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Abstract
Motivated by a multimodal neuroimaging study for Alzheimer’s disease, in this article, we study
the inference problem of sequential mediation analysis. The existing sequential mediation solu-
tions mostly focus on sparse estimation, while inference is an utterly different and more chal-
lenging problem. Meanwhile, the few mediation inference solutions often ignore the potential
dependency among the mediators, or cannot be applied to the sequential problem directly. We
propose a statistical inference procedure to testmediation pathwayswhen there are sequentially
ordered multiple data modalities and each modality involves multiple mediators. We allow the
mediators to be conditionally dependent, and the number of mediators within each modality to
divergewith the sample size.Weproduce the explicit significance quantification and establish the
theoretical guarantees in termsof asymptotic size, power, and falsediscovery control.Wedemon-
strate the efficacy of the method through both simulations and an application to a multimodal
neuroimaging pathway analysis of Alzheimer’s disease.
KEYWORDS:
Alzheimer’s disease; Booleanmatrix; Directed acyclic graph; High-dimensional inference;Media-
tion analysis; Multimodal neuroimaging analysis.

1 INTRODUCTION
Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder, characterized by progressive impairment of cognitive functions, then global
incapacity and ultimately death. It is the leading form of dementia, and is currently affecting 5.8 million American adults aged 65 years or older. Its
prevalence continues to grow, and is projected to reach13.8millionby2050 (Alzheimer’sAssociation2020).Multimodal neuroimaging is frequently
used inAD research, where different brain characteristics aremeasured using different imaging technologies for a common set of subjects. Notable
AD imaging biomarkers include, among others, grey matter cortical thickness measured by structural magnetic resonance imaging (MRI), amyloid-
beta (Aβ) protein deposition measured by positron emission tomography (PET) using a variety of radiopharmaceuticals such as 18F-florbetapir or
18F-florbetaben tracer, and tau protein measured by PET using radiopharmaceuticals such as 18F-flortaucipir tracer. While brain grey matter atro-
phy is a well-knownmeasure associated with AD progression, Aβ and tau are two hallmark pathological proteins believed to be part of the driving
mechanismofAD.Models ofADpathophysiologyhypothesize a temporal sequence inwhichdisruptions inAβ production, clearance, or both initiate
a biological cascade that leads to Aβ plaque formation, then neurofibrillary tangles of tau, followed by structural atrophy and neuronal dysfunction,
and ultimately clinical decline in cognitions (Jack et al. 2013 2010). These models have been continuously supported by new evidences (see, e.g.,
Gordon et al. 2018; Guo, Korman, Baker, Landau, & Jagust 2020; Jack et al. 2019, among others). However, many questions about the nature of
this pathological cascade and its spatial distribution in the brain remain unanswered. As part of the Berkeley Aging Cohort Study, multimodal neu-
roimages were collected, and a key scientific question is to understand how Aβ deposition affects cognitive decline through possible intermediate
pathways of regional tau deposition, then cortical thinning.
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This problem can be cast into the framework of sequential mediation analysis. Mediation analysis seeks to identify and explain the mechanism, or
pathway, that underlies an observed relationship between an exposure and an outcome variable, through the inclusion of an intermediate variable
known as a mediator. It decomposes the effect of exposure on the outcome into a direct effect and an indirect effect, the latter of which indicates
whether the mediator is on a pathway from the exposure to the outcome. In our AD example, the Aβ deposition, summarized by a single measure
for each subject, serves as the exposure. The cognitive decline, measured by the decrease of memory scores at two consecutive visits about one
year apart, serves as the outcome. The brain regional tau deposition and cortical thickness, each summarized by a vector of measures for multiple
brain regions for each subject, serve as potential mediators.
Mediation analysis was first proposed with a single mediator (Baron & Kenny 1986), and has been extended to the setting of multivariate and

high-dimensional mediators; see VanderWeele (2016) for a review and the references therein. However, most of the existing work has focused on
a singlemodality of features as potential mediators. By contrast, we target the problem of mediation analysis that involvesmultiplemodalities and
each modality includesmultivariatemediators. Moreover, different sets of mediators are sequentially ordered on the potential pathways following
certain biological constraints. For instance, in our example, tau deposition precedes cortical thickness that mediates cognition.
Recently, Lai, Shih, Huang, andWang (2020) proposed a probit model for multiple sequentially ordered mediators for a dichotomous outcome,

but only considered a univariate mediator for each modality. It is far more challenging to analyze multi-modality of multivariate mediators. Zhao,
Li, and Caffo (2020) proposed a penalized Lasso approach for two modalities of sequentially ordered and multivariate mediators. However, they
focused on estimation, instead of inference for sequential mediation analysis. Even though estimation and inference are closely related, and both can
ineffect identify importantpathways, estimationdoesnotproduceanexplicit quantificationof statistical significance, anddoesnot explicitly control
the false discovery. By contrast, we aim at statistical inference for sequential mediation analysis withmulti-modality of multivariate mediators.
Inference for individual mediators is challenging. The key difficulty lies in the fact that the total number of potential paths that go through

any mediator is super-exponential in the number of mediators, rendering almost any testing procedure ineffective. Consequently, most existing
mediation inference solutions either explicitly impose that the mediators are conditionally independent given the exposure, or simply ignore any
potential directed paths among the mediators (e.g., Djordjilović et al. 2019; Huang & Pan 2016; Zhang et al. 2016). Though proven useful in some
applications, ignoring potential paths and interactions among the mediators seems not sensible in plenty of other scientific applications; e.g., dif-
ferent brain regions are generally conceived to influence each other, and different genes are expected to interact with each other. More recently,
Chakrabortty, Nandy, and Li (2018) proposed amediation test based on interventional calculus, and Shi and Li (2021) proposed a test based on logic
of Booleanmatrices, while both allowed interactions among themediators. Nevertheless, none of the existingmediation inference solutions tackle
multi-modality of mediators.
In this article, we propose a statistical inference procedure to test mediation pathways when there are sequentially orderedmultiple modalities

