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Abstract. This article studies the power of the Lagrange Multiplier Test and the
Generalized Lagrange Multiplier Test to detect measurement non-invariance
in Item Response Theory (IRT) models for binary data. We study the perfor-
mance of these two tests under correct model specification and incorrect dis-
tribution of the latent variable. The asymptotic distribution of each test under
the alternative hypothesis depends on a noncentrality parameter that is used
to compute the power. We present two different procedures to compute the
noncentrality parameter and consequently the power of the tests. The perfor-
mance of the two methods is evaluated through a simulation study. They turn
out to be very similar to the classic empirical power but less time consuming.
Moreover, the results highlight that the Lagrange Multiplier Test is more power-
ful than the Generalized Lagrange Multiplier Test to detect measurement non-
invariance under all simulation conditions.
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1 Introduction

The power of a test is usually estimated through Monte Carlo simulation methods.
However, it can alternatively be computed asymptotically using the distribution of
the test statistic under the alternative hypothesis that depends on a noncentrality
parameter, often unknown or difficult to compute (Gudicha et al. 2017).

In this work we study the asymptotic power of two test statistics, the Lagrange
Multiplier (LM) test and the Generalized Lagrange Multiplier (LM(S)) test, to detect
measurement non-invariance under correct model specification and model misspec-
ification.

An item is measurement non-invariant, or biased, if it measures different abili-
ties for different group membership identified by an external variable (Mellenbergh
1982,1983). Group differences can be present only on the item intercept or simulta-
neously on the item intercept and slope.
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The Lagrange Multiplier test is used in the IRT context to detect measurement
non-invariance (Glas 1998, Fox and Glas 2005) and other types of model violations
such as local dependence, incorrect specification of the item characteristic curve and
a non normal distribution of the latent variables (Glas 1999, Glas and Falcón 2003,
Liu and Thissen 2012). Despite its extensive use in IRT models, only in a few studies
the LM test has been applied in the case of model misspecification under the null
and the alternative hypothesis (Glas and Falcón 2003).

In order to take into account possible misspecification in the model, the LM
test can be generalized obtaining the so-called Generalized Lagrange Multiplier test
(LM(S)), whose expression involves the sandwich variance and covariance matrix
(White 1982). In the IRT context the performance of the LM(S) test under model
misspecification has been recently analyzed by Falk and Monroe (2018) through a
elaborate simulation study.

The first objective of this paper is to present the theoretical computation of the
asymptotic power of these tests using two different approximation methods to ob-
tain the noncentrality parameter. The second objective is to compare the perfor-
mance of the LM and LM(S) tests through a simulation study to detect measurement
invariance under correct model specification and misspecification of the latent vari-
able distribution in terms of asymptotic and empirical power. The model considered
under the null and the alternative hypothesis is a classic Multiple Indicator Multiple
Causes (MIMIC) model for binary data, based on the assumption of a normal dis-
tribution of the latent factor. The misspecification is introduced by assuming a non
normal distribution of the latent factor in the data generating model.

The paper is organized as follows; in Sect. 2 we review the theory of the LM test
and the procedures to estimate its asymptotic power, in Sect. 3 we describe the LM(S)
test and the procedures to estimate its asymptotic power and in Sect. 4 we present a
Monte Carlo simulation study. We conclude with some remarks in Sect. 5.

2 The Lagrange Multiplier Test

Consider a sample y1, ...,yn from a model f (y,θ). Let θ0 denote the true parameter
vector, that can be divided in two subvectors θ′

0 = (θ′
01,θ′

02). The hypotheses H0 and
H1 can be formalized as follows:

H0 : θ′
02 = c v s H1 : θ′

02 6= c, (1)

where c is a vector of constants. The LM statistic is (Engle 1984):

LM = 1

n
S2(θ̃)A22(θ̃)−1S2(θ̃), (2)

where θ̃
′ = (θ̃

′
1,c) denotes the restricted maximum likelihood estimates of the pa-

rameters θ, S2 is the subset of the vector of score functions S = ∂ ln l (y ,θ)
∂θ correspond-

ing to to the parameters θ02 evaluated at θ̃. The matrix A22 is the block of the parti-

tioned Fisher information matrix A =−E
[

1
n
∂2l (y,θ)
∂θ∂θ′

]
defined as:

