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1 Introduction

After almost a century of steady growth in female labor force participation the earnings gap

between men and women remains large, especially for top earners (??). At the same time,

performance pay, a cornerstone of good management practices (??), has spread widely. ?,

for instance, show that the incidence of performance pay increased from 38% in the 1970s

to 45% in the 1990s in the US, ? document a rise from 16.3% in 1998 to 32% in 2004 in

the UK, and ? finds an increase from 15.4% in 1984 to 39.4% in 2009 in Germany.

To the extent that women are less responsive to performance pay, its increase in pop-

ularity might have contributed to the earnings gap. Indeed ? document a gender gap in

performance pay ranging from 14% in India, to 17% in the US, Germany and Canada, and

18% in the UK and The Netherlands. ? find that piece rates and reward rates increase

gender wage differentials in Finland, though bonuses decrease it, while ? show that perfor-

mance pay accounts for a small but potentially increasing share of the gender wage gap in

the US.

This paper tests whether women are less responsive to high-powered performance in-

centives commonly underlying performance pay in the workplace using a large, hitherto

unexplored collection of laboratory and field experiments that identify the response to per-

formance incentives, regardless of whether the studies themselves tested for gender differ-

ences - which most do not. The goal of this paper is to aggregate this evidence and assess

whether a clear gender pattern emerges.

We use a Bayesian hierarchical model to estimate both the average gender differences

as well as their heterogeneity across studies. This approach has two advantages. First, it

leverages existing data to provide evidence on a new question, do women and men respond

differently to performance pay, while avoiding the pitfalls of ex-post subgroup analysis.

Second, the model uses the data itself to estimate the degree to which each study is infor-

mative about a common phenomenon versus its own context-specific effect; thus it allows

us to quantify how informative the findings of one study are for another.

Agency theory predicts that performance pay affects an individual’s effort on the job,

expected earnings and, through this, selection into jobs (see e.g. ?). Thus if women respond
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less to performance pay, they may also sort into jobs that do not offer performance pay.1

Here we focus on the effort effect both because agency theory predicts it drives the selection

effect and because experiments on selection are rare.

Women may respond less to incentive pay for a number of cultural and psychologi-

cal reasons. ????? review this literature in detail, highlighting the lack of evidence on

the impact of these differences on labor market outcomes. Women have been found to be

more risk averse than men (??), less confident (??), more altruistic (??) and more averse to

competition (??). Importantly for this paper, moral hazard theory would predict that these

traits affect the expected utility of effort and thus the response to performance pay. Indeed,

several experimental studies have found a weaker incentive response in risk-averse subjects

(???); subjects with low self-confidence ? or in pro-social tasks ?, provided financial incen-

tives are low ?. Furthermore, ? show that men outperform women in tournaments, though

only in mixed tournaments.

To proceed, we identify a set of studies on performance pay and collate the data. To

maximize the number of studies while ensuring quality and replicability of our aggregation

process, we include only field and lab experiments published in peer-reviewed economics

journals or a selected set of discussion paper series. To capture studies that provide evi-

dence relevant for understanding the effect of performance pay in the workplace, we further

require that (i) agents exert real and costly effort; (ii) performance is measured at the in-

dividual level; and (iii) the study includes at least two pay treatments, one of which is

unambiguously more high-powered than the other. We identified 29 studies satisfying the

inclusion criteria and were able to obtain and use data from 17.

Our sample comprises 9 lab and 8 field experiments involving 8791 subjects, 50.5%

of which are women. Tasks include uncovering curves or placing sliders, taking or grad-

ing exams, picking fruits or inspecting consumer electronics. The high-powered incentives

range from tournament pay to bonuses, monitoring, commission or piece rates, while con-

trol conditions feature fixed pay or a lower prize, commission, piece rate or monitoring

probability..

1For instance, ? show that selection into firms that pay lower wage premia explains 15% of the gender
earnings gap in Portugal.
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The Bayesian hierarchical model (BHM) posits that the observed estimate (η̂s) in study

s is distributed normally conditional on certain parameters, most importantly ηs, the true

average treatment effect in study s. These parameters are in turn distributed conditional on

hyperparameters η and τ2
η , which determine the mean and variance of study-level, average

treatment effects in the population of potential studies. The BHM allows us to estimate both

the average response by men and women as well as the heterogeneity of these responses

across contexts.

Since different studies measure performance in different units, for comparability we

rescale all outcomes in terms of each study’s standard deviation of unincentivized perfor-

mance in men, σ . Our main finding is that the estimated distribution of the gender-incentive

coefficient (η) has a mean that is close to zero (+0.07σ )—implying women are slightly

more responsive to financial incentives—with little variance (0.11σ ) across studies. That

is, women and men respond similarly to different variants of performance pay across a

wide range of contexts. If we were to run a new experiment, we would expect a similar

response to steeper incentives in men and women, and we would be quite confident in this

expectation.

The model also allows us to estimate the common response to performance pay. Agency

theory predicts this to be positive but psychological responses, such as intrinsic motivation

crowding-out, might generate negative responses. The evidence favors agency theory; the

mean response to performance pay is positive and large (+0.36σ ). Given the diversity of

contexts and treatments, the estimated heterogeneity is also quite large, though it affects

primarily the magnitude rather than the sign of the effect. Replicating the existing set of

studies, a classical approach to inference is expected to yield a negative significant (at the

5%-level) effect of incentives, in fewer than 1% of cases.

