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Abstract

We consider the nonparametric estimation of an S- 

shaped regression function. The least squares estima-

tor provides a very natural, tuning- free approach, but 

results in a non- convex optimization problem, since the 

inflection point is unknown. We show that the estima-

tor may nevertheless be regarded as a projection onto a 

finite union of convex cones, which allows us to propose 

a mixed primal- dual bases algorithm for its efficient, 

sequential computation. After developing a projection 

framework that demonstrates the consistency and ro-

bustness to misspecification of the estimator, our main 

theoretical results provide sharp oracle inequalities that 

yield worst- case and adaptive risk bounds for the esti-

mation of the regression function, as well as a rate of 

convergence for the estimation of the inflection point. 

These results reveal not only that the estimator achieves 

the minimax optimal rate of convergence for both the 

estimation of the regression function and its inflection 

point (up to a logarithmic factor in the latter case), but 

also that it is able to achieve an almost- parametric rate 

when the true regression function is piecewise affine 

with not too many affine pieces. Simulations and a real 

data application to air pollution modelling also confirm 
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1 |  INTRODUCTION

We define a function f : [0, 1]→ ℝ to be S- shaped if it is increasing, and if there exists m0 ∈ [0, 1] 

such that f is convex on [0, m0] and concave on [m0, 1]. The point m0 is called an inflection point, 

and we do not insist that f is continuous at m0; the cases m0 = 0 and m0 = 1 correspond to in-

creasing concave and increasing convex functions respectively. Various examples of S- shaped 

functions are shown in Figure 1. In many areas of applied science, there are domain- specific 

reasons to model the regression of a response variable on a covariate as an S- shaped function. 

For instance, development curves for individuals or populations often exhibit S- shaped be-

haviour in the context of biological growth (Archontoulis & Miguez, 2015; Cao et al., 2019; Zeidi, 

1993) or skill proficiency (Gibbs, 2000). Further examples where time is the covariate can be 

found in audio signal processing (Smith, 2010) and sociology (Tarde, 1903). In agronomy, the 

van Genuchten– Gupta model (van Genuchten & Gupta, 1993) postulates an inverted S- shaped 

relationship between crop yield and soil salinity, and S- shaped trends are also observed for the 

production levels of commercial goods as labour or other resources are scaled up (Ginsberg, 

1974). For the latter, economic principles such as the Regular Ultra Passum law (Frisch, 1964) 

have been formulated to describe scenarios where marginal gains (i.e. returns to scale) increase 

up to a point of maximal productivity and then taper off.

In some of the examples above, for instance when population or disease dynamics can be 

modelled by some governing differential equation, it may be natural to confine attention to cer-

tain parametric subclasses of S- shaped functions, such as those consisting of sigmoidal (i.e. lo-

gistic) functions of the form 

the desirable finite- sample properties of the estimator, 

and our algorithm is implemented in the R package 

Sshaped.

K E Y W O R D S

sequential algorithm, shape- constrained regression, S- shaped 

functions

F I G U R E  1  Some examples of S- shaped functions on [0, 1]
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with A, a > 0 and b ∈ ℝ; see also Jarne et al. (2007). However, in many other settings, such 

domain- specific knowledge is often lacking, and parametric assumptions may be excessively 

restrictive. To illustrate this effect, see Figure 2, where we compare two popular parametric fits 

of an S- shaped regression function with the estimator we propose in this paper. The first para-

metric method fits a logistic curve of the form (1) using nonlinear least squares. The second 

uses segmented linear regression with two kinks, fitted using least squares and a search over 

the locations of the kinks. Although these parametric fits appear to the naked eye to be satis-

factory, it turns out that their estimation performance, as measured by the squared error loss 

on the training data, is roughly six times worse than that of our proposal (on average 0.38 and 

0.43 compared with 0.067, over 100 repetitions). If the noise standard deviation is halved, then 

these parametric methods become 17 times and 19 times worse than our proposal respectively. 

Notice also that our S- shaped estimator is sufficiently flexible to be able to capture the discon-

tinuity of the regression function, whereas the parametric methods struggle in this respect. 

The benefits of our nonparametric approach are also apparent in the analysis of real data: see 

Section 5.3, where we study the way that a quantity related to atmospheric mercury concen-

tration varies with distance from an experimental device close to a geothermal power station.

Motivated by the limitations described in the previous paragraph, the goal of this paper is 

to introduce a flexible framework for nonparametric estimation of S- shaped functions. The 

(1)f (x; A, a, b) =
A

1 + e−ax+b
,

F I G U R E  2  Logistic (red, top left), segmented linear regression (green, top right) and S- shaped (orange, 

bottom left) estimates of the true regression function x ↦
5

6
(1+e−8(x−1∕3))−1 + 1

5
�{x>1∕3} (blue, all plots)
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main challenges in removing the parametric restrictions are two- fold: first, the class   of 

S- shaped functions on [0, 1] is infinite- dimensional; and second, since the inflection point 

is unknown, the family   is non- convex. Despite this non- convexity, we are able to develop 

methodology based on suitably defined L2- ‘projections’ of general distributions onto . The 

significant advantage of working in this additional generality is that, having established con-

tinuity properties of the projection, results on the consistency and robustness under mis-

specification of the estimator follow as simple corollaries of basic facts about convergence of 

empirical distributions. Nevertheless, since the fully general statements are fairly involved, 

we defer this formal presentation to Section S3 of the supplementary material (Feng et al., 

2021b), and focus in Section 2 on the special case of projections of the empirical distribution 

of data of the form (x1, Y1),…, (xn, Yn) ∈ [0, 1] ×ℝ with x1 <⋯ < xn. This allows us to prove 

that an S- shaped least squares estimator always exists, and to study its uniqueness properties. 

Moreover, when the design is fixed and the errors are independent and identically distributed 

with mean zero and finite variance, we present a basic consistency result that follows from 

the general theory in Section S3.

In Section 3, we take up the challenge of computing the S- shaped least squares estima-

tor. Since its inflection point occurs at one of the design points, a naive strategy would be to 

fit, for each choice of m ∈ {x1,…, xn}, the least squares estimate over the class of S- shaped 

functions with inflection point m, before selecting a solution that minimizes the residual 

sum of squares. The individual constrained estimates are straightforward to compute using, 

for example, active set methods (Dümbgen et al., 2007; Nocedal & Wright, 2006, Chapters 12 

and 16.5), but it can be time- consuming to run the active set method n times. We show how a 

simple refinement of the search strategy can improve the running time by a factor of around 

4, but our major contribution here begins with the observation that the global S- shaped least 

squares estimate can be obtained as a concatenation of a convex increasing least squares es-

timate to the left of an estimated inflection point, with a concave increasing least squares 

estimate to the right. This enables us to pursue a sequential approach, where we reveal new 

observations one by one, and update the least squares fits using a mixed primal- dual bases 

algorithm (Fraser & Massam, 1989; Meyer, 1999). Our algorithm, which is available in the R 

package Sshaped (Feng et al., 2021a), is shown to be around 40 times faster than the naive 

strategy in examples; see Figure 5.

Our main theoretical contributions are presented in Section 4, under an independent and 

sub- Gaussian error assumption. Here, we derive worst- case and adaptive sharp oracle inequal-

ities for the S- shaped least squares estimator. When combined with our corresponding mini-

max lower bounds, this theory reveals in particular that the S- shaped least squares estimator 

attains the optimal worst- case risk of order n−2∕5 with respect to L2- loss, in the case where the 

design points are not too irregularly spaced. These results apply both when the S- shaped re-

gression function hypothesis is correctly specified, and where it is misspecified, provided in the 

latter case that we interpret the loss as the distance to the projection of the signal onto . For 

adversarially chosen design configurations, we show that the risk bound can deteriorate to 

n−1∕3 in the worst case. Moreover, the S- shaped least squares estimator adaptively attains the 

parametric rate of order n−1∕2 (up to a logarithmic factor), when the projection of the signal is 

piecewise affine with a relatively small number of affine pieces. Finally, we study the delicate 

problem of estimating the true inflection point m0, which represents the boundary between the 

convex and concave parts of the signal. Under an appropriate local smoothness assumption 

indexed by a parameter α > 0, we show that the inflection point m̂n of the least squares estima-

tor converges to m0 at rate Op((n
−1 logn)1∕(2�+1)), which matches our local asymptotic minimax 
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lower bound, up to the logarithmic factor. Interestingly, the combination of the monotonicity 

with the convexity/concavity means that our S- shaped estimator is sufficiently regularized to 

avoid boundary problems at the endpoints {0, 1} of the covariate domain; other common shape- 

constrained methods are known to lead to boundary estimation inconsistency (Balabdaoui 

et al., 2011; Balász et al., 2015; Cule et al., 2010; Han & Kato, 2021; Kulikov & Lopuhaä, 2006; 

Samworth, 2018).