and each modality involves multivariate mediators. We allow the mediators to be conditionally dependent, and the number of mediators within
eachmodality to diverge with the sample size.We produce the explicit significance quantification, and establish the theoretical guarantees, includ-
ing the asymptotic size and power of the test, and a valid false discovery control. Our proposal makes several useful contributions. Scientifically,
understandingmediation pathways of different imagingmodalities inADprogression is a crucial but open question.Our test offers the first solution
that does not have to impose any restrictive conditional independence condition and is theoretically guaranteed.Moreover, even thoughmotivated
by a multimodal neuroimaging example, our test is applicable to a wide range of multimodal analyses, e.g., the multi-omics data analysis (Richard-
son, Tseng, & Sun 2016), and themultimodal healthcare application (Cai,Wang, Li, & Liu 2019).Methodologically, our test extends Shi and Li (2021);
however, it is far froma straightforward extension. Particularly, both our test and that of Shi and Li (2021) rely on anestimator of the directed acyclic
graph (DAG) that encodes the directional relationships among all the variables. In our setup, we need to incorporate the sequential constraint to
characterize the orders of multiple modalities of mediators. Naively employing the initial estimator in Shi and Li (2021) would fail this constraint,
then fail the test. Actually, most existing DAG structure estimationmethods neglect this constraint, andwe need to devise an approach to carefully
embed this constraint into DAG estimation. As such, our proposal alsomakes a useful addition to the toolbox of mediation inference.
The rest of the article is organized as follows.We formally specify themodel and the hypotheses in Section 2.We develop the testing procedure

in Section 3, and study the asymptotic properties in Section 4. We present the simulations in Section 5, and revisit the multimodal neuroimaging
application in Section 6.We conclude the paper with a discussion in Section 7.We relegate all technical proofs to the online supplement.

2 MODELANDHYPOTHESES
We begin with a Gaussian graphical model, based on which we formulate the mediation testing problem and formally define our hypotheses. For
simplicity, we only consider two sets of mediators, while our proposal can be extended tomore than twomodalities.
Let Y ∈ R denote the outcome variable, E ∈ R denote the exposure variable, X1 = (X11 . . . ,X1d1

)> ∈ Rd1 and X2 = (X21 . . . ,X2d2
)> ∈ Rd2

denote two sets of mediators. LetU = (E,X>1 ,X
>
2 ,Y)> ∈ Rd1+d2+2 collect all variables, and suppose it follows a Gaussian graphical model that
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is associated with a directed acyclic graph,

(U− µ) = W0 (U− µ) + ε. (1)
Here µ = E(U), W0 ∈ R(d1+d2+2)×(d1+d2+2) encodes the directional relations among the variables in U, and ε ∈ Rd1+d2+2 is a vector of
random errors. We assume the error variables in ε follow a normal distribution with mean zero and variance σ2. The constant error variance is to
ensure the identifiability ofW0 and to simplify the analysis. This condition is often imposed; see, e.g., Peters and Bühlmann (2014); Yuan, Shen, Pan,
andWang (2019). Meanwhile, it is also possible to relax this condition; see Shi and Li (2021) for more discussion.
For any two variablesUi,Uj inU, ifW0,j,i 6= 0, then an arrow is drawn fromUi toUj, i.e.,Ui → Uj. In this case,Ui is called a parent ofUj. A directed

path betweenUi andUj is a sequence of distinct nodes fromUi toUj:Ui → Ui1 → · · · → Uik → Uj for some {Ul}1≤l≤k, andUi is called an ancestor
ofUj. Suppose the random variables inU comply with the sequential mediation framework as illustrated in Figure 1. That is, no potential mediator
in X1 and X2 is a parent of E, no mediator in X2 is a parent of any mediator in X1, and the response Y is not a parent of any other variables. Under
this framework, we can decomposeW0 accordingly as

W0 =


0 0>d1

0>d2
0

W0,1 W1,1 0d1×d2
0d1

W0,2 W1,2 W2,2 0d2

W0,3 W>1,3 W>2,3 0

 ∈ R(d1+d2+2)×(d1+d2+2), (2)

whereW0,1 ∈ Rd1 ,W0,2 ∈ Rd2 ,W0,3 ∈ R,W1,1 ∈ Rd1×d1 ,W1,2 ∈ Rd2×d1 ,W1,3 ∈ Rd1 ,W2,2 ∈ Rd2×d2 , andW2,3 ∈ Rd2 .
Based onmodel (1), we aim at testing the following pair of hypotheses:
- H0(q1, q2): There does not exist a path from the exposure E to the outcome Y that passes through some mediator X1,q1 in X1 and some
mediatorX2,q2 inX2;

- H1(q1, q2): There exists a path from the exposure E to the outcome Y that passes through some mediator X1,q1 in X1 and some mediator
X2,q2 inX2,

for some q1 = 1, . . . , d1, and q2 = 1, . . . , d2. In Figure 1, the null hypothesis means that, at least one potential pathway denoted by (ii), (iv) and (vi)
is completely missing in this diagram. We remark that, this form of null hypothesis is motivated by our AD study, as the cascading pathway of Aβ,
regional tau deposition, cortical thickness shrinking and cognition is of particular interest. Meanwhile, we can test other forms of null hypothesis;
see our discussion in Section 7.
To test the above null hypothesis, we observe that it can be decomposed into the union of the following three null hypotheses:
- H∗0 (0, q1): There does not exist a directed path from the exposure E toX1,q1 ;
- H∗0 (q1, q2 + d1): There does not exist a directed path fromX1,q1 toX2,q2 ;
- H∗0 (q2 + d1, d1 + d2 + 1): There does not exist a directed path fromX2,q2 to the outcome.