Our paper thus shows that men and women respond equally positively to high-powered

incentives. If there are differences in risk aversion or other behavioral parameters, these

are not strong enough to generate systematic differences in the response to incentives. The

absence of a gender difference in the incentive response suggests it is unlikely that incen-

tives underlying performance pay in the workplace contribute to the gender earnings gap

directly. As such, we contribute to the literature on gender earnings gaps (??????).
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Our paper also contributes to a small but growing literature in economics which uses

BHMs to distill a common lesson from studies in diverse contexts. Hsiang, Burke and

Miguel (??) analyze the link between climate change and conflict; ? examines generaliz-

ability across a wide range of impact evaluations; and Meager (??) looks at the impact of

microcredit. Like ?, we show that, in addition to aggregating answers to a given question,

these methods can be used to ask new questions. In particular, BHMs can be used to ex-

plore dimensions of heterogeneity that individual studies cannot, either because they lack

statistical power or because it was not among their original stated goals.

The rest of this paper is organized as follows. Section 2 describes the study sample,

Section 3 presents the methodology, and Section 4 the results. Section 5 concludes.

2 Study sample

The first step in building evidence from multiple studies is to establish inclusion criteria2

for study selection.

To maximize quality while minimizing subjective judgments, we restrict our sample to

lab and field experiments published in refereed journals or the working paper series of the

main research associations (CEPR, IZA, NBER). As experimental analyses of incentives

have started relatively recently, we restrict our search to papers published between 1990

and 2012, when this study began.3

The second set of criteria serves to select studies that can be informative of gender

differences in the response to financial incentives in the workplace. We therefore restrict

our sample to studies where subjects choose effort that is (i) real, as opposed to hypothetical,

and (ii) produces output. Furthermore, we only include studies with at least two treatments,

one of which is unambiguously more high-powered than the other, such that the expected

marginal effect on pay of an increase in performance is larger.

Finally, since we focus on the effort response to incentives, we only include studies

2Summarized in Appendix Table A1.
3A small number of experimental studies have looked at gender differences in the response to performance

incentives since, with mixed results. ? find a larger positive performance response to piece rates in men, ? find
a larger negative response to competitive pay in women, while ? find no significant gender difference in the
response to bonuses.
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in which subjects cannot self-select into incentive schemes, to avoid confounding effects.

We also exclude studies with externalities in production, such as team production and in-

centives, to avoid bringing in vastly different mechanisms like cooperation.might gener-

ate different responses due to gender differences in competitiveness or cooperation, hence

bringing in radically different mechanisms.

We search EconLit, Google Scholar and the working paper series of CEPR, IZA and

NBER for the following combinations of keywords “incentive, productivity, experiment”,

“incentive, effort, experiment”, “performance, pay, experiment” as well as “incentives”,

“performance”, “pay”, “effort”, and “productivity”. The search yields 166 papers, of which

29 passed the inclusion criteria4. For 15 of these, the data was available online or shared

with us by the authors. Among the rest, 7 were not usable either because the authors no

longer had the data or because they did not record gender, and 7 sent us regression results

but not the underlying data.5 Of the 15 papers, two report two experiments – ? and ?.

These are included separately as they meet the inclusion criteria individually6. Table 1

summarizes all included studies.

For each study, we focus on the cleanest test of financial incentives meeting our selec-

tion criteria. In all but one case, this is the paper’s primary analysis; for ? we use data from

the first two preliminary rounds of the experiment as only these satisfy our no self-selection

criterion.

There are 9 lab and 8 field experiments which, together, report on the behavior of 8,791

unique subjects, of which 50.5% are women. In the lab experiments, tasks range from press-

ing key pairs to uncovering a curve or placing sliders, grading exams, stuffing envelopes,

solving multiplication problems or mazes, taking an IQ test or performing counting tasks.

In the field experiments, tasks range from taking or grading exams to applying for jobs, sell-

ing condoms, picking fruits, making deliveries or inspecting consumer electronics. While

the lab experiments generally employ university students in North America or Europe as

subjects, locations and subjects in the field experiments range from high school and uni-

4Appendix Table A3 lists these 29 papers.
5We cannot include these studies, because the BHM requires the full variance-covariance matrix of any

estimation and normalized outcome measures.
6In both papers, the two experiments have distinct control groups.
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versity students in Israel, Canada and Burkina Faso, to unemployed job seekers in Sweden,

hair stylists in Zambia, fruit pickers in the UK, bike messengers in Switzerland and factory

workers in China.

The incentives introduced also vary considerably. Three experiments feature tourna-

ment pay as the high-powered incentive scheme, three others feature bonuses, seven exper-

iments introduce commission or piece rates and the remaining four introduce monitoring

regimes. Control conditions range from fixed pay to a lower prize, commission, piece rate

or monitoring probability.

The diversity in contexts and incentive schemes across studies is essential to identify a

truly universal pattern in the response to workplace financial incentives. It also complicates

comparing incentive power across studies, though we note that the highest monetary value

rewards occur in field experiments. Importantly however, differences in incentive power

should not matter for the primary objective of this paper - to assess whether men and women

respond systematically differently to incentives. In each context, men and women face the

same incentives. Moreover, we test for heterogeneity in the gender difference by incentive

strength and context in sections (4.2) and (4.3) below.

A few included studies collect data on some of the traits in which men and women are

thought to differ, namely risk preferences (???) and social preferences (??). None of these

papers evaluate whether such traits impact the effort response to incentives. ?, however,

find that loss averse subjects drive the effort response to incentives on the intensive margin.