In Section 5, we study the empirical properties of our S- shaped least squares estimator, 

comparing both its running time and statistical performance with those of alternative ap-

proaches on simulated data. We also present a real data application of these techniques in 

air pollution modelling, which highlights the convenience and efficacy of our proposal. We 

conclude by discussing some possible directions for future research in Section 6. The appen-

dix (Section A) provides further details of the mixed primal- dual bases algorithm that we use 

to compute our estimator. The proofs of our main results are deferred to the supplementary 

material (Feng et al., 2021b), in which the results and sections appear with an ‘S’ before the 

relevant label number.

Previous work on nonparametric estimation of S- shaped functions includes Yagi et al. (2019, 

2020), who, in the context of production theory in economics, apply a method known as shape- 

constrained kernel least squares to estimate multivariate production functions that are S- shaped 

along one- dimensional rays. Kachouie and Schwartzman (2013) use local polynomial regression 

techniques to identify an inflection point of a smooth signal from corrupted observations. In 

both of these works, kernel bandwidths must be chosen carefully to control the bias- variance 

tradeoff and (for the approach of Kachouie and Schwartzman (2013) in particular) to ensure that 

the fitted curve does not have multiple inflection points. Liao and Meyer (2017) instead estimate 

univariate convex- concave functions using cubic splines defined with respect to a number of 

user- specified knots, and establish rates of convergence for the inflection points of the resulting 

estimators. Their method is implemented in the R package ShapeChange (Liao & Meyer, 2016), 

which Lee et al. (2020) subsequently used in combination with the scam (Shape Constrained 

Additive Models) package of Pya and Wood (2015) to estimate S- shaped disease trajectories of 

patients with Huntington’s disease. We also mention the extremum distance estimator and ex-

tremum surface estimator proposed by Christopoulos (2016), with the aim of locating the in-

flection point of a smooth function based on its geometric properties. We provide a numerical 

comparison of our procedure with those of Liao and Meyer (2017), Yagi et al. (2019, 2020) and 

Christopoulos (2016) in Section 5.2.

1.1 | Notation

For n ∈ ℕ, we write [n] := {1, …, n}, and given 0 ≤ x1 <⋯ < xn ≤ 1, define  ≡ [x1,…, xn] to be 

the set of continuous, piecewise affine f : [0, 1] → ℝ with kinks in {x2,…, xn−1}. If f̃ n : [0, 1] → ℝ 

minimizes1 f ↦

∑n
i=1 (Yi− f (xi))

2
= : Sn(f ) over some class ̃ of functions on [0, 1], we say that 

f̃ n is a least squares estimator (LSE) over ̃ based on {(xi, Yi) : 1 ≤ i ≤ n}. We write an ≲ bn to 

mean that there exists a universal constant C > 0 such that an ≤ Cbn for all n.

 1Since there may be multiple minimizers, we will also assume throughout and without further comment that f̃ n is 

chosen to depend measurably on (x1, Y1),…, (xn, Yn). Likewise, we will assume the same property for estimated 

inflection points.
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2 |  EXISTENCE, UNIQUENESS AND CONSISTENCY OF S - 
SHAPED LEAST SQUARES ESTIMATORS

The purpose of this section is to study the existence, uniqueness and consistency of S- shaped 

least squares estimators. We will see later that in a suitable sense, these estimators can be re-

garded as L2- projections onto  of the empirical distribution of the data. As such, the results in 

this section turn out to be special cases of a much more general theory, presented in Section S3, 

concerning the existence and continuity of L2- projections of arbitrary distributions on [0, 1] × ℝ 

having finite variance. The generality of this projection framework remains of importance 

to statisticians, particularly in terms of providing results on the robustness of S- shaped least 

squares estimators to model misspecification; however, the results are of a more technical na-

ture, so to facilitate understanding of the main ideas, we focus on the well- specified case here.
Suppose we have observations (x1, Y1),…, (xn, Yn) ∈ [0, 1] ×ℝ with x1 <⋯ < xn. For each 

m  ∈  [0, 1], we denote by m the class of S- shaped functions with an inflection point at m, that 
is, the set of all f : [0, 1] → ℝ that are convex on [0, m], concave on [m, 1] and increasing (i.e. 
non- decreasing) on [0, 1]. Thus  :=

⋃

m∈[0,1] 
m is the set of all S- shaped functions on [0, 1], 

but this union of convex sets is not itself convex.

Proposition 1 For each m  ∈  [0, 1], there exists an LSE f̃
m

n  over m that is uniquely determined 

at x1,…, xn. Moreover, there exists an LSE f̃ n over  with an inflection point in {x2,…, xn−1}.

A straightforward and direct proof of this result is given in Section S1. As part of the projec-

tion framework in Section S3, we obtain generalizations of Proposition 1 in Corollaries S10(d) 

and S14(a). Since our objective criterion only measures the error incurred at the design points, it 

is no surprise that any LSE f̃
m

n  over m can only be unique at x1,…, xn. There is a canonical way 

to define f̃
m

n  on the whole of [0, 1], namely by linear interpolation between its kinks. Thus, the 

slope remains constant on [0, x2], [x2, x3],…, [xn−2, xn−1], [xn−1, 1], and we denote this interpo-

lating function by f̂
m

n ∈  ≡ [x1,…, xn]. A subtle issue, however, is that when m is not a design 

point, f̂
m

n  need not belong to m; see the left panel of Figure 3. To finesse this point, for m  ∈  [0, 1], 

denote by m ≡ m[x1,…, xn] the class of all f ∈  for which there exists g ∈ m with f = g on 

F I G U R E  3  Left: For noiseless observations of the blue regression function at the black crosses, the red 

curve illustrates the linear interpolation f̂
m

n
 of the least squares estimator (LSE), with m = 0.5; here, the segment 

of steepest slope does not contain x = 0.5, so f̂
m

n
 does not belong to m with m = 0.5. Right: For the data given 

by the black crosses, both the red curve and the green curve are LSEs over 
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{x1,…, xn}. Then m is a closed, convex cone, and the LSE over m based on {(xi, Yi) : 1 ≤ i ≤ n} 

is precisely the function f̂
m

n . We refer to f̂
0

n and f̂
1

n as the increasing concave LSE and increasing 

convex LSE (based on {(xi, Yi) : 1 ≤ i ≤ n}) respectively.

It turns out, however, that in general an LSE f̃ n over  is not even uniquely defined at the de-

sign points. For instance, if our data are (0, 0), (1/3, 1/2), (2/3, 1/2), (1, 1), then the linear interpo-

lations of both (0, 0), (1/3, 5/12), (2/3, 2/3), (1, 11/12) and (0, 1/12), (1/3, 1/3), (2/3, 7/12), (1, 1) are 

LSEs over ; see the right panel of Figure 3. We remark that this non- uniqueness is not related to 

the small number of data points, but rather to the symmetry of the data configuration.

In order to present a basic consistency result, we introduce a model where we regard our 

data {(x1,Y1),…, (xn, Yn)} ≡ {(xn1, Yn1),…, (xnn, Ynn)} as being realized from a triangular array 

sampling scheme 

where f0 : [0, 1]→ ℝ is a Borel measurable regression function, where �n1,…, �nn are independent 
noise variables with mean zero and finite variance for each n, and where 0 ≤ xn1 <⋯ < xnn ≤ 1 are 
fixed design points. We write ℙn := n−1

∑n
i=1 �(xni,Yni)

 and ℙXn := n−1
∑n

i=1 �xni
 for the joint and X- 

marginal empirical distributions respectively.

For a finite Borel measure ν on [0, 1], we denote by supp ν the support of ν, which is defined 

as the smallest closed set A such that ν(Ac) = 0, or equivalently the set of all x  ∈  [0, 1] with the 

property that ν(U) > 0 for any open neighbourhood U of x in [0, 1].