To further elaborate on the relation between H0(q1, q2) and H∗0 (0, q1), H∗0 (q1, q2 + d1), H∗0 (q2 + d1, d1 + d2 + 1), we consider a directed path ζ:
E → X1,i1 → · · · → X1,im1

→ X1,q1 → X2,j1 → · · · → Xj,m2
→ Xj,q2

→ X2,k1
→ · · · → X2,km3

→ Y. The total effect of E onY attributed to this
path can bewritten as

ωζ = W0,1,i1

m1−1∏
t=1

W1,1,it+1,it

W1,1,q1,im1︸ ︷︷ ︸
ω
(1)
ζ

W1,1,j1,q1

m2−1∏
t=1

W1,2,jt+1,jt

W1,2,q2,jm2︸ ︷︷ ︸
ω
(2)
ζ

W2,2,k1,q2

m3−1∏
t=1

W2,2,kt+1,kt

W2,3,km3︸ ︷︷ ︸
ω
(3)
ζ

,
(3)

whereW0,1,W1,1,W1,2,W2,2 andW2,3 are the submatrices defined in (2). UnderH0(q1, q2), we haveωζ = 0 for any ζ . By the decomposition in (3),
this is equivalent to requiring ω(1)

ζ , ω(2)
ζ , or ω(3)

ζ to be zero for any ζ . Note that ω(1)
ζ , ω(2)

ζ , and ω(3)
ζ correspond to the total effects from E to X1,q1 ,

fromX1,q1 toX2,q2 , and fromX2,q2 toY, which in turn are characterized byH∗0 (0, q1),H∗0 (q1, q2 + d), andH∗0 (q2 + d1, d1 + d2 + 1), respectively.
By the union-intersection principle, it suffices to derive the individual p-values, p∗(0, q1), p∗(q1, q2 + d1) and p∗(q2, d1 + d2 + 1), forH∗0 (0, q1),

H∗0 (q1, q2 + d), andH∗0 (q2 + d1, d1 + d2 + 1), respectively, then compute the final p-value forH0(q1, q2) as
p(q1, q2) = max

{
p∗(0, q1), p

∗(q1, q2 + d1), p
∗(q2, d1 + d2 + 1)

}
.

Next, we propose the tests to compute p∗(0, q1), p∗(q1, q2 + d1), and p∗(q2, d1 + d2 + 1), respectively.

3 TESTINGPROCEDURE
We first develop a testing procedure to testH0(q1, q2) throughH∗0 (0, q1),H∗0 (q1, q2 + d), andH∗0 (q2 + d1, d1 + d2 + 1), for a given pair q1 and q2.
We then augment it with amultiple testing procedure for all q1 = 1, . . . , d1 and q2 = 1, . . . , d2 with false discovery control.
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3.1 Testing procedure for a given pair of mediators
Webegin with a summary of the testing procedure for a given pair q1 and q2 in Algorithm 1.We then detail themain steps of this algorithm.
Suppose we observe n i.i.d. copies of the data, {ui}1≤i≤n, where ui = (ei, x

>
1,i, x

>
2,i, yi)

> ∈ Rd1+d2+2 . We first split the data {1, 2, · · · , n} into
two equal halves I1 and I2. The purpose of data splitting is to ensure a valid type-I error control under minimal conditions. This strategy has been
commonly used in high-dimensional inferences in recent years (Chernozhukov et al. 2018; Romano &DiCiccio 2019). One issue with data splitting
is the potential loss of power due to the usage of only a fraction of data. In our setting, we construct two test statistics based on both halves of data,
then combine them to derive the final p-value.We show the test constructed this way achieves a good power both asymptotically and numerically.

3.2 Initial estimation of weightmatrices
Next, we estimateW1,1,W1,2 andW2,2 in (2) based on each half I1 and I2 of the data.
Specifically, to estimateW1,1, we first linearly regress each variableX1j inX1 on the exposure variableE, using the data in the subset Is, s = 1, 2.

This is a simple regression with a single response and a single predictor, and it yields a residual estimate ε̃(s)
1,1,i,j, i ∈ Is, j = 1, . . . , d1, s = 1, 2.

We then apply a DAG estimation method to the residual to obtain an estimate ofW1,1. There are multiple choices for this purpose, e.g., Yuan et al.
(2019); Zheng, Aragam, Ravikumar, and Xing (2018). In our implementation, we have chosen themethod of Zheng et al. (2018). That is, we obtain

W̃
(s)
1,1 = argmin

W∈Rd1×d1

∑
i∈Is

∥∥ε̃(s)
1,1,i −Wε̃

(s)
1,1,i

∥∥2

2
+ λ1,1 |Is|

d1∑
j,k=1

|Wj,k|, subject to trace{exp(W ◦W)} = d1, (4)

where ε̃(s)
1,1,i = (ε̃

(s)
1,1,1,i, . . . , ε̃

(s)
1,1,d1,i

)> ∈ Rd1 , λ1,1 is a penalty parameter, |Is| is the cardinality of Is and equals the number of data observations
in split s, trace(A) is the trace of a matrixA, exp(A) is the matrix exponential ofA, and ◦ is the Hadamard product. We tune the sparsity parameter
λ1,1 by cross-validation.We also remark that, we only require the resulting DAG estimator to be estimation consistent, which is muchweaker than
requiring it to be selection consistent. The latter means all the zero entries of the DAG estimator have to match those of the true DAG. For the
method of Zheng et al. (2018), Shi and Li (2021) established its estimation consistency.
To estimateW2,2, the idea is similar. We first regress each variable X2j in X2 on both the exposure variable E and all the variables in X1, again

