk P and a v-w walk Q, we denote PQ as the u-w walk obtained by
concatenating P and Q.
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▶ Definition 3.1. A cycle C is called flow-generating if γ(C) > 1, unit-gain if γ(C) = 1,
and flow-absorbing if γ(C) < 1. We say that a unit-gain cycle C is negative if c(C) < 0.

Note that c(C) depends on the starting point u of a cycle C. This ambiguity is resolved
by using the term cycle at u. For a unit-gain cycle C, it is not hard to see that the starting
point does not affect the sign of c(C). Hence, the definition of a negative unit-gain cycle is
sound. Observe that a flow-absorbing cycle C induces an upper bound yu ≤ c(C)

1−γ(C , while
a flow-generating cycle C induces a lower bound yu ≥ −c(C)

γ(C)−1 . Let Cabs
u (G) and Cgen

u (G)
denote the set of flow-absorbing cycles and flow-generating cycles at u in G respectively.

▶ Definition 3.2. Given a flow-generating cycle C at u, a flow-absorbing cycle D at v,
and a u-v path P , the walk CPD is called a bicycle. We say that the bicycle is negative if
c(P ) + γ(P ) c(D)

1−γ(D) <
−c(C)

γ(C)−1 .

Using these two structures, Shostak characterized the feasibility of M2VPI systems.

▶ Theorem 3.3 ([21]). An M2VPI system (G, c, γ) is infeasible if and only if G contains a
negative unit-gain cycle or a negative bicycle.

3.1 A Linear Fractional Programming Formulation
Our goal is to compute the pointwise maximal solution ymax ∈ R̄n to an M2VPI system if it
is feasible, where ymax

u :=∞ if and only if the variable yu is unbounded from above. It is
well known how to convert ymax into a finite feasible solution – we refer to the full version
for details. In order to apply Algorithm 1, we first need to reformulate the problem as a
linear fractional program. Now, every coordinate ymax

u can be expressed as the following
primal-dual pair of linear programs, where ∇xv :=

∑
e∈δ+(u) xe −

∑
e∈δ−(u) γexe denotes the

net flow at a node v.

min c⊤x (Pu)
s. t. ∇xu = 1

∇xv = 0 ∀v ∈ V \ u
x ≥ 0

max yu (Du)
s. t. yv − γeyw ≤ ce ∀e = (v, w) ∈ E

The primal LP (Pu) is a minimum-cost generalized flow problem with a supply of 1 at
node u. It asks for the cheapest way to destroy one unit of flow at u. Observe that it is
feasible if and only if u can reach a flow-absorbing cycle in G. If it is feasible, then it is
unbounded if and only if there exists a negative unit-gain cycle or a negative bicycle in G. It
can be reformulated as the following linear fractional program

inf c⊤x

1−
∑

e∈δ−(u) γexe
s.t. 1−

∑
e∈δ−(u)

γexe > 0, x ∈ D . (Fu)

with the polyhedron

D :=
{
x ∈ Rm

+ : x(δ+(u)) = 1,∇xv = 0 ∀v ∈ V \ u
}
.

Indeed, if x is a feasible solution to (Pu), then x/x(δ+(u)) is a feasible solution to (Fu)
with the same objective value. This is because 1−

∑
e∈δ−(u) γexe/x(δ+(u)) = 1/x(δ+(u)).

Conversely, if x is a feasible solution to (Fu), then x/(1−
∑

e∈δ−(u) γexe) is a feasible solution
to (Pu) with the same objective value. Even though the denominator is an affine function of
x, it can be made linear to conform with (F) by working with the polyhedron {(x, 1) : x ∈ D}.

Our goal is to solve (Fu) using Algorithm 1. For a fixed δ ∈ R, the value of the parametric
function f(δ) can be written as the following pair of primal and dual LPs respectively
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min c⊤x+ δ
∑

e∈δ−(u)

γexe − δ

s. t. x ∈ D

max yu − δ
s. t. yv − γeδ ≤ ce ∀e = (v, u) ∈ δ−(u)

yv − γeyw ≤ ce ∀e = (v, w) /∈ δ−(u).

We refer to them as the primal (resp. dual) LP for f(δ), and their corresponding
feasible/optimal solution as a feasible/optimal primal (resp. dual) solution to f(δ).

Due to the specific structure of this linear fractional program, a suitable initial point for
the Newton–Dinkelbach method can be obtained from any feasible solution to (Fu). This is
a consequence of the unboundedness test given by the following lemma.