Only one of the studies reports a gender-incentive interaction term in the original paper; ?

mention that the interaction is not significant in the classical sense.

3 Methodology

3.1 Descriptive model of performance

In order to estimate the relative effect of incentives on the productivity of women versus

men, we begin with a descriptive model of the performance of individual i on a task in
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study s ∈ {1, . . . ,S} :

yis = αs +βsGis + γsTis +ηsGis×Tis + εis, (1)

where Gis is an indicator variable for women and Tis for the high-powered treatment. For

instance, if one group is paid fixed wages and the other piece rates, we set Tis = 1 for the

latter. Equation (1) is the non-parametric cell-means regression with respect to gender and

incentives, so αs equals the average productivity of unincentivized men in experiment s;

αs +βs equals the average productivity of unincentivized women; etc. Our primary param-

eter of interest is ηs, the gender-incentive effect, which captures the differential effect of

incentives on women relative to men in study s. If men and women respond similarly to

incentives, ηs equals zero. Hence, even though the treatment dummy Tis does not differ-

entiate between incentive strength of the high-powered treatment across experiments, this

should not affect our core objective, to test whether ηs equals zero.

We aim to understand generalizable differences in the response to incentives, and doing

so entails aggregating across disparate studies. For comparability, we therefore normalize

the outcome variable as ỹis = (yis− ȳs)/σ̂s, where ȳs is the sample mean and σ̂s the sample

standard deviation for men in the control group. Such standardization is common in the

education literature, for instance, to deal with variation in test scores across schools (???).

Furthermore, standardization should not affect our central test, whether the gender differ-

ence in the incentive response is zero. Nevertheless, we provide a robustness check with

alternative standardization below.

For each study we then estimate the vector of parameters, θs = (β̃s, γ̃s, η̃s)
′ on the trans-

formed data:

ỹis = α̃s + β̃sGis + γ̃sTis + η̃sGis×Tis + f (Xis)+ ε̃is, (2)

where f (Xis) are study-specific controls. We aim to replicate each study’s preferred spec-

ification - an OLS regression with study-specific controls in most cases, only adding the

gender-incentive interaction term where necessary7. Appendix Table A2 details the in-

7Accordingly, to replicate the specifications in ???, we estimate OLS regressions, even though the outcome
measure is a binary variable in the first and the data has a panel structure in the latter two studies.
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cluded specifications for each paper. As a robustness check, we also estimate a common

specification for each study, excluding covariates8.

Table 1 shows that OLS estimation of (1) and (2) yields a positive and significant ef-

fort response to incentives in ten experiments, while the gender difference in the incentive

response is significant - and positive - in only two. Without standardization, the effort

response estimates range from −0.98 to 851.56, and from −0.15 to 1.01 only after stan-

dardization.

The vector of parameter estimates, θ̂s = (θ̂s, γ̂s, η̂s), and the associated covariance ma-

trix, Σ̂s, for each study form the inputs in the Bayesian hierarchical model we describe

below.

3.2 The Bayesian Hierarchical Model

Our analysis focuses on the Bayesian hierarchical model for the full parameter vector,

θ = (β ,γ,η), to allow us to explore heterogeneity across studies along the dimension of

potentially correlated parameters. We use the canonical multivariate BHM for aggregating

across studies as described in (?). The BHM assumes that each observed study result, θ̂s, is

estimating its own study-specific effect, θs. These study-specific θs’s are in turn distributed

in the population with mean θ and covariance Σ, where the population hyperparameters θ

and Σ are themselves random variables. Formally:

θ̂s ∼ N[θs,Σs] s = 1, . . . ,S (3)

θs ∼ N[θ ,Σ],

where

Σ =


τ2

β
τβγ τβη

τβγ τ2
γ τγη

τβη τγη τ2
η

 .
8Results in Appendix Figure A7.
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We use the following priors for the hyperparameters:

θ ∼ N[0, 10002] (4)

Σ ∼ diag(σ) Ω diag(σ)

σk ∼ Cauchy(0,2.5), for k ∈ {β ,γ ,η} and σk > 0

Ω ∼ LKJcorr(2)

where N denotes a multi-variate normal distribution, Ω is a correlation matrix and σ is

the vector of coefficient scales (?).The LKJ distribution (?) is a distribution over correlation

matrices, i.e., positive semi-definite matrices with unit diagonals.

The second line embodies a critical assumption: the study-level effects (θ1, . . . ,θS) are

themselves normally distributed in the population with mean θ and covariance Σ. We as-

sume a normal distribution because it aids tractability and has been shown to perform well

in various applications (??). We test the appropriateness of this assumption in Appendix

E and find that the data conform quite well. Even so, our results are best interpreted as

the distribution of incentive effects in the population of contexts in which economists have

been willing to run experiments. The extent to which these settings represent the broader

population points to further questions regarding the placement of experiments and the rep-

resentativeness of empirical work more generally (see e.g., ? and ?).

The key assumption to estimate the joint probability model is exchangeability. Tech-

nically, this means that the joint distribution of (θ1, . . . ,θS) is invariant to permutations of

the indices (1, . . . ,S). It allows us to write the joint distribution of the θs’s as i.i.d. given

hyperparameters θ and Σ. Intuitively, it means there is no information other than the data,

y, to distinguish one study from another. In practice, this assumption is not very restrictive

and can easily be relaxed with partial or conditional exchangeability. If there are study-level

characteristics that one expects to be informative about the parameters of interest, one could

group data together with an additional level of hierarchy or add additional parameters to the

analysis (e.g., expanding the parameter space by including interactions with study type), as

we do below.