Proposition 2 In model (2), assume that f0 ∈   has unique inflection point m0 ∈ [0, 1] and 
that �n1,…, �nn are independent and identically distributed for each n. For each n ∈ ℕ, let 

f̂
m0

n  and f̃ n denote LSEs over m0 and   respectively. Suppose further that (ℙXn ) converges 
weakly to a distribution PX

0
 on [0, 1] satisfying suppPX

0
= [0, 1] and PX

0
({m}) = 0 for all 

m  ∈  [0, 1]. Then, for g̃n ∈ {f̂
m0

n , f̃ n} and with m̃n denoting any inflection point of g̃n, we 
have

a. m̃n

p
→ m0;

b. supx∈A |(g̃n − f0)(x) |
p
→ 0 for any closed set A ⊆ [0, 1]�{m0};

c. If m0 ∈ (0, 1), then ∫ 10 | g̃n− f0|q dPX0
p
→ 0 for all q  ∈  [1, ∞);

d. If m0 ∈ (0, 1) and in addition f0 is continuous at m0, then supx∈[0,1] |(g̃n − f0)(x) |
p
→ 0.

Proposition 2 follows from Proposition S16 in Section S3, which handles the more general 

case where f0 need not belong to , and where it may have multiple inflection points. A proof of 

the latter result is given in Section S6.

3 | COMPUTATION OF S- SHAPED LEAST SQUARES ESTIMATORS

Returning to the setting of data (x1, Y1),…, (xn, Yn) ∈ [0, 1] ×ℝ with x1 <⋯ < xn, we now 

consider the problem of computing an S- shaped LSE over . In light of the non- uniqueness 

discussion in Section 2, we will take as our target the LSE f̂ n := f̂
m̂n

n
, where m̂n := x̂�n and 

�̂n := sargmin1≤j≤n Sn(f̂
xj
n ); here and below, sargmin denotes the smallest element of the argmin. 

One of the main challenges here is that in general the function j ↦ Sn(f̂
xj
n ) has multiple local 

(2)Yni = f0(xni) + �ni, i = 1,…,n,
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minima; see Figure 4. A ‘brute- force’ method that we call ScanAll, then, is to compute each of 

the LSEs f̂
x1
n ,…, f̂

xn
n  directly by solving n separate constrained least squares problems. In each 

instance, we can run the support reduction algorithm (Groeneboom et al., 2008) or a generic ac-

tive set algorithm (Dümbgen et al., 2007; Nocedal & Wright, 2006, Chapters 12 and 16.5) on the 

whole dataset {(xi, Yi) : 1 ≤ i ≤ n}, but it is computationally expensive to repeat this n times, even 

when n is only moderately large; see Section 5.1.

To improve the overall efficiency of this procedure, it would therefore be desirable to both refine 

the initial search strategy as well as exploit any common structure underlying the individual mini-

mization problems. For instance, we might hope to be able to obtain f̂
xj
n via a faster update step that 

takes as input the previous LSE f̂
xj−1
n , but it is not immediately clear how this can be done.

We now describe and justify an alternative approach that achieves both of the above objectives. For 

j  ∈  [n], we write f̂ 1,j ∈ [x1,…, xj] for the increasing convex LSE based on {(xi, Yi) : 1 ≤ i ≤ j} and 

f̂ n,j ∈ [xj,…, xn] for the increasing concave LSE based on {(xi, Yi) : j ≤ i ≤ n}, recalling from, for 

example, Ghosal and Sen (2017, Lemma 2.2) that 

We then define ĥ
j

n ∈ [x1,…, xn] for j  ∈  [n − 1] by 

In other words, ̂h
j

n is obtained by partitioning the data into two disjoint subsets {(x1, Y1),…, (xj, Yj)} 

and {(xj+1, Yj+1),…, (xn, Yn)}, and then fitting separate increasing convex and increasing con-

cave LSEs on the left and right pieces respectively. In general, ĥ
j

n
 is not guaranteed to be S- 

shaped or even increasing on [0, 1], in which case ĥ
j

n
 does not coincide with the LSE f̂

xj
n  over 


xj ≡ 

xj [x1,…, xn] = 
xj ∩ [x1,…, xn]. Nevertheless, observe that ĥ

j

n is the LSE over a larger 

subclass of [x1,…, xn] that contains xj. Together with Equation (3), this immediately implies 

Proposition 3 below, a key fact that we will exploit in our algorithm.

(3)f̂ 1,j(xj) ≥ Yj ≥ f̂ n,j(xj) for all j ∈ [n].

(4)ĥ
j

n(xi) :=

{
f̂ 1,j(xi) for i∈{1,…, j}

f̂ n,j+1(xi) for i∈{j+1,…,n}.

F I G U R E  4  Plots of the residual sum of squares Sn(f̂
m

n ) of the least squares estimator with inflection point 

at m over m  ∈  [0, 1] (left) and m  ∈  [0.2, 0.4] (right), illustrating the multiple local minima of this function. 

Here, with n = 400, the data were generated according to Yi = f (xi) + �i for i = 1, …, n, with f taken to be the blue 

regression function from Figure 1, xi = i∕n for i = 1,…, n and �1,…, �n independent N(0, 1) random errors
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Proposition 3 For j  ∈  [n − 1], we have ĥ
j

n = f̂
xj
n  if and only if ĥ

j

n ∈xj, that is, if and 

only if 

If Equation (5) holds, then Yj ≤ ĥ
j

n(xj) ≤ ĥ
j

n(xj+1) ≤ Yj+1.

In addition, we have the following crucial result for all global S- shaped LSEs over 
 ≡ [x1,…, xn] :=  ∩ , namely those f̂

xj′

n  for which j′ ∈ argmin1≤j≤n Sn(f̂
xj
n ).

Proposition 4 Given any S- shaped LSE f̃ n over , if j  ∈  [n − 1] is such that either xj is the small-

est inflection point of f̃ n or xj+1 is the largest inflection point of f̃n, then ĥ
j

n = f̃ n and hence 
Yj ≤ f̃ n(xj) ≤ f̃ n(xj+1) ≤ Yj+1.

We explain in the final example of Section S1 that Proposition 4 is a consequence of 

Proposition S4(c, d, e), whose proof also reveals why ĥ
j

n = f̂
xj
n  is not guaranteed to hold for a 

pre- specified j    ∈    [n  −  1]. A further remark is that the localization property for f̃ n in 
Proposition 4 is only valid for particular choices of partition of our data into subintervals, 
namely where the split occurs at the smallest or largest inflection points of f̃ n. In other 
words, if for example xj is chosen to be a kink of f̃ n that is strictly to the left of the smallest 

inflection point, then f̃ n is not guaranteed to agree with the increasing convex LSE f̂ 1,j on 

[x1, xj]. This presents a substantial additional difficulty for both computation and theory in 

comparison with the problem of unimodal regression (Shoung & Zhang, 2001; Stout, 2008), 
where, for every jump xj of the unimodal LSE g̃n to the left of its mode, it is the case that g̃n 

agrees on [x1, xj] with the increasing LSE based on {(xi, Yi) : 1 ≤ i ≤ j} . These issues are dis-

cussed in greater depth in Section S1.

Propositions 3 and 4 motivate the following generic procedure as an improvement on 

ScanAll:

(5)
f̂ n,j+1(xj+2) − f̂ n,j+1(xj+1)

xj+2 − xj+1
≤
f̂ n,j+1(xj+1) − f̂ 1,j(xj)

xj+1 − xj
.



10 |   FENG et al.

To see that the output (x �̃, ĥ
�̃

n) of Algorithm 1 is indeed (m̂n, f̂ n), note first that by Proposition 3,  

the set   in Step III consists precisely of those j    ∈    [n  −  1] for which ĥ
j

n = f̂
xj
n. In addition, 

by Proposition 4, �̂n = sargmin1≤j≤n Sn(f̂
xj
n ) ∈   since m̂n = x̂�n is the smallest inflection point of  

f̂ n = f̂
m̂n

n
. Thus, �̃ = sargminj∈ Sn(f̂

xj
n ) = �̂n, and hence x �̃ = m̂n and ĥ

�̃

n = f̂ n, as desired.

The most obvious implementation of Step II of Algorithm 1 simply computes f̂ 1,j and f̂ n,j+1 

from scratch for each different j; we refer to this as the ScanSelected algorithm. Even this 

naive modification has two significant advantages over ScanAll:

(i) In advance of carrying out any least squares minimization, we can restrict the set of candi-

dates for �̂n based on just n − 1 pairwise comparisons. If (x1,Y1),…, (xn, Yn) are drawn ac-

cording to a regression model (2) featuring a continuous f0 and independent and identically 

distributed errors with zero mean, then Step I typically screens out about half of the indices 

in [n] when n is reasonably large.