using the data in the subset Is, s = 1, 2. Note thatX1 can be high-dimensional.We thus employ a penalized linear regression approach, i.e.,

min
∑
i∈Is

{
x2,i,j − (ei, x

>
1,i)β

(s)
j − β

(s)
0,j

}2
+

d2+1∑
k=1

|Is| pλ2,1

(∣∣β(s)
j,k

∣∣) ,
where pλ2,1

is some penalty function with the tuning parameter λ2,1. In our implementation, we have chosen the MCP penalty function of Zhang
(2010), and tune λ2,1 by the Bayesian information criterion (BIC). This penalized regression in turn yields a residual estimate ε̃(s)

i,j,2,2, i ∈ Is, j =

1, . . . , d1, s = 1, 2. We then apply the DAG estimationmethod of Zheng et al. (2018) again to ε̃(s)
i,2,2 = (ε̃

(s)
i,1,2,2, . . . , ε̃

(s)
i,d1,2,2

)> ∈ Rd2 , and obtain

W̃
(s)
2,2 = argmin

W∈Rd2×d2

∑
i∈Is

‖ε̃(s)
2,2,i −Wε̃

(s)
2,2,i‖

2
2 + λ2,2 |Is|

d2∑
j,k=1

|Wj,k|, subject to trace{exp(W ◦W)} = d2. (5)

To estimateW1,2, we first compute the residual ε̃(s)
1,2,i = x2,i − W̃

(s)
2,2x2,i ∈ Rd2 , i ∈ Is, where W̃

(s)
2,2 is obtained from (5). We then regress each

variable in this residual on both the exposure variable E and all the variables in X1, using the data in the subset Is, s = 1, 2. Again, considering the
high-dimensionality ofX1, we employ a penalized linear regression approach likeMCP (Zhang 2010). That is, we estimate the jth row ofW1,2 as,(

W̃
(s)
1,2,j,w

(s)
0,j

)
= argmin

w
(s)
j ,w0,j

∑
i∈Is

{
ε̃
(s)
1,2,i,j − (ei, x1,i)

>w
(s)
j − w0,j

}2
+

d2+1∑
k=1

|Is| pλ1,2

(∣∣w(s)
j,k

∣∣) , (6)

for j = 1, . . . , d2, and pλ1,2
is some penalty function with the tuning parameter λ1,2.

Algorithm 1 Testing procedure for a single pathH0(q1, q2).
1: Randomly split the data {1, 2, · · · , n} into two halves I1 and I2.
2: EstimateW1,1,W2,2 andW1,2 using (4), (5) and (6), respectively. Putting those estimators together to obtain W̃

(s)
1:2, s = 1, 2.

3: Compute the refined estimator W̃(s) forW0 based on W̃
(s)
1:2, s = 1, 2, then the binarymatrix B̂(s) based on W̃(s), s = 1, 2.

4: Compute the debiased estimator Ŵ(s) forW0 based on W̃(s) by cross-fitting, s = 1, 2.
5: Compute the test statistic and the associate p-value for H∗0 (q1, q2) using bootstrap as in (10). Obtain the p-value for H0(q1, q2), p̂(s)(q1, q2),

s = 1, 2, using the union-intersection principle as in (11). RejectH0(q1, q2) if either p̂(1)(q1, q2) ≤ α/2, or p̂(2)(q1, q2) ≤ α/2.
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Putting these estimators together, we obtain thematrix,

W̃
(s)
1:2 =

(
W̃

(s)
1,1 0d1×d2

W̃
(s)
1,2 W̃

(s)
2,2

)
∈ R(d1+d2 )×(d1+d2 ).

3.3 Refined and debiased estimation
Next, we discuss how to obtain an estimator ofW0 ∈ R(d1+d2+2)×(d1+d2+2) based on W̃

(s)
1:2 from the previous step, and how to further debias this

estimator.
Specifically, we begin with setting the first row of W̃(s) to be a zero vector. We then obtain the (j + 1)th row of W̃(s), for j = 1, . . . , d1 + d2, by

fitting a penalized linear regression using the data in the subset Is, s = 1, 2. The response of this regression isX1,j when j = 1, . . . , d1, andX2,j−d1

when j = d1+1, . . . , d1+d2, the predictors come from the jth rowof W̃(s)
1:2,j,k, i.e., W̃(s)

1:2,j,1, . . . , W̃
(s)
1:2,j,d1+d2

, and the estimated regression coefficient
is the (j + 1)th row of W̃(s). We end this step by obtaining the last row of W̃(s), from the regression coefficient of fitting another penalized linear
regression withY as the response, and E,X1,X2 as the predictors. This step gives an estimator of the entire (d1 + d2 + 2) × (d1 + d2 + 2)matrix
ofW0, and also helps improve the estimation accuracy of the initial estimator of W̃

(s)
1:2.