▶ Lemma 3.4. Let x be a feasible solution to (Fu) and δ̄ := c⊤x/(1 −
∑

e∈δ−(u) γexe).
If either f(δ̄) = −∞ or f(δ̄) = c⊤x̄ − δ̄(1 −

∑
e∈δ−(u) γex̄e) < 0 for some x̄ ∈ D with

1−
∑

e∈δ−(u) γex̄e ≤ 0, then the optimal value of (Fu) is −∞.

In order to characterize the finiteness of f(δ), we introduce the following notion of a
negative flow-generating cycle.

▶ Definition 3.5. For a fixed δ ∈ R and u ∈ V , a flow-generating cycle C is said to
be (δ, u)-negative if there exists a path P from a node v ∈ V (C) to node u such that
c(C) + (γ(C)− 1)(c(P ) + γ(P )δ) < 0, where C is treated as a v-v walk in c(C).

▶ Lemma 3.6. For any δ ∈ R, f(δ) = −∞ if and only if D ≠ ∅ and there exists a negative
unit-gain cycle, a negative bicycle, or a (δ, u)-negative flow-generating cycle in G \ δ+(u).

It turns out that if we have an optimal dual solution y to f(δ) for some δ ∈ R, then we
can compute an optimal dual solution to f(δ′) for any δ′ < δ. A suitable subroutine for
this task is the so called Grapevine algorithm (Algorithm 2), developed by Aspvall and
Shiloach [2].

Algorithm 2 Grapevine.

input : A directed multigraph G = (V,E) with arc costs c ∈ Rm and gain factors
γ ∈ Rm

++, node labels y ∈ R̄n, and a node u ∈ V .
output : Node labels y ∈ R̄n and a walk P of length at most n starting from u.

1 for i = 1 to n do
2 foreach v ∈ V do
3 y′

v ← min(yv,minvw∈δ+(v) cvw + γvwyw)
4 if y′

v < yv then
5 pred(v, i)← arg minvw∈δ+(v) cvw + γvwyw /* Break ties */
6 else
7 pred(v, i)← ∅

8 y ← y′

9 Let P be the walk obtained by tracing from pred(u, n)
10 return (y, P )

Given initial node labels y ∈ R̄n and a specified node u, Grapevine runs for n iterations.
We say that an arc e = (v, w) is violated with respect to y if yv > ce + γeyw. In an iteration
i ∈ [n], the algorithm records the most violated arc with respect to y in δ+(v) as pred(v, i),
for each node v ∈ V (ties are broken arbitrarily). Note that pred(v, i) = ∅ if there are
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no violated arcs in δ+(v). Then, each yv is decreased by the amount of violation in the
corresponding recorded arc. After n iterations, the algorithm traces a walk P from u by
following the recorded arcs in reverse chronological order. During the trace, if pred(v, i) = ∅
for some v ∈ V and i > 1, then pred(v, i− 1) is read. Finally, the updated node labels y and
the walk P are returned. Clearly, the running time of Grapevine is O(mn).

Given an optimal dual solution y ∈ Rn to f(δ) and δ′ < δ, the dual LP for f(δ′) can be
solved using Grapevine as follows. Define the directed graph Gu := (V ∪ {u′} , Eu) where
Eu := (E \ δ−(u)) ∪ {vu′ : vu ∈ δ−(u)}. The graph Gu is obtained from G by splitting u
into two nodes u, u′ and reassigning the incoming arcs of u to u′. These arcs inherit the
same costs and gain factors from their counterparts in G. Let ȳ ∈ Rn+1 be node labels in
Gu defined by ȳu′ := δ′ and ȳv := yv for all v ̸= u′. Then, we run Grapevine on Gu with
input node labels ȳ and node u. Note that ȳu′ remains unchanged throughout the algorithm.
The next lemma verifies the correctness of this method.

▶ Lemma 3.7. Given an optimal dual solution y ∈ Rn to f(δ) and δ′ < δ, define ȳ ∈ Rn+1

as ȳu′ := δ′ and ȳv := yv for all v ∈ V . Let (z̄, P ) be the node labels and walk returned
by Grapevine(Gu, ȳ, u). If z̄V is not feasible to the dual LP for f(δ′), then f(δ′) = −∞.
Otherwise, z̄V is a dual optimal solution to f(δ′) and P is a shortest path from u with respect
to ȳ in Gu.