(ii) For the remaining indices j in Step II, we do not attempt to compute the S- shaped function 

f̂
xj
n  based on all n data points, but instead fit the increasing convex LSE f̂ 1,j and the increasing 

concave LSE f̂ n,j+1 using j and n − j observations respectively.

The main drawback of the ScanSelected algorithm, however, is that it fails to exploit the 
commonalities in the computation of f̂ 1,j for different j (and similarly of f̂ n,j+1 for different j). Our 

main computational contribution, then, is to show that for k  ∈  [j − 1], it is possible to obtain f̂ 1,j 

by modifying f̂ 1,k appropriately when the observations {(xi, Yi) : k < i ≤ j} are introduced. We can 
therefore proceed in a sequential manner and hence make significant computational gains.

Recall that for j  ∈  [n] and a closed, convex cone Λ ⊆ ℝ
j, there exists a unique L2- projection 

ΠΛ : ℝ
j
→ Λ, given by 

The key to our approach is to develop a mixed primal- dual bases algorithm (Fraser & Massam, 

1989; Meyer, 1999) that allows us to compute ΠΛ(L) when L ⊆ ℝ
j is a line segment and Λ is a 

polyhedral convex cone. An important observation is that, given v(0), v(1) ∈ ℝ
j, the map 

t ↦ ΠΛ((1 − t)v(0) + tv(1)) is continuous and piecewise linear on [0, 1], where the individual 

linear pieces correspond to projections onto different faces of Λ; see Remark 1 in Appendix A. 

This enables us to compute ΠΛ(v(1)) when ΠΛ(v(0)) is known. Indeed, we give a detailed descrip-

tion of a general procedure for this task in Algorithm 2 in Appendix A, and we focus here on its 

application to increasing convex regression (increasing concave regression for the right- hand 

end can be handled very similarly). In this case, the cones of particular interest to us are those of 

increasing convex sequences based on x1, …, xj for some j  ∈  [n], which we denote by 

Given k  ∈  [j − 1] and supposing that we have already fitted the increasing convex LSE f̂ 1,k (which 

is linear on [xk−1, 1]  ), an appropriate choice of v(0), v(1) is 

ΠΛ(y) := argmin
u∈Λ

‖u − y‖ .

(6)
Λ
j:={(g(x1),…, g(xj)): g∈

1}=

{
(z1,…, zj)∈ℝ

j: 0≤
z2−z1
x2−x1

≤⋯≤
zj−zj−1

xj−xj−1

}
.

(7)
v(0)=

(

Y1,…,Yk , f̂ 1,k(xk+1),…, f̂ 1,k(xj)
)

and v(1)= (Y1,…,Yj);
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indeed, Π
Λ
j (v(1)) = (f̂ 1,j(x1), …, f̂ 1,j(xj)) is what we seek to compute, and moreover we claim that 

Π
Λ
j (v(0)) = (f̂ 1,k(x1), …, f̂ 1,k(xj)) (which is known). To establish this claim, observe that for any 

u ≡ (u1, …, uj) ∈ Λ
j, we have 

and (f̂ 1,k(x1), …, f̂ 1,k(xj)) ∈ Λ
j. In fact, we will apply this version of the mixed primal- dual bases 

algorithm with k = j − 1, so that the observations Y1,…, Yn are introduced sequentially. Note that 
when Yj ≥ f̂ 1,j−1(xj), we have by the same argument as in Equation (8) that 

(f̂ 1,j(x1),…, f̂ 1,j(xj)) = (f̂ 1,j−1(x1),…, f̂ 1,j−1(xj−1), Yj), so no calculations are required. We refer to 

this sequential implementation of Algorithm 1 as SeqConReg.

4 |  THEORETICAL PROPERTIES OF S -  SHAPED LEAST 
SQUARES ESTIMATORS

4.1 | Worst- case and adaptive sharp oracle inequalities

Our first main results of this section consist of worst- case and adaptive sharp oracle inequalities 

for S- shaped least squares estimators. These reveal not only risk bounds when our S- shaped re-

gression function hypothesis is correctly specified, but also control the way in which the perfor-

mance of the estimators deteriorate as the model becomes increasingly misspecified.

We will work in the setting of model (2), and now make the following assumption on the errors:

Assumption 1 {�i ≡ �ni : 1 ≤ i ≤ n} is a collection of independent sub- Gaussian random vari-

ables with parameter 1, so that �(et�ni) ≤ et
2∕2 for all t ∈ ℝ and i  ∈  [n].

For fixed n ∈ ℕ and f : [0, 1] → ℝ, we write xi ≡ xni for i  ∈  [n] and let ‖f ‖n := ‖f ‖L2(ℙXn ) =  
(

∑n

i=1
f 2(xi)∕n

)1∕2
. Also, for f ∈ ≡ [x1, …, xn], let V (f ) := f (xn) − f (x1) =max1≤i≤n f (xi)−

min1≤i≤n f (xi) and  denote by k(f) the number of affine pieces of f, so that k(f) is the smallest 

k  ∈  [n] with the property that f is affine on each of k subintervals I1, …, Ik that partition [0, 1].

Theorem 1 For fixed  n ≥ 2, suppose that Assumption 1 holds and let f̃ n be any LSE over . Let 

R := n−1(xn − x1)∕min2≤i≤n (xi − xi−1). Then there exists a universal constant C > 0 such that 

for every f0 : [0, 1] → ℝ and t > 0, we have 

with probability at least 1 − e−t.

By integrating this tail bound, we obtain the worst- case risk bound 

(8)‖v(0)−u‖2 ≥
k�
i=1

(Yi−ui)
2
≥

k�
i=1

�
Yi− f̂ 1,k(xi)

�2
=
����v(0)−

�
f̂ 1,k(x1),…, f̂ 1,k(xj)

�����
2

,

(9)‖ f̃ n − f0‖n ≤ inf
f ∈

�

‖ f − f0‖n + C(1+V (f ))1∕3

n1∕3
∧
CR1∕10(1+V (f ))1∕5

n2∕5

�

+

�

8t

n

(10)�f0
(‖ f̃ n − f0‖n) ≤ inf

f ∈

�

‖ f − f0‖n + C(1+V (f ))1∕3

n1∕3
∧
CR1∕10(1+V (f ))1∕5

n2∕5

�

+

�

2�

n
.
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In the special case where f0 ∈ , we may take f = f0 in Theorem 1 to conclude that 

thus, when R and V (f0) are of constant order, we obtain a worst- case risk bound of order n−2∕5. More 

generally, Equations (9) and (10) reveal the impact of both non- equispaced design and the range of 

the signal. In fact, an alternative, more complicated definition of R is possible, and this further re-

fines our bounds for certain designs; see the discussion following the proof of Theorem 1 in Section 

S2.1. To see that the rate of order n−2∕5 cannot in general be attained for arbitrary configurations of 

design points, we appeal to Bellec (2018, Theorem 4.5) for a suitable minimax lower bound: for any 

V ≥ n−1∕2, there exist design points x1 <⋯ < xn that depend on V such that if �1,…, �n
iid
∼ N(0, 1) 

in Equation (2), then 

where the infimum is taken over all estimators ğn ≡ ğn(x1, Y1,…, xn, Yn), and c, C > 0 are universal 

constants.

Another very attractive aspect of Theorem 1 is that, in cases where f0 ∉ , we can control the 

performance of an LSE f̃ n over  via approximation error and estimation error terms. The fact 

that the approximation error term ‖ f − f0‖n has leading constant 1 (which is the best possible) is 

the reason that Equations (9) and (13) are referred to as sharp oracle inequalities.

To complement the worst- case sharp oracle inequality in Equation (10), we now consider 

the more favourable situation where f0 is well approximated by a piecewise affine function with 

not too many affine pieces. The fact that an LSE f̃ n over  can approximate such a signal with a 

relatively small number of kinks suggests that we may be able to obtain improved sharp oracle 

inequalities in such cases.

Theorem 2 For fixed  n ≥ 2, suppose that Assumption 1 holds, and let f̃ n be any LSE over . Then 

for every f0 : [0, 1]→ ℝ and t > 0, we have 

with probability at least 1 − e−t.