We then compute abinarymatrix B̂(s) of the samedimension as W̃(s), and set each entry of B̂(s) as one if andonly the corresponding entry in W̃(s)

is nonzero. This step serves for the screening purpose, as it helps reduce both the number of potential paths and the variance of the subsequent test
statistics, which in turn helps improve the power of our test.
Given the estimator W̃(s), we further employ the cross-fitting strategy to compute a debiased estimator Ŵ(s) forW0.We first estimate the set of

ancestors of the jth variable inU, j = 1, . . . , d1 + d2 + 2. Toward that end, letB0 denote the binary version ofW0. Let⊕ denote the Booleanmatrix
addition operator, such that the (j1, j2)th entry of A1 ⊕ A2 equalsmax(A1,j1,j2 ,A2,j1,j2 ), and⊗ denote the Boolean matrix multiplication operator
such that the (j1, j2)th entry of A1 ⊗ A2 equalsmaxk min(A1,j1,k,A2,k,j2 ). Define A(k) as the Boolean matrix power k of the square matrix A in a
recursive fashion, such that A(k) = A(k−1) ⊗ A. Define B0,∗ = B0 ⊕ B

(2)
0 ⊕ . . . ⊕ B

(d1+d2+2)
0 . Then, the key observation is that, finding the set

of ancestors is equivalent to finding the transitive closure of the Boolean matrix B0 (Fischer &Meyer 1971). That is, the set of ancestors of the jth
variable is,

ACT(j) = {1 ≤ k ≤ d1 + d2 + 2 : B0,∗,k,j 6= 0
}
, (7)

We note that, since B0 is a binary matrix, the maximum and minimum operators are equivalent to the logic operators “or" and “and" in Boolean
algebra. This motivates us to estimate ACT(j) by

ACT
(

j, B̂(s)
)
=
{

1 ≤ k ≤ d1 + d2 + 2 : B̂
(s)
∗,k,j 6= 0

}
. (8)

We also note that, we always include the exposure E in the set of ancestors, and include all the potential mediators when estimating the ancestors
of the outcomeY.
We next debias W̃

(s)
j1,j2

using the other half of the data in Ic
s , for any entry that B̂

(s)
j1,j2
6= 0,

Ŵ
(s)
j1,j2

=

∑
i∈Ic

s

(
ũi,j2 − β̂

(s)>

j1,j2
ũi

)ũi,j1 −
∑
j 6=j2

ũi,jW̃
(s)
j1,j


∑
i∈Ic

s

ũi,j2

(
ũi,j2 − β̂

(s)>

j1,j2
ũi

) , (9)

where ũi,j = ui,j − ūj, ūj is the sample average, and ũi = (ui,1, . . . , ui,d1+d+2)
> ∈ Rd1+d+2 , β̂(s)

j1,j2
is the coefficient vector with {ũi,j2}i∈Ic

s
as

the “response", and {ũi}i∈Is as the “predictors", and the support of β is constrained to the estimated set of ancestors as in (8). See Section 2 of
the supplementary material for the detailed definition. We remark that, we have used the cross-fitting strategy in the estimation of Ŵ(s), since it
is based on the complement data set Ic

s , instead of the data set Is that is used to construct W̃(s). This strategy guarantees that each entry of the
debiased estimator Ŵ(s) is asymptotically normal, regardless of whether the estimator W̃(s) is selection consistent or not.

3.4 Test statistic and p-value
Wenext compute the test statistic and the corresponding critical value forH∗0 (q1, q2).
Similar to (7), we can show thatH∗0 (q1, q2) holds, if and only if the (q2 +1, q1 +1)th entry ofW0,∗ = |W0|⊕ |W0|(2)⊕ . . .⊕|W0|(d1+d2+2) equals

zero, where |A| denotes thematrix of the same dimension asAwhose (j1, j2)th entry is |Aj1,j2 |. Note thatW0,∗ is a real-valuedmatrix. A larger value
ofW0,∗,q1,q2 implies a stronger evidence against the null hypothesis. This motivates us to define our test statistic by the (q2 + 1, q1 + 1)th entry of
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the debiased version of thematrix, i.e.,√
|Ic

s |Ŵ
(s)
∗ =

√
|Ic

s |
{
|Ŵ(s)| ⊕ |Ŵ(s)|(2) ⊕ . . .⊕ |Ŵ(s)|(d1+d2+2)

}
.

The purpose of using the Boolean algebra here is to ensure the resulting test statistic has a tractable limiting distribution. More specifically, under
H∗0 (q1, q2), Ŵ(s)

∗ is stochastically dominated by themaximum of Gaussian random variables whose distribution can be well approximated via boot-
strap; see the proof of Theorem 1 for more details. By contrast, the asymptotic distribution of the usual power of the matrix |Ŵ(s)| is extremely
challenging to derive (Shi & Li 2021). The p-value associated with this test statistic is then given by,

p̂
(s)
∗ (q1, q2) =

1

R

R∑
b=1

I
{

T(s,b)(q1, q2) ≥
√
Ic

s |Ŵ
(s)
∗,q2+1,q1+1|

}
, (10)

where R is the number of bootstrap replicates, T(s,b)(q1, q2) is a bootstrap sample. The explicit form of T(s,b)(q1, q2) is very similar to that the
bootstrap sample outlined in Shi and Li (2021). As such, we present the detailed definition in Section 2 of the supplementarymaterial to save space.
The validity of multiplier bootstrap is ensured by the asymptotic normality of Ŵ

(s)
j1,j2
.

We then compute the p-value, p̂∗(q1, q2) = 2min{p̂(1)
∗ (q1, q2), p̂

(2)
∗ (q1, q2)} for H∗0 (q1, q2). By the union-intersection principle, we obtain the

p-value for the nullH0(q1, q2),
p̂(q1, q2) = max

{
p̂∗(0, q1), p̂∗(q1, q2 + d1), p̂∗(q2 + d1, d1 + d2 + 1)

}
. (11)

For a given significance levelα, we rejectH0(q1, q2) if p̂(q1, q2) ≤ α.