If z̄V is an optimal dual solution to f(δ′), a supergradient in ∂f(δ′) can be inferred from
the returned path P . We say that an arc e = (v, w) is tight with respect to z̄ if z̄v = ce +γez̄w.
By complementary slackness, every optimal primal solution to f(δ′) is supported on the
subgraph of Gu induced by tight arcs with respect to z̄. In particular, any u-u′ path or any
path from u to a flow-absorbing cycle in this subgraph constitutes a basic optimal primal
solution to f(δ′). As P is also a path in this subgraph, we have γ(P )− 1 ∈ ∂f(δ′) if P ends
at u′. Otherwise, u can reach a flow-absorbing cycle in this subgraph because δ′ < δ. In this
case, −1 ∈ ∂f(δ′).

3.2 A Strongly Polynomial Label-Correcting Algorithm

Using Algorithm 1, we develop a strongly polynomial label-correcting algorithm for solving
an M2VPI system (G, c, γ). The main idea is to start with a subsystem for which (Du)
is trivial, and progressively solve (Du) for larger and larger subsystems. Throughout the
algorithm, we maintain node labels y ∈ R̄n which form valid upper bounds on each variable.
They are initialized to ∞ at every node. We also maintain a subgraph of G, which initially
is G(0) := (V, ∅).

The algorithm (Algorithm 3) is divided into n phases. At the start of phase k ∈ [n], a new
node u ∈ V is selected and all of its outgoing arcs in G are added to G(k−1), resulting in a
larger subgraph G(k). Since yu =∞ at this point, we update it to the smallest upper bound
implied by its outgoing arcs and the labels of its outneighbours. If yu is still infinity, then we
know that δ+(u) = ∅ or yv =∞ for all v ∈ N+(u). In this case, we find a flow-absorbing cycle
at u in G(k) using the multiplicative Bellman–Ford algorithm, by treating the gain factors as
arc costs. If there is none, then we proceed to the next phase immediately as yu is unbounded
from above in the subsystem (G(k), c, γ). This is because u cannot reach a flow-absorbing
cycle in G(k) by induction. We would like to point out that this does not necessarily imply
that the full system (G, c, γ) is feasible (see the full version for details). On the other hand,
if Bellman–Ford returns a flow-absorbing cycle, then yu is set to the upper bound implied by
the cycle. Then, we apply Algorithm 1 to solve (Du) for the subsystem (G(k), c, γ).
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Algorithm 3 Label-correcting algorithm for M2VPI systems.

input : An M2VPI system (G, c, γ).
output : The pointwise maximal solution ymax or the string INFEASIBLE.

1 Initialize graph G(0) ← (V, ∅) and counter k ← 0
2 Initialize node labels y ∈ R̄n as yv ←∞ ∀v ∈ V
3 foreach u ∈ V do
4 k ← k + 1
5 G(k) ← G(k−1) ∪ δ+(u)
6 yu ← minuv∈δ+(u) cuv + γuvyv

7 if yu =∞ and Cabs
u (G(k)) ̸= ∅ then

8 yu ← c(C)/(1− γ(C)) for any C ∈ Cabs
u (G(k))

9 if yu <∞ then
10 Define node labels ȳ ∈ R̄n+1 as ȳu′ ← yu and ȳv ← yv ∀v ∈ V
11 (ȳ, P )← Grapevine(G(k)

u ,ȳ,u)
12 if ∃ a violated arc w.r.t. ȳ in G

(k)
u or (|E(P )| > 0 and γ(P ) ≥ 1) then

13 return INFEASIBLE

14 ȳu′ ←Look-aheadNewton(Grapevine(G(k)
u , ·, u), ȳu′ , γ(P )− 1)

15 if ȳu′ = NO ROOT then
16 return INFEASIBLE

17 y ← ȳV

18 return y

The value and supergradient oracle for the parametric function f(δ) is Grapevine. Let
G

(k)
u be the modified graph and ȳ ∈ R̄n+1 be the node labels as defined in the previous

subsection. In order to provide Algorithm 1 with a suitable initial point and supergradient,
we run Grapevine on G(k)

u with input node labels ȳ. It updates ȳ and returns a walk P from
u. If ȳV is not feasible to the dual LP for f(ȳu′) or P is a non-trivial walk with γ(P ) ≥ 1,
then we declare infeasibility. Otherwise, we run Algorithm 1 with the initial point ȳu′ and
supergradient γ(P )− 1. We remark that Grapevine continues to update ȳ throughout the
execution of Algorithm 1.

▶ Theorem 3.8. If Algorithm 3 returns y ∈ R̄n, then y = ymax if the M2VPI system is
feasible. Otherwise, the system is infeasible.

We would like to point out that Algorithm 3 may return node labels y ∈ R̄n even if the
M2VPI system is infeasible. This happens when y contains ∞ entries. It is well-known how
to ascertain the system’s feasibility status in this case. We refer the reader to the full version
for details.

