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Abstract

A single-product retailer faces bargain hunting consumers whose willingness to pay
incorporates sensations of gain and loss driven by differences between the observed
price and prices they rationally expect in the spirit of Koszegi and Rabin [2006]. We
examine the Bayesian Nash equilibrium (non-commitment) pricing solution in which
(i) the retailer maximizes profit given consumers’ beliefs and (ii) consumers’ beliefs are
consistent with the retailer’s choice. We show two novel results: First, a pure-strategy,
uniform-price, equilibrium does not exist when consumers are bargain hunters who value
gains more than losses. Second, in this case there exists a mixed strategy equilibrium
and all mixed strategy equilibria involve the same retailer profit. The equilibrium
retailer profit is (weakly) lower than in the absence of reference effects.
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1 Introduction

“It’s not what I spent, it’s what I saved.” In the US 83 percent of consumers are bargain

shoppers and 23 percent sometimes buy things they don’t need just because they’re on

sale, according to a recent Consumer Reports National Research Center study.1 Evidence

in other countries is similar. 84 percent of the British population are self-confessed bargain

hunters with one in four adults admitting to losing their temper with more than one in ten

admitting to having fought with other shoppers.2 When bargain hunting becomes compulsive

psychiatrist have attached the term compulsive buying behavior (CBB). Koran et al. [2006]

estimate the prevalence of CBB in the US population to be 5.8%. Black [2007] reports that

patients with compulsive buying disorder, anecdotally, often report buying a product based

on its attractiveness or because it was a bargain.

This paper examines retail pricing decisions with bargain hunting consumers. We consider

a linear demand framework augmented with an expectation-based reference-effects similar

to Koszegi and Rabin [2006, 2007, 2009]. Consumers’ willingness to pay is affected by

differences between the observed price and prices they rationally expect. Motivated by

empirical evidence, see Mazumdar et al. [2005] and Gentry and Pesendorfer [2018], we study

the novel case in which consumers willingness to pay responds to the magnitude of the

bargain. We say that consumers are bargain hunters when willingness to pay responds

more strongly to perceived gains than to perceived losses: as may be true, for instance,

in contexts such as retail shopping, where savings from “sales” are saliently highlighted

but losses on non-sales are not, and where consumers are known to respond strongly (and

perhaps excessively) to perceived bargains. We analyze the equilibrium pricing decisions of a

single-product retailer (monopolist) facing consumers with this willingness to pay function.

Consumers make rational purchase decisions given their beliefs. Beliefs are required to be

consistent with the monopolist’s pricing decision. We analyze the Bayesian Nash equilibrium
1https://www.consumerreports.org/cro/news/2014/04/america-s-bargain-hunting-habits/index.htm
2The Independent on 22 November 2017, article entitled “Average Brit spends nine months of their life

bargain hunting.”
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solution. We contrast our main findings with an alternative setting in which the monopolist

can commit to a distributional pricing policy ex ante.

A number of papers study pricing decisions when consumers are loss averse in the

expectations-based paradigm due to Koszegi and Rabin, see Heidhues and Koszegi [2018]

for a survey. Loss aversion can reduce or eliminate price variation.3 Heidhues and Koszegi

[2008], who consider oligopolistic competition in the Salop circular model with loss averse

consumers, show that the same price is a Bayesian Nash equilibrium for a range of marginal

costs giving rise to focal equilibria. The same price equilibrium emerges as loss aversion

introduces a concave curvature into the demand curve, with a kink at the point where loss

aversion kicks in initially as pointed out by Sibly [2002]. The resulting demand curve is

reminiscent of the kinked demand literature, see Hall and Hitch [1939], Sweezy [1939], and

Maskin and Tirole [1988] for a game theoretic analysis.

In contrast to the loss aversion literature, this paper provides novel results with expectation-

based price reference effects when consumers are bargain-hunters: First, a uniform price

policy does not constitute an equilibrium. The usual law of one price fails to hold. The

main reason for this novel result is that bargain-hunting consumers assign incremental value

to prices slightly below the expected uniform price introducing a local convexity in demand

and in profit. For any uniform price equilibrium candidate, there is a profitable deviation

by lowering (or increasing) the price slightly.

Second, we show that an equilibrium in mixed strategies exists and that all mixed strat-

egy equilibria involve the same monopoly profit and aggregate reference beliefs. These

mixed strategy equilibria have the feature that equilibrium profit is (weakly) lower than

monopoly profit in the absence of reference effects. Interestingly, there are multiple individ-

ual consumer-level beliefs that generate the uniquely determined aggregate reference beliefs.
3Heidhues and Koszegi [2014] and Rosato [2016] study monopolistic markets under loss aversion, in the

product and price dimension, and when the seller can commit to stochastic pricing policy ex ante. They show
that a mixed pricing distribution, that has high and low prices, is an optimal commitment solution because
low prices induce expectations of purchase. Yet mixed pricing is not optimal, even under commitment, when
reference effects arise in the price dimension only as we shall illustrate.
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We provide four examples of individual reference expectations. The mixed pricing strategy

equilibrium accords well with the related empirically well-documented evidence on random-

ized price promotions in retailing, see Pesendorfer [2002] and Seim and Sinkinson [2016],

as well as the HiLo pricing phenomenon described in Ho et al. [1998], see Fassnacht and

Husseini [2013] for a recent survey.

Third, we contrast this mixed strategy pricing equilibrium with the alternative commit-

ment solution arising when the monopolist can commit to a pricing distribution ex ante. We

show that this commitment solution also involves a distribution of prices, but whose support

is shifted to the right relative to the non-commitment pricing equilibrium. Monopoly profit

is increased and exceeds the canonical monopoly profit absent reference effects.

Building on these results, we analyze deadweight loss of monopoly in the presence of ref-

erence effects, defined as the usual Harberger triangle between demand and marginal costs.

We distinguish long-run deadweight loss, in which consumers’ reference point is the compet-

itive price, from short-run deadweight loss, in which the reference point is the distribution of

equilibrium prices. We show that if consumers are pure bargain hunters who like gains but

do not dislike losses, then short-run deadweight loss exceeds canonical monopoly deadweight

loss, which in turns exceeds long-run deadweight loss.

We re-consider the case of loss averse consumers and show that, as expected, uniform

prices do emerge in equilibrium. In fact, there are multiple uniform price equilibria. Equilib-

rium prices are always weakly lower than the canonical monopoly price, with strict inequality

if consumers strictly like bargains. With loss aversion the commitment solution involves a

uniform price which equals the canonical monopoly price without reference effects, which

again is (weakly) higher than in the Bayesian Nash equilibrium.

Retail shopping consumers are known to react strongly (and perhaps excessively) to

perceived price gains, as exemplified by ’sales’ periods, which is well documented in consumer

surveys. There is a body of psychological studies exploring the related compulsive buying

behavior, see Black [2007] for a survey. Armstrong and Chen [2020] study the implications
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of discount pricing which is that consumers are more likely to buy if they perceive the price

as a bargain relative to the earlier price.

There is an extensive marketing literature arguing that reference effects are important

in retail markets. This literature includes both behavioral and quantitative branches; see,

e.g., Mazumdar et al. [2005] for a detailed review of both branches.4 A series of quantita-

tive studies within the internal-reference-price paradigm has found evidence consistent with

both bargain-hunting and loss-averse behavior. Bargain-hunting is found more important

than loss-aversion for coffee, peanut butter, liquid detergent, and tissue products in Krish-

namurthi et al. [1992] and Briesch et al. [1997]. Gal and Rucker [2018] review the empirical

evidence on loss aversion more broadly and conclude that the evidence does not support that

losses, on balance, tend to be any more impactful than gains. Mukherjee et al. [2017] find

that the monetary value of the item in question matters when measuring bargain hunting and

loss aversion, with potential losses never looming larger than gains for low monetary values

in their experiments. Gentry and Pesendorfer [2018] analyze household ketchup purchases

within a dynamic framework incorporating expectations-based reference effects, finding ev-

idence of bargain hunting in this context. Insofar as they represent over-weighting of gains

relative to losses, phenomena such as loss-leader pricing and excessive search may also be at

least tangentially consistent with bargain-hunting behavior.

Section 2 describes our model and introduces the equilibrium concept. Section 3 starts

with a characterization of the Bayesian Nash equilibrium played between the monopolist and

consumers when consumers are bargain hunting and value gains more than losses. We then

contrast the Bayesian Nash equilibrium outcome with the commitment solution in which
4Broadly, work within marketing has conceptualized reference effects in terms of internal reference prices:

inner reference points, formed on the basis of past experience, against which consumers judge prospective
purchase prices. Prices below this reference point are perceived as gains, while prices above are perceived
as losses. The internal reference price literature has shown that the nature in which the internal reference
effect is formed plays an important role in shaping firm pricing behavior, pushing firms toward focal, mixed,
or cyclical pricing. For example, Kopalle et al. [1996] consider a multi-period setting in which the internal
reference price is defined as the most recent purchase price. They show that cyclical pricing can emerge
when consumers experience gains or losses vis-a-vis the most recent purchase price. In contrast to this
internal reference price literature, we follow the expectations-based paradigm of Koszegi and Rabin [2006,
2007, 2009], in which the reference expectations are rational and part of the equilibrium.
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the monopolist can commit to a pricing distribution ex ante. Finally, we illustrate that

the dead-weight loss associated with the Bayesian Nash equilibrium tends to be lower than

that of the canonical monopoly solution without reference effects. Section 4 examines the

Bayesian Nash equilibrium played between the monopolist and consumers when consumers

are loss averse. Section 5 concludes. All technical proofs are given in the appendix.