3.5 Multiple testing procedure
Finally, we present a multiple testing procedure for simultaneous inference of all pairs of q1 = 1, . . . , d1 and q2 = 1, . . . , d2. The objective is to
identify all significant pairs (q1, q2) such that the nullH0(q1, q2) is rejected,meanwhile to control the false discovery properly.We adopt and extend
the ScreenMin procedure of Djordjilovic et al. (2019) to our setting.
Given the individual p-values p̂(s)(q1, q2), q1 = 1, . . . , d1, q2 = 1, . . . , d2, we begin by computing theminimum p-values,

p̂
(s)
min(q1, q2) = min

{
p̂(s)(0, q1), p̂

(s)(q1, q2 + d1), p̂
(s)(q2 + d1, d1 + d2 + 1)

}
.

We then screen and select those mediators whose corresponding p̂
(s)
min(q1, q2) is smaller than a threshold c(s), with c(s) determined adaptively as

c(s) = max
[
c ∈ {α/(d1d2), . . . , α/2, α} : c

∣∣H(s)
0 (c)

∣∣ ≤ α
], andH(s)

0 (c) denotes the set of prescreened mediators when the threshold value is c.
We next order themediators inH(s)

0 according to p̂(s)(q1, q2) obtained from (11).We then apply theBenjamini-Hochberg procedure to the ordered
mediators, and select h(s) pairs with the smallest p-values, where h(s) = max

{
i : p̂

(s)
(i)
≤ (iα)/{2|H(s)

0 |
∑|H(s)

0 |
j=1 j−1}

}
, and p̂

(s)
(i)
denotes the ith

minimum p-value of the set
{

p̂
(s)
max(q1, q2) : 1 ≤ p1 ≤ d1, 1 ≤ p2 ≤ d2

}
. LettingH(s) denote the selected important pairs for each half of the data,

s = 1, 2, respectively.We set the final set of selected pairs asH = H(1) ∪H(2).

4 THEORETICALGUARANTEES
Wefirst establish the consistency of our test by deriving the asymptotic size and power.We then show that ourmultiple testing procedure achieves
a valid FDR control.
We begin with two regularity conditions. Define the limit of the estimator β̂(s)

j1,j2
as

β
(s)
0,j1,j2

= argmin
β:βj2

=0,supp(β)∈ACT(j1,W̃
(s))

E(Uj2 − β
>U)2.

Let W̃
(s)
j andW0,j denote the jth row of W̃(s) andW0, respectively. For any directed path ζ : E = U1 → Ui1 → · · · → Uik → Ud1+d2+2 = Y, define

the signal strength along this path byω∗ζ = min
{
|W0,i1,1|,minj∈{1,··· ,k−1} |W0,ij+1,ij |, |W0,d1+d2+2,ik |

}
. UnderH0(q1, q2), we haveω∗ζ = 0 for any

path that passes throughX1,q1 andX2,q2 . Under theH1(q1, q2), there exists at least one such path thatω∗ζ > 0.
(C1) With probability approaching one, ACT

(
j, W̃(s)

)
as defined in (8) contains all parents of j, for any j = 1, . . . , d1 + d2 + 2 and s = 1, 2.

(C2) With probability approaching one, there exist some constantsκ1, κ2, κ3, κ4 > 0, such thatκ1 +κ2 > 1/2,
∥∥∥β̂(s)

j1,j2
− β(s)

0,j1,j2

∥∥∥
2
= O(n−κ1 ), and∥∥∥W̃

(s)
j −W0,j

∥∥∥
2
= O(n−κ2 ).

Conditions (C1) and (C2) are both mild. Condition (C1) is weaker than the sure screening condition that requires W̃(s) to be selection consistent. It
holds when some omega-min condition is satisfied (van de Geer & Bühlmann 2013). Condition (C2) essentially requires the oracle parametersW0,j
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and β(s)
0,j1,j2

to satisfy certain sparsity constraints. The convergence rates of W̃
(s)
j and β̂(s)

j1,j2
are satisfied for most of the commonly used penalized

regressionmethods, including Lasso, SCAD,MCP, or Dantzig selector (Bickel, Ritov, & Tsybakov 2009; Fan & Lv 2011; Ning & Liu 2017).
We next derive the asymptotic size and power of the proposed testing procedure forH0(q1, q2) for a given pair of q1 and q2.

Theorem 1 (Asymptotic size). Suppose conditions (C1) and (C2) hold. Suppose d1 + d2 = O(nκ3 ) for some κ3 ≥ 0, and ‖W0‖2 is bounded. Then,
for a given significance level 0 < α < 1, and any pair (q1, q2) of themediators, for q1 = 1, . . . , d1 and q2 = 1, . . . , d2,

Pr{H0(q1, q2) is rejected | H0(q1, q2) holds} ≤ α+ o(1).

Theorem2 (Asymptotic power). Suppose the conditions in Theorem1hold. Suppose there exists somepath ζ fromE toY that passes throughX1,q1

andX2,q2 , such thatω∗ζ � max
(
n−κ2 , n−1/2

√
log n

). Then,
Pr{H0(q1, q2) is rejected | H0(q1, q2) holds}→ 1.

Finally, we show that our proposedmultiple testing procedure asymptotically controls the false discovery rate.
Theorem 3 (Asymptotic FDR control). Suppose the conditions in Theorem 1 hold. Then the selected set of mediatorsH satisfies that FDR(H) ≤
α+ o(1).

5 SIMULATIONS
Wefirst describe the simulation setup.We next examine the empirical size and power of testing a pair of mediators, then the empirical FDR control
of multiple testing.