As with Theorem 1, we can integrate the tail bound from Equation (11) to obtain 

�f0
(‖ f̃ n − f0‖n) ≲

(1+V (f0))
1∕3

n1∕3
∧
R1∕10(1+V (f0))

1∕5

n2∕5
;

inf
ğn

sup
f0∈1:V (f0)≤2V

ℙf0
(‖ ğn − f0‖n ≥ C(V∕n)1∕3) ≥ c,

(11)‖ f̃ n − f0‖n ≤ inf
f ∈

⎧
⎪
⎨
⎪
⎩

‖ f − f0‖n +
�
32(k(f ) + 1)

n
log

�
en

k(f ) + 1

�⎫⎪⎬⎪⎭
+

�
2(t + logn)

n

(12)

�f0
(‖ f̃ n− f0‖n) ≤ inf

f∈

⎧
⎪
⎨
⎪
⎩

‖f − f0‖n+
�
32(k(f )+1)

n
log

�
en

k(f )+1

�⎫
⎪⎬⎪⎭
+

�
2 logn

n
+

�
�

2n

≤ inf
f∈

⎧
⎪
⎨
⎪
⎩

‖f − f0‖n+8
�
k(f )+1

n
log

�
en

k(f )+1

�⎫⎪⎬⎪⎭
.
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In particular, we see from Equation (12) that if f0 ∈  has k affine pieces, then any LSE f̃ n over  

attains the parametric rate k1∕2∕n1∕2, up to a logarithmic factor.

Adaptation to signals of low complexity is one of the particularly intriguing aspects of 

shape- constrained estimators (Guntuboyina & Sen, 2018; Samworth, 2018). For instance, 

Guntuboyina and Sen (2013), Chatterjee et  al. (2015) and Chatterjee and Lafferty (2019) 

investigated the adaptive behaviour of univariate convex, isotonic and unimodal LSEs re-

spectively when the truth is well approximated by a function with a small number of affine 

or constant pieces. For multivariate extensions of these results, see for example Han and 

Wellner (2016), Kur et  al. (2020) and Han (2021) among others. Sharp oracle inequalities 

of a similar flavour to Theorem 2 have been obtained for a variety of LSEs (Bellec, 2018), 

including multivariate isotonic LSEs (Han et  al., 2019; Pananjady & Samworth, 2021). In 

log- concave density estimation, adaptation results of this type were established for the log- 

concave maximum likelihood estimator by Kim et al. (2018) and Feng et al. (2021) in uni-

variate and multivariate settings respectively. Finally, Baraud and Birgé (2016) introduced a 

ρ- estimation framework for univariate shape- constrained estimation and studied its adap-

tation properties.

4.2 | Inflection point estimation

A particular feature of S- shaped function estimation that differentiates it from other shape- 

constrained estimation problems is the existence of an inflection point m0. In some respects, this 

is like a boundary point, because it represents the point of transition from convex to concave 

parts of the function, and the behaviour of the function is therefore less regulated there (in par-

ticular, the derivative of an S- shaped function may diverge to infinity as we approach the inflec-

tion point). When m0 ∈ (0, 1), we may well have design points on either side of m0, and in that 

sense the inflection point may be regarded as an interior point. The distinguished nature of the 

inflection point means that its location is often of interest in applications such as the modelling 

of economic growth (e.g. Jarne et al., 2007) and disease progression in longitudinal studies (e.g. 

Lee et al., 2020). For instance, in the latter work, S- shaped functions were used to model the de-

terioration in motor function associated with Huntington’s disease, and the estimated inflection 

points from a nonparametric procedure were seen to be clinically useful indicators of the onset 

of severe motor dysfunction, in the sense of having the potential to facilitate timely diagnosis and 

intervention.

In studying the inflection point estimation problem, we will assume that f0 ∈  and the fol-

lowing additional conditions hold:

Assumption 2 Suppose that f0 ∈  has a unique inflection point m0 ∈ (0, 1), and that there 

exist B > 0 and α  ∈  (0, 1) ∪ (1, ∞) such that as x →m0, we have 

In the regression model (2), suppose also that xni = i∕n and �ni
d
= � for all n ∈ ℕ and i   ∈   [n], 

where ξ is a sub- Gaussian random variable with parameter 1.

(13)f0(x) =

{
f0(m0)−B(1+o(1)) sgn(x−m0)|x−m0|

� when �∈ (0, 1)

f0(m0)+ f
�
0 (m0)(x−m0)+B(1+o(1)) sgn(x−m0)|x−m0|

� when �>1.



14 |   FENG et al.

When α  ≥  3 is an integer, Equation (13) holds if f0 is α- times continuously differentiable 

in a neighbourhood of m0 and f (k)
0
(m0) = 0 ≠ f (�)

0
(m0) for 2 ≤ k ≤ α − 1. Under this stronger 

assumption, α must in fact be odd, and f (�)
0
(m0) < 0. Indeed, for all x  ∈  [0, 1] sufficiently close  

to the inflection point m0, we have f ′′
0
(x) ≥ 0 if x ≤m0 and f ′′

0
(x) ≤ 0 if x ≥m0, and since f (�)

0
 is 

continuous at m0, a Taylor expansion reveals that f ′′
0
(x) = f (�)

0
(m0)(1 + o(1))(x−m0)

�−2∕(� − 2) ! as 
x →m0.

Theorem 3 Let ( f̃ n) be any sequence of LSEs over , and for each n, let m̃n be an inflection point 
of f̃ n. Under Assumption 2, we have m̃n −m0 = Op((n∕logn)

−1∕(2�+1)).

We mention that Liao and Meyer (2017) study a least squares estimator over a subclass of 

 consisting of cubic splines (where the number of knots is of order n1∕9); they show that its 

inflection point converges to the true m0 at rate Op(n
−8∕63) in a random design setting where f0 

satisfies (a stronger version of) Equation (13) with α = 3. The proof of their Theorem 2 relies on 

a quantitative result on the quality of local approximations to f0 near m0 by convex or concave 

functions (Liao & Meyer, 2017, Lemma 2), as well as a global rate of convergence for their spline- 

based estimator.

In our setting, Theorem 3 shows that the inflection point estimator m̃n (based on an LSE 

f̃ n over the entire class ) converges to m0 at rate Op((n∕logn)
−1∕7) when α = 3. The proof of 

Theorem 3, which is given in Section S2, is lengthy and broken up into several steps, each 

of which requires some delicate technical arguments; see Figure S1 for an illustration. The 

crucial Step 2a exploits the observation that if m̃n is a long way from m0, then there is a long 

interval between the two on which one of f0, f̃ n is convex and the other is concave. On such 

an interval, we show that f̃ n has a long affine piece, as would be intuitively expected, and 

thereby quantify the approximation error due to misspecification; see Lemma S6. Another 

important aspect of our proof strategy is that we find a suitable way to localize the analysis 

of f̃ n to a neighbourhood of m0, rather than rely on global considerations that would lead to 

a suboptimal bound. As we explain in Section S1, our localization technique for convex or S- 

shaped LSEs relies on non- trivial ‘boundary adjustments’ that are not needed for isotonic or 

unimodal LSEs. Nevertheless, a simpler version of the proof of Theorem 3 allows us to recover 

the result of Shoung and Zhang (2001) on the rate of convergence of the mode of the LSE of 

a unimodal regression function, at least under our sub- Gaussian assumption on the errors �ni 

and their local smoothness condition (1.3).
The rate of convergence of m̃n to m0 in Theorem 3 matches that in the following complemen-

tary local asymptotic minimax lower bound, up to a logarithmic factor. For r  >  0, let 
 (f0, r) := {f ∈  : � 10 (f − f0)

2
< r2}. Although f0 has a unique inflection point m0 under 

Assumption 2, not every function in  (f0, r) has a unique inflection point, so for f ∈ , we denote 
by f  the subinterval of inflection points of f and define d(x, f ) := infz∈f |x − z| for x  ∈  [0, 1].

Proposition 5 Under Assumption 2, and with �n1, …, �nn
iid
∼ N(0, 1) for all n, we have 

where the infimum is taken over all estimators m̆n ≡ m̆n(x1, Y1,…, xn, Yn) taking values in [0, 1], 

and �f  is the expectation operator under the model (2) with f in place of f0.

