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ABSTRACT
Blockchain protocols come with a variety of security guarantees.

For example, BFT-inspired protocols such as Algorand
1
tend to be

secure in the partially synchronous setting, while longest chain

protocols like Bitcoin will normally require stronger synchronicity

to be secure. Another fundamental distinction, directly relevant to

scalability solutions such as sharding, is whether or not a single

untrusted user is able to point to certificates, which provide incon-

trovertible proof of block confirmation. Algorand produces such

certificates, while Bitcoin does not. Are these properties accidental?

Or are they inherent consequences of the paradigm of protocol

design? Our aim in this paper is to understand what, fundamen-

tally, governs the nature of security for permissionless blockchain

protocols. Using the framework developed in [12], we prove general

results showing that these questions relate directly to properties of

the user selection process, i.e. the method (such as proof-of-work

or proof-of-stake) which is used to select users with the task of

updating state. Our results suffice to establish, for example, that the

production of certificates is impossible for proof-of-work protocols,

but is automatic for standard forms of proof-of-stake protocols. As a

byproduct of our work, we also define a number of security notions

and identify the equivalences and inequivalences among them.

CCS CONCEPTS
• Computer systems organization → Dependable and fault-
tolerant systems and networks.
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1 INTRODUCTION
Paradigms for blockchain protocol design. In the wake of Bitcoin

[14], thousands of cryptocurrencies have flooded the market. While

many of these currencies use only slight modifications of the Bitcoin

protocol, there are also a range of cryptocurrencies taking radically

different design approaches. Two informal distinctions are between:

(1) Proof-of-stake (PoS)/proof-of-work (PoW). In a PoW proto-

col, users are selected and given the task of updating state,

with the probability any particular user is chosen being pro-

portional to their (relevant) computational power. In PoS

protocols, users are selected with probability depending on

their stake (owned currency).

1
For an exposition of Algorand that explains how to achieve security in the partially

synchronous setting, see [7].

(2) BFT
2
/longest-chain. As well as being a PoW protocol, Bitcoin

is the best known example of a longest chain protocol. This

means that forksmay occur in the blockchain, but that honest

miners will build on the longest chain. In a BFT protocol, on

the other hand, users are selected and asked to carry out a

consensus protocol designed for the permissioned setting. So,

roughly, longest chain protocols are those which are derived

from Bitcoin, while BFT protocols are derived from protocols

designed in the permissioned setting. Algorand [8] is a well

known example of a BFT protocol.

A formal framework for comparing design paradigms [12]. While

informal, these distinctions are more than aesthetic. For example,

BFT protocols like Algorand will tend to give security guarantees

that hold under significantly weaker network connectivity assump-

tions than are required to give security for protocols like Bitcoin.

By developing an appropriate formal framework, it can then be

shown [12] that these differences in security are a necessary conse-

quence of the paradigm of protocol design: The fact that Bitcoin

is a PoW protocol means that it cannot offer the same flavour of

security guarantees as Algorand. A framework of this kind was

developed in [12], according to which permissionless
3
protocols

run relative to a resource pool. This resource pool specifies a balance
for each user over the duration of the protocol execution (such as

hashrate or stake), which may be used in determining which users

are permitted to update state. Within this framework, the idea that

protocols like Bitcoin require stronger connectivity assumptions

for security can be formalised as a theorem asserting that adaptive
protocols cannot be partition secure – these terms apply to permis-

sionless blockchain protocols and will be defined formally later on,

but, roughly, they can be summed up as follows:

• Liveness and security are defined in terms of a notion of

confirmation for blocks. A protocol is live if the number of

confirmed blocks can be relied on to increase during ex-

tended intervals of time during which message delivery is

reliable. A protocol is secure if rollback on confirmed blocks

is unlikely.

• Bitcoin being adaptive means that it remains live in the

face of an unpredictable size of resource pool (unpredictable

levels of mining).

• A protocol is partition secure if it is secure in the partially
synchronous setting, i.e. if the rollback of confirmed blocks

2
The acronym BFT stands for ‘Byzantine-Fault-Tolerant’.

3
In the distributed computing literature, consensus protocols have traditionally been

studied in a setting where all participants are known to each other from the start of

the protocol execution. In the parlance of the blockchain literature, this is referred

to as the permissioned setting. What differentiates Bitcoin [14] from these previously

studied protocols is that it operates in a permissionless setting, i.e. it is a protocol for
establishing consensus over an unknown network of participants that anybody can

join, with as many identities as they like in any role.



remains unlikely even in the face of potentially unbounded

network partitions. The partially synchronous setting will

be further explained and formally defined in Section 2.

This paper: certificates. The way in which Algorand and other

BFT protocols achieve partition security is also worthy of note. For

all such protocols, protection against unbounded network partitions

is provided through the production of certificates: These are sets
of broadcast messages whose very existence suffices to establish

block confirmation and which cannot be produced by a (suitably

bounded) adversary given the entire duration of the execution of

the protocol. Bitcoin does not produce certificates, because the ex-

istence of a certain chain does generally not prove that it is the

longest chain – a user will only believe that a certain chain is the

longest chain until presented with a longer (possibly incompatible)

chain. Algorand does produce certificates, on the other hand, be-

cause the very existence of a valid chain, together with appropriate

committee signatures for all the blocks in the chain, suffices to

guarantee (beyond a reasonable doubt) that the blocks in that chain

are confirmed. We will formally define what it means for a protocol

to produce certificates in Section 3.

The production of certificates is also functionally useful, beyond

providing security against network partitions. The production of

certificates means, for example, that a single untrusted user is able

to convince another user of block confirmation (by relaying an

appropriate certificate), and this is potentially very useful in the

context of sharding. If a user wishes to learn the state of a blockchain

they were not previously monitoring, then it is no longer neces-

sary to perform an onboarding process in which one samples the

opinions of users until such a point that it is likely that at least one

of them was ‘honest’ – one simply requests a certificate proving

confirmation for a recently timestamped block.
4

1.1 Overview of results.
The goal of this paper is to rigorously investigate to what extent

today’s protocols “have to look the way they are” given the secu-

rity guarantees they achieve. Such formal analyses are relevant to

the broader research community for several reasons, including: (i)

accurate intuitions of the community (e.g., that there’s fundamen-

tally only one way to achieve certain properties) can be formally

validated, with the necessary assumptions clearly spelled out; (ii)

inaccurate intuitions can be exposed as such; (iii) unexplored areas

of the protocol design space can naturally rise to the surface (e.g.,

Section 5.2); and (iv) new definitions (e.g., certificates) can enhance

our language for crisply describing and comparing competing solu-

tions (both present and future). In this paper, we prove three main

results, which each address this issue in a different setting.

The partially synchronous setting. The first key question is:

Q1. Are certificates fundamental to partition security, or an ar-

tifact of Algorand’s specific implementation? That is, are

certificates the only way for permissionless blockchain pro-

tocols to achieve security in the partially synchronous set-

ting?

4
Such techniques can avoid the need to store block hashes in a sharding ‘main chain’,

and the information withholding attacks that come with those approaches.

Our first main result, proved in the context of the framework of

[12], gives an affirmative response to Q1. Of course, all terms will

be explained and formally defined in later sections.

THEOREM 3.3. If a permissionless blockchain protocol is secure in
the partially synchronous setting, then it produces certificates.

Since it will be easily observed that the production of certificates

implies security, Theorem 3.3 shows that, in the partially synchro-

nous setting, the production of certificates is actually equivalent to
security.

The synchronous setting. What about Bitcoin? While Bitcoin

does not satisfy the conditions of Theorem 3.3, it clearly has some

non-trivial security. The standard formalisation in the literature

[10, 17] is that Bitcoin is secure in the synchronous setting, for which
there is an upper bound on message delivery time.

5
Even working

in the synchronous setting, though, it is clear that Bitcoin does

not produce certificates. Again, we are led to ask whether this is a

necessary consequence of the paradigm of protocol design:

Q2. Could there be a Bitcoin-like protocol that, at least in the

synchronous setting, has as strong a security guarantee in

terms of the production of certificates as BFT-type protocols

do in the partially synchronous setting?

The answer depends on key features of the resource pool – recall

that the resource pool specifies a balance for each user over the

duration of the protocol execution, such as hashrate or stake. The

crucial distinction here is between scenarios in which the size of

the resource pool is known (e.g. PoS), and scenarios where the size

of the resource pool is unknown (e.g. PoW). As per the framework

in [12], we will refer to these as the sized and unsized settings,

respectively – formal definitions will be given in Section 5. As

alluded to above, we define a protocol to be adaptive if it is is live in

the unsized setting, and it was shown in [12] that adaptive protocols

cannot be secure in the partially synchronous setting.

The synchronous and unsized setting. The term “non-trivial

adversary”, which is used in Theorem 5.1 below, will be defined in

Section 5 so as to formalise the idea that the adversary may have at

least a certain minimum resource balance throughout the execution.

With these basic definitions in place, we can then give a negative

answer to Q2.

THEOREM 5.1 Consider the synchronous and unsized setting. If a
permissionless blockchain protocol is live then, in the presence of a
non-trivial adversary, it does not produce certificates.