2 Framework

This section introduces our demand model with bargain hunting consumers, describes the

monopoly problem, and defines the equilibrium concepts. We then provide an equilibrium

existence result.

2.1 Linear demand with bargain hunting consumers

Our model considers a linear demand function for one product augmented with reference de-

pendent price effects. This linear demand function can be derived from a stochastic consumer

level utility model in which the willingness to pay consists of a random term augmented with

reference effects. To see this derivation, assume that consumer i ∈ N has indirect utility of

purchasing one unit at price p given by

αi − bp+ r(p, Fi),

where consumer i’s type αi is an i.i.d. error drawn from a uniform distribution on [−a, a], b is

the slope coefficient for price p, and r(p, Fi) is a reference dependent utility component to be

specified shortly, evaluated by comparing the purchase price p to the reference distribution

Fi. Following Sakovics [2011] we can interpret the reference effect r(p, Fi) as influencing a

consumer’s willingness to pay. The indirect utility of not buying is normalized to 0. The

total mass of consumers equals 2a.

Following Koszegi and Rabin [2006], we specify r(p, Fi) as follows:
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r(p, Fi) =

∫
ρ(R− p) dFi(R), (1)

where ρ(·) is a continuous, weakly increasing gain-loss function. Intuitively, if consumer i

expects a single price R with certainty, then r(p, Fi) simply equals the willingness to pay

gain or loss ρ(R − p) associated with a deterministic monetary gain or loss of size R − p.

A ’bargain’ price p, lower than R, increases the willingness to pay, while a ’rip-off’ price p,

above R, reduces the willingness to pay. With multiple prices in the support of Fi, r(p, Fi)

equals the gain-loss in willingness to pay ρ(R − p) induced by the actual price p relative to

each potential price R in the support of Fi, averaged with respect to reference measure dFi.

We assume that the idiosyncratic taste shock αi does not affect the reference expecta-

tion Fi. This arises when the reference expectation Fi is formed before realizations of the

individual taste shock αi are observed. The expected consumer i demand can be calculated

by taking expectation over the taste shock. It equals D(p, Fi) =
a−bp+

∫
ρ(R−p) dFi(R)

2a
at inte-

rior demand prices p. The expected demand at price p equals zero when consumer i does

not buy at the high taste shock, a − bp + r(p, Fi) < 0, and equals one when consumer i

buys at the low taste shock, −a − bp + r(p, Fi) > 0. When demand at price p is interior

for all i, we obtain aggregate expected demand by summing over all consumers i ∈ N as

2a
N

∑
i∈N

a−bp+
∫
ρ(R−p) dFi(R)

2a
. As the individual reference effect r(p, Fi) is linear in Fi, we may

rewrite aggregate expected demand as a linear demand curve augmented with an aggregate

reference effect:

D(p, F ) = a− bp+

∫
ρ(R− p) dF (R),

where F = Ei[Fi] denotes the average of the reference distributions Fi across individuals.

The aggregate reference distribution F is the distribution obtained by first sampling an indi-

vidual i at random from the population, then sampling R at random from Fi. Observe that,

so long as demand at price p is interior for all i, aggregate demandD(p, F ) is completely char-
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acterized by the aggregate reference distribution F . In what follows, we therefore frame our

analysis primarily in terms of the aggregate reference distribution F , and only occasionally

involve the individual reference distributions Fi.

Our main analysis follows Heidhues and Koszegi [2008, 2014] and Spiegler [2012] in spec-

ifying the reference function ρ(x) as piecewise linear, with a potential kink at zero to accom-

modate the fact that consumers may weigh gains and losses differently:

ρ(x) =


δ+x if x ≥ 0;

δ−x if x < 0,

where the non-negative parameters δ+ and δ− describe the changes in willingness to pay

that consumers associate with perceived gains and perceived losses, respectively. We say

that consumers are bargain hunting if they weigh gains more heavily than losses, δ+ > δ−,

and loss averse if they weigh losses more heavily than gains, δ+ < δ−.

Let p and p̄, respectively, denote the infimum and supremum prices in the support of

the reference distribution F . Substituting for r(p, F ) from (1), plugging in our assumed

piecewise linear form for ρ(x), and simplifying, we obtain our primary expression for the

demand function D(p, F ):

D(p, F ) = a− bp+ δ+

∫ p̄

p

(R− p) dF (R) + δ−
∫ p

p

(R− p) dF (R). (2)

Figure 1 illustrates the interaction between direct price effects, reference expectations F ,

and demand in two special cases of this model. In Panel (a), we consider a case in which

consumers are pure bargain hunters, characterized by parameters a = b = δ+ = 1 and

δ− = 0. We plot the demand curve implied by a continuous reference distribution F defined

on [0.35, 0.5], which in this case is also the equilibrium reference distribution characterized

in Proposition 3 below. For comparison, we also plot two benchmark demand curves based

on alternative reference expectations. The first of these arises when consumers expect the
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Figure 1: Demand with reference-dependent willingness to pay
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canonical monopoly price pm = 0.5 with certainty. The second is the long run demand

curve that would arise after consumer beliefs update to reflect the deviation price p, which

corresponds to the canonical linear demand curve a− bp.

Meanwhile, Panel (b) of Figure 1 illustrates demand when consumers are loss averse, here

illustrated at parameters a = b = δ− = 1 and δ+ = 0.5. We plot three demand curves in

this figure, induced by three sets of reference beliefs: the first arising when consumers expect

the canonical monopoly price pm = a
2b

with certainty, the second arising when consumers

instead expect the price R = pm

2
= a

4b
with certainty, and the third the canonical linear

demand curve a− bp, which as above also reflects the long-run demand curve after reference

beliefs F update to reflect the monopolist’s deviation price p.

Inspecting Figure 1 illustrates three important features of this demand model. First,

if consumers expect a constant reference price R, both bargain hunting and loss aversion

induce kinks in short-run demand at the reference price R: outward if consumers are net

bargain-hunting, inward when consumers are net loss averse. In contrast, if the reference

distribution F is continuous, then the corresponding demand curve transitions smoothly

from a slope of −b − δ+ at prices p ≤ p to a slope of −b − δ+ at prices p ≥ p̄. Second,

shifting the reference point—here from R = a
2b

to R = a
4b
—shifts consumers’ entire schedule

of willingness to pay. Third, given any set of reference expectations, the short-run demand

curve is substantially more price-elastic than the long-run demand curve. As we will see in

Sections 3 and 4.2, these effects have important implications for pricing, particularly in the

absence of commitment.

2.2 The monopolist’s pricing problem

For simplicity we assume the monopolist’s marginal cost c equals average cost and is zero.

Thus, taking aggregate reference expectations F as given, monopoly profit at price p is given
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by the product of price and demand,

π(p, F ) = p ·D(p, F )

The monopolist’s problem is to select prices that maximize profit when taking consumers’

reference expectations into account. The monopolist adopts a pricing policy which may in

general involve a distribution of prices G defined on the support S ⊆ R.

Consumers have beliefs about the monopolist’s pricing policy G and form their individual

reference expectations Fi based on these beliefs. We require consumers’ beliefs about prices

to be consistent with the monopolist’s actual pricing policy G. Specifically, we require that

for each consumer i, the individual reference distribution Fi is absolutely continuous with

respect to the monopolist’s pricing policy G:

Fi � G, (3)

This formulation is consistent with a personal equilibrium as defined by Koszegi and Rabin

[2006], in which Fi is derived from consumers’ rational forecasts of Fi given G, accounting

for the possibility that consumers weigh prices differently than the monopolist. For example,

if consumer i weighs prices with respect to their ex ante probability of purchasing at those

prices, then

Fi(p;G) =

∫ p

p

[
D(p, Fi)/

∫ p̄

p

D(x, Fi) dG(x)

]
dG(p) ∀p ∈ S ,

where the function D(p, Fi)/
∫ p̄
p
D(x, Fi) dG(x) describes the purchase weights, which is the

specific notion of reference used by consumer i. Alternatively, if consumer i weighs prices in

the same way as the monopolist, then Fi = G. The former specification assumes, paralleling

Koszegi and Rabin [2006] and Heidhues and Koszegi [2008, 2014], that consumers form price

beliefs using prices they rationally expect to pay, while the latter assumes, paralleling Spiegler
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[2012], that consumers form price beliefs using prices they rationally expect to see. These

are the two leading special cases we consider below. Our analysis also applies to any other

model of reference beliefs satisfying the consistency requirement (3).

2.3 Solution concepts

In solving for the monopolist’s price distribution G, we consider two solution concepts: one

with commitment and the other without. The no commitment solution requires all prices in

the support S of G to be optimal given aggregate reference expectations F , so that there is

no incentive for the monopolist to deviate from the pricing plan G. We can view this as a

Bayesian Nash equilibrium between the monopolist and consumers:

Definition 1. A Bayesian Nash Equilibrium (BNE) is a price distribution G for the mo-

nopolist, together with a reference distribution Fi for each consumer, such that (i) for every

consumer i, Fi � G, and (ii) G maximizes the monopolist’s profits taking the aggregate

reference distribution F = Ei[Fi] as given.

An alternative solution concept is the commitment solution, in which the monopolist can

commit to a pricing policy ex ante. In this case, the monopolist chooses a price distribution

Gc to maximize expected profits, accounting for the effect that Gc has on consumer reference

expectations:

Definition 2. A commitment solution is a price distribution Gc for the monopolist, together

with an induced reference distribution F c
i (Gc) for each consumer, such that (i) for each

consumer i, F c
i � Gc, and (ii) letting F c(Gc) = Ei[F

c
i (Gc)] denote the aggregate reference

distribution, the price distribution Gc maximizes the monopolist’s expected profit:

Gc = arg max
G

∫
π(p, F c(G)) dG(p).