5.1 Simulation setup
We simulate the data following models (1) and (2). Specifically, we set µ to a vector of ones and the variance of the random errors σ2 = 1. We
generate theadjacencymatrixW0 as follows:Webeginwith a zeromatrix, then replaceevery entryW0,j1,j2 in the loweroff-diagonals by theproduct
of two randomvariablesR

(1)
j1,j2

R
(2)
j1,j2
, whereR

(1)
j1,j2
∼ Bernoulli(p1), if j2 = 0, or j1 = d+1, andR

(1)
j1,j2
∼ Bernoulli(p2), otherwise, andR

(2)
j1,j2

is uniformly
distributed on [−1.4,−0.6] ∪ [0.6, 1.4]. Here p1 and p2 control the number of significant mediators, and all variables are generated independently.
We consider two settings of the number of mediators, d1 = d2 = 35, and d1 = d2 = 70. For the first setting, we set p1 = 0.05, p2 = 0.1, and the
sample size n = 200, 400, and for the second setting, we set p1 = 0.025, p2 = 0.05, and n = 300, 500. Figure 2 shows one instance of the generated
W0 for the two settings. In the first setting, 5 pairs of mediators have nonzero sequential mediation effects, whereas in the second setting, 11 pairs
are significant.

5.2 Empirical size and power
We first evaluate the empirical performance of our test for a single pair of mediators (q1, q2). We compare it with a sequential test modified from
the interventional calculus-based method that was proposed by Chakrabortty et al. (2018). To adopt Chakrabortty et al. (2018) to the sequential
mediation setting, we note that, by the union-intersection principle, it suffices to testH∗0 (0, q1),H∗0 (q1, q2 + d1) andH∗0 (q2 + d1, d1 + d2 + 1). We
then test each of these two hypotheses using Chakrabortty et al. (2018). On the other hand, we remark that the interventional calculus-based test
does not directly target the nullH∗0 (q1, q2). Instead, it constructs a confidence interval for the aggregated causal effects along all paths from q1 to
q2, and reject the null if zero is not covered by the confidence interval.
We evaluate the performance by the empirical rejection rate, i.e., the percentage of times the test rejects the null hypothesis at the significance

level α = 5% out of 500 data replications. This criterion reflects the empirical size of the test when the null hypothesis holds, and the empirical
power otherwise. We also compute the average receiver operating characteristic (ROC) curves, aggregated over 500 replications, when we vary
the significance levelα.
Figure 3 and Figure 4 report the results for the setting of d1 = d2 = 35, and d1 = d2 = 70, respectively. Wemake a few observations. First, our

test achieves a valid size under the null hypothesis. In the first setting, the empirical rejection rate is well below the nominal level for all cases. In the
second setting, our test has a few inflated type-I errors when the sample size n is small, but the results improve with a larger sample size. Second,
our test consistently achieves a larger empirical power over the method of Chakrabortty et al. (2018), which fails to identify two significant pairs
of mediators in the first setting, and five significant pairs in the second setting. This decreased power may be due to that the effects calculated by
Chakrabortty et al. (2018) along different pathsmay have different signs, and thusmay cancel each other. Consequently, it may result in a zero sum,



8 Li ET AL

even though there are significant positive and negativemediation effects along the paths. Finally, we see that the ROCcurve of our test consistently
lies above that of Chakrabortty et al. (2018) in all settings asα varies, demonstrating a competitive performance of our test.

5.3 Multiple testing FDR control
We next evaluate the empirical performance of our multiple testing procedure. We compare it with the standard Benjamini-Yekutieli (BY) proce-
dure. For the latter, instead of applying ScreenMin to determine the setH(s)

0 , one simply setsH(s)
0 = {(q1, q2) : 1 ≤ q1 ≤ d1, 1 ≤ q2 ≤ d2},

i.e., the set of all pairs of mediators. We evaluate the performance by the false discovery rate (FDR) and the true positive rate (TPR) over 500 data
replications.
Figure 5 reports the results under the varying significance level α from 0.1 to 0.4. It is seen that both methods achieve a valid false discovery

control, in that the FDRs are very close to zero. However, ourmethod ismore powerful than the BY procedure, as reflected by a considerably larger
TPR in all cases. Actually, when d1 = d2 = 35 and n = 200, the BY procedure fails to identify any significant sequential mediators.

6 MULTIMODALADPATHWAYANALYSIS
We revisit the motivating example of multimodal AD pathway analysis. Amyloid-beta plaques and neurofibrillary tangles are two key hallmarks
of AD, and appear 20 years or more before the presence of manifest clinical symptoms (Jack et al. 2013). Aβ and tau aggregation is evaluated
using PET imaging, and the downstream consequence of neurodegeneration is examined with structural MRI. Recent studies generally support a
unidirectional model of AD pathogenesis in which Aβ appears early, followed by deposition of abnormal tau aggregates, and eventually subsequent
neurodegeneration and cognitive decline (Jack et al. 2010 2019) While it is generally conceived that the association between Aβ deposition and
cognition may be mediated by tau deposition and cortical thickness, it remains unclear in which brain regions tau deposition and cortical thickness
mediate the associationofAβ deposition and subsequent cognitivedecline. In this analysis,weaim todetermine thebrain regionsof tau aggregation
and cortical thickness shrinking that are involved in subsequent cognitive decline using a dataset from the Berkeley Aging Cohort Study.
Each participant received concurrent Aβ PET imaging using the 18F-florbetapir (FBP) or 18F-florbetaben (FBB) tracers, tau PET imaging using