A22 = A22 − A21 A−1
11 A12, (3)
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evaluated at θ̃. The partition of A into A22, A21, A11, A12 is derived from the parti-
tion of θ′

0 into (θ′
01,θ′

02). In this study, we consider the LM test computed with the
observed Hessian approach, where the Fisher information matrix in formula (2) is
replaced by the corresponding observed Hessian matrix

Â(θ) =− 1

n

n∑
i=1

∂2li (yi ,θ)

∂θ∂θ′ (4)

Under a correct specified likelihood and under H0, the LM statistic is asymptotically
distributed as a χ2

r , where r are the degrees of freedom (d f ) equal to the dimension
of θ02 (Silvey 1959). When the alternative hypothesis is true but the null is tested, the
LM test statistic has an asymptotic noncentral chi-square distribution that depends
on two parameters, the d f and a noncentrality parameter (Bollen 1989). To compute
the local asymptotic power of the LM test, a standard approach is to consider a set of

local alternatives that are close to the null value for large n, H1 : θ02 = c + ξp
n

, where

ξ is an arbitrary vector with the same dimension of θ02 (Boos and Stefanski 2013).
Under H1, the test statistic LM converges in distribution to aχ2

r (λ) with noncentrality
parameter λ equal to (Cox and Hinkley 1979):

λ= ξ′A22(θ0)ξ, (5)

where θ0 = (θ01,c).
The asymptotic local power is computed as P (χ2

r (λ) >χ2
r (λ,1−α)).

2.1 Approximation procedures for the asymptotic power

The asymptotic distribution of the LM test under the alternative hypothesis as a non-
central chi-square with noncentrality parameter (5) holds when the model defined
under the set of local alternatives is true, i.e. when the model under the null hypothe-
sis is barely incorrect for large n (see Agresti 2002, Reiser 2008). In practice, it is often
reasonable to adopt an alternative hypothesis for fixed and finite n (Agresti 2002), as
H1 : θ02 = c +ξ , or to use hypotheses as (1) (Gudicha et al. 2017). We present here
two different approximation procedures for the computation of the noncentrality
parameter.

The first method extends the approximation procedure for the asymptotic power
derived by Gudicha et al. (2017) for the Likelihood-Ratio and the Wald tests to the LM
test. It can be summarized in the following steps:

1. From the model defined under the alternative hypothesis, create a large data
data set (e.g. N = 10000 observations).

2. Fit the model under H0 to the data.
3. Take the value of the LM statistic as the estimate of the noncentrality parameter

λ (Satorra 1989, Bollen 1989).
4. Compute the noncentrality parameter for a sample of size 1 equal to λ1 = λ

N .
5. The noncentrality parameter for a sample of size n is λn = nλ1.



4 Lucia Guastadisegni1, Silvia Cagnone2, Irini Moustaki3, and Vassilis Vasdekis4

The power of the LM test can be determined by comparing the λn obtained in step
5 with the tabled values of the noncentral chi-square with d f corresponding to the
number of parameters constrained under H0 and significance level α (Bollen 1989).

We propose a second method, that is also is also based on some of the steps of
the procedure proposed by Gudicha et al. 2017, but the noncentrality parameter is
computed according to formula (5). The procedure can be summarized as follows:

1. From the model defined under the alternative hypothesis, create a large data
data set (e.g. N = 10000 observations).

2. Fit the model under H0 to the data.
3. Compute ξ=p

N (θ02 −c) , where θ02 is the vector of the data generating values
(values under H1) of the constrained parameters and c is the vector of constants
under the null hypothesis (Reiser 2008).

4. Compute the noncentrality parameter according to formula (5) where A22(θ0)
can be consistently estimated by the corresponding matrix Â, evaluated at θ̃.

5. Compute the noncentrality parameter for a sample of size 1 as λ1 = λ
N .

6. The non centrality parameter for a sample of size n is λn = nλ1

The power is computed as before, using the noncentrality parameter computed at
point 5.