So, while Theorem 3.3 showed that the production of certificates

is necessary in the partially synchronous setting, Theorem 5.1 shows

that the production of certificates isn’t possible in the unsized setting
(in which PoW protocols like Bitcoin operate). Following on from

our previous discussion regarding the relevance of certificates to

sharding, one direct application of this result is that it rules out

certain approaches to sharding for PoW protocols.

The synchronous and sized setting. In the sized setting (such

as for PoS protocols), though, it is certainly possible for protocols

5
The synchronous setting will be further explained and formally defined in Section 2.



to produce certificates. It therefore becomes a natural question to

ask how far we can push this:

Q3. Does the production of certificates come down purely to

properties of the process of user selection? Is it simply a

matter of whether one is in the sized or unsized setting?

Our final theorem gives a form of positive response to Q3. We state

an informal version of the theorem below. A formal version will be

given in Section 5.

THEOREM 5.6 (INFORMAL VERSION). Consider the synchronous
and sized setting, and suppose a permissionless blockchain protocol is
of ‘standard form’. Then there exists a ‘recalibration’ of the protocol
which produces certificates.

Theorem 5.6 says, in particular, that all ‘standard’ PoS protocols

can be tweaked to get the strongest possible security guarantee,

since being of ‘standard form’ will entail satisfaction of a number

of conditions that are normal for such protocols. Roughly speaking,

one protocol will be considered to be a recalibration of another if

running the former just involves running the latter for a computable

transformation of the input parameters and/or using a different

notion of block confirmation. The example of Snow White [3] may

be instructive here (for the purposes of this example, the particulars

of the Snow White protocol are not important – all that matters is

that, at a high level, Snow White might be seen as a PoS version

of Bitcoin, but with the fundamental differences that it operates

in the sized setting, and that blocks have non-manipulable times-

tamps). Snow White is a PoS longest chain protocol, and it is not

difficult to see that, with the standard notion of confirmation, it

does not produce certificates – an adversary can produce chains

of blocks which are not confirmed, but which would be considered
confirmed in the absence of other blocks which have been broad-

cast. So whether a block is confirmed depends on the whole set of

broadcast messages. On the other hand, it is also not difficult to

adjust the notion of confirmation so that Snow White does produce
certificates. An example would be to consider a block confirmed

when it belongs to a long chain of sufficient density (meaning that

it has members corresponding to most possible timeslots) that it

could not likely be produced by a (sufficiently bounded) adversary.

We will see further examples like this explained in greater depth

in Section 5. Theorem 5.6 implies much more generally that PoS

protocols can always be modified so as to produce certificates in

this way.

The punchline. Whether or not a permissionless blockchain pro-

tocol produces certificates comes down essentially to whether one

is working in the sized or unsized setting (e.g. whether the protocol

is PoS or PoW). This follows from the following results that we

described above:

(i) According to the results of [12], only protocols which work

in the sized setting can be secure in the partially synchronous

setting. According to Theorem 3.3, all such protocols produce

certificates.

(ii) Theorem 5.1 tells us that, in the synchronous and unsized

setting, protocols cannot produce certificates.

(iii) Theorem 5.6 tells us that all standard protocols in the sized

and synchronous setting can be recalibrated to produce cer-

tificates.

1.2 Related work
There are a variety of papers from the distributed computing litera-

ture that analyse settings somewhere between the permissioned

and permissionless settings as considered here. In [15], for example,

Okun considered a setting which a fixed number of processors com-

municate by private channels, where each processor may or may

not have a unique identifier, and where processors may or may not

be ‘port aware’, i.e. be able to tell which channel a message arrives

from. A number of papers [1, 6] have also considered the problem

of reaching consensus amongst unknown participants (CUP). In

the framework considered in those papers, the number and the

identifiers of other participants may be unknown from the start of

the protocol execution. A fundamental difference with the permis-

sionless setting considered here is that, in the CUP framework, all

participants have a unique identifier and the adversary is unable

to obtain additional identifiers to be able to launch a sybil attack

against the system, i.e. the number of identifiers controlled by the

adversary is bounded.

The Bitcoin protocol was first described in 2008 [14]. Since then,

a number of papers [10, 16] have developed frameworks for the

analysis of Bitcoin in which oracles are introduced for modelling

PoW. A more general form of oracle is required for modelling PoS

and other forms of permissionless protocol, however. In [12] a

framework was introduced that described a generalised form for

such oracles. We use that framework in this paper, but also develop

that framework in Sections 2.4, 2.5, 2.7, 2.8 and 4.3 to be appropriate

specifically for the analysis of blockchain protocols.

2 THE FRAMEWORK
We work within the framework of [12]. While we describe the

framework in its entirety here, we refer the reader to the the original

paper for further examples and explanations of the framework set-

up. Within Section 2, it is the definitions of Sections 2.4, 2.5, 2.7 and

2.8 that are new to this paper (all definitions of Sections 3, 4 and 5

are also new to this paper).

Most of this section can be briefly summed up as follows – all

undefined terms in the below will be formalised and defined in later

subsections.

• Protocols are executed by an unknown number of users,

each of which is formalised as a deterministic processor that

controls a set of public keys.

• Processors have the ability to broadcast messages to all other

processors. The duration of the execution, however, may be

divided into synchronous or asynchronous intervals. During
asynchronous intervals, an adversary can tamper with mes-

sage delivery as they choose. During synchronous intervals

there is a given upper bound on message delivery time. We

then distinguish two synchronicity settings. In the synchro-
nous setting it is assumed that there are no asynchronous

intervals, while in the partially synchronous setting there

may be unpredictably long asynchronous intervals.



• Amongst all broadcast messages, there is a distinguished set

referred to as blocks, and one block which is referred to as

the genesis block. Unless it is the genesis block, each block B
has a unique parent block.
• To blackbox the process of user selection, whereby certain

users are selected and given the task of updating state, [12]

introduces two new notions: (1) Each public key is considered

to have a certain resource balance, which may vary over the

execution, and; (2) The protocol will also be run relative to a

permitter oracle, which may respond to this resource balance.

For a PoW protocol like Bitcoin, the resource balance of each

public key will be their (relevant) computational power at

the given timeslot.

• It is the permitter oracle which then gives permission to

broadcast messages updating state. To model Bitcoin, for ex-

ample, we sometimes have the permitter allow another user

to broadcast a new block, with the probability this happens

for each user being proportional to their resource balance.

• Liveness and security are defined in terms of a notion of con-
firmation for blocks. Roughly, a protocol is live if the number

of confirmed blocks can be relied on to increase during ex-

tended intervals of time during which message delivery is

reliable. A protocol is secure if rollback on confirmed blocks

is unlikely.

2.1 The computational model
Overview. There are a number of papers analysing Bitcoin [10, 16]

that take the approach of working within the language of the UC

framework of Canetti [5]. Our position is that this provides a sub-

stantial barrier to entry for researchers in blockchain who do not

have a strong background in security, and that the power of the

UC framework remains essentially unused in the subsequent anal-

ysis. Instead, we use a very simple computational model, which

is designed to be as similar as possible to standard models from

distributed computing (e.g. [9]), while also being adapted to deal

with the permissionless setting. We thus consider an information

theoretic model in which processors are simply specified by state

transition diagrams. A permitter oracle is introduced as a generali-

sation of the random oracle functionality in the Bitcoin Backbone

paper [10]: It is the permitter oracle’s role to grant permissions to
broadcast messages. The duration of the execution is divided into

timeslots. Each processor enters each timeslot t in a given state x ,
which determines the instructions for the processor in that timeslot

– those instructions may involve broadcasting messages, as well as

sending requests to the permitter oracle. The state x ′ of the proces-
sor at the next timeslot is determined by the state x , together with
the messages and permissions received at t .

Since we focus on impossibility results, we simplify the presen-

tation by making the assumption that we are always working in

the authenticated setting, in which processors have access to pub-

lic/private key pairs. This assumption is made purely for the sake

of simplicity, and the results of the paper do not depend upon it.

Formal description. We consider a finite
6
system of processors.

Each processor p is specified by a state transition diagram, for

6
In [12], a potentially infinite number of processors were allowed, but each processor

was given a single public key (identifier). Here, we will find it convenient to consider

which the number of states may be infinite. Amongst the states

of a processor are a non-empty set of possible initial states. The
inputs to p determine which initial state it starts in. If a variable

is specified as an input to p, then we refer to it as determined for

p, referring to the variable as undetermined for p otherwise. If a

variable is determined/undetermined for all p, we simply refer to it

as determined/undetermined. Amongst the inputs to p is an infinite

set Up of public keys, which are specific to p in the sense that

if U ∈ Up and U′ ∈ Up′ then U , U′ when p , p′. A principal

difference between the permissionless setting (as considered here)

and the permissioned setting (as studied in classical distributed

computing) is that, in the permissionless setting, the number of

processors is undetermined, andUp is undetermined for p′ when
p′ , p.