To bound the running time of Algorithm 3, it suffices to bound the running time of
Algorithm 1 in every phase. Our strategy is to analyze the sequence of paths whose gain
factors determine the right derivative of f at each iterate of Algorithm 1. The next property
is crucial in our arc elimination argument.

▶ Definition 3.9. Let P = (P (1), P (2), . . . , P (ℓ)) be a sequence of paths from u. We say that
P satisfies subpath monotonicity at u if for every pair P (i), P (j) where i < j and for every
shared node v ̸= u, we have γ(P (i)

uv ) ≤ γ(P (j)
uv ).
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▶ Lemma 3.10. Let δ(1) > δ(2) > · · · > δ(ℓ) be a decreasing sequence of iterates. For each
δ(i) ∈ R, let P (i) be a u-u′ path in Gu on which a unit flow is an optimal primal solution to
f(δ(i)). Then, the sequence (P (1), P (2), . . . , P (ℓ)) satisfies subpath monotonicity at u.

Proof. For each i ∈ [ℓ], let y(i) ∈ Rn be an optimal dual solution to f(δ(i)). Let ȳ(i) ∈ Rn+1

be the node labels in Gu defined by ȳ(i)
u′ := δ(i) and ȳv := yv for all v ≠ u′. By complementary

slackness, every arc in P (i) is tight with respect to ȳ(i). Hence, P (i) is a shortest u-u′ path
in Gu with respect to ȳ(i). Now, pick a pair of paths P (i) and P (j) such that i < j and they
share a node v ̸= u. Then, the subpaths P (i)

uv and P (j)
uv are also shortest u-v paths in Gu with

respect to ȳ(i) and ȳ(j) respectively. Observe that ȳ(i)
v > ȳ

(j)
v because ȳ(i)

u′ = δ(i) > δ(j) = ȳ
(j)
u′ .

Define the function ψ : [ȳ(j)
v , ȳ

(i)
v ]→ R̄ as

ψ(x) := inf {c(P ) + γ(P )x : P is a u-v walk in Gu} .

Clearly, it is increasing and concave. It is also finite because ψ(ȳ(i)
v ) = c(P (i)

uv ) + γ(P (i)
uv )ȳ(i)

v

and ψ(ȳ(j)
v ) = c(P (j)

uv ) + γ(P (j)
uv )ȳ(j)

v . Subpath monotonicity then follows from the concavity
of ψ. ◀

▶ Theorem 3.11. In each phase k of Algorithm 3, Algorithm 1 terminates in O(|E(G(k))|)
iterations.

The full proof is given in the full version; we highlight some key steps. Let mk := |E(G(k))|.
Let Ȳ = (ȳ(1), ȳ(2), . . . , ȳ(ℓ)) be a sequence of node labels at the start of every iteration of
Algorithm 1 in phase k. Let P = (P (2), P (3), . . . , P (ℓ)) be a sequence of u-u′ paths in G

(k)
u

such that P (i) determines the right derivative f ′
+(ȳ(i)

u′ ) for all i > 1. Perturb ĉ := c+ εχδ+(u)
by a suitably small ε ≥ 0 such that the system (G(k), ĉ, γ) is feasible. Let y∗ ∈ R̄n be its
pointwise maximal solution, and define the reduced cost c∗ ∈ Rmk

+ as c∗
vw := ĉvw +γvwy

∗
w−y∗

v

for all vw ∈ E(G(k)). For every arc vw ∈ ∪ℓ
i=1E(P (i)), let rvw be the largest gain factor of the

u-v subpath of the paths in P that contain vw. By Lemma 3.10, this is achieved by the last
path in P which contains vw. Order the elements of r◦c∗ as 0 ≤ r1c

∗
1 ≤ r2c

∗
2 ≤ · · · ≤ rmk

c∗
mk

,
and let di :=

∑i
j=1 rjc

∗
j for every i ∈ [mk]. The final step is showing that every interval

(di, di+1] contains the cost of at most two paths from P. This can be derived from the
Bregman divergence analysis, that yields c∗(P (i)) ≤ 1

2c
∗(P (i−2)) for all 3 ≤ i ≤ ℓ.

The runtime of every iteration of Algorithm 1 is dominated by Grapevine. Thus, we
obtain the following result.

▶ Corollary 3.12. Algorithm 3 solves the feasibility of M2VPI linear systems in O(m2n2)
time.