Note that in this case the monopolist may set prices p′ which are not optimal, in the
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sense that p′ /∈ arg max π(p, F c). The monopolist therefore requires a commitment device to

ensure that all prices in the support of Gc are indeed chosen.

Existing work on monopoly pricing under reference dependence has focused mainly on

commitment solutions: see, e.g., Spiegler [2012] and Heidhues and Koszegi [2014] among

others. In contrast, we focus mainly on Bayesian Nash equilibrium, referencing the commit-

ment solution primarily for comparison. In retail markets, where all consumers face identical

prices, it not clear what formal commitment devices might exist, although informal consider-

ations such as consumer learning could generate a flavor of commitment as noted by Spiegler

[2012]. In other settings, explicit commitment may be more reasonable. For example, cat-

egory pricing for opera tickets allows the monopolist to commit to an allocation of seats at

ex ante specified category prices. To the extent that seat quality differences are small, this

ex ante published pricing plan is a commitment device.

2.4 Existence

Before turning to our main analysis, which specializes the reference utility function ρ(·) to be

piecewise linear, we establish a general result on existence of both the BNE and commitment

solutions in our demand context. We say that a BNE (respectively commitment solution)

exists if there exists a solution satisfying Definition 1 (respectively Definition 2) when the

monopolist is restricted to prices contained in any bounded interval in R. Adapting standard

arguments due to Glicksberg [1952], we then obtain the following result, proved formally in

the appendix:

Proposition 1. Let the support of G be contained in the interval
[
p, p
]
, and suppose that,

for each individual i, the reference distribution Fi is continuous (under the weak∗ topology)

in the pricing policy G. Then both the BNE and commitment solutions exist.
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3 Equilibrium with bargain hunting consumers

This section analyses the Bayesian Nash equilibrium of the pricing game between the mo-

nopolist and consumers when consumers are bargain hunters who value gains more than

losses: i.e. cases with δ+ > δ− ≥ 0 if ρ(x) is piecewise linear. We begin by showing that,

in this case, no pure strategy equilibrium exists. Hence the monopolist will not adopt a

uniform-price policy facing bargain hunting consumers. We then characterize mixed strat-

egy equilibria of the pricing game, showing that all equilibria involve the same aggregate

reference beliefs F = Ei[Fi]. Finally, we contrast this mixed strategy equilibrium with the

commitment solution described in Definition 2 and examine welfare effects.

3.1 No pure strategy equilibrium with bargain hunting consumers

We first show that a pure strategy equilibrium does not exist when consumers are strictly

bargain hunting. Thus, a single (uniform) monopoly price is not optimal. This result in fact

obtains whenever, locally around 0, consumers values gains more than losses, in the sense

that the gain-loss function ρ(x) has an upward kink at zero. Given our piecewise linear form

for ρ(x), this is of course equivalent to the condition that δ+ > δ−. But we state the result

more generally as follows:

Proposition 2. If ∂ρ+(x)
∂x

∣∣∣
x=0

> ∂ρ−(x)
∂x

∣∣∣
x=0

, then there does not exist a pure strategy Bayesian

Nash equilibrium.

The idea of the proof is to show that it cannot be optimal for the monopolist to set a

uniform price p∗. Optimality requires that the profit is necessarily both non-decreasing as

prices approach p∗ from the left, i.e. limp↗p∗∂π(p, F )/∂p ≥ 0, and non-increasing as prices

approach p∗ from the right, i.e. limp′↘p∗∂π(p, F )/∂p ≤ 0. But if the monopolist sets a

uniform price p∗, then by absolute continuity of Fi in G consumers must expect this price
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with certainty. Hence the left- and right-hand side derivatives above simplify to

limp↗p∗∂π(p, F )/∂p = a− 2bp∗ − ∂ρ+(x)

∂x

∣∣∣∣
x=0

· p∗ ≥ 0,

limp′↘p∗∂π(p′, F )/∂p = a− 2bp∗ − ∂ρ−(x)

∂x

∣∣∣∣
x=0

· p∗ ≤ 0.

These inequalities can hold simultaneously only if ∂ρ+(x)
∂x

∣∣∣
x=0
≤ ∂ρ−(x)

∂x

∣∣∣
x=0

, contracting the

hypothesis of Proposition 2. Hence, when consumers value gains more than losses in a

neighborhood of zero, no pure strategy Nash equilibrium exists.5

Intuitively, given any candidate p∗ for a uniform-price equilibrium, local bargain hunting

behavior by consumers will induce a local convexity in the monopolist’s profit function at

p∗. Hence the monopolist will always be able to gain either by setting a price slightly below

p∗, or by setting a price slightly above. We illustrate this fact for the canonical monopoly

price p∗ = pm = a
2b

in Figure 2 discussed below.

3.2 Mixed strategy Bayesian Nash equilibrium with bargain hunt-

ing consumers

We now focus on the case of piecewise linear gain-loss utility ρ(x), and characterize the set

of mixed-strategy Bayesian Nash equilibria when consumers are bargain hunters who value

gains more than losses: δ+ > δ− ≥ 0. We show a uniqueness result in the sense that the

all Bayesian Nash equilibria involve the same aggregate reference beliefs F = Ei[Fi]. Before

stating our formal result, we give an intuitive derivation of the equilibrium. A complete

proof is given in the Appendix.

For purposes of this derivation, it will frequently be more convenient to work with the

following alternative expression for the demand function D(p, F ), which we refer to as the
5The statement in Proposition 2 is based on the first order condition of profit maximization. A slightly

stronger statement can be obtained by additionally appealing to the second order condition. Specifically,
if the first order condition holds with equality, ∂ρ+(x)

∂x

∣∣∣
x=0

= ∂ρ−(x)
∂x

∣∣∣
x=0

, then the second order condition
requires that the second derivative of the gain-loss function evaluated at zero cannot be ’too’ convex.
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“bargain hunting” representation of demand. Let pe denote the expected price under the

aggregate reference distribution F : pe ≡
∫ p̄
p
R dF (R). We may then rewrite (2) as

D(p, F ) =
(
a+ δ−pe

)
− (b+ δ−) · p+ (δ+ − δ−) ·

∫ p̄

min{p,p̄}
(R− p) dF (R)

≡ a′ − b′p+ ∆

∫ p̄

min{p,p̄}
(R− p) dF (R), (4)

where the first equation follows from adding and subtracting δ−
∫ p̄
p

(R − p) dF (R) on the

right-hand side of (2), and we define a′ ≡ a+ δ−pe , b′ ≡ b+ δ−, and ∆ ≡ δ+ − δ−.

For a tuple
(
(Fi)i∈N , G

)
to be a mixed-strategy equilibrium, all prices in the support S of

the pricing strategy G must yield equal payoffs to the monopolist. In particular, every price

p ∈ S must yield the same profit as the supremum price p̄ ∈ S: π(p;F ) = π(p̄, F ),∀p∈S.

Dividing both sides of this expression by p, we obtain the equivalent indifference condition

φ(p, F ) =
π(p, F )− π(p̄, F )

p
= D(p, F )− p̄D(p̄, F )

p
= 0, ∀p∈S. (5)

Since φ(p, F ) is constant over the support S, we must have ∂φ(p, F )/∂p = 0 for all p ∈ S.

In view of the bargain-hunting demand representation (4), this in turn implies the following

necessary condition for a mixed-strategy equilibrium:

∂φ(p, F )

∂p
= −b′ −∆ [1− F (p)] +

p̄(a′ − b′p̄)
p2

= 0 ∀p∈S. (6)

Solving for F (p) in (6), we conclude that, in any Bayesian Nash equilibrium, the aggregate

reference distribution F (p) must satisfy the necessary relationship:

F (p) = 1 +
b′

∆
− 1

∆

p̄(a′ − b′p̄)
p2

. (7)

To completely characterize F (p), we still need to solve for two endogenously determined

unknowns: the supremum p̄ of the price support S, and the expected price pe =
∫
RdF (R)

under the reference distribution F . We do so in the technical appendix containing all our
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proofs.

It only remains to specify the pricing policy G and consumer level reference reference

distributions Fi. We impose the technical condition δ+ − δ− ≤ 2b to ensure that demand

of individual consumers is strictly between zero and one for any personal priors, and that

personal beliefs Fi have the same support as aggregate beliefs F . This condition is veri-

fied in the technical appendix. Whereas the aggregate reference distribution F is uniquely

determined by 7 under any model of reference formation satisfying our consistency require-

ment, G and Fi will depend on the assumed personal equilibrium notion, that is, the way

in which consumers form reference beliefs. We defer further details to Section 3.3, which

presents equilibrium pricing policies under four models of reference formation, including two

with heterogeneous reference expectations, as well as discussing how to derive equilibrium

policies more generally.

We are now ready to state our proposition.

Proposition 3. Suppose that consumers are strictly bargain hunting, δ+ > δ− ≥ 0 and

δ+ − δ− ≤ 2b. Then there exists a mixed strategy Bayesian Nash equilibrium. Furthermore,

in any Bayesian Nash equilibrium the aggregate reference distribution F is described by the

cumulative distribution function F (p) = 1 −
(
b+δ−

∆

)(
p̄2

p2
− 1
)

defined on the support S =

[p, p̄], with supremum price p̄ = a+δ−pe
2b+2δ−

, infimum price p = a+δ+pe
2b+2δ+

=
√
b+δ−√
b+δ+

p̄, and expected

price pe = a
√
b+δ+−

√
b+δ−

δ+
√
b+δ−−δ−

√
b+δ+

.