Processors are able to broadcast messages. To model permission-

less protocols, such as Bitcoin, in which each processor has limited

ability to broadcast new blocks (and possibly other messages), we

require any message broadcast by p to be permitted for some public

key inUp : The precise details are as follows. We consider a real-

time clock, which exists outside the system and measures time in

natural number timeslots. The duration D is a determined variable

that specifies the set of timeslots (an initial segment of the natural

numbers) at which processors carry out instructions. At each times-

lot t , each processor p receives a pair (M, P ), where either or both
of M and P may be empty. Here, M is a finite set of messages (i.e.
strings) that have previously been broadcast by other processors.

We refer to M as the message set received by p at t , and say that

each messagem ∈ M is received by p at timeslot t . P is referred to

as the permission set received by p at t . Formally, P is a set of pairs,

where each pair is of the form (U,M∗) such that U ∈ Up andM∗ is
a potentially infinite set of messages. If (U,M∗) ∈ P , then receipt of

the permission set P means that each messagem ∈ M∗ may now be

permitted for U. This is complicated slightly by our need to model

the authenticated setting within an information theoretic model –

we do this by declaring that only p is permitted to broadcast mes-

sages signed by keys inUp . More precisely,m ∈ M∗ is permitted

for U if the following conditions are also satisfied:

• m is of the form (U,σ ) – thought of as ‘the message σ signed

by U’.
• For any ordered pair of the form (U′,σ ′) contained in (i.e.

which is a substring of) σ , either U′ ∈ Up , or else (U
′,σ ′) is

contained in a message that has been received by p.

So, as suggested in the above, the latter bulleted conditions allow

us to model the fact that we work in the authenticated setting (i.e.

we assume the use of digital signatures) within an information

theoretic computational model.

To complete the instructions for timeslot t , p then broadcasts

a finite set of messages M ′, each of which must be permitted for

some U ∈ Up , makes a request set R, and then enters a new state x ′,
where x ′,M ′ andR are determined by the present state x and (M, P ),
according to the state transition diagram. The form of the request

set R will be described shortly, together with how R determines the

permission set received at by p at the next timeslot.

instead a finite number of processors, each of whichmay control an unbounded number

of public keys.



An execution is described by specifying the set of processors, the

duration, the initial states for all processors and by specifying, for

each timeslot t ≥ 1:

(1) The messages and permission sets received by each proces-

sor;

(2) The instruction that each processor executes, i.e. what mes-

sages it broadcasts, what requests it makes, and the new

state it enters.

We require that each message is received by p at most once for

each time it is broadcast, i.e. at the end of the execution it must

be possible to specify an injective function dp mapping each pair

(m, t ), such thatm is received byp at timeslot t , to a triple (p′,m, t ′),
such that t ′ < t , p′ , p and such that p′ broadcastm at t ′.

2.2 The resource pool and the permitter
InformalMotivation.Who should be allowed to create and broad-

cast new Bitcoin blocks? More broadly, when defining a permis-

sionless protocol, who should be able to broadcast new messages?

For a PoW protocol, the selection is made depending on computa-

tional power. PoS protocols are defined in the context of specifying

how to run a currency, and select public keys according to their

stake in the given currency. More generally, one may consider a

scarce resource, and then select public keys according to their cor-

responding resource balance. In [12], a framework was introduced

according to which protocols run relative to a resource pool, which
specifies a resource balance for each public key over the duration of

the execution. The precise way in which the resource pool is used

to determine public key selection is then black boxed through the

use of the permitter oracle, to which processors can make requests

to broadcast, and which will respond depending on their resource

balance. To model Bitcoin, for example, one simply allows each

public key to make one request to broadcast a block at each timeslot.

The permitter oracle then gives a positive response with probability

depending on their resource balance, which in this case is defined

by hashrate. So, this gives a straightforward way to model the pro-

cess, without the need for a detailed discussion of hash functions

and how they are used to instantiate the selection process.

Formal specification. For a list of commonly used variables and

terms, see Table 1 in the appendix. At each timeslot t , we refer to
the set of all messages that have already been received or broadcast

by p as the message state of p. Each execution happens relative to a

(determined or undetermined) resource pool,7 which in the general

case is a function R : U × D ×M → R≥0, whereU is the set of

all public keys, D is the duration andM is the set of all possible

sets of messages. R can be thought of as specifying the resource

balance of each public key at each timeslot, possibly relative to a

given message state. For each t and M , we suppose that certain

basic conditions are satisfied:

(a) If R (U, t ,M ) , 0 then U ∈ Up for some processor p;
(b) There are finitely many U for which R (U, t ,M ) , 0, and;

(c)

∑
U R (U, t ,M ) > 0.

7
As described more precisely in Section 2.6, whether the resource pool is determined

or undetermined will decide whether we are in the sized or unsized setting.

Suppose that, after receiving messages and a permission set

at timeslot t , p’s message state is M0, and that M∗
0
is the set of

all messages that are permitted for p (i.e. for some U ∈ Up ). We

consider two settings – the timed and untimed settings. The form of

each request r ∈ R made by p at timeslot t depends on the setting,

as specified below. While the following definitions might initially

seem abstract, shortly we will give examples to make things clear.

• The untimed setting. Here, each request r made by p must

be of the form (U,M,A), where U ∈ Up ,M ⊆ M0 ∪M
∗
0
, and

where A is some (possibly empty) extra data. The permit-

ter oracle will respond with a pair (U,M∗), where M∗ is a
set of strings that may be empty. The value of M∗ will be
assumed to be a probabilistic function of the determined

variables, (U,M,A), and of R (U, t ,M ), subject to the condi-

tion that M∗ = ∅ if R (U, t ,M ) = 0. If modelling Bitcoin, for

example,M might be a set of blocks that have been received

byp, or thatp is already permitted to broadcast, whileA spec-

ifies a new block extending the ‘longest chain’ inM . If the

block is valid, then the permitter oracle will give permission

to broadcast it with probability depending on the resource

balance of U at time t . We will expand on this example below.

• The timed setting. Here, each request r made by p must

be of the form (t ′, U,M,A), where t ′ is a timeslot, and where

U, M and A are as in the untimed setting, The response

(U,M∗) of the permitter oracle will be assumed to be a prob-

abilistic function of the determined variables, (t ′, U,M,A),
and of R (U, t ′,M ), subject to the condition that M∗ = ∅ if
R (U, t ′,M ) = 0.

The permission set received by p at timeslot t + 1 is the set all of
responses from the permitter oracle to p’s requests at timeslot t .

To understand these definitions, it is instructive to consider how

they can be used to give a simple model for Bitcoin. To do so, we

work in the untimed setting, and we define the set of possible

messages to be the set of possible blocks. For each U ∈ Up , we

then allow p to make a single request of the form (U,M,A) at each
timeslot. As mentioned above,M will be a set of blocks that have

been received by p, or that p is already permitted to broadcast. The

entry A will be data (without PoW attached) that specifies a block

extending the ‘longest chain’ inM . If A specifies a valid block, then

the permitter oracle will give permission to broadcast the block

specified by A with probability depending on the resource balance

of U at time t (which is determined by hashrate, and is independent

ofM). So, the higher U’s resource balance at a given timeslot, the

greater the probability p will be able to mine a block at that timeslot.

Of course, a non-faulty processor p will always submit requests of

the form (U,M,A), for which M is p’s (entire) message state, and

such that A specifies a valid block extending the longest chain in

M .
8

The motivation for considering the timed as well as the untimed

setting stems from one of the qualitative differences between PoS

8
So, in this simple model, we don’t deal with any notion of a ‘transaction’. It is clear,

though, that the model is sufficient to be able to define what it means for blocks to be

confirmed, to define notions of liveness (roughly, that the set of confirmed blocks grows

over time with high probability) and security (roughly, that with high probability, the

set of confirmed blocks is monotonically increasing over time), and to prove liveness

and security for the Bitcoin protocol in this model (by importing existing proofs, such

as that in [10]).



and PoW protocols. PoS protocols are best modelled in the timed

setting, where processors can look ahead to determine their permis-

sion to broadcast at future timeslots (when their resource balance

may be different than it is at present), i.e. with PoS protocols, blocks

will often have timestamps that cannot be manipulated, and at a

given timeslot, a processor may already be able to determine that

they have permission to broadcast blocks with a number of different

future timestamps. This means that, when modelling PoS protocols,

processors have to be able to make requests corresponding to times-

lots t ′ other than the current timeslot t . We will specify further

differences between the timed and untimed settings in Section 2.6.

By a permissionless protocol we mean a pair (S, O), where S is a
state transition diagram to be followed by all non-faulty processors,

and where O is a permitter oracle, i.e. a probabilistic function of

the form described for the timed and untimed settings above. It

should be noted that the roles of the resource pool and the permitter

oracle are different, in the following sense: While the resource pool

is a variable (meaning that a given protocol will be expected to

function with respect to all possible resource pools consistent with

the setting
9
), the permitter is part of the protocol description.

2.3 The adversary and the synchronous and
partially synchronous settings

While all non-faulty processors follow the state transition diagram

S specified for the protocol, we allow a single undetermined pro-

cessor pA to display Byzantine faults, and we think of pA as being

controlled by the adversary: In formal terms, the difference between

pA and other processors is that the state transition diagram for pA
might not be S. Placing bounds on the power of the adversary

means limiting their resource balance (sinceUpA is infinite, it does

not limit the adversary that they control a single processor). For

q ∈ [0, 1], we say the adversary is q-bounded if their total resource

balance is always at most a q fraction of the total, i.e. for all M, t ,∑
U∈UpA

R (U, t ,M ) ≤ q ·
∑
U∈U R (U, t ,M ).