References
1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows - Theory,

Algorithms and Applications. Prentice Hall, 1993.
2 Bengt Aspvall and Yossi Shiloach. A polynomial time algorithm for solving systems of linear

inequalities with two variables per inequality. SIAM J. Comput., 9(4):827–845, 1980.
3 Edith Cohen and Nimrod Megiddo. Improved algorithms for linear inequalities with two

variables per inequality. SIAM J. Comput., 23(6):1313–1347, 1994.
4 Werner Dinkelbach. On nonlinear fractional programming. Management Science, 13(7):492–498,

1967.
5 Herbert Edelsbrunner, Günter Rote, and Emo Welzl. Testing the necklace condition for

shortest tours and optimal factors in the plane. Theor. Comput. Sci., 66(2):157–180, 1989.



D. Dadush, Z. K. Koh, B. Natura, and L. A. Végh 36:15

6 Eugene A. Feinberg and Jefferson Huang. The value iteration algorithm is not strongly
polynomial for discounted dynamic programming. Oper. Res. Lett., 42(2):130–131, 2014.

7 Michel X. Goemans, Swati Gupta, and Patrick Jaillet. Discrete Newton’s algorithm for
parametric submodular function minimization. In Proceedings of the 19th International
Conference on Integer Programming and Combinatorial Optimization, pages 212–227, 2017.

8 Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations by canceling
negative cycles. J. ACM, 36(4):873–886, 1989.

9 Thomas Dueholm Hansen, Haim Kaplan, and Uri Zwick. Dantzig’s pivoting rule for shortest
paths, deterministic MDPs, and minimum cost to time ratio cycles. In Proceedings of the 25th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 847–860, 2014.

10 Dorit S. Hochbaum, Nimrod Megiddo, Joseph Naor, and Arie Tamir. Tight bounds and
2-approximation algorithms for integer programs with two variables per inequality. Math.
Program., 62:69–83, 1993.

11 Dorit S. Hochbaum and Joseph Naor. Simple and fast algorithms for linear and integer
programs with two variables per inequality. SIAM J. Comput., 23(6):1179–1192, 1994.

12 Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling. On the complexity of solving
Markov decision problems. In Proceedings of the 11th Annual Conference on Uncertainty in
Artificial Intelligence, pages 394–402, 1995.

13 Omid Madani. On policy iteration as a Newton’s method and polynomial policy iteration
algorithms. In Proceedings of the 18th National Conference on Artificial Intelligence, pages
273–278, 2002.

14 Nimrod Megiddo. Combinatorial optimization with rational objective functions. Math. Oper.
Res., 4(4):414–424, 1979.

15 Nimrod Megiddo. Towards a genuinely polynomial algorithm for linear programming. SIAM
J. Comput., 12(2):347–353, 1983.

16 Neil Olver and László A. Végh. A simpler and faster strongly polynomial algorithm for
generalized flow maximization. J. ACM, 67(2):10:1–10:26, 2020.

17 Ian Post and Yinyu Ye. The simplex method is strongly polynomial for deterministic Markov
decision processes. Math. Oper. Res., 40(4):859–868, 2015.

18 Tomasz Radzik. Newton’s method for fractional combinatorial optimization. In Proceedings
of the 33rd Annual Symposium on Foundations of Computer Science, pages 659–669, 1992.

19 Tomasz Radzik. Fractional combinatorial optimization. In Ding-Zhu Du and Panos M. Pardalos,
editors, Handbook of Combinatorial Optimization: Volume 1–3, pages 429–478. Springer US,
1998.

20 Tomasz Radzik and Andrew V. Goldberg. Tight bounds on the number of minimum-mean
cycle cancellations and related results. Algorithmica, 11(3):226–242, 1994.

21 Robert E. Shostak. Deciding linear inequalities by computing loop residues. J. ACM, 28(4):769–
779, 1981.

22 Steve Smale. Mathematical problems for the next century. The Mathematical Intelligencer,
20:7–15, 1998.

23 Éva Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica,
5(3):247–256, 1985.

24 László A. Végh. A strongly polynomial algorithm for generalized flow maximization. Math.
Oper. Res., 42(1):179–211, 2017.

25 Qin Wang, Xiaoguang Yang, and Jianzhong Zhang. A class of inverse dominant problems
under weighted ℓ∞ norm and an improved complexity bound for Radzik’s algorithm. J. Global
Optimization, 34(4):551–567, 2006.

ESA 2021


	1 Introduction
	1.1 Our Contributions
	1.2 Two Variables Per Inequality Systems

	2 An Accelerated Newton–Dinkelbach Method
	2.1 Linear Fractional Combinatorial Optimization
	2.2 Linear Fractional Programming

	3 Monotone Two Variables per Inequality Systems
	3.1 A Linear Fractional Programming Formulation
	3.2 A Strongly Polynomial Label-Correcting Algorithm