3 The Generalized Lagrange Multiplier Test

Consider a sample y1, ...,yn from a model with true density g (y). The model f (y;θ)
is assumed to be true one for the data and differs from g (y). Under the assumptions
given in White 1982 the vector of parameter θ̂n , that maximizes the log-likelihood
function based on model f (y;θ) (Quasi-ML estimator, White 1982), converges in
probability to θ∗, the parameter vector that minimizes the Kullback-Leibler informa-
tion criterion. Moreover the variance and covariance matrix of the Quasi-LM estima-
tor is the sandwich variance and covariance matrix Ĉ (θ̂n) = Â−1(θ̂n)B̂(θ̂n)Â−1(θ̂n),
where the matrix Â is defined in formula (4) and B̂ = 1

n

∑n
i=1

∂li (yi ,θ)
∂θ

∂li (yi ,θ)
∂θ is the ob-

served cross-product matrix (White 1982).
Under model misspecification, the null and the alternative hypotheses are posed

in terms of θ∗. Let θ∗ be divided in two subvectors θ′
∗ = (θ′

∗1,θ′
∗2). The hypotheses

H0 and H1 can be formalized as follows:

H0 : θ′
∗2 = c v s H1 : θ′

∗2 6= c, (6)

where c is a vector of constants.
The Generalized Lagrange Multiplier Test is defined as:

LM(S) = 1

n
S2(θ̃n)′ Â22(θ̃n)−1Ĉ22(θ̃n)

−1
Â22(θ̃n)−1S2(θ̃n), (7)

where θ̃n is the constrained quasi-ML estimator, Â22 is the block of the partitioned
observed Hessian matrix computed as in formula (3), evaluated at θ̃n and Ĉ22 is the
block of the matrix Ĉ corresponding to θ′

∗2, evaluated at θ̃n . Under H0 the statistic
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LM(S) is distributed as a χ2
r , where r are the d f equal to the dimension of θ∗2 (White

1982). To compute the local asymptotic power of the LM(S) test, a standard approach

is to consider a set of local alternatives H1 : θ∗2 = c+ ξp
n

, where ξ is an arbitrary vector

of dimension θ∗2. Under H1, the test statistic LM(S) converges in distribution to a
χ2

r (λ), where r are the d f equal to the dimension of θ∗2 and λ is the noncentrality
parameter given by (Bera et al. 2020):

λ= ξ′A22′ (B22 − A21 A−1
11 B12 −B21 A−1

11 A12 + A21 A−1
11 B11 A−1

11 A12)−1 A22ξ (8)

where A is the Fisher information matrix and B is the expected cross-product matrix,
evaluated at θ∗.

If the model is correctly specified, the LM(S) coincides with LM test (White 1982).

3.1 Estimation procedure for the noncentrality parameter

The estimation method described in Sect. 2.1 to compute the asymptotic power is
used here to estimate the asymptotic power for the LM(S) test, with some differences.

In step 3 of the first method, the LM(S) statistic is taken as the estimate of the
noncentrality parameter (the proof of this result can be found in Satorra 1989).

In step 4 of the second method, the noncentrality parameter is computed accord-
ing to formula (8), where the matrices A(θ∗) and B(θ∗) are consistently estimated by
Â and B̂ , evaluated at θ̃n .

Moreover, the model fitted under H0 at step 2 is assumed to be misspecified. Un-
der correct model specification the LM(S) and the LM tests have the same noncen-
trality parameter and, consequently, the same asymptotic power.

4 Simulation Study

4.1 Simulation design

The aim of this section is to compare the different procedures described above to
estimate the asymptotic and the empirical power of the LM and LM(S) tests to de-
tect measurement non-invariance by means of a simulation study. A MIMIC model
for binary data is considered. Both under correct and model misspecification, we
consider a binary group variable x because we study measurement non-invariance
only in two subgroups of population. Given n individuals and p items, under correct
model specification data are generated from the following model, where measure-
ment non-invariance is introduced on the intercept of the last item p through the
parameter γ1 and the group variable x:

log i t (πi j ) =α0 j +α1 j zi i = 1, ...,n j = 1, ..., p −1

log i t (πi p ) =α0p +α1p zi +γ1xi

z ∼ N (0,1)

(9)
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Under misspecification of the latent variable distribution data are generated from
the following model, where measurement non-invariance is introduced as before on
the intercept of the last item p through the parameter γ1 and the group variable x:

log i t (πi j ) =α0 j +α1 j zi i = 1, ...,n j = 1, ..., p −1

log i t (πi p ) =α0p +α1p zi +γ1xi

z ∼ SN (κ)