It is standard in the distributed computing literature [13] to

consider a variety of synchronous, partially synchronous, or asyn-
chronous settings, in which message delivery might be reliable or

subject to various forms of failure. We will suppose that the dura-

tion is divided into intervals that are labelled either synchronous or
asynchronous (meaning that each timeslot is either synchronous or

asynchronous). Wewill suppose that during asynchronous intervals

messages can be arbitrarily delayed or not delivered at all. During

synchronous intervals, however, we will suppose that messages

are always delivered within ∆ many timeslots. So if t1 ≤ t2,m is

broadcast by p at t1, if p
′ , p and [t2, t2 + ∆] is a synchronous

interval contained in D, then p′ will receivem by timeslot t2 + ∆.
Here ∆ is a determined variable.

We then distinguish two synchronicity settings. In the synchro-
nous setting it is assumed that there are no asynchronous intervals

during the duration, while in the partially synchronous setting there
may be undetermined asynchronous intervals.

It will be useful to consider the notion of a timing rule, by which

we mean a partial function Tmapping tuples of the form (p,p′,m, t )
to timeslots. We say that an execution follows the timing rule T

9
Generally, protocols will be considered in a setting that restricts the set of resource

pools in certain ways, such as limiting the resource balance of the adversary.

if the following holds for all processors p and p′: We have that

p′ receives m at t ′ iff there exists some p and t < t ′ such that p
broadcasts the messagem at t and T(p,p′,m, t ) ↓= t ′. We restrict

attention to timing rules which are consistent with the setting.

Since protocols will be expected to behave well with respect to all

timing rules consistent with the setting, it will sometimes be useful

to think of the adversary as also having control over the choice of

timing rule.

2.4 The structure of the blockchain
Amongst all broadcast messages, there is a distinguished set referred

to as blocks, and one block which is referred to as the genesis block.
Unless it is the genesis block, each block B has a unique parent block
Par(B), which must be uniquely specified within the block message.

Each block is signed and broadcast by a single key, Miner(B), but
may contain other broadcast messages which have been signed and

broadcast by other keys. No block can be broadcast by the processor

p that controls Miner(B) at a point strictly prior to that at which

its parent enters p’s message state (it is convenient to consider

the genesis block a member of all message states at all timeslots).

Par(B) is defined to be an ancestor of B, and all of the ancestors of

Par(B) are also defined to be ancestors of B. If B is not the genesis

block, then it must have the genesis block as an ancestor. At any

point during the duration, the set of broadcast blocks thus forms

a tree structure. If M is a set of messages, then we say that it is

downward closed if it contains the parents of all blocks inM . By a

leaf ofM , we mean a block inM which is not a parent of any block

inM . IfM is downward closed set of blocks and contains a single

leaf, then we say thatM is a chain.
Generalising the model to DAGs. It is only for the sake of

simplicity that we assume each block has a unique parent block. The

model is chosen to be a sweet spot of being expressible enough to

capture many different types of blockchains and not so cumbersome

as to obscure the main issues. Only small modifications are then

required to deal with DAGS etc.

2.5 The extended protocol and the meaning of
probabilistic statements

To define what it means for a protocol to be secure or live, we

first need a notion of confirmation for blocks. This is a function

C mapping any message state to a chain that is a subset of that

message state, in a manner that depends on the protocol inputs,

including a parameter ε > 0 called the security parameter. The
intuition behind ε is that it should upper bound the probability of

false confirmation. Given any message state, C returns the set of

confirmed blocks.

In Section 2.2, we stipulated that a permissionless protocol is

a pair P = (S, O). In general, however, a protocol might only be

considered to run relative to a specific notion of confirmation C. We

will refer to the triple (S, O, C) as the extended protocol. Often we

will suppress explicit mention of C, and assume it to be implicitly

attached to a given protocol. We will talk about a protocol being

live, for example, when it is really the extended protocol to which

the definition applies. It is important to understand, however, that

the notion of confirmation C is separate from P, and does not im-

pact the instructions of the protocol. In principle, one can run the



same Bitcoin protocol relative to a range of different notions of

confirmation. While the set of confirmed blocks might depend on

C, the instructions of the protocol do not, i.e. with Bitcoin, one can

require five blocks for confirmation or ten, but this does not affect

the process of building the blockchain.

For a given permissionless protocol, another way to completely

specify an execution (beyond that described in Section 2.1) is via

the following breakdown:

(I1) The determined variables (such as ∆ and ε);
(I2) The set of processors and their public keys;

(I3) The state transition diagram for the adversary pA;
(I4) The resource pool (which may or may not be undetermined);

(I5) The timing rule;

(I6) The probabilistic responses of the permitter.

With respect to the extended protocol (S, O, C), we call a particu-
lar set of choices for (I1)- (I5) a protocol instance. Generally, when
we discuss an extended protocol, we do so within the context of a

setting, which constrains the set of possible protocol instances. The

setting might restrict the set of resource pools to those in which the

adversary is given a limited resource balance, for example. When

we make a probabilistic statement to the effect that a certain condi-

tion holds with at most/least a certain probability, this means that

the probabilisitic bound holds for all protocol instances consistent

with the setting. Where convenient, we may also refer to the pair

(P, C) as the extended protocol, where P = (S, O).

2.6 Defining the timed, sized and
multi-permitter settings

In Section 2.2, we gave an example to show how the framework

of [12] can be used to model a PoW protocol like Bitcoin. In that

context the resource pool is a function R : U ×D → R≥0, which
is best modelled as undetermined, because one does not know in

advance how the hashrate of each public key (or even the total

hashrate) will vary over time. The first major difference for a PoS

protocol is that the resource balance of each public key now depends

on the message state (as is also the case for some proof-of-space

protocols, depending on the implementation), and may also be a

function of time.
10

So the resource pool is a function R : U ×D ×

M → R≥0. A second difference is thatR is determined, because one

knows from the start how the resource balance of each participant

depends on the message state as a function of time. Note that

advance knowledge of R does not mean that one knows from the

start which processors will have large resource balances throughout

the execution, unless one knows which messages will be broadcast.

A third difference, to which we have already alluded, is that PoS

protocols are best modelled in the timed setting. A fourth difference

is that PoW protocols are best modelled by allowing a single request

to the oracle for each public key at each timeslot, while this is not

necessarily true of PoS protocols.

In [12], the sized/unsized, timed/untimed, and single/multi-permitter

settings were defined to succinctly capture these differences. The

10
It is standard practice in PoS blockchain protocols to require a participant to have

a currency balance that has been recorded in the blockchain for at least a certain

minimum amount of time before they can produce new blocks, for example. So, a

given participant may not be permitted to extend a given chain of blocks at timeslot t ,
but may be permitted to extend the same chain at a later timeslot t ′.

idea is that all permissionless protocols run relative to a resource

pool and the difference between PoW and PoS and other permis-

sionless protocols is whether we are working in the sized/unsized,

timed/untimed, and single/multi-permitter settings. If one then

comes to consider a new form of protocol, such as proof-of-space,

theorems that have been proved for all protocols in the unsized set-

ting (for example) will still apply, so long as these new protocols are

appropriately modelled in that setting. So the point of this approach

is that, by blackboxing the precise mechanics of the processor se-

lection process (whereby processors are selected to do things like

broadcast new blocks of transactions), we are able to focus instead

on properties of the selection process that are relevant for protocol

design. This allows for the development of a general theory that

succinctly describes the relevant merits of different forms of proto-

col. The sized/unsized, timed/untimed, and single/multi-permitter

settings are defined below.

(1) The timed and untimed settings. There are two differ-

ences between the timed and untimed settings. The first

concerns the form of requests, as detailed in Section 2.2. We

also require that the following holds in the timed setting: For

each broadcast messagem, there exists a unique timeslot tm
such that permission to broadcastm was given in response

to some request (tm , U,M,A), and tm is computable fromm.

We call tm the timestamp ofm.

(2) The sized and unsized settings. We call the setting sized
if the resource balance is determined. By the total resource
balance we mean the function T : N ×M → R>0 defined
by T (t ,M ) :=

∑
U R (U, t ,M ). For the unsized setting, R and

T are undetermined, with the only restrictions being:

(i) T only takes values in a determined interval [α0,α1],
where α0 > 0 (meaning that, although α0 and α1 are de-
termined, protocols will be required to function for all

possible α0 > 0 and α1 > α0, and for all undetermined R

consistent with α0,α1, subject to (ii) below).
11

(ii) There may also be bounds placed on the resource balance

of public keys owned by the adversary.

(3) The multi-permitter and single-permitter settings. In
the single-permitter setting, each processor may submit a

single request of the form (U,M,A) or (t , U,M,A) (depending
on whether we are in the timed setting or not) for each

U ∈ Up at each timeslot, and it is allowed that A , ∅. In the

multi-permitter setting, processors can submit any number

of requests for each key at each timeslot, but they must all

satisfy the condition that A = ∅.