Finally, (4) indicates prior distributions for the hyperparameters. We focus on non-
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informative (reference) priors, motivated by the notion that the information we have about

the response to incentives is contained in the data themselves. Our posterior predictions

are largely insensitive to alternative priors, suggesting that there is sufficient information

contained in our data indeed.9’10

Our estimation of BHMs follows closely the procedures described in ? and ? (see

Appendix A for details). The key outputs from this estimation are the simulated posterior

distributions for the hyperparameters, θ and Σ, and the true study-level effects, {θi}S
i=1.

We define ysim as the simulated parameters that could have been observed if the studies in

our sample were replicated and the parameter estimates were distributed according to our

specified probability model. In addition to calculating means and posterior intervals (the

Bayesian analog to confidence intervals), we can also use these simulated distributions to

test other functions of the parameters. For instance, we can calculate cross-correlations of

parameter values drawn from these simulated distributions, to evaluate whether the gender-

incentive effect, η , is greater in contexts with a stronger incentive effect, γ (see section

(4.2)).

The simulated posterior is a joint distribution over not only the population hyperparam-

eters—the average effect of monetary incentives and its dispersion—but also each study-

level effect. That is, our beliefs about the effect of incentives in any given setting are based

not only on the results obtained in that setting but on the results in the other n− 1 similar

settings. This insight—the seeming paradox that in the presence of other information the

best (i.e., lowest mean squared error) estimate of the true effect in any particular context

may not be simply the mean estimate of an internally valid study in that very same con-

text—is first attributed to Stein (?). The Bayesian hierarchical model serves to make this

belief-updating process transparent and precise.

9Reducing the variance of the prior on θ from 10002× I3 to 0.12× I3 changes the median of the posterior
for η by less than 0.001. Even a strongly informed uncentered prior for η (N(−0.1,0.12)) only reduces the
posterior median from 0.068 to 0.049.

10For the LKJ distribution too, the choice of prior has little impact on the posterior distributions. For example,
changing the scale parameter for the LKJ prior from 2 to 1—making correlations across parameters more
likely—does not change the median of the posterior on η (within rounding errors) and moves the correlations
of the posterior predictive distribution on e.g. β and η from −0.37 to only −0.40.
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4 Results

4.1 The response to incentives for men and women

Table 2 summarizes the posterior distribution of the hyperparameters (γ , η , and β , and

the corresponding elements of τ).11 Given the available data and our specified (uninfor-

mative) prior beliefs, it describes the population distribution of (i) the gender difference in

the response to incentives, (ii) men’s response to incentives and (iii) the gender difference

in unincentivized productivity, as well as the estimated standard deviation of each of these

parameters. Because the data are standardized, the unit of measure for the parameters is the

standard deviation of productivity for unincentivized men in each setting.

The table shows that η = 0, embodying the idea that men and women respond equally,

is well within the credible interval. The median and mean of the BHM estimates for the

gender-incentive interaction hyperparameter, η , are 0.068 and 0.066, with a 95%-interval

of [−0.050, 0.173]. The sign of the estimate is positive, suggesting that, contrary to the

implications of gender differences in traits like risk aversion, women respond slightly more

to incentives than men do. Results are robust to standardizing by the full control sample in

a study rather than only men in the control sample.12

Table 2 also shows that the estimated cross-study heterogeneity is relatively low (me-

dian τη = 0.106). Moreover, there is considerable mass in the posterior distribution at

τη ≈ 013. This implies that the estimated gender response difference in study n is highly

predictive of the same in study n+1. That is, despite substantial variation in context, includ-

ing task, location, and incentives, the differences between men and women in the response

to incentives appear to be relatively consistent and consistently close to zero. This implies

that these studies have external validity; knowing that the gender differential is zero im-

plies that the next, hypothetical study is also very likely to find a zero effect. A further

assessment of the heterogeneity and commonality across contexts is provided in Appendix

C, which discusses pooling metrics.

Having established that women and men respond similarly, we are interested in assess-

11Appendix D discusses posteriors of the true study-level effects.
12Appendix B compares BHM estimates with pooling model estimates.
13Full posterior distribution in Appendix Figure A1.
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ing whether they both respond positively. Because our estimate of gender differences is

essentially zero, we will focus on the distribution of γ , the estimated effect of incentives on

male subjects. Men increase productivity by about one-third of one standard deviation in

response to high-powered incentives. As shown in Table 2, the median and mean for the

posterior estimate of γ are 0.356 and 0.357, with a 95%-interval of [0.188, 0.532]. This

is consistent with the main prediction of agency theory and casts doubt on the practical

relevance of crowd-out.

There is substantial cross-study heterogeneity in γ; the median estimate of τγ is 0.295

and values below 0.098 have no mass. This is to be expected because the different studies

use different incentive schemes in different contexts. More studies with the same incentive

scheme are needed to assess whether there is indeed a common response across contexts.

Despite studies in different contexts estimating incentive effects of very different magni-

tudes, incentives unambiguously increase productivity across the sample.

For completeness, Table 2 also reports the estimates of β , the productivity difference

between men and women in the absence of incentives. On average in the population of

experimental settings, women are somewhat less productive. The median and mean es-

timates for β are −0.061 and −0.062. Not surprisingly, given the diversity of contexts

covered by the sample studies, the distribution is quite spread out. The 95%-interval spans

[−0.240, 0.113], and the median for τβ is 0.297.