(10)

In this case, the latent variable z is generated from a skew-normal (SN) with skewness
parameter κ, with the following probability density function (Azzalini 1985):

φ(ε;κ) = 2φ(ε)Φ(ε;κ)

where φ and Φ are the standard normal density and distribution function, respec-
tively. The parameter κ can takes values from −∞ to +∞: when it is equal to 0, the
skew-normal reduces to a standard normal distribution. In the simulations, we con-
sider two values of κ, 3 and 5. When κ = 3 the mean and the variance of the latent
variable are 0.76 and 0.43, respectively, and when κ = 5, the mean and the variance
of the latent variable are 0.78 and 0.39, respectively. In both models (9) and (10) we
consider two possible effect sizes, equal to 0.2 and 0.5, for the parameter γ1. More-
over, in both cases, the values xs are generated from a Bernoulli distribution with
success probability 0.7, the intercepts from a normal distribution with 0 mean and
Standard Deviation (SD) 0.1 and the slopes from a normal distribution with 0 mean
and SD 0.5.

The following set of hypotheses is being tested:

H0 : γ1p = 0 v s H1 : γ1p 6= 0,

that implies that the last item is tested for measurement invariance.
Model (9) is fitted to the data with γ1p fixed to 0. When data are generated from

model (10) we are working under model misspecification. Indeed, as mentioned be-
fore, the true latent variable has mean and variance around 0.7 and 0.4, respectively,
and its skewed. Since model (9) is fitted to the data, the misfit is in the mean, as-
sumed to be 0, in the variance, assumed to be 1 and in the distribution of the latent
variable, assumed to be symmetric. The following simulation conditions are consid-
ered: number of items (p = 10) × sample size (n = 200,500,1000,5000,10000) × Test
statistic (LM ,LM(S)). Due to the time complexity, the empirical power is computed
only for n = 200,500,1000. 200 replications are considered for each condition of the
study. The empirical power p̂ is computed as p̂ =∑Nv

l=1
I (Tl≥c)

Nv
, where Nv is the num-

ber of valid statistics out of the number of replications, I is the indicator function, Tl

is the value of the test statistic evaluated in the l -th replication and c is the theoretical
asymptotic critical value corresponding to the 95-th percentile of the χ2

d f distribu-

tion, with d f equal to the number of constrained parameter under H0. If non valid
statistics occur, they are excluded from the analysis. The asymptotic power is com-
puted through methods 1 and 2 described in Sect. 2.1 and 3.1. The nominal level α
is equal to 0.05 in all simulations. ML estimates of the parameters are obtained with
direct maximization of the likelihood function using 21 Gauss-Hermite quadrature
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points. Numerical derivatives are used to compute the Hessian and cross-product
matrices.

4.2 Results

Table 1 presents the results for the LM and LM(S) tests under correct model spec-
ification when γ1 is equal to 0.2 and 0.5 in the data generating model, p = 10, n =
200,500,1000,5000,10000. We can notice that, in general, the differences between
the asymptotic and empirical power are small and method 1 is slightly closer to the
empirical power than method 2. For what concerns the power to detect measure-
ment non-invariance, the LM test has a slightly higher power compared to the LM(S)
tests under all conditions, with the exception of the case γ1 = 0.5 and for large sam-
ple sizes (n = 5000,10000), where the two tests reach the same power, as expected
from the theory.

Table 1. Asymptotic and empirical power of the LM and LM(S) tests under correct model spec-
ification, γ1 = 0.2,0.5, p = 10, n = 200,500,1000,5000,10000.

Method 1 Method 2 Empirical
p γ1 n LM LM(S) LM LM(S) LM LM(S)

10 0.2 200 0.086 0.085 0.080 0.079 0.08 0.06
500 0.144 0.140 0.126 0.122 0.185 0.17

1000 0.241 0.234 0.204 0.198 0.26 0.25
5000 0.802 0.785 0.714 0.696 - -

10000 0.978 0.973 0.947 0.938 - -

10 0.5 200 0.240 0.222 0.229 0.211 0.285 0.235
500 0.508 0.468 0.484 0.445 0.54 0.5