PoW protocols will generally be best modelled in the untimed,

unsized and single-permitter settings. They are best modelled in the

untimed setting, because a processor’s probability of being granted

permission to broadcast a block at timeslot t (even if that block has

a different timestamp) depends on their resource balance at t , rather
than at any other timeslot. They are best modelled in the unsized

setting, because one does not know in advance of the protocol

execution the amount of mining which will take place at a given

11
We consider resource pools with range restricted in this way, because it turns out to

be an overly strong condition to require a protocol to function without any further

conditions on the resource pool, beyond the fact that it is a function to R≥0 . Bitcoin
will certainly fail if the total resource balance decreases sufficiently quickly over time,

or if it increases too quickly, causing blocks to be produced too quickly compared to ∆.



timeslot in the future. They are best modelled in the single-permitter

setting, so long as permission to broadcast is block-specific.

PoS protocols are generally best modelled in the timed, sized

and multi-permitter settings. They are best modelled in the timed

setting, because blocks will generally have non-manipulable times-

tamps, and because a processor’s ability to broadcast a block may

be determined at a timestamp t even through the probability of

success depends on their resource balance at t ′ other than t . They
are best modelled in the sized setting, because the resource pool

is known from the start of the protocol execution. They are best

modelled in the multi-permitter setting, so long as permission to

broadcast is not block-specific, i.e. when permission is granted, it

is to broadcast a range of permissible blocks at a given position in

the blockchain.

All of this means that it will generally be straightforward to

classify protocols with respect to the theorems from this paper that

apply to them. Since Bitcoin and Prism [2] are PoW protocols, for

example, Theorem 5.1 applies to those protocols. Since SnowWhite,

Ouroboros [11] and Algorand are PoS protocols, Theorems 3.3 and

5.6 apply to those protocols. Note that there are a large number

of protocols, such as Tendermint [4] and Hotstuff [18], which are

formally described as permissioned protocols, but which can be

implemented as PoS protocols so that Theorems 3.3 and 5.6 will

then apply.

2.7 Defining liveness
There are a number of papers that successfully describe liveness and

security notions for blockchain protocols [10, 16]. Our interest here

is in identifying the simplest definitions that suffice to express our

later results. To this end, it will be convenient to give a definition

of liveness that is more fine-grained than previous definitions, in

the sense that it allows us to separate out the security parameter

and the number of timeslots in the duration (in previous accounts

the number of timeslots in the duration is a function of the security

parameter). Consider a protocol with a notion of confirmation C,
and let |C(M ) | denote the number of blocks in C(M ) for any message

stateM . For timeslots t1 < t2, let l1 be the maximum value |C(M1) |
for anyM1 which is a message state of any processor at any timeslot

t ≤ t1, and let l2 be the minimum value |C(M2) | for anyM2 which

is a message state of any processor at timeslot t2. We say that

[t1, t2] is a growth interval if l2 > l1. For any duration D, let |D|

be the number of timeslots in D. For ℓε,D which takes values in

N depending on ε and D, let us say that ℓε,D is sublinear in D if,

for each ε > 0 and each α ∈ (0, 1), ℓε,D < α |D| for all sufficiently

large values of |D| (the motivation for considering sublinearity will

be described shortly).

Definition 2.1. A protocol is live if, for every choice of security

parameter ε > 0 and durationD, there exists ℓε,D , which is sublin-

ear in D, and such that for each pair of timeslots t1 < t2 ∈ D the

following holds with probability at least 1− ε : If t2 − t1 ≥ ℓε,D and

[t1, t2] is entirely synchronous, then [t1, t2] is a growth interval.

So, roughly speaking, a protocol is live if the number of confirmed

blocks can be relied on to grow during synchronous intervals of

sufficient length. The reason we require ℓε,D to be sublinear in

D is so that the number of confirmed blocks likely increases with

sufficient increase in synchronous duration. For example, a protocol

that confirms a block with probability only 2
−|D |

at each timeslot

should not be considered live. Note also, that while Definition 2.1

only refers explicitly to protocols, it is really the extended protocol
to which the definition applies. The following stronger notion will

also be useful.

Definition 2.2. A protocol is uniformly live if, for every choice

of security parameter ε > 0 and duration D, there exists ℓε,D ,

which is sublinear in D, and such that the following holds with

probability at least 1 − ε : For all pairs of timeslots t1 < t2 ∈ D, if

t2 − t1 ≥ ℓε,D and [t1, t2] is entirely synchronous, then [t1, t2] is a
growth interval.

The difference between being live and uniformly live is that the

latter definition requires that, with probability at least 1 − ε , all
appropriate intervals are growth intervals. The former definition

only requires the probabilistic bound to hold for each interval indi-

vidually. The reader’s immediate reaction might be that it should

follow from the Union Bound that Definitions 2.1 and 2.2 are essen-

tially equivalent. This is not so. Firstly, this is because the protocol

and notion of confirmation take the security parameter ε as input.
Nevertheless, one might think that if a protocol is live then a ‘re-

calibration’, which takes some appropriate transformation of the

security parameter as input, should necessarily be uniformly live.

This does not follow (in part) because there is no guarantee that the

resulting ℓε,D will be sublinear in D – see Section 4 for a detailed

analysis.

2.8 Defining security
Roughly speaking, security requires that confirmed blocks normally

belong to the same chain. Let us say that two distinct blocks are

incompatible if neither is an ancestor of the other, and are compatible
otherwise. Suppose that, for some processor p, the message state at

t isM . If B ∈ C(M ), then we say that B is confirmed for p at t .

Definition 2.3 (Security). A protocol is secure if the following

holds for every choice of security parameter ε > 0, for every p1,p2
and for all timeslots t1, t2 in the duration: With probability > 1 − ε ,
all blocks which are confirmed for p1 at t1 are compatible with all

those which are confirmed for p2 at t2.

The following stronger notion will also be useful.

Definition 2.4 (Uniform Security). A protocol is uniformly se-
cure if the following holds for every choice of security parameter

ε > 0: With probability > 1 − ε , there do not exist incompatible

blocks B1,B2, timeslots t1, t2 and p1,p2 such that Bi is confirmed

for pi at ti for i ∈ {1, 2}.

The difference between security and uniform security is that the

latter requires the probability of even a single disagreement to be

bounded, while the former only bounds the probability of disagree-

ment for each pair of processors at each timeslot pair. Just as for

liveness and uniform liveness, it does not follow from the Union

Bound that security is essentially equivalent to uniform security.

In Section 4 we will perform a detailed analysis of the relationship

between these notions.



3 CERTIFICATES IN THE PARTIALLY
SYNCHRONOUS SETTING

The definitions of this and subsequent sections are all new to this

paper, unless explicitly stated otherwise. The rough idea is that

‘certificates’ should be proofs of confirmation. Towards formalising

this idea, let us first consider a version which is too weak.

Definition 3.1. If B ∈ C(M ) then we refer to M as a subjective
certificate for B.

We will say that a set of messagesM is broadcast if every member is

broadcast, and thatM is broadcast by timeslot t if every member of

M is broadcast at a timeslot ≤ t (different members potentially being

broadcast at different timeslots). IfM is a subjective certificate for B,
then there might existM ′ ⊃ M for which B < C(M ′). So the fact that
M is broadcast does not constitute proof that B is confirmed with

respect to any processor. When do we get harder forms of proof

than subjective certificates? Definition 3.2 below gives a natural

and very simple way of formalising this.

Definition 3.2. We say that a protocol with a notion of confirma-

tion C produces certificates if the following holds with probability
> 1 − ε when the protocol is run with security parameter ε : There
do not exist incompatible blocks B1,B2, a timeslot t and M1,M2

which are broadcast by t , such that Bi ∈ C(Mi ) for i ∈ {1, 2}.

It is important to stress that, in the definition above, theMi ’s are

not necessarily the message states of any processor, but are rather

arbitrary subsets of the set of all broadcast messages. The basic idea

is that, if a protocol produces certificates, then subjective certifi-

cates constitute proof of confirmation. Algorand is an example of a

protocol which produces certificates: The protocol is designed so

that it is unlikely that two incompatible blocks will be produced

at any point in the duration together with appropriate committee

signatures verifying confirmation for each.

Our next aim is to show that, in the partially synchronous setting,

producing certificates is equivalent to security. In fact, producing

certificates is clearly at least as strong as uniform security, so it

suffices to show that if a protocol is secure then it must produce

certificates.

Theorem 3.3. If a protocol is secure in the partially synchronous
setting then it produces certificates.

Proof. Towards a contradiction, suppose that the protocol with

notion of confirmation C is secure in the partially synchronous

setting, but that there exists a protocol instance
12 In1 with security

parameter ε , such that the following holds with probability ≥ ε :
There exist incompatible blocks B1,B2, a timeslot t and M1,M2

which are broadcast by t , such that Bi ∈ C(Mi ) for i ∈ {1, 2}.
This means that the following holds with probability ≥ ε for t

last
,

which is the last timeslot in the duration: There exist incompatible

blocks B1,B2 and M1,M2 which are broadcast by t
last

, such that

Bi ∈ C(Mi ) for i ∈ {1, 2}. Consider the protocol instance In2 which
has the same values for determined variables as In1, the same state

transition diagram for the processor of the adversary and the same

set of processors with the same set of public keys, except that

now there are two extra processors p1 and p2. Suppose that the

12
See Section 2.5 for the definition of a protocol instance.

resource pool for In2 is the same as that for In1 when restricted to

public keys other than those inUp1 andUp2 , and that all keys in

Up1 andUp2 have zero resource balance throughout the duration.