(14)sup
𝜏 >0

lim inf
n→∞

inf
m̆n

sup
f ∈ (f0,𝜏∕

√

n)

n1∕(2𝛼+1) �f (d(m̆n,f )) > 0,
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5 |  SIMULATIONS AND REAL DATA EXAMPLE

In this section, we first investigate the computation time and empirical performance of our S- 

shaped estimator in some numerical experiments. We then demonstrate the use of our estimator 

in a real data application to air pollution modelling.

5.1 | Computation time

We compare the running time of our sequential cone projection Algorithm 2, denoted as 

SeqConReg, with two other possible approaches. The first, which we call ScanAll, relies on a 

brute- force search that scans through all possible inflection points m ∈ {x1,…, xn} as described 

in the introduction, performing least squares over m, and determining the candidate that mini-

mizes the residual sum of squares. Here the active set least squares procedure used for each m 

is based on a simple modification of the R package scar (Chen & Samworth, 2014, 2016). The 

second approach, which we call ScanSelected, is based on the observation in Step I of 

Algorithm 1 that there is no need to scan through all design points. Instead, we restrict attention 

to those indices j for which Yj ≤ Yj+1, fitting an increasing convex function to {(xi, Yi) : 1 ≤ i ≤ j},  

an increasing concave function to {(xi, Yi) : j + 1 ≤ i ≤ n} (both using scar), before finding the 

smallest j that minimizes the residual sum of squares.

For n  ∈  {100, 200, 500, 1000, 2000}, we set xi = i∕(n + 1) and Yi = sin(�(xi − 0.5)) + ��i for 

i = 1, . . ., n, where �1, …, �n are independent normal random variables with zero mean and unit 

variance. Here, to examine the impact of the signal- to- noise ratio on the running time, we also 

vary the value of σ  ∈  {1, 0.1, 0.01}, and plot the average running time of the different approaches 

in Figure 5. We see that SeqConReg is the fastest among all three approaches, being approxi-

mately 10 times more efficient than ScanSelected and 40 times faster than ScanAll. The 

F I G U R E  5  Log- log plots of the running time (in seconds) of the SeqConReg (▴), ScanSelected 

(•) and ScanAll (▪) algorithms for least squares estimation of an S- shaped function, for sample sizes 

n  ∈  {100, 200, 500, 1000, 2000} and noise levels σ  ∈  {1, 0.1, 0.01}
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ratio of the timings becomes larger as the signal- to- noise ratio increases, because the resulting 

fitted function has more knots, which makes it more appealing to use algorithms of a sequential 

nature, such as SeqConReg.

5.2 | Statistical performance

We compare our estimator (denoted by LSE below) with the following alternatives:

• Spline: The method of Liao and Meyer (2017), based on cubic B- splines with shape constraints, 

which is implemented in the R package ShapeChange (Liao & Meyer, 2016);

• SCKLS: The shape- constrained kernel least squares method of Yagi et al. (2019, 2020) based on 

local linear kernels, with M = 50 evaluation points and kernel bandwidths selected according 

to the method of Ruppert et al. (1995);

• BEDE and BESE: The bisection extremum distance estimator and bisection extremum sur-

face estimators of Christopoulos (2016), both developed based on the geometric properties of 

the inflection point for a smooth function and implemented in the R package inflection 

(Christopoulos, 2019).

For LSE, Spline and SCKLS, we assess their performance based on both the average L2(ℙn) 

loss and the mean absolute error of the estimated inflection point location, while for BEDE and 

BESE we compute only the mean absolute error of the estimated inflection point location. All 

results are based on numerical experiments over 1000 repetitions.

For n    ∈    {100,  200,  500,  1000}, and design points x1, …, xn, we set Yi = fj(xi) + 0.1�i for 

i = 1, …, n, where �1, …, �n
iid
∼ N(0, 1), for four different choices of signal function fj: 

These signals are plotted in Figure 6. The signals are designed in such a way that their ranges over 

[0,1] are roughly the same. Furthermore, they all belong to  and have a unique inflection point at 

m0 = 0.3. Note that f1 satisfies Assumption 2 with α = 1/2, and f2 and f3 do not satisfy Assumption 2 

for any α > 0, while f4 satisfies the assumption with α = 3.

We consider two different designs by setting xi = F−1(i∕(n + 1)) for i = 1, …, n, where F is the 

distribution function of either the U[0, 1] or Beta(4, 8) distributions. In the second setting, the 

design points are not equally spaced, and m0 = 0.3 is the mode of the Beta(4, 8) distribution. The 

results are shown in Figures 7 and 8.

For the estimation of the regression function, the LSE performs well in all cases; in particular, 

it is able to adapt to inhomogeneous smoothness levels and asymmetric designs. The spline-  and 

kernel- based approaches struggle in this regard, and perform much worse for signals f1 and f3 

especially. In fact, the spline- based method appears to be inconsistent for signals f1 and f3, and 

the kernel- based approach seems to suffer the same problem for signal f3 too. For the estimation 

of the inflection point, the story has some similarities, but also some differences: for signals f1, f2 

(15)
f1(x)=

⎧
⎪⎨⎪⎩

2(0.3−
√
0.09−x2) for x∈ [0, 0.3)

2
�
0.3+

√
0.49− (1−x)2

�
for x∈ [0.3, 1]

; f3(x)= x+�{x≥0.3};

f2(x)= sin((x−0.3)�∕1.4)�{x≥0.3}; f4(x)=4∕(1+e
−2(x−0.3)).
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and f3, the least squares approach provides more reliable estimates, for two main reasons. First, 

it is able to adapt to a much wider range of local smoothnesses around m0. Second, by carefully 

comparing Figure 8 to Figure 7, we see that the least squares approach is also able to take advan-

tage of the additional design points near m0 under the beta design to obtain improved estimation 

performance (relative to the uniform design). For signal f4, the other methods are able to exploit 

the homogeneity of the signal across the entire domain (and the symmetry of the signal around 

the inflection point) and tend to have a smaller mean absolute error than the least squares ap-

proach. We recall Figure 2, which further illustrates the dangers of assuming smoothness of an 

S- shaped signal when it is not present.

5.3 | Real data example

In this subsection, we apply our nonparametric S- shaped procedure to n = 221 LIDAR (light 

detection and ranging) measurements for determining atmospheric concentrations of mercury 

F I G U R E  6  Plots of the signals f1, f2, f3, f4 defined in Equation (15), with the inflection points highlighted by 

dashed blue lines
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F I G U R E  7  Log- log plots of the mean squared error of the fitted function on the design points, as well as 

the mean absolute distance between the estimated and true inflection points, based on n = 100, 200, 500, 1000 

observations when the design points are equispaced and the signals are as in Figure 6
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F I G U R E  8  Log- log plots of the mean squared error of the fitted function on the design points, as well as 

the mean absolute distance between the estimated and true inflection points, based on n = 100, 200, 500, 1000 

observations when the design points are quantiles of a Beta(4, 8) distribution and the signals are as in Figure 6
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emissions from the Bella Vista geothermal power station in Italy. This dataset, which is of inter-

est from an air pollution modelling perspective, is discussed at length by Ruppert et al. (2003) and 

included in the R package SemiPar (Wand, 2018).

To explain the rationale behind the use of the S- shaped regression model (2) in this context, 

we begin by briefly outlining the physical background and experimental setup; see Edner et al. 

(1989, 1992) and Holst et al. (1996, Section 2) for further details.2 In this instance, the LIDAR 

equipment was set up at a fixed location downwind of the power station, at a distance of 390– 

720 m from the bulk of the mercury plume. The DIAL (differential absorption LIDAR) technique 

involves firing two laser beams in quick succession in the same direction towards the plume, 

where the first beam contains light at the resonant wavelength �on = 253.6nm of mercury while 

the second ‘reference’ beam is set to a slightly different ‘off- resonant’ wavelength �off. The light in 

both beams is scattered (or reflected back) to roughly the same extent by particles and aerosols in 

the atmosphere, but the light at wavelength �on is absorbed much more strongly by atoms of 

mercury, the pollutant of interest. The LIDAR apparatus records the intensity (i.e. power) of the 

reflected signals from both incident beams as a function of time elapsed, which is proportional to 

the distance travelled by the light before it is reflected back towards the source. The latter is the 

independent variable range in the dataset. The intensity curves from 100 pairs of laser shots in 

the same direction were then averaged to produce power estimates P(ri; �on) and P(ri; �off) for 

n = 221 equispaced values ri of range between 390  and 720 m (at intervals of 1.5 m). In view of 

the physical reasons outlined above, the relative sizes of these two quantities for different ri can 

be used to estimate how the atmospheric concentration g0(r) of mercury (in ng∕m3) varies with 

distance r (in metres) along the path of the laser beams.