The characterization of the unique aggregate reference distribution yields the following

qualitative implications summarized in Corollary 1. πm denotes the canonical monopoly

profit without reference effects, and Π∗(G,F ) denotes the expected Bayesian Nash equilib-

rium profit.

Corollary 1. Suppose that consumers are strictly bargain hunting, δ+ > δ− ≥ 0 and δ+ −

δ− ≤ 2b. The following properties hold in any Bayesian Nash equilibrium:

(i) Π∗(G,F ) = (a+δ−pe)2

4b+4δ−
;
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(ii) Π∗(G,F ) ≤ πm for all (δ−, δ+), with Π∗(G,F ) < πm if δ− > 0;

(iii) If gain sensitivity δ+ or loss sensitivity δ− individually increase (ceteris paribus),

then F decrease in the sense of first-order stochastic dominance.

First, in any equilibrium, the monopolist earns identical profits which are equal to the

profit level the monopolist would have earned facing the simple linear demand curve a′− b′p

without reference effects: Π∗(G,F ) = (a′)2

4b′
= (a+δ−pe)2

4b+4δ−
. This follows because, as seen above,

the monopolist’s profit at every p ∈ S must equal its profit at the supremum price p̄, at

which the consumer experiences loss but not gain effects.

Constant monopoly profits irrespective of the notion of personal beliefs imply that neither

the aggregate reference distribution F , the demand function D(p, F ), the profit function

π(p, F ), nor the monopolist’s expected profit Π∗(G,F ) =
∫
π(p, F ) dG(p) depend on the

notion of personal beliefs. That is, they do not depend on whether reference beliefs are equal

to prices observed or prices paid or any other notion of consistent beliefs. This invariance

may initially appear counterintuitive, but in fact it follows directly from price optimality,

once one recognizes that F , rather than G, ultimately determines the monopolist’s deviation

payoffs. The monopoly price distribution G does vary with the notion of personal beliefs,

and is chosen such that the specific notion of personal beliefs imply the ‘optimal’ reference

distribution F when aggregated. We shall provide further details on the relationship between

G, Fi and F in Section 3.3.

Second, without commitment, the monopolist cannot exploit bargain-hunting behavior

to increase profit: letting πm ≡ a2

4b
denote monopoly profit against the canonical linear

demand curve a− bp without reference effects, we have Π∗(G,F ) ≤ πm for all (δ−, δ+), with

Π∗(G,F ) < πm if δ− > 0. Intuitively, bargain-hunting behavior induces the firm to set

prices below pm = a
2b

with positive probability. But the consumer then perceives pm as a

loss relative to other prices in the support of F , increasing the effective elasticity of demand

at pm and thereby pushing prices and profits below their canonical monopoly levels.

Third, if either gain sensitivity δ+ or loss sensitivity δ− individually increase, then F
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decreases in the sense of first-order stochastic dominance. In either case, if relative bargain

hunting ∆ = δ+ − δ− increases, then the relative price spread p̄
p
increases. In the limit, as

∆→ 0, both F and G converge to mass points at a single limit price, which if δ− = 0 is the

usual monopoly price solution pm = a
2b
. With loss aversion (δ− > 0) it can be any of the

prices characterized in Proposition 5 below.

Finally, reducing the slope parameter of demand b results in more dispersed prices, in

terms of both the price distribution function G and the reference price distribution function

F . In the limit as demand becomes perfectly elastic, b → ∞, the support S shrinks to a

singleton, and the price distributions G and F converge to a single mass point at pm = 0.

Illustration 1: Equilibrium with pure bargain hunting We first illustrate Proposi-

tion 3 for the special case of pure bargain hunting consumers: δ+ > 0, δ− = 0. In this case,

both the supremum price and the monopolist’s profit are the same as the monopoly solution

against the canonical linear demand model a − bp without reference effects: P̄ = pm = a
2b
,

Π∗(G,F ) = a2

4b
. For simplicity, we set a = 1, b = 1, and δ+ = 1, with δ− = 0 as noted above.

Figure 2 compares the monopolist’s equilibrium profit function π(p, F ) to two non-

equilibrium profit functions: that arising when consumers expect the canonical monopoly

price pm = a
2b

with certainty, and that arising when demand takes the canonical linear

form a − bp without reference effects. Inspecting this figure, it clear that setting a con-

stant monopoly price p = pm is not an equilibrium: if bargain-hunting consumers expect

the constant reference price pm = a
2b
, then the monopolist will always prefer to exploit this

expectation by deviating to a price p < pm. In contrast, when consumers have reference

expectations described by the equilibrium reference distribution F , the firm is indifferent

between all prices in the support [p, p̄]. This confirms that the pair (G,F ) is in fact an equi-

librium. The demand functions inducing these profit functions have already been illustrated

in Panel (a) of Figure 4 above.
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Figure 2: Equilibrium profit π(p, F ) arising when consumers have equilibrium reference
expectations F (solid line), versus the monopolist’s profits when consumers have non-
equilibrium reference expectations (dashed lines), in a setting with pure bargain-hunting
consumers: a = 1, b = 1, δ+ = 1.0, δ− = 0.
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Figure 3: Equilibrium profit π(p, F ) arising when consumers have equilibrium reference
expectations F (solid line), versus the monopolist’s profits when consumers have non-
equilibrium reference expectations (dashed lines), in a setting with mixed bargain-hunting
consumers: a = 1, b = 1, δ+ = 1.0, δ− = 0.5.
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Illustration 2: Equilibrium with mixed bargain hunting Figure 3 illustrates the

equilibrium profit functions arising under mixed bargain hunting : in this case at parameters,

a = 1, b = 1, δ+ = 1, δ− = 0.5. As expected, both prices and profits are lower than in the

pure bargain hunting case. This is particularly evident at the upper support p̄, which is more

than 20 percent lower at δ+ = 1, δ− = 0.5 (p̄ < 0.4) than at δ+ = 1, δ− = 0 (p̄ = pm = 0.5).

Intuitively, this arises because when δ− > 0 , setting prices below pm pushes the consumer

into the loss domain at p = pm. This causes the firm to face an effectively higher elasticity

which renders it unprofitable to set p = pm.

3.3 Individual reference expectations and the monopolist’s pricing

policy

This section completes the characterization of equilibrium by deriving the monopolist’s equi-

librium price distributionG under several specific models of reference formation. We reiterate

that, while the equilibrium aggregate reference distribution F is unique, both the individual

reference distributions Fi and the price distribution G will depend on the specific notion of

reference beliefs considered. We give four examples of possible personal equilibrium notions,

then comment on the general construction.

Example 1. All consumers have reference beliefs formed based on the relative frequency of

the prices they see, that is Fi = G for all i. Then Fi = F and G = F .

Example 2. All consumers have reference beliefs which reflect the prices that consumers

rationally expect to pay. Then Fi = F and F (p) =
∫ p
p

[
D(p, F )/

∫ p̄
p
D(p, F )

]
dG(p) ∀p ∈ S.

We can find G through the inverse of the Radon Nikodym derivative:

dG(p) =

[
D(p, F )/

∫ p̄

p

D(p, F )

]−1

· dF (p).

Example 3. Half of consumers have reference beliefs formed based on the relative frequency

of the prices they see, that is Fi = F1 = G for all i = 1, .., N/2, while the remaining
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consumers have reference beliefs that prices are uniformly distributed Fi = F2 = p
p̄−p for all

i = N/2 + 1, ..., N . Then the reference pdf satisfies f(p) = 1
2
g(p) + 1

2
1
p̄−p , and we obtain

g(p) = 2f(p)− 1
p̄−p .

Example 4. Half of consumers have reference beliefs formed based on the relative frequency

of the prices they see, that is Fi = F1 = G for all i = 1, .., N/2, while the remaining consumers

have reference beliefs based on Fi = F2 = G2 for all i = N/2+1, ..., N, where G2 denotes the

cdf of the maximum of two price draws. Then 1
2
F1 + 1

2
F2 = 1

2
G + 1

2
G2 = F , and we obtain

G(p) = −1
2

+
√

1
4

+ 2F (p).

All four examples are personal equilibria in which consumers have beliefs Fi about prices

consistent with the monopolist’s pricing distribution G and the individual beliefs induce the

aggregate reference distribution F , that is 1
N

∑
Fi = F . In each case, F is the unique choice

of aggregate reference distribution of the monopolist so that every price in S is optimal for

the monopolist. What was the principle that allowed us to find the price distribution G

induced from F? Consistency of personal beliefs requires absolute continuity with respect

to G, that is that there exists a Lebesgue integrable function λi such that Fi(p) =
∫ p
p
λidG.

The function λi(p) measures the personal weight consumer i assigns to purchase price p

in addition to the monopolist’s weight g(p). Let λ = 1
N

∑
λi, then the average consumer

beliefs are given by: F (p) = 1
N

∑
Fi = 1

N

∑∫ p
p
λidG=

∫ p
p

(
1
N

∑
λi
)
dG=

∫ p
p
λdG. Looking

at the outer equality, G is obtained through the inverse of the Radon Nikodym derivative:

dG(p) = [λ(p)]−1 · dF (p).