Suppose further, that the timing rule for In2 is the same as that

for In1 when restricted to tuples (p,p′,m, t ) such that p < {p1,p2}
and p′ < {p1,p2}, but that now all timeslots are asynchronous.

According to the definition of Section 2.2, and since all keys inUp1
and Up2 have zero resource balance throughout the duration, it

follows by induction on timeslots that the probability distribution

on the set of broadcast messages is the same at each timeslot for

In2 as for In1, independent of which messages are received by p1
and p2. It therefore holds for the protocol instance In2 that with
probability ≥ ε there exist incompatible blocks B1,B2, andM1,M2

which are broadcast by t
last

, such that Bi ∈ C(Mi ) for i ∈ {1, 2}.
Now suppose that p1 and p2 do not receive any messages until

t
last

, and then receive the message sets M1 and M2 (if they exist)

respectively. This suffices to demonstrate that the definition of

security is violated with respect to t
last

, ε , p1 and p2. □

Corollary 3.4. Security and uniform security are equivalent in
the partially synchronous setting.

Proof. This follows from Theorem 3.3 and the fact that produc-

ing certificates clearly implies uniform security. □

4 SECURITY AND UNIFORM SECURITY IN
THE SYNCHRONOUS SETTING

Having dealt with the partially synchronous setting, our next task

is to consider the synchronous setting. To do so, however, we first

need to formalise the notion of a recalibration.

4.1 Defining recalibrations
Theorem 3.3 seems to tie things up rather neatly for the partially

synchronous setting. In particular, the equivalence of security and

uniform security meant that we were spared having to carry out a

separate analysis for each security notion. It is not difficult to see,

however, that the two security notions will not be equivalent in

the synchronous setting. To see this, we can consider the example

of Bitcoin. Suppose first that we operate in the standard way for

Bitcoin, and use a notion of confirmation C that depends only on the
security parameter ε , and not on the durationD, so that the number

of blocks required for confirmation is just a function of ε . In this

case, the protocol is secure in the synchronous setting [10]. It is also

clear, however, that this protocol will not be uniformly secure in a

setting where the adversary controls a non-zero amount of mining

power: If a fixed number of blocks are required for confirmation

then, given enough time, the adversary will eventually complete a

double spend (i.e. the adversary will double spend with probability

tending to 1 as the number of timeslots tends to infinity). That said,

it is also not difficult to see how one might ‘recalibrate’ the protocol

to deal with different durations – to make the protocol uniformly

secure, the number of blocks required for confirmation should be a

function of both ε and D.

The point of this subsection is to formalise the idea of recali-

bration and to show that, if a protocol is secure, then (under fairly

weak conditions) a recalibration will be uniformly secure. The basic

idea is very simple – one runs the initial (unrecalibrated) protocol



for smaller values of ε as the duration increases, but one has to be

careful that the resulting ℓε,D is sublinear in D.

Definition 4.1. We say (P2, C2) is a recalibration of the extended

protocol (P1, C1) if running P2 given certain inputs means running

P1 for a computable transformation of those inputs, and then ter-

minating after |D| many steps are complete.

So, if running P2 with security parameter ε and fornmany timeslots

means running P1 with input parameters that specify a security

parameter ε/10 and that specify a duration consisting of 2n many

timeslots, and then terminating after n many timeslots have been

completed, then P2 is a recalibration of P1.
13

Note also, that we

allow the recalibration to use a different notion of confirmation.

In the following, we say that ℓε,D is independent ofD if ℓε,D =

ℓε,D′ for all ε > 0 and all D,D ′. When ℓε,D is independent of D,

we will often write ℓε for ℓε,D .

Definition 4.2. In the bounded user setting we assume that

there is a finite upper bound on the number of processors, which

holds for all protocol instances.
14

Proposition 4.3. Consider the synchronous and bounded user
setting. Suppose P satisfies liveness with respect to ℓε,D , that ℓε,D
is independent of D, and that for each α > 0, ℓε < αε−1 for all
sufficiently small ε > 0. If P is secure, there exists a recalibration of P
that is uniformly live and uniformly secure.

The conditions on ℓε,D in the statement of Proposition 4.3 can

reasonably be regarded as weak, because existing protocols which

are not already uniformly secure will normally satisfy the con-

ditions that: (†a ) ℓε,D is independent of D, and; (†b ) For some

constant c and any ε ∈ (0, 1), we have ℓε < cln 1

ε . The example of

Bitcoin might be useful for the purposes of illustration here. Bitcoin

is secure in the synchronous setting, and the number of blocks

required for confirmation is normally considered to be independent

of the duration. The number of blocks required for confirmation

does depend on how sure one needs to be that an adversary cannot

double spend in any given time interval, but it’s also true that an

adversary’s chance of double spending in a given time interval

decreases exponentially in the number of blocks required for con-

firmation as well. So Bitcoin is an example of a protocol satisfying

(†a ) and (†b ) above.

Proof of Proposition 4.3. It is useful to consider a security

notion that is intermediate between security and uniform security.

For the purposes of the following definition, we say that a block

is confirmed at timeslot t if there exists at least one processor for
whom that is the case.

Definition 4.4 (Timeslot Security). A protocol is timeslot secure
if the following holds for every choice of security parameter ε > 0,

and for all timeslots t1, t2 in the duration: With probability > 1 − ε ,
all blocks which are confirmed at t1 are compatible with all blocks

which are confirmed at t2.

13
The choices ε/10 and 2n are arbitrarily chosen for the purpose of example. The

reader might wonder why one should specify a duration of 2n timeslots and then

terminate after n many. This is because the instructions of the first n timesteps can

depend on the intended duration. In Algorand, committee sizes will depend on the

intended duration, for example.

14
Note that the requirement here is that the number of processors is bounded, rather

than the number of public keys.

So the difference between timeslot security and uniform security is

that the latter requires the probability of even a single disagreement

to be bounded, while the former only bounds the probability of

disagreement for each pair of timeslots. Similarly, the difference

between security and timeslot security is that, for each pair of times-

lots, the latter requires the probability of even a single disagreement

to be bounded, while the former only bounds the probability of

disagreement for each pair of processors at that timeslot pair.

Now suppose P is live and secure, and that the conditions of

Proposition 4.3 hold. Then it follows directly from the Union Bound

that, if the number of users is bounded, then some recalibration of P
is live and timeslot secure and satisfies the conditions of Proposition

4.3. Since a recalibration of a recalibration of P is a recalibration of

P, our main task is therefore to show that, if P is live and timeslot

secure and the conditions of Proposition 4.3 hold, then there exists

a recalibration of P that is uniformly live and uniformly secure.

So suppose (P, C) is live and timeslot secure, and that the condi-

tions of Proposition 4.3 hold. Suppose we are given ε0 and D0 as

inputs to our recalibration (P′, C′). We wish to find an appropriate

security parameter ε1 and a duration D1 ≥ D0 to give as inputs

to P and C, so that uniform security is satisfied with respect to ε0
and D0 if we run P with inputs ε1 and D1 and then terminate after

|D0 | many timeslots. The difficulty is to ensure that ℓε1 remains

sublinear in D0. To achieve this, let n := |D0 |, set ε1 := ε0/2n and

choose |D1 | > n+ ℓε1 , so thatD0 is the first n timeslots inD1. This

defines the recalibration. It remains to establish uniform liveness

and uniform security.

For uniform liveness we must have that, for each α ∈ (0, 1),
ℓε1 < αn for all sufficiently large values of n – if this condition

holds then it follows from the Union Bound that our recalibration

will satisfy uniform liveness (and the required sublinearity in D0)

with respect to ℓ′ε0,D0

:= ℓε1 . The condition holds since we are

given that for each α > 0, ℓε < αε−1 for all sufficiently small ε > 0.

Suppose given α > 0, and put α ′ := αε0/2. Then we have that, for

all sufficiently large n:

ℓε1 < α ′(ε0/2n)
−1 = αn.

Next we must show that the conditions for uniform security are

satisfied. Suppose P is given inputs ε1 andD1 and is actually run for

|D1 | many timeslots. We aim to show that, with probability > 1−ε0,
there do not exist incompatible blocks B1,B2, timeslots t1, t2 ∈ D0

and p1,p2 such that Bi is confirmed for pi at ti for i ∈ {1, 2}. Let tlast
be the last timeslot of the duration D1 and define t∗ := t

last
− ℓε1 .

The basic idea is that the two following conditions hold with high

probability: (a) [t∗, t
last

] is a growth interval, and (b) There does

not exist t1 ∈ D0, processors p1,p2 and incompatible blocks B1,B2,
such that B1 is confirmed for p1 at t1 and B2 is confirmed for p2
at t

last
. When both these conditions hold, and since t∗ > n, this

suffices to show that no incompatible and confirmed blocks exist

during the duration D0. Now let us see that in more detail.