4.1.1 Predictions

A key advantage of our method is that the findings can be used to predict the response to

incentives in a potential new study (γS+1 and ηS+1). Figure 1 does so by combining the

estimates of γ and η to generate a predictive distribution for men and women. As shown

in the figure, if we were to run another study drawn from the same population of potential

studies and knowing nothing more about the contextual details, we would expect incentives

to increase performance for men by an average of 0.36σ (with an interquartile range from

0.30σ to 0.41σ ) and for women by an average of 0.42σ (with an interquartile range from

0.37σ to 0.48σ ). Comparing the two distributions, the median of the posterior predictive

distribution for women is at the 79th percentile for men.
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We expect the true, context-specific gender difference in the response to incentives to

be negative and at least half as large as the estimated mean effect for men (ηS+1 <−0.18)

in 4.7% of studies and less than the mean effect for men in about 1% of studies. Alter-

natively, if we could rerun the 17 experiments included in this study, maintaining all the

design features including sample size, classical inference would expect to find a negative

and statistically significant (at the 5%-level) gender difference in 2.7% of the replications

and a positive and statistically significant difference in 10%. In other words, 87% of repli-

cations would not be able to statistically distinguish the responses of women and men. In

contrast, replicating the existing set of studies, classical inference would expect to find a

negative and significant effect of incentives in fewer than 1% of cases and a positive and

significant effect in 53%.

4.2 Cross-correlations

As noted above, it is difficult to compare incentive power across experiments because stud-

ies differ in incentive structure and strength as well as context. Accordingly, our descriptive

model of performance features only an indicator variable for higher-powered incentives.

We would, however, like to assess whether the gender-incentive interaction varies with in-

centive power, and in particular, whether the gender difference in incentive responses grows

with incentive power. To do so, we draw values for γ , men’s responsiveness to incentives,

and η , the gender difference in responsiveness, from the posterior predictive distribution,

then plot pairwise combinations in bivariate scatter plots and calculate correlations.

Figure 2 shows that the estimated correlation between γ and η is −0.253, and the es-

timated average gender-incentive effect is consistently positive, albeit small. To the extent

that the incentive response (γ) is stronger when incentive power is greater, as agency theory

predicts, the correlation suggests that the incentive response of men and women becomes

more similar, rather than more divergent, as incentives grow stronger.

A similar test can be implemented with respect to β , the gender productivity gap. The

estimated correlation between β and η is −0.371, with η large and positive when β is

small and negative. Hence, when women perform worse than men with low-powered in-

centives, women respond more strongly to high-powered incentives than men, thus closing
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the productivity gap.. Whatever causes women’s productivity to be less than men’s under

low-powered incentives (e.g. distaste for a task, less complementary inputs), this result

suggests that stronger incentives drive women to make up for this difference with extra

effort.

Finally, the bottom panel of Figure 2 shows that the correlation between β and γ is close

to 0. Thus there is no discernible relationship between the gender productivity gap and the

effect of financial incentives for men.

4.3 Study-level heterogeneity

As a final test, we assess heterogeneity in the distribution of treatment effects with respect to

two study-level characteristics: (1) whether the study was a field or lab experiment and (2)

whether the incentives were tournament-based. To do so, we expand the parameter space

for θ in (3) to allow both the main incentive effect, γ , and the gender-incentive interaction,

η , to vary according to study type by including interaction terms.

Some of the gender differences in behavioral traits have been found to be context depen-

dent, for instance overconfidence (?) and altriusm (???). The literature on gender norms

suggests a possible explanation; differences in behaviors might reflect norm-conforming

behavior rather than innate traits (???). ??? for instance show evidence of gender differ-

ences in aversion to competition, altruism, risk aversion and overconfidence when gender

roles are made more salient. But then, differences in the salience of gender norms between

lab and field studies could give rise to different gender-incentive effects. Furthermore, if

the power of incentives is higher in field experiments, comparing the gender-incentive ef-

fect across lab and field studies may provide a further test of its sensitivity to incentive

power. Field experiments may also expose subjects to more production risk. If women are

more risk averse, and if this risk increases with effort, we may then expect to find a weaker

incentive response in women compared to men in field experiments.

As shown in Figure 3, we find no evidence of systematic differences between field

and lab experiments. While the incentive-gender interaction term is 0.13σ higher for field

experiments, the 95%-interval includes 0 and spans [−0.12σ ,0.38σ ]. This suggests that

there are no substanstial differences in the salience of norms or the exposure to risk, or that

15



any differences are too small to bring about a noticable divergence in the incentive response

of men and women. Any differences in incentive strength between lab and field experiments

are also either too small or not causing the gender difference in incentive responses to

bifurcate substantially.

We also analyze heterogeneity between tournament and non-tournament incentives, mo-

tivated by potential differences in women’s and men’s attitudes towards competition. We

find that the incentive-gender interaction term is 0.22σ lower for tournaments than for non-

competitive incentives, with a 95%-interval of [−1.02σ ,0.56σ ]. Our sample only contains

three tournaments and the parameters are only weakly identifiable, so the results should be

interpreted with caution, but they suggest that further experimentation along this dimension

could be fruitful.

5 Discussion

Performance pay is at the core of agency theory and management practices. Not surpris-

ingly, given this popularity with theorists and practitioners, the effectiveness of various

performance incentives has been tested in several lab and field experiments. In this paper

we use a Bayesian Hierarchical Model to aggregate this evidence to test whether incen-

tives increase performance to the same extent for men and women. We find that incentives

commonly underlying performance pay schemes in the workplace increase performance

for men and women alike across a variety of contexts and for a variety of incentive designs.