1000 0.799 0.758 0.775 0.732 0.8 0.78
5000 1 1 1 1 - -

10000 1 1 1 1 - -

Table 2 shows the results for the LM and LM(S) tests computed under misspeci-
fication of the latent variable distribution when γ1 is equal to 0.2 and 0.5 in the data
generating model, p = 10, n = 200,500,1000,5000,10000. Also in this case the dif-
ferences between the asymptotic and empirical power are small. For what concerns
the power to detect measurement non-invariance under model misspecification, de-
spite the fact that the LM(S) test is derived under model misspecification, the LM test
has the highest power under all conditions. The two tests reach the same power only
when γ1 = 0.5 and n = 10000. In both Tables and for both tests, the power increases
with the sample size and the effect size of the parameter γ1 and decreases when the
model is misspecified.
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Table 2. Asymptotic power of the LM and LM(S) tests under incorrect distribution of the latent
variable, γ1 = 0.2,0.5, p = 10, n = 200,500,1000,5000,10000.

Method 1 Method 2 Empirical
p ES α n LM LM(S) LM LM(S) LM LM(S)

10 0.2 3 200 0.066 0.065 0.071 0.070 0.085 0.04
500 0.091 0.089 0.104 0.101 0.11 0.075

1000 0.133 0.129 0.159 0.154 0.185 0.14
5000 0.464 0.447 0.569 0.550 - -

10000 0.753 0.734 0.854 0.839 - -

5 200 0.069 0.068 0.071 0.070 0.07 0.055
500 0.010 0.097 0.102 0.010 0.135 0.085

1000 0.151 0.146 0.157 0.151 0.145 0.135
5000 0.538 0.517 0.561 0.540 - -

10000 0.828 0.809 0.848 0.829 - -

10 0.5 3 200 0.158 0.145 0.170 0.155 0.202 0.13
500 0.325 0.292 0.353 0.317 0.41 0.34

1000 0.567 0.514 0.609 0.555 0.625 0.585
5000 0.997 0.994 0.998 0.997 - -

10000 1 1 1 1 - -

5 200 0.163 0.148 0.168 0.153 0.21 0.15
500 0.337 0.301 0.347 0.310 0.425 0.345

1000 0.585 0.529 0.601 0.544 0.61 0.57
5000 0.998 0.995 0.999 0.996

10000 1 1 1 1
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5 Conclusion

In this paper we presented two methods to compute the power of the LM and LM(S)
tests, based on their asymptotic distributions under the alternative hypothesis. More-
over, we assessed the performance of these two tests to detect measurement non-
invariance under correct model specification and misspecification of the latent vari-
able distribution. The simulation study highlighted that the asymptotic power, com-
puted through the two different approximation methods for the noncentrality pa-
rameter, is very close to the empirical power, also under model misspecification.
Small differences between the empirical and asymptotic power have been found also
by Gudicha et al. (2017) for the Likelihood-Ratio and Wald tests and by Saris et al.
(1987) for the score test.

To compute the noncentrality parameter of the LM and LM(S) tests, we have gen-
erated data from the model under the alternative hypothesis considering 10000 ob-
servations. Increasing this number could reduce the differences between the empir-
ical and asymptotic power, but it would increase the time burden to obtain the pa-
rameter estimates and the numerical derivatives used in the noncentrality parameter
approximation procedures.

For what concerns the power of the two tests to detect measurement non-invariance,
the LM test has a slightly higher power compared to the LM(S) test under most sim-
ulation conditions. The two tests reach the same power only for large sample sizes.
A similar behaviour of the power of the LM and LM(S) tests has been found also by
Falk and Monroe (2018), under correct model specification and misspecification due
to an omitted cross-loading.

From this study we can conclude that the asymptotic power can be a valid alter-
native to obtain the power of a test, both under the correct model and a model with a
misspecified distribution of the latent variable since it allows us to reduced the time
complexity compared to the empirical power. Although not shown here, the asymp-
totic power can be used also to find sample sizes necessary to reach a certain power
(Boos and Stefanski 2013, Gudicha et al. 2017). However, the asymptotic power can
be computed only for certain test statistics with known noncentrality parameter.

This work was limited only to one type of misspecification. Further analysis should
be carried out on the LM(S) test to evaluate if there might be an improvement in its
performance considering different types of model misspecification and different es-
timation methods.
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