4 Reference Beliefs Equal to the Price Frequency

In this section only, we focus on the consistency condition (3), in which the consumer’s

reference distribution Fi is equal to the posted price distributionG for all i and F = G. In this

special case, the Bayesian Nash equilibrium with bargain hunting consumers is fully described

in Proposition 3. The analysis in Section 3 demonstrates that, absent a commitment device,
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the monopolist is rendered at least weakly, and often strictly, worse off by reference effects.

This section characterises the commitment solution in this case and compares it to the

Bayesian Nash equilibrium characterised in Proposition 3. We also characterise the Bayesian

Nash equilibrium under loss aversion.

4.1 Commitment Solution

What if the monopolist can commit to a price distribution ex ante, as considered by, e.g.,

Spiegler [2012], Heidhues and Koszegi [2014], and Rosato [2016] among others? In this case,

the monopolist will commit to the distribution Gc which maximizes expected monopoly

profits

Π (Gc, F c (Gc)) =

∫
π(p, F c (Gc)) dGc(p).

Let pc denote the expected price under the aggregate reference distribution F c: pc ≡∫
S
R dF c(R). Under this assumption, the following Proposition fully characterizes the mo-

nopolist’s commitment solution against bargain-hunting consumers:

Proposition 4. If δ+ > δ− ≥ 0, then the optimal pricing policy is Gc(p) = δ++b
δ+−δ− −

a+(δ++δ−)pc
2(δ+−δ−)p

with price support
[
a+(δ++δ−)pc

2(b+δ+)
,
a+(δ++δ−)pc

2(b+δ−)

]
, where pc =

a[ln(b+δ+)−ln(b+δ−)]
2(δ+−δ−)−(δ++δ−)[ln(b+δ+)−ln(b+δ−)]

.

Furthermore, if δ+ > δ− = 0, the equilibrium profit π(p, F c) is decreasing in p over the price

support.

The proof idea can be illustrated by considering the first order condition with respect to

f c evaluated at a point x:

{
x [a− bx] + δ+x

∫ l

x

(y − x) f c(y)dy + δ−x

∫ x

0

(y − x) f c(y)dy

}
+ δ+

∫ x

0

y (x− y) f c(y)dy + δ−
∫ l

x

y (x− y) f c(y)dy = 0 for all x ∈ S. (8)

Notice that the term in braces
{
·
}
is the profit evaluated at price x. The first term in the

second line is increasing in x. Thus, when δ− = 0, profit is decreasing in price x over the
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Figure 4: Profit π(p,Gc) arising under the commitment solution Gc(p) (black) compared to
profit π(p,G) arising under the Bayesian Nash Equilibrium solution G (gray), in a setting
with mixed bargain-hunting consumers: a = 1, b = 1, δ+ = 1.0, δ− = 0.5. In this example
the canonical monopoly price is pm = 0.5 and canonical monopoly profit is πm = 0.25. Under
the Bayesian Nash equilibrium, all prices in the support are optimal given consumer beliefs,
and the monopolist earns profit π = 0.233 < πm. Under the commitment solution, the
monopolist’s optimal deviation price is outside the price support, and the monopolist earns
profit πc ≈ 0.253 > πm.
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price support, which establishes the second statement in the Proposition. Furthermore, as

the first order condition (8) must hold for all prices in the support, we can take derivatives

on both sides with respect to x, which yields:

a− 2bx+
(
δ+ + δ−

)
(δ+ − δ−)− δ+2x[1− F c(x)]− δ−2xF c(x) = 0

The optimal pricing policy F c = Gc is obtained from this equation, as are the boundary

points in the price support.

When consumers are bargain hunters, both the Bayesian Nash equilibrium (G,F ) and
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the commitment solution (Gc, F c) involve mixed-strategy pricing by the monopolist. As

illustrated in Figure 4, however, these solutions qualitatively differ in at least three important

respects. First, whereas without commitment every price in the support of the equilibrium

price distribution must be individually optimal, with commitment almost all prices charged

by the monopolist are individually sub-optimal. Indeed, the Figure illustrates a situation in

which all prices are suboptimal. The reason is that inclusion of the high-profit price in the

support would generates losses, proportional to the deviation mass, on all the prices above.

Second, whereas the equilibrium price support is always at least weakly below the canonical

monopoly price pm = a
2b
, with commitment the monopolist charges prices above pm with

positive probability. Third, whereas without commitment reference effects at least weakly,

and usually strictly, reduce equilibrium profit, with commitment the monopolist is able to

exploit bargain hunting behavior to strictly increase profit.

In other words, the qualitative effects of bargain hunting behavior depend critically on

whether or not the monopolist can commit ex ante to individually sub-optimal prices. If

such commitment is feasible, then the monopolist will exploit bargain hunting consumers

to increase prices and profits. If not, then the monopolist’s temptation to exploit bargain

hunting behavior will reduce prices and profits.

4.2 Loss-averse consumers

What if instead consumers are loss averse in the price dimension, in the sense that δ+ ≤

δ−? Proposition 5 shows that when consumers are more concerned about losses than gains,

uniform pricing is optimal. However, when δ− > 0, the equilibrium price is not unique.

Rather, there exist a continuum of uniform-price equilibria:

Proposition 5. If δ+ − δ− ≤ 0 , then any uniform price in the interval
[

a
2b+δ−

, a
2b+δ+

]
is a

Bayesian Nash equilibrium.

The proof idea is simple. Under loss aversion, the profit function is strictly concave for

any reference distribution F , implying that any equilibrium must involve a uniform price.
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Furthermore, for any candidate uniform price p, loss aversion implies that the derivative of

the profit function is greater for prices approaching from the left than for those approach-

ing from the right: limp′↗p ∂π(p, F )/∂p ≥ limp′↘p ∂π(p, F )/∂p. In particular, for any p ∈[
a

2b+δ−
, a

2b+δ+

]
, one can show that both limp′↗p ∂π(p, F )/∂p ≥ 0 and limp′↘p ∂π(p, F )/∂p ≤ 0.

Hence, as shown by Heidhues and Koszegi [2008] in a related context, any uniform price in

the non-empty interval
[

a
2b+δ−

, a
2b+δ+

]
constitutes a Bayesian Nash equilibrium.

What if we instead consider the commitment solution? When δ− ≥ δ+, the monopolist

can do no better than commit to the uniform price pm = a
2b
; this follows intuitively from

the fact that demand is concave under loss aversion, or more formally from the proof of

Proposition 4 as shown in Appendix A. As above, when δ+ > 0, this will not be a Bayesian

Nash equilibrium, since if consumers expect p = pm with certainty, then the monopolist

would optimally set p∗ = a+δ+pm

2b+2δ+
, which is strictly less than pm when δ+ > 0. But given

access to a credible commitment device, the monopolist’s optimal policy is to set pm = a
2b

with certainty.

Figure 5 illustrates Proposition 5 for the parameters a = 1, b = 1, δ− = 1, and δ+ =

0.5. Specifically, this figure depicts the monopolist’s profit functions at the high-price and

low-price Nash equilibria, i.e. those involving uniform prices p = a
2b+δ+

and p = a
2b+δ−

respectively. For comparison, the canonical monopoly profit function arising in the absence

of reference effects is also depicted. At each equilibrium price, the profit function looks

like a tip of a triangle, with an inward kink at this price. The maximum price p = a
2b+δ+

is the largest price such that the right-hand derivative limp′↘p ∂π(p, F )/∂p is nonpositive,

whereas the minimum price p = a
2b+δ−

is the smallest price such that the left-hand derivative

limp′↗p ∂π(p, F )/∂p is nonnegative. Equilibrium profits range from 2
9

= 0.22̇ to 6
25

= 0.24

and are lower than the canonical monopoly profit of 1
4

= 0.25.
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Figure 5: Equilibrium profit with loss-averse consumers
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5 Welfare effects of the Bayesian Nash Equilibrium

This section compares the welfare of the Bayesian Nash equilibrium outcome to the bench-

mark of the perfectly competitive solution in which price pcomp = 0. Our main result is that

if consumers are pure bargain hunters who like gains but do not dislike losses, then short-

run deadweight loss exceeds canonical monopoly deadweight loss, which in turns exceeds

long-run deadweight loss.

The concept of welfare is not obvious in our setting. Should expectation-based reference

effects be taken into account, or just the “standard” consumption preferences? How should

individual level reference effects be aggregated? We consider welfare comparisons based on

the aggregate demand function only. We do so because the aggregate beliefs are uniquely

determined as shown in Proposition 3, while there is multiplicity of possible personal beliefs.

Of course, our analysis also applies to the case in which personal reference beliefs equal

aggregate reference beliefs.

When assessing the Bayesian Nash equilibrium outcome we can distinguish two welfare

scenarios depending on whether consumers’ expectations have adjusted or not: short-run

and long-run. The short-run analysis assumes that consumers maintain the equilibrium

expectations of the Bayesian Nash equilibrium. The long-run analysis allows consumers to

adjust their expectations to the perfectly competitive equilibrium and calculate any dead-

weight losses by using the new expectations. Additionally, we contrast our welfare findings

to the outcome emerging from the canonical monopoly solution in the absence of reference

effects in which the monopoly price equals pm = a
2b
.

5.1 Welfare Effects under Bargain Hunting

We begin our analysis with the case of bargain hunting consumers. Let the Bayesian Nash

equilibrium aggregate price beliefs, which are fully characterised in Proposition 3, be denoted

by F . In the short-run consumers remain with these beliefs and the short-run demand curve
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Ds is given by equation (2),

Ds(p, F ) = D(p, F ).