This finding suggests that the widespread use of performance pay is unlikely to contribute

to the gender earnings gap directly.

To the extent that women differ in risk aversion, confidence and altruism, our finding

suggests that these differences are not strong enough to generate different responses. One

possible explanation could be that women do not differ in behavioral traits so much as they

engage in norm-appropriate behavior. If the experiments did not activate gender norms, the

resulting absence of norm-appropriate behavior may have given rise to gender-neutral re-

sponses. In a similar vein, if the link between risk and higher effort is either weak or absent

in experiments, we may fail to find gender differences in the response to incentives even if
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women are more risk averse. More research on whether gender norms or risk exposure give

rise to gender differences in the response to incentives would therefore be valuable.

Another reason for the gender-neutral result could be the absence of the selection chan-

nel in the included experiments. Although we assume, following e.g. ?, that the effort

effect drives the selection effect, it may be that other factors influence selection in the la-

bor market. Women might have a distaste for competition (??), or a greater preference for

flexible work hours which may intersect with household composition (???) for example.

Furthermore, men and women may optimally negotiate different compensation contracts in

the labor market if they differ on behavioral traits (?). Here too, more research would be

valuable.

The results also illustrate the usefulness of Bayesian hierarchical models as a tool to

build evidence from existing studies and assess external validity and, in doing so, we con-

tribute to a growing literature in economics (?????). Moreover, like (?), we show that

building evidence from existing studies allows researchers to test for heterogeneity across

subgroups for which individual studies might be underpowered, and to capitalize on the

recent explosion in field and laboratory experiments to answer new questions with existing

data. As such, we see BHMs as a powerful tool to build on existing knowledge and give

directions on what experiments to run next.
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Online Appendix

A Estimation

Our estimation of the Bayesian hierarchical models follows closely the procedures de-

scribed in ? and ?. For clarity of exposition, we describe the univariate model here, which

extends immediately to the full multivariate model. Following (3) above, we assume that

the site-specific effects, ηs, are drawn from a normal distribution with hyperparameters

(η ,τ):

p(η1, . . . ,ηS|η ,τ2) =
S

∏
s=1

N(ηs|η ,τ2).

Applying Bayes Rule, the posterior of the study effects and hyperparameters conditional on

the observed effects can be expressed as:14

p({ηi}S
i=1 ,η ,τ2|y) = p(τ2|y)p(η |τ2,y)p({ηi}S

i=1|η ,τ2,y).

It is relatively straightforward to characterize this distribution, even for extensions to

multiple parameters, using Markov Chain Monte Carlo (MCMC) methods to sample iter-

atively from the component distributions. Intuitively, in each step k, we first simulate τ(k)

from its distribution and then calculate p(τ2|y), where y =
{

η̂i, σ̂ j
}S

i=1 is our data. Using

this draw of τ(k) we then sample p(η |τ2,y) from the normal distribution to obtain η(k). This

is then used to sample p({ηi}S
i=1|η ,τ2,y), generating each η

(k)
j independently. We update

parameters subject to an acceptance rule and then repeat.

In practice, this is easily accomplished using the RStan package for the programming

language R. We use the default HMC/NUTS sampler for Stan, which employs the Hamilto-

nian Monte Carlo algorithm (?) with path lengths set adaptively using the no-U-turn sam-

pler (NUTS; ?). Inference relies on the assumption that for large enough k, the simulated

distribution of
{
{ηi}S

i=1 ,η ,τ2
}(k)

is close to the target distribution p({ηi}S
i=1 ,η ,τ2|y). We

initialize four independent chains for the sampler with random draws from the prior density.

14The marginal posterior of the hyperparameters is typically written as p(η ,τ2|y) ∝

p(η ,τ2)∏
S
s=1 N(η̂S|η ,σ2

s + τ2), however for the normal-normal model we can simplify by integrating
over η leaving p(η ,τ2|y) = p(η |τ2,y)p(τ2|y). See ? for details.
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We then let each chain run for 14,500 iterations, discarding the first 2,000 simulations as

warm-up. These parallel chains are then tested for mixing—the between-chain and within-

chain variances should be equal—and stationarity. After confirming that the chains are well

behaved, we combine them to generate the simulated posterior distributions for both the

hyperparameters, η and τ2, as well as the true study-level effects, {ηi}S
i=1.

B Comparison with pooling model

To motivate the Bayesian hierarchical model that we estimate, it is useful to consider the

pooling model as an alternative approach to aggregating empirical evidence, where we fo-

cus on univariate models for ease of exposition. The pooling model (in statistics, often

referred to as the classical fixed-effects model) assumes that each individual study is esti-

mating a common effect, η . That is, observed differences in study results are solely due to

idiosyncratic variation and not differences in the sample population, type of incentive, or

outcomes studied. This model has the following form:

η̂S ∼ N[η ,σ2
s ] s = 1, . . . ,S. (5)

This approach is quite common and easy to estimate by what is often referred to as the

inverse-variance method. The estimate of the common effect η is given by the precision-

weighted average of the individual study effects,

η̂
Pool = ∑wPool

s ηs/∑wPool
s , (6)

where the weight wPool
s = σ̂−2

s is the precision of our estimate for η̂S. In the presence of

cross-study heterogeneity, the estimated variance of η̂Pool will be too small.