By the choice of D1, t
∗ > n. It follows from the definition of

liveness that (†1) below fails to hold with probability ≤ ε1:

(†1) [t∗, t
last

] is a growth interval.

Note that, so long as (†1) holds, every user has more confirmed

blocks at t
last

than any user does at any timeslot in D0. It also

follows from the Union Bound, and the definition of liveness and



timeslot security, that (†2) below fails to hold with probability

≤ nε1 = ε0/2:

(†2) There does not exist t1 ∈ D0, processors p1,p2 and incom-

patible blocks B1,B2, such that B1 is confirmed for p1 at t1
and B2 is confirmed for p2 at tlast.

Now note that:

(a) If (†1) and (†2) both hold, then there do not exist incompati-

ble blocks B1,B2, timeslots t1, t2 ∈ D0 and p1,p2 such that

Bi is confirmed for pi at ti for i ∈ {1, 2}.
(b) With probability > 1− ε1 − ε0/2 ≥ 1− ε0, (†1) and (†2) both

hold.

So uniform security is satisfied with respect to ε0 and D0, as re-

quired. □

Definition 4.5. We say P has standard functionality if it is

uniformly live and uniformly secure. We say that a recalibration of

P is faithful if it has standard functionality when P does.

Proposition 4.3 justifies concentrating on protocols which have

standard functionality where it is convenient to do so, since proto-

cols which are live and secure will have recalibrations with standard

functionality, so long as the rather weak conditions of Proposition

4.3 are satisfied. Again, when we talk about the security and live-

ness of a protocol, it is really the extended protocol that we are

referring to.

5 CERTIFICATES IN THE SYNCHRONOUS
SETTING

5.1 The synchronous and unsized setting
As outlined in the introduction, part of the aim of this paper is to

give a positive answer to Q3, by showing that whether a protocol

produces certificates comes down essentially to properties of the

processor selection process. In the unsized setting protocols cannot

produce certificates. In the sized setting, recalibrated protocols will

automatically produce certificates, at least if they are of ‘standard

form’. For the partially synchronous setting, the results of [12] and

Section 3 already bear this out: The sized setting is required for

security and all secure protocols must produce certificates. The

following theorem now deals with the unsized and synchronous

setting. Recall that, in the unsized setting, the total resource balance

belongs to a determined interval [α0,α1]. We say that the protocol

operates ‘in the presence of a non-trivial adversary’ if the setting

allows that the adversary may have resource balance at least α0
throughout the duration.

Theorem 5.1. Consider the synchronous and unsized setting. If a
protocol is live then, in the presence of a non-trivial adversary, it does
not produce certificates.

Proof. The basic idea is that the adversary with resource bal-

ance at least α0 can ‘simulate’ their own execution of the protocol,

in which only they have non-zero resource balance, while the non-

faulty processors carry out an execution in which the adversary

does not participate. Simulating their own execution means that

the adversary carries out the protocol as usual, while ignoring

messages broadcast by the non-faulty processors, but does not ini-

tially broadcast messages when given permission to do so. Liveness

(together with the fact that the resource pool is undetermined) guar-

antees that, with high probability, both the actual and simulated

executions produce blocks which look confirmed from their own

perspective. These blocks will be incompatible with each other and,

once the adversary finally broadcasts the messages that they have

been given permission for, these blocks will all have subjective

certificates which are subsets of the set of broadcast messages. This

suffices to show that the protocol does not produce certificates.

More precisely, we consider two instances of the protocol In0 and
In1 in the synchronous and unsized setting, which have the same

values for all determined variables – including the same sufficiently

small security parameter ε and the same sufficiently long duration

D – and also have the same set of processors and the same message

delivery rule, but which differ as follows:

• In In0, a set of processors P0 control public keys in a set

U0, which are the only public keys that do not have zero

resource balance throughout the duration. The total resource

balance T has a fixed value, α say.

• In In1, it is the adversary who controls the public keys inU0,

and those keys have the same resource balance throughout

the duration as they do in In0. Now, however, another set
of processors P1 control public keys in a set U1 (disjoint

fromU0), and the public keys inU1 also have total resource

balance α throughout the duration, i.e. the resource balances

of these keys always add to α .

In In1, we suppose that the adversary simulates the processors

in P0 for In0 (which can be done with the single processor pA),
which means that the adversary carries out the instructions for

those processors, with the two following exceptions. Until a certain

timeslot t∗, to be detailed subsequently, they:

(a) Ignore all messages broadcast by non-faulty processors, and;

(b) Do not actually broadcast messages when permitted, but

consider them received by simulated processors in P0 as per

the message delivery rule.

For In0 (so long as the duration is sufficiently long), liveness

guarantees the existence of a timeslot t0 for which the following

holds with probability > 1 − ε :

(⋄0) At t0 there exists a set of broadcast messagesM0 and a block

B0 such that B0 ∈ C(M0).

For In1, liveness guarantees the existence of a timeslot t1 for
which the following holds with probability > 1 − ε :

(⋄1) At t1 there exists a set of broadcast messagesM1 and a block

B1 such that B1 ∈ C(M1).

Choose t∗ > t0, t1. Our framework stipulates that the instruc-

tions of the protocol for a given user at a given timeslot are a

deterministic function of their present state and the message set

and permission set received at that timeslot. It also stipulates that

the response of the permitter to a request (t ′, U,M,A) is a proba-
bilistic function of the determined variables, (t ′, U,M,A), and of

R (U, t ′,M ). Since we are working in the unsized setting, In1 and
In0 have the same determined variables. It therefore follows by

induction on timeslots t ≤ t∗, that the following is true at all points
until the end of timeslot t :

(⋄2) The probability distribution for In0 on the set of permission

sets given by the permitter is identical to the probability



distribution for In1 on the set of permission sets given by

the permitter to the adversary.

Now suppose that at timeslot t∗ the adversary broadcasts all

messages for which they have been given permission by the per-

mitter. Note that, according to the assumptions of Section 2.4, any

block B0 broadcast by the adversary at t∗ will be incompatible with

any block B1 that has been broadcast by any honest user up to

that point. Combining (⋄0), (⋄1) and (⋄2), we see that (so long as
ε is sufficiently small that ε < 1 − 2ε) the following holds with

probability > ε for t∗ and In1: There exist incompatible blocks

B0,B1, andM0,M1 which are broadcast by the end of t∗, such that

Bi ∈ C(Mi ) for i ∈ {0, 1}. This suffices to show that the protocol

does not produce certificates. □

5.2 The synchronous and sized setting
The example of sized Bitcoin. Our aim in this subsection is to

show that, if we work in the synchronous and sized setting, and if

a protocol is of ‘standard form’, then a recalibration will produce

certificates. To make this precise, however, it will be necessary

to recognise the potentially time dependent nature of proofs of

confirmation. To explain this idea, it is instructive to consider the

example of Bitcoin in the sized setting: The protocol is Bitcoin, but

now we are told in advance precisely how the hash rate capability

of the network varies over time, as well as bounds on the hash rate

of the adversary.
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To make things concrete, let us suppose that the

total hash rate is fixed over time, and that the adversary has 10%

of the hash rate at all times. Suppose that, during the first couple

of hours of running the protocol, the difficulty setting is such that

the network as a whole (with the adversary acting honestly) will

produce an expected one block every 10 minutes. Suppose further

that, after a couple of hours, we see a block B which belongs to

a chain C , in which it is followed by 10 blocks. In this case, the

constraints we have been given mean that it is very unlikely that B
does not belong to the longest chain. So, at that timeslot, C might

be considered a proof of confirmation for B, i.e. the existence of the
chain C can be taken as proof that B is confirmed. The nature of

this proof is time dependent, however. The same set of blocks (i.e.

C) a large number of timeslots later would not constitute proof of

confirmation.

If we now consider a PoS version of the example above, modi-

fied to work for Snow White rather than Bitcoin, then the proof

produced will not be time dependent. This is because PoS proto-

cols function in the timed setting, i.e. when permission is given to

broadcastm in response to a request (t , U,M,A), other users are
able to determine t fromm. In order to prove that (recalibrated)

protocols in the sized setting produce certificates, we will have to

make the assumption that we are also working in the timed setting.

Protocols in standard form. The basic intuition behind the pro-

duction of certificates in the sized setting can be seen from the

example of “Sized Bitcoin” above. Once a block is confirmed, non-

faulty processors will work ‘above’ this block. So long as those

processors possess a majority of the total resource balance, and so

long as the permitter reflects this fact in the permissions it gives,
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Normally we think of PoW protocols as operating in the unsized setting, precisely

because such guarantees on the hash rate are not realistic.

then those non-faulty processors will broadcast a set of messages

which suffices (by its existence rather than the fact that it is the full

message state of any user) to give proof of confirmation. This proof

of confirmation might be temporary, but it will not be temporary

in the timed setting.