In the long-run consumers adjust their beliefs to the perfectly competitive equilibrium

in which F0 has all the mass at the competitive price p = 0. The long-run demand curve Dl

is given by,

Dl(p, F0) = a− bp− δ−p

The long-run dead-weight-loss calculation at a price p involves the usual triangle under

the linear demand curve and equals DWLl(p) = p2

2
(b+ δ−). It reflects that consumers per-

ceive the inflated price of the Bayesian Nash equilibrium as a loss relative to the competitive

price in the long run. The short-run dead-weight-loss does not involve a simple triangle as

the demand function is non-linear over the support of equilibrium prices. To overcome this

difficulty, we approximate the short-run dead-weight loss DWLs by using an upper and a

lower bound. The bounds are obtained by using the usual triangle under the linear demand

curve but evaluated at the lower and upper end point of the support of equilibrium prices.

Our lower bound DWLs is given by the dead-weight loss at the low equilibrium price p ,

and satisfies:

DWLs =
p2

2

(
b+ δ+

)
= DWLs(p) ≤ DWLs

The upper bound is based on the observation that the short-run demand curve Ds is

convex. To see the convexity observe that Ds has a positive second derivative on the interval[
p, p̄
]
, ∂2Ds(p,F )

(∂p)2
= (δ+ − δ−) dF (p) > 0, and is linear for prices below p. It is thus convex.

Due to convexity, an upper bound on the dead-weight loss DWLs is given by the short-run

dead-weight loss triangle at p̄ with consumers’ expectations centered at price p̄. To see that

it is indeed an upper bound observe the following::

DWLs ≤ DWLs(p
∗) =

[(
δ+ − δ−

)
ER +

(
b+ δ−

)
p̄
] p̄

2
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≤ (b+ δ+)

2
p̄2 = DWLs

Notice that both the upper and lower bound have the interpretation that the competitive

equilibrium price is perceived as a gain relative to a price in the Bayesian Nash equilibrium

price support. For the lower bound we use the lower end point in the price support, while

for the upper bound we use the upper end-point plus expectations centered at the upper

end point. The following theorem uses these bounds to make a comparison between the

short-run and long-run dead-weight-loss as well as with respect to the canonical monopoly

dead-weight-loss in absence of reference effects, DWLm = a2

8b
.

Theorem 1. Suppose δ+ − δ− ≥ 0 and δ+ − δ− ≤ 2b. The following properties hold for the

Bayesian Nash equilibrium:

(i) DWLl ≤ DWLs.

(ii) If δ− = 0, then DWLl ≤ DWLm ≤ DWLs.

(iii) If δ− ≥ δ−∗, then DWLs ≤ DWLm, where

δ−∗ =

[
1

2
(

b√
b+ δ+

−
√
b)−

√
1

4
(

b√
b+ δ+

−
√
b)2 +

√
b (b+ δ+)

]2

− b.

Part (i) of Theorem 1 establishes that with bargain hunting consumers the perceived long-

run losses at the high Bayesian Nash equilibrium price are less than equal to the perceived

short-run gains of moving to the perfectly competitive equilibrium. The reason is that

the upper bound on the long-run dead-weight-loss coincides with the lower bound on the

short-run dead-weight loss.

Parts (ii) and (iii) compare the equilibrium outcome under bargain hunting to the canon-

ical outcome in the absence of reference expectations. Part (ii) says that when the loss

aversion parameter δ− is zero, then the canonical monopoly dead weight loss falls in be-

tween the long-run and short-run Bayesian Nash equilibrium dead-weight loss. This finding

emerges because when δ− = 0 the short-run dead-weight loss upper bound reduces to the
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canonical monopoly dead-weight loss DWLm.

Part (iii) says that for sufficiently large loss aversion parameters the short-run Bayesian

Nash equilibrium dead-weight-loss will be smaller than the canonical monopoly dead-weight

loss. Part (iii) uses the bounds to establish that for any bargain hunting parameter there

exists a range of loss aversion parameters so that the Bayesian Nash equilibrium dead-weight

loss is smaller than the canonical monopoly dead-weight loss. Thus, combining parts one and

three, for any bargain hunting parameter δ+ there exists a range of loss aversion parameters

so that welfare losses in the equilibrium with bargain hunting consumers are smaller, both

in the short-run and in the long-run, than the canonical monopoly dead-weight loss in the

absence of reference effects.

5.2 Welfare Effects under Loss Aversion

What if instead consumers are loss averse in the price dimension, in the sense that δ+ ≤ δ−?

Proposition 5 shows that the Bayesian Nash equilibrium beliefs FR have all the mass at p = R.

Thus, the dead-weight-loss calculations under loss aversion involve the usual triangle under

a linear demand curve. In the short-run consumers remain with Bayesian Nash equilibrium

beliefs FR and the short-run demand curve Ds is given by,

Ds(p, FR) = a− bp+ δ+ (R− p) · 1{p<R} + δ− (R− p) · 1{p>R}

In the long-run consumers adjust their beliefs to the perfectly competitive equilibrium in

which F0 has all the mass at the competitive price pcomp = 0. The long-run demand curve

Dl is given by,

Dl(p, F0) = a− bp− δ−p

The short-run dead-weight-loss of the Bayesian Nash equilibrium reflects that consumers

perceive the short-run reduced price of the perfectly competitive outcome as gain and equals

DWLs(R) = R2

2
(b+ δ+). The long-run dead-weight-loss of the Bayesian Nash equilibrium
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equals DWLl(R) = R2

2
(b+ δ−) and reflects that consumers perceive the inflated price of the

Bayesian Nash equilibrium as a loss in the long run.

The following theorem states our comparison between the dead-weight-loss short-run and

long run as well as with respect to the canonical monopoly dead-weight-loss in absence of

reference effects, DWLm.

Theorem 2. Suppose δ+ − δ− < 0 . The following properties hold for any Bayesian Nash

equilibrium with reference price R:

(i) DWLl(R) > DWLs(R).

(ii) DWLs(R) < DWLm.

(iii) If δ− < b+ 2δ+ +
(δ+)

2

2b
, then DWLl(R) < DWLm.

The first part states that long-run DWL considerations outweigh short-run DWL when

consumers are loss averse. The reason is that the perceived losses due to the inflated price of

the Bayesian Nash equilibrium exceed the perceived gains of moving to the perfectly compet-

itive equilibrium as δ+ < δ−. The second and third part compare the equilibrium outcome

under loss aversion to the canonical outcome in the absence of reference expectations. There

are two opposing effects: On the one hand equilibrium prices with loss averse consumers are

lower than the canonical monopoly price in the absence of reference effects which lowers the

DWL. On the other hand reference effects shift the demand curve adversely, which is absent

in the canonical monopoly model, and results in an increase in DWL. In the short-run the

perfectly competitive price is perceived as a gain, while in the long-run moving to the inflated

price of the Bayesian Nash equilibrium creates a loss. Part (ii) of Theorem 2 states that

the first effect always dominates the second in the short-run. The reduction in equilibrium

price relative to the monopoly price due to loss averse consumers, R ≤ a
2b+δ+

≤ a
2b

= pm,

outweighs the short-run perceived gains of moving to the competitive outcome. Part (iii) of

Theorem 2 states the the first effect dominates the second also in the long-run provided the

loss parameter δ− is not too large. In that case, the welfare loss perceived by loss averse con-

sumers stemming from the inflated price R in the Bayesian Nash equilibrium is outweighed
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by the price reduction relative to the canonical monopoly price, R < pm.

6 Conclusion

This paper explores retail pricing decisions with bargain hunting consumers whose willing-

ness to pay is elevated when prices are unexpectedly low. This bargain hunting notion is the

flip side of loss aversion which has attracted a lot of attention in the literature. We show

that bargain hunting introduces a local convexity in demand, so that the monopolist finds

it beneficial to deviate from any uniform price. While there is no pure strategy pricing equi-

librium, we characterise the mixed strategy equilibrium in which the monopolist randomizes

over a connected support of prices.

Retail markets exhibit a lot of variation in prices. To the extent that loss aversion predicts

price inertia, in which prices do not change even if marginal costs or demand parameters

change, it does not explain the observed pricing patterns. Of course, an alternative inter-

pretation of the multiple pricing equilibria under loss aversion is that they may also explain

dispersed prices. Bargain hunting behavior has stronger implication implying that prices

may vary even if cost or demand parameters do not change. Some empirical evidence in

the marketing literature and in economics suggests that consumers may in fact be in part

motivated by bargain hunting in retail markets. A future research agenda is to explore to

what extent reference price effects may explain price variation in retail markets.

Our analysis has focused on the simplest case with (i) one firm and (ii) a demand curve

which is linear absent reference effects. Natural extensions to consider in future work include

competition between firm, say in a Cournot model, or bargain hunting in alternative models

of demand such as with differentiated products.
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Appendix: Technical proofs

Proof of Proposition (1). Let F denote the space of probability measures with support contained
in [p, p]. F is compact (in the weak∗ topology) and convex. By assumption, G ∈ F , and from
belief consistency, Fi ∈ F for all i and thus F ∈ F . Absolute continuity requires that there exists
a Lebesgue integrable function λi such that Fi(p) =

∫ p
p λidG for all i. Let λ = 1

N

∑
λi, which

by construction is also a Lebesgue integrable function, then as F is equal to the average belief,
we obtain: F (p) = 1

N

∑
Fi = 1

N

∑∫ p
p λidG=

∫ p
p

(
1
N

∑
λi
)
dG=

∫ p
p λdG≡ C∗(G). The mapping

C∗ : F → F denotes the average beliefs consistent with G. By assumption, each Fi is continuous
in the weak∗ topology, which implies that the average mapping C∗(G) is continuous.