B.1 Pooling model results

The pooling estimate of the gender-incentive interaction hyperparameter is, with a mean

of 0.077 (s.e.: 0.038), of similar magnitude as the BHM estimate. Not surprisingly there-

fore, the BHM estimate of cross-study heterogeneity is relatively low (median τη = 0.106),
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which rationalizes the similarity of the BHM and pooling estimate. Yet, despite this simi-

larity across studies, assuming away heterogeneity, as is done in the pooling model, leads

to standard errors on η̂ that are too small. While the pooling model therefore suggests there

is a positive gender difference in the response to incentives, zero remains in the credible

interval for the BHM, which allows for and estimates heterogeneity.

The pooling estimate of the incentive effect hyperparameter γ , in contrast, is smaller

than the posterior BHM estimate. With a mean of 0.276 (s.e.: 0.031), the 75th percentile is

smaller than the 25th percentile of the BHM estimate. This difference can be explained by

substantial cross-study heterogeneity. Indeed, with a median estimate of τγ of 0.295 and no

mass on values less than 0.098, we can easily reject the pooling hypothesis.

C Pooling Metrics

A natural question to ask when synthesizing findings from comparable studies is, should we

believe that each is contributing to a common answer regarding the effect in the population

(τ2 = 0) or should we treat each study as a stand-alone answer to a distinct question (τ2→

∞). Models that explicitly recognize and quantify heterogeneity allow for a potentially more

realistic intermediate answer.

It may be intuitive to think about the degree of pooling in terms of effective sample size.

That is, when estimating the population hyperparameters, do we have 24,060 observations

or 17? Or, in the extreme case of no pooling, is the notion of a population mean not well-

defined, leaving us with effectively no observations with which to estimate it?

A range of pooling diagnostics and metrics have been developed to quantify the degree

of commonality across studies. If each study is estimating a common effect, then pooling

the data across studies will produce a better estimate for the parameter in each experiment

(?). The classical test of the hypothesis that the studies are all estimating a common effect

yields a χ2-statistic ∑
S
s=1{(η̂s− η̂Pool)2/σ̂2

s }, which is distributed with S− 1 degrees of

freedom.

However, pooling need not be an all or nothing proposition. Our estimates of τ2 and the

observed σ̂ks can be combined to give some sense of the extent to which observed effects
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are site-specific versus representing a common effect. First, note that we can characterize

the mean of the Bayesian posterior as a shrinkage estimator:

η̂
Post
s = (1−λs)η̂k +λsη , (7)

where λs ∈ [0,1] can be thought of as a pooling factor that represents the degree to which

the estimates are pooled towards the estimated population mean (η) rather than based on

their observed value.15 When τ2 is large relative to σ2
s , we are approaching the no pooling

case in which our estimate for the effect in study s will be largely determined by its own

separate estimate; λs will be close to zero. Intuitively, when λs is small there is little a

study in one context can tell us about the expected effect in another. In contrast, if τ2 is

small relative to σ2
s , λs will be close to 1 and the appropriate estimate will be close to the

population mean irrespective of the site-specific estimate. The pooling model corresponds

to τ2 = 0.

? show that in the single parameter model when η and τ2 are known, equation (7)

characterizes the analytical mean of η̂s with λs =
σ2

i
σ2

i +τ2 . This suggests two alternative study-

level pooling statistics: λ 1
s =

σ̂2
i

σ̂2
i +τ̂2 , that is, the variance pooling metric calculated from the

posterior means of the error terms, and λ 2
s =

η̂POST
k −η̂k
η−η̂k

, a shrinkage metric that directly

measures the extent to which the posterior mean of the study-level effect is determined by

the posterior mean of the population effect. Note that in the multivariate model, λ 2
s is not

restricted to the interval [0,1]. Correlation with other parameters makes it possible that the

true effect in a study is outside the interval between the observed effect and the population

mean.16

? generalize this idea to develop a common pooling factor that summarizes the extent

to which estimates at each level of a hierarchical model are pooled together based on level-

specific factors rather than based on lower-level or study-specific estimates. In the case of

15It is more common in the statistics literature to see this formulation expressed in terms of a shrinkage factor
equal to 1−λs. Since we are primarily interested in the extent to which study-level results can be thought of as
providing information about a population mean, we find it more natural to follow ? and focus on the degree of
pooling.

16For example, suppose we observe a strong negative correlation between β and η , implying that women are
relatively more responsive to incentives in settings when women’s unincentivized performance is comparatively
less. All else equal, when evaluating incentives for a task when women are at a comparative disadvantage, we
will tend to have a higher posterior belief for the gender difference in the response to incentives.
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our two-level model, they define the pooling factor as

λ = 1−
V K

s=1E(εs)

E(V K
s=1εs)

, (8)

where E represents the posterior mean, V is the finite sample variance operator (i.e., V n
i=1 =

1
n−1 ∑(xi− x̄)2), and εs = ηs−η . They suggest that the value of 0.5 provides a clear ref-

erence point. If λ < 0.5 there is more information at the study level than at the population

level. At the extreme of λ = 0, there is no pooling and the broader population contributes

no information to the true effect in a particular setting. When λ > 0.5, there is more infor-

mation at the population-level, with local estimates being fully pulled toward the population

mean at the extreme of λ = 1.

Finally, we can look directly at the marginal posterior density of the variance hyperpa-

rameter, p(τ|y). This is useful in that study-level posterior means can easily be calculated

as functions of τ and the posterior uncertainty about τ and ηs displayed visually.