This intuitive argument, however, assumes that the protocol

satisfies certain standard properties. As alluded to above, there is

an assumption that the set of messages broadcast by a group of

processors will reflect their resource balances and that the adversary

will have a minority resource balance. There is also an assumption

that broadcast messages will (in some sense) point to a particular

position on the blockchain. So we will have to formalise these ideas,

and the results we prove will only hold modulo the assumption

that these standard properties are satisfied.

First, let us formalise the idea that messages always point to a

position on the blockchain.

Definition 5.2. We say that a protocol is in standard form if it

satisfies all of the following:

• The protocol has standard functionality (see Definition 4.5).

• Every broadcast message is ‘attached’ to a specific block

(blocks being attached to themselves).

• While B is confirmed forp, the state transition diagram Swill
only instruct p to broadcast messages which are attached to

B or descendants of B.

Reflecting the resource pool. Now let us try to describe how the

permitter might reflect the resource pool. We will need a simple

way to say that one set of processors consistently has a higher

resource balance than another.

Definition 5.3. For Θ > 1, we say a set of public keysU1 domi-
nates another setU2, denotedU1 >Θ U2, if the following holds

for all sets of broadcast messagesM and all timeslots t :∑
U∈U1

R (U, t ,M ) > Θ ·
∑
U∈U2

R (U, t ,M ).

Next, we will need to formalise the idea that, if one set of keys

dominates another, then they will be able to broadcast discernibly

different sets of messages. Recall that, in the timed setting, each

messagem corresponds to a timeslot tm , which can be determined

fromm. We writeM[t1, t2] to denote the set {M | ∀m ∈ M, tm ∈
[t1, t2]}. We will say that the set of keysU0 is directed to broadcast
M if, for everym ∈ M , there is some member ofU0 that is given

permission to broadcastm and is directed to broadcastm by the

protocol. We will say that U0 is able to broadcast M if, for every

m ∈ M , there is some member of U0 that is given permission to

broadcastm. We defineM∗ := {M | M is finite}. We let T be the set
of functions T : D ×M → R≥0 (so that the total resource balance

T ∈ T). We say that a set of keys U0 has total resource balance

T : D×M → R≥0 ifT (t ,M ) =
∑
U∈U0

R (U, t ,M ). In the definition

below, we say r is sublinear in |D| if, for each Θ, ε,T , and for every
α ∈ (0, 1), it holds that r (Θ, ε,T , |D|) < α |D| for all sufficiently

large |D|.

Definition 5.4. We say that (S, O, C) reflects the resource pool
if there exist computable finite valued functions r : R>1 × R>0 ×

T × N→ N and X : R>1 × R>0 × T × N→ 2
M∗

, such that:



(1) r is sublinear in |D|.
(2) IfU1 ∪U2 has total resource balance T , and ifU1 >Θ U2,

then, when the protocol is run with security parameter ε and
for |D| many timeslots, the following holds with probability

> 1 − ε : For all intervals of timeslots [t1, t2] with t2 − t1 ≥
r (Θ, ε,T , |D|), there exists some element of X(Θ, ε,T , |D|) ∩
M[t1, t2] whichU1 is directed to broadcast, whileU2 is not

able to broadcast any element of X(Θ, ε,T , |D|) ∩M[t1, t2].

So in Definition 5.4, r specifies a number of timeslots. Then X
specifies certain sets of messages M such that, if U1 >Θ U2 and

U1 ∪U2 has total resource balance T , thenU1 can be expected to

broadcast one of these sets M in any interval of sufficient length

(i.e. the length specified by r ). To make this interesting, we also

have that U2 can be expected not to make such broadcasts. To

see why this is a natural and reasonable condition to assume, it is

instructive to consider the example of Sized Bitcoin. Suppose that

in some execution the honest users always have at least 60% of

the mining power. Then, over any long period of time r , we can
be fairly sure that honest users will get to make at least 50% of

the expected number of block broadcasts, while the adversary is

unlikely to be able to make such broadcasts if r is large enough.
In fact, the exponentially fast convergence for the law of large

numbers guaranteed by bounds like Hoeffding’s inequality, means

r only needs to grow with ln 1/p, where p is the probability of error

(i.e. the probability these conditions on the block broadcasts don’t

hold in a given interval). It is therefore not difficult to see that Sized

Bitcoin would reflect the resource pool if it could be implemented in

a timed setting. Similar arguments can be made for all well known

PoS protocols,
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and these are implemented in the timed setting.

Definition 5.5. In the bounded adversary setting it is assumed

that:

(i) U1 >Θ U2 for some determined input parameter Θ > 1,

whereU1 is the set of keys controlled by non-faulty proces-

sors, andU2 is the the set of keys controlled by the adversary.

(ii) (S, O, C) reflects the resource pool.

Finally, we can now formalise the idea that under standard con-

ditions, standard protocols in the sized setting produce certificates.

Theorem 5.6. Consider the timed, bounded adversary and sized
setting. If P is in standard form, then there exists a faithful recalibra-
tion that produces certificates.

Proof. To define our recalibration (P′, C′), suppose we are given
values for ε,T ,Θ and D. We need to specify a value ε ′ to give as

input to P (we will leave other values unchanged), and we must also

define C′. Then we need to show that the new extended protocol is

uniformly live and produces certificates.

We define ε ′ := ε/4. Towards defining C′, suppose that P sat-

isfies uniform liveness with respect to ℓε ′,D . We divide the dura-

tion into intervals of length ℓε ′,D , by defining ti := i · (ℓε ′,D +
r (Θ, ε ′,T , |D|)). From the definition of uniform liveness we have

the following.
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The example of SnowWhite was discussed previously. As suggested in Section 1, one

way to define X in the context of Snow White is to consider long chains of sufficient

density, meaning that they have members corresponding to most possible timeslots,

that they cannot likely be produced by a (sufficiently bounded) adversary.

($1) With probability > 1−ε/4 it holds that, for all i with ti ≤ |D|,
all users have at least i many confirmed blocks by the end

of timeslot ti .

Now suppose (P, C) satisfies Definition 5.4 with respect to r and
X. For each i > 0, define t∗i := ti + r (Θ, ε

′,T , |D|). Let Ii be the
interval [ti , t

∗
i ], and writeM[Ii ] to denoteM[ti , t

∗
i ]. LetU1 be the

set of keys controlled by non-faulty processors, and letU2 be the

the set of keys controlled by the adversary. According to Definition

5.4, we can then conclude that:

($2) It holds with probability > 1 − ε/4 that, whenever Ii is

contained in the duration, there exists some element of

X(Θ, ε ′,T , |D|) ∩M[Ii ] whichU1 is directed to broadcast,

whileU2 is not able to broadcast any element of this set.

Since P is uniformly secure, we also know that:

($3) With probability > 1 − ε/4, there do not exist incompati-

ble blocks B1,B2, timeslots t1, t2 and U1,U2 such that Bi is
confirmed forUi at ti for i ∈ {1, 2}.

So now define X∗ (Θ, ε ′,T , |D|) to be all thoseM in X(Θ, ε ′,T , |D|)
for which there exists i such that all of the following hold: (i) Ii ⊆ D;

(ii) M ∈ M[Ii ], and; (iii) For some chain C of length i with leaf B,
all messages inM are attached B or its descendants.

Now ifM ∈ X∗ (Θ, ε ′,T , |D|), then let iM be the (unique) i such
that (i)–(iii) hold for i andM , letC be as specified in (iii) for iM , and

define C∗ (M ) := C . We also define C∗ (∅) = ∅. This function C∗ is
almost the notion of confirmation that wewant for our recalibration,

but the problem is that it is only defined for very specific values of

M . We will use C∗ to help us define C′ that is defined for all possible
M . Combining ($1), ($2) and ($3), and the definition of X

∗
, it follows

that with probability > 1 − ε both of the following hold:

(1) If M,M ′ ∈ X∗ (Θ, ε ′,T , |D|) are both broadcast, then all

blocks in C∗ (M ) are compatible with all those in C∗ (M ′).
(2) For every i > 0, there existsM ∈ X∗ (Θ, ε ′,T , |D|) which is

broadcast and such that iM = i .

In order to define C′ for our recalibration, we can then pro-

ceed as follows. Given arbitrary M , choose M ′ ⊆ M such that

M ′ ∈ X∗ (Θ, ε ′,T , |D|) and iM ′ is maximal, or if there exists no

M ′ satisfying these conditions then define M ′ := ∅. We define

C′(M ) := C∗ (M ′). It follows from (1) and (2) above that (P′, C′)
produces certificates and satisfies uniform liveness with respect to

ℓ′ε,D := ℓε ′,D + 2r (Θ, ε
′,T , |D|). □
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6 APPENDIX – TABLE 1.

term meaning

B a block

C a notion of confirmation

D the duration

∆ bound on message delay during synchronous

intervals

ε the security parameter

In a protocol instance

m a message

M a set of messages

M the set of all possible sets of messages

O a permitter oracle

p a processor

P a permission set

P a permissionless protocol

R a request set

R the resource pool

S a state transition diagram

σ a message

t a timeslot

(t , U,M,A) a request in the timed setting

T a timing rule

U a public key

(U,M,A) a request in the untimed setting

U the set of all public keys

Up the set public keys for p

Table 1: Some commonly used variables and terms.
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