Next consider the monopolist’s problem. For given aggregate reference expectations F ∈ F , let
G∗(F ) = arg maxG∈G Π(G,F ) ≡

∫
π(p, F ) dG(p) denote the monopolist’s set of profit-maximizing

price distributions. Π(G,F ) is a continuous function from F × F → R. By Berge’s Maximum
Theorem, G∗(F ) is non-empty, compact-valued, and upper hemicontinuous. Linearity of Π(G,F )
in G implies that for any G1, G2 ∈ G∗(F ), we also have αG1 + (1−α)G2 ∈ G∗(F ) for all α ∈ [0, 1].
Hence, G∗(F ) is convex-valued.

Combining the properties established so far, we have that (C∗, G∗) is a non-empty, convex-
valued, and upper-hemicontinuous correspondence from the compact, convex set F × F to itself.
By the Kakutani-Glicksberg-Fan FPT, there exists a fixed point, which is a BNE. To show existence
of a commitment solution, note from above that F c = C∗(Gc), with C∗(·) a continuous function
from F → F . Furthermore, the monopolist’s profit function Π(Gc, F c) : F ×F → R is continuous.
Hence the composition Π(Gc, C∗(Gc)) is a continuous function from the compact domain F to R.
By the Berge maximum theorem, the set of maximizers Gc∗ to Π(Gc, C∗(Gc)) is nonempty, and a
commitment solution exists.

Proof of Proposition (2). Consider any uniform price equilibrium candidate p. A necessary con-
dition for optimality is that marginal profit is non-decreasing as prices approach p from the left,
limp′↗p∂π(p, F )/∂p ≥ 0, and non-increasing as prices approach p from the right, limp′↘p∂π(p, F )/∂p ≤
0. The left- and right-hand-side derivatives are readily calculated. We obtain limp′↑p∂π(p, F )/∂p =

a − 2bp − ∂ρ+(x)
∂x

∣∣∣
x=0
· p ≥ 0 and limp′↓p∂π(p, F )/∂p = a − 2bp − ∂ρ−(x)

∂x

∣∣∣
x=0
≤ 0. The inequalities

imply that ∂ρ+(x)
∂x

∣∣∣
x=0
≤ ∂ρ−(x)

∂x

∣∣∣
x=0

. This condition is violated when small gains are valued more
than small losses. Thus, there is no uniform price equilibrium.

Proof of Proposition (3). The proof proceeds in steps. Section 3 shows that any mixed bargain
hunting demand function can be represented by a pure bargain hunting demand function in which
the loss aversion parameter is zero by making the appropriate changes in the intercept and slope.
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We shall first establish a number of properties of the equilibrium using the pure bargain hunting
representation. We shall return to the mixed bargain hunting case at the end.

Let p̄ be the high price in the support S, p̄ = supS. Observe that all prices in the support of the
mixed strategy must yield equal payoffs. The equal payoff implications, can be expressed in terms
of the high price as ∀p∈S : π(p) = π(p̄) . Thus,

p

(
a− bp+ δ+

∫ p̄

p
(R− p)dF (R)

)
= p̄ [a− bp̄] ∀p∈S.

Notice that the equal profit condition implies that the first derivative with respect to p vanishes:

a− 2bp+ δ+

∫ p̄

p
(R− p) dF (R)− pδ+

∫ p̄

p
dF (R) = 0 ∀p∈S

The high price in the support is the canonical monopoly price, p̄ = pm. Proof by contradiction.
Otherwise, as there are no reference effects at the high price, the firm could increase profit by
charging the canonical monopoly price. Notice, the profit must thus equal π(pm).

There cannot be a mass point in the support S. Let Ŝ ⊆ S be the set of mass points. Consider
the high price p̂ = sup Ŝ at which there is mass δG > 0 . This mass point in G induces a mass of δF
in the reference price distribution as demand D(p̂) at price p̂εS is strictly positive. The monopoly
profit equals Π(p̂, F ) = p̂ (a− bp̂) + δ+

∫ p̄
p̂ (R− p̂) dF (R). Now consider the price p̃ = p̂− ε, for some

ε > 0 small. We shall show that the monopoly profit at price p̃ exceeds the monopoly profit at p̂.
To see this, consider the following inequalities for profit π(p̃):

π(p̃) = p̃ (a− bp̃) + δ+p̃

∫ p̄

p̃
(R− p̃) dF (R)

≥ p̃ (a− bp̃) + δ+p̃

∫ p̄

p̂
(R− p̂+ ε) dF (R) + δ+p̃εδF

= p̂

(
a− bp̂+ δ+

∫ p̄

p̂
(R− p̂) dF (R)

)
+ ε

(
2bp̂− a+ δ+p̂

∫ p̄

p̂
dF (R)− δ+

∫ p̄

p̂
(R− p̂) dF (R)

)
+ εδ+

(
p̂δF + ε

[
b− δF −

∫ p̄

p̂
dF (R)

])
.

Optimality of price p̂ implies from above that the first derivative of the monopoly profit evaluated
at the price p̂ vanishes, that is a− 2bp̂+ δ+

∫ p̄
p̂ (R − p̂) dF (R) + p̂δ+

[
−
∫ p̄
p̂ dF (R)

]
= 0. Using this

expression, we conclude from the outer inequality that:

π(p̃) ≥ π(p̂) + εδ+

[
p̂δF − ε

(
b− δF −

∫ p̄

p̂
dF (R)

)]
.

For ε small, the right hand side expression in square brackets is positive, which contradicts the
optimality of price p̂. This establishes that there cannot be a mass point in the support of S.

The support S is connected. Proof by contradiction. Suppose the points p, p′ ∈ S but the
interval (p, p′) is not contained in S. Let p′ = p + d. We shall show that both prices cannot be
optimal. No mass in the interval (p, p′) implies that

∫ p′
p f(r) dF (R) = 0 for any real valued function

f . Observing that there is no mass in the interval (p, p′), the optimality condition evaluated at p′
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yields:

a− 2bp− 2d+ δ+

∫ p̄

p′
(R− p)dF (R) + δ+

∫ p̄

p′
(−d)dF (R)− (p+ d) δ+

∫ p̄

p′
dF (R) = 0.

Substituting the optimality condition evaluated at price p yields:

−2d+ δ+

∫ p̄

p′
(−d) dF (R)− dδ+

∫ p̄

p′
dF (R) = 0,

a contradiction which establishes that the support is S is connected.

We have shown so far that the optimal price policy consists of a reference price distribution
F (p) induced by G(p) with non-atomistic interval support S = [p, pm], where prices p∈[p, pm] must
satisfy the constant profit condition

δ+

∫ pm

p
(R− p)dF (R)− pm [a− bpm]

p
+ (a− bp) = 0 ∀p∈S.

As this equality holds for all p∈S, the derivative with respect to p must vanish, which gives

−δ+ [1− F (p)]− b+
pm [a− bpm]

p2
= 0 ∀p∈S.

Re-arranging gives the desired equation for F (p). The lower endpoint in the support satisfies
F
(
p
)

= 0, which implies

p =

√
pm [a− bpm]

b+ δ+
.

This last argument completes the proof for the pure bargain hunting case in which δ− = 0.
Finally, we shall consider the mixed bargain hunting case. Recall that the intercept now is

a′ = a+ δ−pe, where pe =
∫ p
p RdF (R) and the slope coefficient equals b′ = b+ δ−. To complete the

equilibrium characterization under mixed bargain hunting we need to obtain the expression for the
expected reference price pe. Using the formula for the lower end point of the support, we obtain
p =

√
b+δ−

b+δ+
pm with pm = a+δ−pe

2b+2δ− .
An alternative expression of the lower bound based on the equal profit condition. Recall that

the profit function is

π(p) = p

[
a− bp+ δ+

∫ p

p
(R− p)dF (R) + δ−

∫ p

p
(R− p)dF (R)

]
.

In a mixed strategy all prices yield equal profit, which implies that the derivative of profit with
respect to p vanishes for prices in the support S:

∂π(p)

∂p
= a− bp+ δ+

∫ p

p
(R− p) dF (R) + δ−

∫ p

p
(R− p) dF (R)

+ p
[
−b− δ+ [F (p)− F (p)]− δ−

[
F (p)− F (p)

]]
= 0 ∀p∈S
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∂π(p)

∂p
= a− 2bp− 2pδ+ [F (p)− F (p)]− 2pδ−

[
F (p)− F (p)

]
+ δ+

∫ p

p
RdF (R) + δ−

∫ p

p
RdF (R) = 0 ∀p∈S.

Evaluated at p, this condition gives

a+ δ+pe − 2
(
b+ δ+

)
p = 0

or equivalently

p =
a+ δ+pe
2b+ 2δ+

.

Combining this with our earlier expressions p =
√

b+δ−

b+δ+
pm and pm = a+δ−pe

2b+2δ− , we have√
b+ δ−

b+ δ+

a+ δ−pe
2b+ 2δ−

=
a+ δ+pe
2b+ 2δ+

Rearranging yields

pe = a

√
b+ δ+ −

√
b+ δ−

δ+
√
b+ δ− − δ−

√
b+ δ+

.

Observe that the ratio is between zero and one.
To conclude, we verify that the condition δ+−δ− ≤ 2b is sufficient to guarantee that equilibrium

demand is nonzero for each consumer at all possible prices [p, p̄]. Toward this end, observe that
demand is interior at any price p ∈

[
p, p̄
]
for all consumers irrespective of their personal priors if it

is so at the worst case gain seeking and worst case loss aversion priors. The worst case gain seeking
prior is Pr(p = p̄) = 1. To see this, observe that it gives the maximal gain at low prices. A consumer
will buy at a price of zero at the low taste shock if −a+δ+p̄ ≥ 0. Thus, the complementary condition
p̄ < a

δ+
ensures that expected demand is less than one for all consumers irrespective of their priors.