C.1 Estimates

Consistent with the posterior estimates for each of the τ parameters reported in Table 2 in

the paper and depicted in Figure A1 in the Appendix, the pooling metrics (Appendix Table

A4) demonstrate substantia; commonality across studies for the gender-incentive interac-

tion term (η). The common pooling factor of 0.806 means that with respect to any given

study, there is relatively more information at the population level, that is, from the other

n− 1 studies, than from the individual study itself. The average variance pooling factor

across the studies is 0.440, suggesting that along this dimension the studies in our sample

have reasonably high external validity. Results in one context have a substantial influence

on our beliefs in another.

In contrast, the results for the incentive (γ) and gender (β ) main effects exhibit more

local-level than population-level information. The common pooling factors are 0.252 and

0.275, respectively, suggesting that while each experiment informs and is informed by be-

liefs about the population mean, most of the information about these effects must come

from the context itself.
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This is perhaps not surprising. The studies in our sample exhibit tremendous variation

in both the type of task and the form of incentives. What is, however, surprising is that men

and women respond similarly to financial workplace incentives across such a diverse set of

contexts.

D Posteriors

The Bayesian hierarchical model provides a precise and transparent method to incorporate

data from other studies into our beliefs regarding the true effect in a particular setting. As

noted in the main text, the best (i.e., lowest mean squared error) estimate for the true effect

in a particular context is typically not equal to the mean estimate of a single, internally

valid study in that context. Figures A2, A3, and A4 compare the posterior predicted distri-

butions for each of the main parameters, γ,η ,β , to the original estimates from the studies

themselves. The posterior estimates are pulled towards the population mean to the extent

the studies appear to be estimating a common parameter, as tempered by the precision of

the study-specific, internally valid estimate and other available information such as the es-

timates of covarying parameters. The common and predictable pattern is that the posteriors

for each study mostly lie between the original and the hyperparameter estimates. What is

most surprising is that some of the gaps, that is, the degree of pooling, are quite large. This

is most evident for the incentive-gender interaction (η), where the common pooling fac-

tor is large and some of the study-level estimates quite imprecise. However, there are still

substantial differences between the posterior and the site-specific estimates for the other

parameters in several studies.

Take, for example, the estimated effect of incentives (γ) in Bandiera et al. (2005). As

shown in Figure A3, the parameter estimate in this study is large, +0.86σ , with a standard

error of 0.16σ . However, with a 95%-credible interval spanning [0.55,1.17], there remains

quite a bit of uncertainty about the magnitude of the effect. Furthermore, the estimates are

substantially larger than the mean in all but four other studies. The mean of the posterior

distribution for γs is +0.74σ , still a very large effect but pulled substantially towards the

population mean of +0.36σ . The degree of pooling depends primarily on the uncertainty of

24



the local parameter estimate and the estimated distribution of the population hyperparameter

(γ,τγ ).

Figure A5 demonstrates the relationship between the estimated standard deviation of

the hyperparameter (τη ) and the posterior mean of ηS, the study-specific effect. Here, we

return to the gender-incentive interaction term, our primary outcome of interest. The upper

half of the figure plots the posterior distribution of ηs for each study conditional on τη . If

τη were 0, each study would be estimating a common effect and the posterior for each ηs

would be equal to our posterior estimate of the population mean. As τη increases, the extent

to which the posterior for any study is pooled toward the population mean diminishes, and

as τη → ∞ the posterior for each study tends towards the site-specific estimate.

Figure A5 shows that the posterior estimates for each ηs diverge rapidly as τη increases.

For values of τη above 0.5 the posteriors for each study are very close to the site-specific

estimate. The lower half of Figure A5 overlays the posterior distribution of τη , which has

a mean estimate of 0.114. The substantial degree of observed pooling can be seen at the

corresponding level of τ in the upper half of the figure.

E Model Checking

After computing the posterior distribution of all parameters, it is essential to assess the

fit of our model to the observed data. Using the posterior distributions, we can test how

well the predictions of our model fit observed but unmodeled features of the data. It is, of

course, possible alternative probability models could also fit our data but generate different

posterior predictions. Therefore, we will also test the sensitivity of our posterior predictions

to alternative assumptions. Our aim is not so much to accept or reject the model, but to

understand the limits of its applicability.

The key idea behind posterior predictive checking is that data replicated under our esti-

mated model should look similar to the observed data (?). We can construct test statistics,

T , from any function of the data and then calculate the Bayesian p-value for each of these

statistics:

p = Pr
(
T (ysim,θ)≥ T (y,θ |y)

)
.
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These p-values can be directly interpreted as the probability that the test statistic in the

posterior distribution, ysim, is larger than in the observed data. Thus, p-values near 0 or 1

indicate that the statistic observed in the data would be unlikely to be seen in simulations

based on our specified probability model.

Figure A6 plots the observed order statistic for each of the model parameters against

the mean from the simulated posterior distribution17. In the case of the gender-incentive

interaction term, the posterior predictive distribution matches the observed data very well,

including at the extremes. Although the settings for the included studies were certainly not

chosen at random from the population of possible study sites, our hierarchical model that

treats the study-level parameters as if they were normally distributed around a population

mean does a remarkably good job of capturing important features of the data. The model

also performs reasonably well for the gender (β ) and incentive (γ) parameters, with the

exception of slightly fatter tails in the distribution of γ .

17Table A5 in the Appendix reports the associated Bayesian p-values.
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