the 18F-flortaucipir (FTP) tracer, and 3T structural MRI, all acquired within a year. The PET data was acquired in 5-min frames from 50-70min
(FBP), 90-110min (FBB), and 75-105min (FTP) post-injection, averaged over time, and processedwith Freesurfer v5.3.0. All fully preprocessed PET
scans were coregistered to the structural MRI scan that was closest in time to the baseline PET. Regions of interest (ROIs) were defined on each
structuralMRI scan using Freesurfer, andwere used to extract regional florbetapir, florbetaben, and flortaucipir uptake from the co-registered PET
images. FBP or FBB standardized uptake value ratios (SUVRs) were calculated by referring regional florbetapir or florbetaben to that in the whole
cerebellum. SUVR in a composit cortical areamade up of frontal, cingulate, parietal and temporal regionswas used to represent total Aβ deposition.
This is to serve as the exposure variableE, which takes a continuous value, in our sequentialmediation analysis. FTPSUVRs in 34Freesurfer-defined
cortical ROIs and amygdala were calculated by using inferior cerebellar gray matter intensity normalization (Maass et al. 2017). These regional
tau deposition measures serve as the first modality of mediators, with d1 = 35, in our analysis. All structural MRI scans were processed with the
Freesurfer cross-sectional pipeline to derive ROIs in each subject’s native space using the Desikan-Killiany atlas (Desikan et al. 2006). Cortical
thickness in 34 Freesurfer-defined cortical ROIs were calculated from the Freesurfer output. These regional cortical thickness measures serve as
the secondmodality of mediators, with d2 = 34.
Each participant also received a PACC composite testing score at each of two consecutive visitswith amedian of 1.1 years in between. The PACC

score combines tests that assess episodic memory, timed executive function, and global cognition. This score has been well established as showing
sensitivity to decline in prodromal and mild dementia, and with sufficient range to detect early decline in the preclinical stages of AD (Donohue,
Sperling, &Others 2014). FollowingGuo et al. (2020), we compute the change of thePACC score over the two time points using a linearmixed effect
model including time, age at baseline scan, sex and education as covariates, and a random slope and intercept for each participant. We treat this
change of the PACC score as the outcome variable Y. The dataset we analyze consists of n = 182 subjects who were classified as the Aβ positive
group, who are biologically regarded as individuals on the AD continuum following the research framework of the National Institute on Aging and
Alzheimer’s Association (Jack et al. 2018).
We apply the proposed test to this data, with the false discovery level controlled atα = 0.1.We regress out age, sex and education fromboth the

exposure E and the potential mediators X1 and X2. Figure 6 shows the identified pathways, as well as the identified regions overlaid on a template
brain. It is seen that, there is a pathway from Aβ to tau deposition in the inferior parietal region, then to cortical thickness in the entorhinal, infe-
rior temporal, precuneus, inferior parietal, and superior parietal regions, then to the cognitive change as measured by the PACC score. A few other
significant pathways include banks of the superior temporal sulcus tau to entorhinal cortical thickness, rostral middle frontal tau to lateral occipi-
tal cortical thickness, and superior frontal tau to transverse temporal cortical thickness. These findings are interesting and are consistent with the
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literature. Particularly, the inferior parietal region is very likely the most typical tau deposition for individuals on the AD continuum, because this
region captures themost of the regions of downstreamneurodegeneration that leads to subsequent cognitive decline. Consistentwith our findings,
Bischof et al. (2016) found AD patients had higher tau deposition in inferior parietal and more hypometabolism in inferior parietal, inferior tem-
poral and superior parietal regions than cognitively healthy elderly adults. Das et al. (2018) found high inferior parietal tau deposition was related
to reduced cortical thickness in entorhinal, inferior temporal, inferior parietal Aβ positive individuals, which was partially in line with our findings.
Cho et al. (2016) found higher tau deposition in inferior parietal, middle temporal, inferior temporal, and more cortical thinning in entorhinal, infe-
rior parietal, inferior temporal, precuneus, superior parietal, middle temporal and superior temporal in late tau stages (V- VI) but not in earlier tau
stages (I- IV) when compared to stage 0 individuals without tau deposition according to tau images, supporting the spatial patterns of tau and cor-
tical thickness identified on the AD continuum in our study. Similarly, Harrison et al. (2019) also found high tau deposition in inferior parietal, and
significant longitudinal graymatter loss in inferior parietal, superior parietal, precuneus and inferior temporal in AD patients.

7 DISCUSSION
In Section 2, we have primarily focused on testing the potential pathway passing through (ii), (iv) and (vi) in Figure 1, as motivated by our AD study.
Meanwhile, the proposed inferential framework can handle other forms of hypotheses as well. We discuss them in Section 1 of the supplementary
material.
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FIGURE 1 Illustration of sequential mediation pathways. SinceX1 andX2 aremultivariate, each potential pathway denoted by (ii) to (vi) can represent multiple paths.

FIGURE 2 Theweight adjacencymatrixW0 . The left panel: d1 = d2 = 35, and the right panel: d1 = d2 = 75.

FIGURE 3 Empirical size and power when d1 = d2 = 35. First column: the vertical axis denotes the indices of the mediators in the first set, and the horizontal axis the second set. The black dots indicate the true significant mediator
pairs. Second and third columns: the empirical rejection rate by themethod of Chakrabortty et al. (2018), and our test, respectively. Fourth column: the average ROC curvewith a varyingα. First row: n = 200, and second row: n = 400.
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FIGURE 4 Empirical size and power when d1 = d2 = 75. First column: the vertical axis denotes the indices of the mediators in the first set, and the horizontal axis the second set. The black dots indicate the true significant mediator
pairs. Second and third columns: the empirical rejection rate by themethod of Chakrabortty et al. (2018), and our test, respectively. Fourth column: the average ROC curvewith a varyingα. First row: n = 300, and second row: n = 500.

d1 = d2 = 35

n = 200 n = 400

FDR TPR FDR TPR

d1 = d2 = 75

n = 300 n = 500

FDR TPR FDR TPR

FIGURE 5 False discover rate (FDR) and true positive rate (TPR) of multiple testing. The horizontal axis denotes the varying significance levelα.
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FIGURE 6Multimodal AD analysis: the identified pathways and brain regions overlaid on a template brain.
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