More precisely, based on an approximation of the governing equation for LIDAR scattering, 

Holst et al. (1996, Section 3) consider a regression model for the logratio values 

where on physical grounds, f0(r) = − C ∫ r0 g0(s)ds is defined for r ≥ 0 as the integral of the con-

centration function g0 over [0,  r] multiplied by − C ≡ − C(�on, �off) = − 1.6 × 10−5 ng−1m2. 

Since mercury concentration is always non- negative and would generally be expected to decrease 

with distance from the interior of the plume, g0 can reasonably be modelled as a non- negative un-

imodal function, in which case its antiderivative satisfies our definition of an S- shaped function. 

The data, shown in Figure 9, do indeed appear to support f0 as an inverted S- shaped regression 

function. Moreover, Holst et al. (1996, Figure 4) present plots of suitably normalized residuals 

against range as well as the sample autocorrelations at different lags, which provide some em-

pirical justification for the assumption that the errors �1, …, �n are independent.

The different panels of Figure 9 illustrate least squares fits over different classes of regression 

functions. In the top- left panel, we plot a fit of a logistic function 

here we see the limitations of the parametric model in terms of its inability to capture the behaviour 

of the regression function in the range 390– 550 m. The segmented linear regression fits shown in the 

 2For additional graphical illustrations, see for example http://www.nist.gov/progr ams- proje cts/diffe renti al- absor ption 

- lidar - detec tion- and- quant ifica tion- green house - gases as well as http://dialt echno logy.info/histo ry.html.

log
P(ri; �on)

P(ri; �off)
= f0(ri) + �i, i = 1, …, n,

x ↦ −
A

1 + e−ax+b
;
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two bottom panels require the choice of a set of knots, and the left and right panels use 4 and 16 

knots respectively. We see that the selection of the set of knots can have quite a significant influence, 

and moreover, the fits are not guaranteed to be S- shaped or even monotone. Interestingly, despite the 

overfitting that is apparent in the bottom- right plot of the figure, the residual sum of squares remains 

higher than that of the S- shaped LSE3 illustrated in the top- right panel. Moreover, the S- shaped LSE 

selects the number and location of its knots adaptively, with no input required from the practitioner. 

Another attractive feature of the S- shaped LSE is that its theoretical guarantees presented in 

Theorems 1 and 2 allow for heteroscedasticity, which is clearly present in this dataset. Finally, we 

note that the inflection point of this LSE at range = 586 m yields an estimate of the distance from 

the LIDAR equipment to the central part of the plume, where the mercury concentration is 

highest.

6 |  DISCUSSION

In this paper, we have developed a framework for the estimation of S- shaped regression func-

tions and their inflection points via nonparametric least squares. In spite of the challenges 

 3Note that all the algorithms in Section 3 can be used without further modifications to compute S- shaped LSEs on any 

other interval [a, b] besides [0, 1].

F I G U R E  9  Least squares fits to the light detection and ranging dataset (n = 221) from Holst et al. (1996): 

logistic (top left), segmented linear with knots at range = 500, 550, 600, 650 (bottom left), segmented linear 

with knots at range = 400, 420, …, 680, 700 (bottom right) and S- shaped (top right), along with their respective 

residual sums of squares
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of working with a non- convex shape- constrained function class, we have proposed and im-

plemented an efficient sequential algorithm for the computation of S- shaped least squares 

estimators, and also established theoretical guarantees on the consistency, robustness and 

rates of convergence of our estimators. We will conclude by discussing some variations and 

possible extensions of our S- shaped regression problem that may prove to be interesting av-

enues for future research.

First, while our monotonicity requirement for S- shaped functions is natural in many practical 

applications, and useful for regulating the boundary behaviour of the least squares estimator at 

the endpoints of the covariate domain, much of our methodology and theory can be adapted 

straightforwardly to handle functions that are convex on [0, m0] and concave on [m0, 1], but not 

necessarily increasing on [0, 1]. On the computational side, our sequential strategy SeqConReg 

would still be applicable after the obvious small modifications to Step II of Algorithm 1. This 

modified algorithm would be justified by analogues of Propositions 3 and 4, and we could still 

use the mixed primal- dual bases algorithm (Algorithm 2) to sequentially compute convex LSEs 

on {(xi, Yi) : 1 ≤ i ≤ j} and concave LSEs on {(xi,Yi) : j ≤ i ≤ n} for j ∈ [n]. The theoretical results 

in Section 4 would also go through with some minor alterations (e.g. to the smoothness condition 

(13) in Assumption 2). The proofs of the oracle inequalities would be broadly the same, and the 

current localization argument for the inflection point result does not rely in any essential way on 

monotonicity near m0. Some properties of our projection framework may need more significant 

adjustment, however, in order to handle potential boundary issues.

In another direction, one could consider the estimation of ‘symmetric’ S- shaped regression 

functions, by which we mean S- shaped functions f0 with inflection point m0 ∈ (0, 1) such that 

f0(x) = 2f0(m0) − f0(2m0 − x) for x ∈ [0 ∨ (2m0 − 1), (2m0) ∧ 1]. We believe that this additional 

symmetry constraint is likely to bring about considerable challenges when it comes to devel-

oping theory and algorithms for the LSE that minimizes the residual sum of squares over all 

symmetric S- shaped functions. In particular, unlike in our Proposition 1, it is not clear if the 

global minimizer in the least squares procedure can be attained at some symmetric S- shaped 

function with inflection point in {x1, …, xn}. Moreover, the sequential strategy that under-

pins our current algorithm may no longer be valid, because in contrast to the conclusion of 

Proposition 4, the symmetric S- shaped LSE may not coincide with increasing convex or in-

creasing concave LSEs on any subinterval. Theoretically, although the global risk bounds in 

Section 4.1 are likely to carry over even with the additional symmetry constraint, the rate of 

convergence of the inflection point estimator m̃n may be very different to that in Theorem 3, 

and may even be (nearly) parametric.

A further topic for future research could be to seek quantitative versions of the continuity 

result (Proposition S12) for our L2- projection onto the class of S- shaped functions, in the spirit 

of the recent work of Barber and Samworth (2021) on the log- concave projection. Such a result 

could, for instance, provide insight into the rate at which the estimated inflection point converges 

to the inflection point of the projected regression function under model misspecification.

Finally, under local curvature conditions on an S- shaped function f0 similar to those in 

Assumption 2, it would be of methodological and theoretical interest to be able to carry out (uni-

formly) asymptotically valid inference for f0(x) at fixed x  ∈  [0, 1], as well as for the inflection 

point m0. For x ≠m0, defining [ũn(x), ṽn(x)] to be the largest interval containing x on which the 

LSE f̃ n is linear, we anticipate that the techniques of Deng et al. (2020) can be applied to obtain 

a limiting distribution for 
√

n(ṽn(x) − ũn(x)) ( f̃ n(x) − f0(x))
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that does not depend on f0, and hence construct asymptotically valid confidence intervals 

for f0(x) . On the other hand, since m0 marks the boundary between the convex and concave 

parts of f0, we expect the problem of uncertainty quantification for m0 and f0(m0) to be more 

challenging and of a qualitatively different character. With this end in view, it is natural to 

seek tractable asymptotic distributions for m̃n and f̃ n(m̃n). As an initial step, one would need 

to refine the results in Section 4.2 by closing the logarithmic gap between the upper and lower 

bounds therein on the rate of convergence of m̃n to m0. A satisfactory solution to this problem 

would ideally also settle the analogous problem for the plug- in mode estimator based on the 

unimodal LSE (Shoung & Zhang, 2001), and is likely to require significant further technical 

developments.
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APPENDIX A

A MIXED PRIMAL- DUAL BASES ALGORITHM

In this section, we describe a mixed primal- dual bases algorithm to compute the L2- projection of 

a line segment onto the polyhedral convex cone of increasing convex sequences. This underpins 

our SeqConReg algorithm in Section 3. Our starting point is the following standard characteri-

zation of projections onto general closed, convex cones (e.g. Groeneboom, 1996; Moreau, 1962, 

Corollary 2.1). Here and below, we write ‖·‖ and 〈·, ·〉 for the standard Euclidean norm and inner 

product on ℝn for some n ∈ ℕ.