The worst case loss aversion prior is Pr(p = 0) = 1. To see this, observe that it has a maximal
loss of δ−p̄. It has zero demand at the high taste shock if a − bp̄ − δ−p̄ ≤ 0. The complementary
condition p̄ < a

b+δ− ensures that expected demand is positive for all consumers. Now, equilibrium

prices satisfy p̄ = a+δ−pe
2b+2δ− ≤

a+δ−p̄
2b+2δ− ≤

a
2b+δ− . Thus, the second condition is satisfied, and we only

need to check the first condition, p̄ < a
δ+

, which indeed holds as a
2b+δ− ≤

a
δ+

, or δ+ − δ− ≤ 2b.

Proof of Proposition (4). The monopoly profit under commitment becomes

Π =

∫ u

l
x

[
a− bx+ δ+

∫ u

x
(y − x) f(y)dy + δ−

∫ x

l
(y − x) f(y)dy

]
f(x)dx

For any price x consider the choice of the weight w = f(x). The optimal weight must satisfy the
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necessary first order condition, ∂Π
∂w = 0, which is

φ(x) =

{
x [a− bx] + δ+x

∫ l

x
(y − x) f(y)dy + δ−x

∫ x

0
(y − x) f(y)dy

}

+δ+

∫ x

0
y (x− y) f(y)dy + δ−

∫ l

x
y (x− y) f(y)dy = 0 for all x

Notice, that the second order condition, , ∂2Π
∂2w
≤ 0, is satisfied. Also, notice that the term in {}

brackets is the profit evaluated at price x. The terms in the second line are increasing in x. Thus,
profit is decreasing in price x over the price support, establishing the second part of the Proposition
when consumers are (weakly) bargain hunting.

The first order condition of optimal weights is a necessary condition that applies to all prices in
the support, that is φ(x) = 0 for all x. Taking the derivative with respect to x yields:

∂φ(x)

∂x
= a− 2bx+

(
δ+ + δ−

)
pc − δ+2x[1− F (x)]− δ−2xF (x) = 0

Expressing the cdf F yields,

F (x) =
δ+ + b

(δ+ − δ−)
− a+ (δ+ + δ−) pc

2 (δ+ − δ−)x

with pdf,

f(x) =
a+ (δ+ + δ−) pc
2 (δ+ − δ−)x2

.

The boundary conditions require F (p) = 0 and F (p) = 1. We find the boundary points as:

p =
a+ (δ+ + δ−) pc

2(b+ δ+)

p =
a+ (δ+ + δ−) pc

2 (b+ δ−)
.

Using the pdf, we can solve for the expectation pc of the price distribution G as

pc =

∫ p

p
x · a+ (δ+ + δ−) pc

2 (δ+ − δ−)x2
dx

=
a+ (δ+ + δ−) pc

2 (δ+ − δ−)
ln(x)|pp

=
a+ (δ+ + δ−) pc

2 (δ+ − δ−)

[
ln(b+ δ+)− ln(b+ δ−)

]
=

a [ln(b+ δ+)− ln(b+ δ−)]

2 (δ+ − δ−)− (δ+ + δ−) [ln(b+ δ+)− ln(b+ δ−)]
.

This completes the proof for the bargain-hunting case.
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Observe that when δ+ < δ−, the boundary conditions above are violated: δ+ < δ− implies
p > p̄. Thus, the optimal pricing rule consists of a single price. With a single price policy we are
back to the canonical monopoly problem absent of reference effects. The optimal price is thus the
canonical monopoly price.

Proof of Proposition (5). Consider any optimal uniform price candidate p. Due to the reference
effects there will be a kink in demand at that price p. At prices not equal to p, the demand and
profit functions are differentiable. A necessary condition for optimality is that marginal profit is
non-decreasing as prices approach p from the left, limp′↗p∂π(p)/∂p ≥ 0, and non-increasing as
prices approach p from the right, limp′↘p∂π(p)/∂p ≤ 0. The left- and right-hand-side derivatives
are readily calculated. We obtain limp′↑p∂π(p)/∂p = a− 2bp− δ+p ≥ 0 and limp′↓p∂π(p)/∂p = a−
2bp−δ+p ≤ 0. The inequalities imply that equilibrium prices must be in the interval

[
a

2b+δ− ,
a

2b+δ+

]
.

This interval is non-empty when losses are valued more than gains, δ+ − δ− ≤ 0. Moreover, the
profit function is globally concave under loss aversion. Thus, any price in the interval described is
a Bayesian Nash equilibrium.

Proof of Theorem 1. The proof idea is to consider bounds on the short-run dead-weight loss
DWLs. The bounds are obtained by using the usual triangle under the linear demand curve but
evaluated at the lower and upper end point of the support of equilibrium prices. Our lower bound
DWLs is given by the dead-weight loss at the low equilibrium price p , and satisfies:

DWLs ≥ DWLs(p) =
p2

2

(
b+ δ+

)
= DWLs

The upper bound is based on the observation that the short-run demand curve Ds is convex. To see
the convexity observe that Ds has a positive second derivative on the interval

[
p, p̄
]
, ∂2Ds(p,F )

(∂p)2
=

(δ+ − δ−) dF (p) > 0, and is linear for prices below p. It is thus convex. Due to convexity, an upper
bound on the dead-weight loss DWLs is given by the short-run dead-weight loss triangle at p̄ with
consumers’ expectations centered at price p̄. To see that it is indeed an upper bound observe the
following::

DWLs ≤ DWLs(p̄) =
[(
δ+ − δ−

)
pe +

(
b+ δ−

)
p̄
] p̄

2

≤ (b+ δ+)

2
p̄2 = DWLs

Both the upper and lower bound have the interpretation that the competitive equilibrium price is
perceived as a gain relative to a price in the Bayesian Nash equilibrium price support. For the lower
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bound we use the lower end point in the price support, while for the upper bound we use the upper
end-point plus expectations centered at the upper end point.

An upper bound on the long-run dead-weight loss is given by DWLl(p̄),

DWLl(p̄) =
(b+ δ−)

2
p̄2 =

(b+ δ−)

2

(
a+ δ−pe
2b+ 2δ−

)2

=
a2

8 (b+ δ−)

[ √
b+ δ− (δ+ − δ−)

δ+
√
b+ δ− − δ−

√
b+ δ+

]2

A lower bound on the short-run dead-weight-loss is given by DWLs:

DWLs =
p2

2

(
b+ δ+

)
=
a2

8

[
δ+ − δ−

δ+
√
b+ δ− − δ−

√
b+ δ+

]2

To complete the proof of part (i) observe that the lower bound on the short-run dead-weight loss
equals the upper bound on the long-run dead-weight loss, DWLs = DWLl(p̄). This establishes
part (i).

With δ− = 0 the lower bound on the short-run dead-weight-loss equals the canonical monopoly
dead-weight loss DWLm. From part (i) we already know that the lower bound on the short-run
dead-weight loss equals the upper bound on the long-run dead-weight loss.

The upper bounds on the long-run dead-weight loss equals

DWLs =
(b+ δ+)

2
p̄2 =

(b+ δ+)

8 (b+ δ−)2

(
a+ δ−a

√
b+ δ+ −

√
b+ δ−

δ+
√
b+ δ− − δ−

√
b+ δ+

)2

=
a2 (b+ δ+)

8 (b+ δ−)

(
(δ+ − δ−)

δ+
√
b+ δ− − δ−

√
b+ δ+

)2

.

The dead-weight loss of the canonical monopoly solution in the absence of reference effects equals
DWLm = a2

8b . We need to establish a condition under which DWLs ≤ DWLm. Using the substitu-
tions x =

√
b+ δ+ and y =

√
b+ δ−, and taking the square root, we obtain the following quadratic

inequality:
ax√
8y

(
x2 − y2

(x2 − b) y − (y2 − b)x

)
=

ax√
8y

(
x+ y

xy + b

)
≤ a√

8b
.

Rearranging yields:

y2 +

(
b

x
−
√
b

)
y −
√
bx ≥ 0
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with boundary solution

y = −1

2

(
b

x
−
√
b

)
+

√
1

4

(
b

x
−
√
b

)2

+
√
bx.

Thus, the cut-off point where the bound equals the canonical monopoly dead-weight loss is

δ−∗ =

1

2

(
b√

b+ δ+
−
√
b

)
−

√
1

4

(
b√

b+ δ+
−
√
b

)2

+
√
b
√
b+ δ+

2

− b.

For δ− ∈ [δ−∗, δ+], the inequality DWLs ≤ DWLm holds. This completes the proof.

Proof of Theorem2. By assumption, δ+ ≤ δ−, and property (i) follows immediately. To see prop-
erty (ii), observe that DWLs(R) = R2

2 (b+ δ+) is maximal when R equals the upper endpoint of

the support, R = a
2b+δ+

. Now, DWLs(R) =
(

a
2b+δ+

)2
· b+δ+2 < a2

4b = DWLm, which established

property (ii). To see property (iii), observe that DWLl(R) = R2

2 (b+ δ−) is maximal when R equals

the upper endpoint of the support, R = a
2b+δ+

. Now, DWLl(R) =
(

a
2b+δ+

)2
· b+δ−2 < a2

4b = DWLm,

which holds provided δ− < b+ 2δ+ +
(δ+)

2

2b , establishing property (iii).
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