Lemma 1 Let Λ ⊆ ℝ
n be a closed, convex cone. For each y ∈ ℝ

n, there exists a unique projection 

of y onto Λ, given by ΠΛ(y) = argminu∈Λ ‖u − y‖, and we have the following:

a. ΠΛ(y) is the unique ŷ ∈ Λ for which ⟨v, y − ŷ ⟩ ≤ 0 for all v  ∈  Λ and ⟨ ŷ, y − ŷ ⟩ = 0.

b. Suppose in addition that Λ is finitely generated, that is Λ = {
∑r

�=1 ��v
� : �1, …, �r ≥ 0} 

for some generators v1, …, vr ∈ Λ. Then ŷ = ΠΛ(y) if and only if ŷ =
∑r

�=1 �̂�v
� for some 

�̂1, …, �̂r ≥ 0, and ⟨v� , y − ŷ ⟩ ≤ 0 for all ℓ, with ⟨v� , y − ŷ ⟩ = 0 for any ℓ such that �̂� > 0.

In Lemma 1(b), the vector (�̂1,…, �̂r) is the minimizer of the quadratic function 

(�1,…, �r) ↦ ‖y−∑r
�=1 ��v

�‖2 over the convex set [0, ∞)r. When this constrained minimi-

zation problem is written in Lagrangian form, the associated KKT optimality conditions (e.g. 

Rockafellar, 1997, Theorem 28.3) correspond precisely to the three conditions in (a) that uniquely 

define ΠΛ(y), namely (i) ŷ ∈ Λ (primal feasibility); (ii) y − ŷ ∈ {u ∈ ℝ
n : ⟨u, v⟩ ≤ 0 for all v ∈ Λ}, 

the polar cone of Λ (dual feasibility); and (iii) ⟨ ŷ, y − ŷ ⟩ = 0 (complementary slackness).
Given (x1, Y1),…, (xn, Yn) ∈ [0, 1] ×ℝ with x1 <⋯ < xn, we now fix j  ∈  [n] and work with 

the cone Λj of increasing convex sequences based on x1,…, xj, as defined in Equation (6). The 

projection of (Y1,…, Yj) onto Λj is (f̂ 1,j(x1),…, f̂ 1,j(xj)), where f̂ 1,j is the increasing convex LSE 

based on {(xi, Yi) : i ∈ [j]}. The generators of Λj are ±u0, u1,…, uj−1 ∈ ℝ
j, where u0 = 1 and 

u�
i
= (xi−x�)

+ for all i  ∈  [j] and ℓ  ∈  [j − 1]. Since u0, u1,…, uj−1 are linearly independent, every 
v ≡ (v1,…, vj) ∈ ℝ

j can be represented uniquely in the form v =
∑j−1

�=0
��u

�, where 

so that v ∈ Λj if and only if ��(v) ≥ 0 for all ℓ  ∈  [j − 1]; this is the primal feasibility condition from 
Lemma 1. For each v =

∑j−1

�=0
��u

� ∈ ℝ
j, the unique gv ∈ [x1,…, xj] satisfying v = (gv(x1),…, gv(xj)) 

has a knot at x� if and only if �� ≠ 0, so we refer to A(v) := {1 ≤ � ≤ j − 1 : �� ≠ 0} as the set of knots 
of v (or ‘active indices’).

The following useful property of the projection map ΠΛj : ℝ
j
→ Λj can be derived easily from 

Lemma 1. A general version of this result for arbitrary closed, convex sets is stated as Lemma S17.

Lemma 2 Let A ⊆ [j − 1] and v′, v′′ ∈ ℝ
j be such that A(ΠΛj (v)) = A for each v ∈ {v�, v��}. Then for 

all v ∈ [v�, v��] := {(1 − t)v� + tv�� : t ∈ [0, 1]}, we have A(ΠΛj (v)) = A and, defining the linear 
subspace A := span{u� : � ∈ A ∪ {0}} = {v ∈ ℝ

j : A(v) ⊆ A}, we have ΠΛj (v) = ΠA
(v).

Remark 1 For A ⊆ [j − 1], the orthogonal projection onto the linear subspace A is repre-
sented by PA := UA(U

⊤

A
UA)

−1U⊤

A
∈ ℝ

j×j, where UA ∈ ℝ
j×(|A|+1) is the matrix obtained by 

(16)�0 ≡ �0(v) = v1; �1 ≡ �1(v) =
v2 − v1
x2 − x1

; �� ≡ ��(v) =
v�+1 − v�
x�+1 − x�

−

v� − v�−1
x� − x�−1

, 2 ≤ � ≤ j − 1,
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extracting the columns of U := (u0 u1⋯ uj−1) ∈ ℝ
j×j indexed by A ∪ {0}. By taking v� = v�� 

in Lemma 2, we recover a version of Ghosal and Sen (2017) Proposition 2.1): suppose 
that we are given v ∈ ℝ

j and have oracle knowledge of A ≡ A(ΠΛj (v)), that is, the loca-
tions of the knots of ΠΛj (v). Then to compute ΠΛj (v), we can note that 

ΠΛj (v) = PAv =
∑j−1

�=0
�̂�u

�, where �̂� ≡ �̂
A

�
(v) := ��(PAv) for 0 ≤ ℓ ≤ j − 1, so that �̂� = 0 

for all ℓ ∉ A and 

solves an ordinary (unconstrained) least squares problem.

Observe now that if v(0), v(1) ∈ ℝ
j are arbitrary and v(t)  :=  (1  −  t)v(0)  +  tv(1) for all 

t   ∈    (0, 1), then t ↦ ΠΛj (v(t)) is a continuous, piecewise affine function from [0, 1] to Λj. 
Indeed, by Lemma 2 (and the continuity of projections onto closed, convex cones), there 
exist 0 = t�

0
< t�

1
<⋯ < t�

s+1
= 1 and distinct subsets A�

0
, A�

1
,…, A�

s ⊆ [j − 1] such that for each 

0 ≤ r ≤ s, we have ΠΛj (v(t)) = ΠA�r

(v(t)) = PA�

r
v(t) for all t ∈ [t�r , t

�
r+1

].

Suppose that we are given v(0), v(1) ∈ ℝ
j and the projection ΠΛj (v(0)) ∈ Λ

j, and now seek to 

compute ΠΛj (v(1)). The reasoning in the previous paragraph suggests that we can proceed as in 

Algorithm 2 below.

(17)(�̂� :� ∈ A ∪ {0}) = (U⊤

AUA)
−1U⊤

A v = argmin
(�� :�∈A∪{0})

n
∑

i=1

(

vi−�0−
∑

�∈A

��(xi−x�)
+

)2
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When defining the primal variables ��(t) in (II), it is convenient here that every v ∈ Λ
j has a 

unique primal representation, which in this case is given by Equation (16). The same is true of any 

cone in ℝj generated by ±ũ0,…, ± ũq−1, ũq,…, ũj−1, for some linearly independent ũ0, ũ1,…, ũj−1 . 

Thus, Algorithm 2 is applicable to all such cones, provided that the ‘active sets’ are taken to be sub-

sets of {q, q+1,…, j−1} (Fraser & Massam, 1989), so in particular, it can also be used to compute 

isotonic and convex LSEs (in a sequential manner, as described in Section 3). Indeed, the sequential 

application of this mixed primal- dual bases algorithm to the monotone cone Θ↑ from the proof of 

Corollary S2 yields the widely- used, linear time ‘pool adjacent violators’ algorithm (PAVA) (Barlow 

et al., 1972). Moreover, with appropriate modifications, Algorithm 2 can be extended to general 

polyhedral cones (Meyer, 1999) and polyhedral convex sets.

Lemma 3 Algorithm 2 always terminates after finitely many steps with the correct solution 

ΠΛj (v(1)).

This follows from (i)– (iii) in Stage (II) and the following two observations:
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(iv)  The algorithm does not get stuck at any of the thresholds tr; that is, when t = tr for some r, 

there is always a subsequent iteration of (II) that strictly increases t;

(v)       At distinct thresholds tr, the corresponding ‘active sets’ Ar are distinct subsets of [j−1].

We will justify (iv) and (v) in Section S4 in the supplementary material, where we also exploit 

the specific structure of Λj to handle the degeneracies mentioned in Stage (IV)(b); see in particu-

lar modification (IV’) and Proposition S18.
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